-

. o . e
View metadata, citation and similar papers at core.ac.uk brought to you by ;{ CORE

provided by Universidade do Minho: RepositoriUM

Degradation Prediction Model for Friction in Highways

Adriana Santos?, Elisabete Freitas!, Susana Faria?, Joel R. M. Oliveiral, Ana Maria A.
C. Rocha®

" Department of Civil Engineering, C-TAC — Territory, Environment and Construction Centre,
University of Minho, Portugal
asantos@ascendi.pt, {efreitas, joliveira}@civil.uminho.pt
* Department of Mathematics and Applications, CMAT-Centre of Mathematics, University of
Minho, Guimaraes, Portugal
sfaria@math.uminho.pt
% Department of Production and Systems, Algoritmi Research Centre, University of Minho,
Portugal

arocha@dps.uminho.pt

Abstract. The purpose of this paper is to develop a multiple linear regression
model that describes the pavement’s friction behaviour using a degradation evo-
lution law that also considers the effects of weather, vertical alignment and traf-
fic factors.

This study is based on real data obtained from two different highways with an
approximate total length of 43 km. These sections present different alignment
features (plan/profile), different Annual Average Daily Traffic and are subject-
ed to different weather conditions. Nevertheless, both comprise the same type
of upper layer.

The efficiency of the linear regression model in approaching and explaining da-
ta was demonstrated. The most relevant factors involved in the degradation pro-
cess of pavements’ friction were identified.
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1 Introduction

Pavements can become degraded in several ways and their structural and functional
status can be described — according to the European project COST 324 — by seven
indicators: Longitudinal Profile, Transversal Profile, Surface Cracking, Structural
Cracking, Structural Adequacy, Surface Defects and Skid Resistance (friction) [2].
Pavements maintenance conditions are strongly conditioned by a significant num-
ber of variables, with several pondering factors. All these variables are inter-related
and affect the pavement’s entire life cycle, both in terms of functionality and struc-
ture. Those variables can be used in pavements degradation models, which are a fun-
damental component of any pavement management system. These models are based
on the study of performance data and establish the evolution law concerning the
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pavements degradation, by determining the relationships between the causes and ef-
fects of pavement degradation [11].

The main goal of a degradation model is to characterize the response-variable
throughout time, as well as to determine whether this is related with a set of previous-
ly selected explanatory variables, such as the age, the traffic, the structure of the
pavement and the weather conditions, among others.

In a modelling study of pavements degradation, in each sample unit, both the re-
sponse-variable and the explanatory variables are constantly monitored. Some of
these variables represent fixed characteristics of the sample unit, such as the traffic
directions, the kilometric point and the type of lane (left, right and additional); there-
fore these are time independent explanatory variables, whereas others, such as the
temperature and the traffic are time-dependent explanatory variables.

There are several pavement degradation models for the different status indicators,
individual or global (that consider the individuals with pondering). Markov’s previ-
sion model is an example of a frequently used model of predicting the global condi-
tions of a pavement, due to its ability to include pavement’s rehabilitations and degra-
dation rates in one single probability transition matrix [1].

On the other hand, when historical data are insufficient to develop numerical algo-
rithms, non-formulated methods can be used, such as the Intelligent Systems, among
which we highlight the artificial neural networks [6] and the adaptive systems (fuzzy)
which are another category of modelling techniques [7]. With the combination of both
(artificial neural networks and fuzzy systems), a hybrid system arose, named Neu-
rofuzzy System [8].

Nevertheless, in the last decades many progresses have been made in this field,
leading to the birth of other prediction models, such as the Nonlinear mixed-effects
models that, due the flexibility they provide in handling imperfect data, such as those
which are incorrect and/or inconsistent, provide more reliable previsions [10, 14].

Many degradation models have been developed for the longitudinal and transversal
profile indicators, as well as for the cracking indicators. However, regarding the fric-
tion, few models are presented and even fewer are discussed in terms of modelling, as
can be seen in COST 324 [3].

Friction has been acknowledged as one of the main factors contributing to the
number of traffic accidents and is therefore essential to the assessment of the pave-
ments quality, integrated within management systems. This indicator is influenced by
a large number of parameters, such as the traffic volume and respective driving speed,
the pavements characteristics and the grading composition, the precipitation and
drainage capacity, as well as the temperature. In a study in the United Kingdom, it
was recognized that the level of friction demanded for roads under operation would
have to vary along the road, according to its geometry and other factors [13].

The main objective of this study is to describe the pavement’s friction behaviour
through a multiple linear regression model taking into account the effects of weather,
vertical alignment and traffic factors.

The remainder of the paper is organized as follows. Section 2 describes the data,
the variables and multiple linear regression models. The statistical analysis of the
variable is done in Section 3. The results of applying multiple regression linear mod-



els to describe the pavement’s friction behaviour are presented in Section 4. Finally,
we make some concluding remarks in Section 5.

2 Materials and Methodology

2.1 Sample Design

This study is based on real data obtained from 100 m pavement sections of two dif-
ferent highway lanes with an approximate total length of 43 Km. The first stretch
(Section 1) is located in the Northern and the second (Section 2) in the Centre of Por-
tugal. These sections present different alignment features (plan/profile), different
Annual Average Daily Traffic (AADT) and are subject to different weather condi-
tions. Nevertheless, both comprise the same type of upper layer.

Each section was monitored for a period of approximately 8 years. The data com-
prises a total of 3366 observations.

2.2 The Data

For the development of this model we considered the variables that mostly influ-
ence the pavement’s friction degradation, such as the traffic, the weather conditions,
the texture and the alignment features, especially in terms of longitudinal profile.

The FRICTION is taken, for modelling purposes, as the dependent variable. This
variable represents the component of adherence and friction between the tyre and the
pavement surface and is responsible for a significant part of the highway accidents.
The value of friction can be expressed in several units, but in this study it was ex-
pressed in GN (Grip Number).

The explanatory variables are:

(a) TEXTURE (mm): designated by macro-texture, this corresponds to the texture
with a wavelength between 0.5 and 50 mm. This is important since it enables the
dispersion of surface water, providing drainage channels. Macro-texture is ob-
tained by the adequate proportion between the grading and the surface mortar or
by surface finishing techniques;

(b) Ac.AADT (vehicles): is the accumulated annual average daily traffic (light and
heavy vehicles) up to each data acquisition moment;

(c) MAAT (°C): is the mean of the average air temperature obtained in the month and
period referring to the Climatological Normal;

(d) VA: is the vertical alignment (1- Slopes, i; 2- Concave Curves, Ccv; 3- Convex
Curves, Ccx), as shown in Fig. 1.



Fig. 1. Vertical Alignment in the highway

2.3 Statistical Modelling

Regression analysis is one of the most widely used statistical tools because it pro-
vides simple methods for establishing a functional relationship between a response
and a set of explanatory variables. It has extensive applications in many subject areas,
like medicine, economics, biology, chemistry, engineering, sociology, etc.

Consider the multiple linear regression model

Y=XB+¢

Where Y isann x 1 vector of response, Xisann X k = (p + 1) full rank matrix of
explanatory variables including one constant column, g isa k x 1 vector of unknown
finite parameters and € isan n X 1 vector of i.i.d. random disturbances each of which
follows N(0,02). We predict the output Y using the least squares method via the
model ¥ = XB, where § = (XTX)"1xTY.

Considering that the behaviour of friction is closer to the linear when compared
with other parameters, such as alligator cracking, in this study we developed a multi-
ple linear regression model that enabled the analysis of the relation between a de-
pendent variable (FRICTION) and a set of explanatory variables, previously de-
scribed.

The selection of an appropriate subset of explanatory variables to be used in a mul-
tiple linear regression model is an important aspect of a statistical analysis. In this
study, we applied Stepwise regression which chooses a subset of explanatory varia-
bles exploring only a few possible sub-models [9].

These models were estimated using data collected from Section 1, Section 2 and
from both sections (Section 1+2). In the model constructed with all data, a binary
variable for the section (SECT) was also included.

Since the major role of regression modelling is to predict unknown future samples
[5], it may be of interest to estimate their prediction performance. The root mean-
squared error of prediction (RMSEP) of a model represents its prediction ability. The
most common approaches to measure prediction accuracy use resampling. The stand-
ard resampling method in this context is cross-validation while bootstrap can be used
as an alternative [4]. In this work, we used K-fold cross-validation to estimate the root
mean-squared error of prediction.

Data were statistically analyzed using the freeware R, version 2.14.1 [12].



3 Statistical Analysis

For a better understanding of the data under study, a statistical analysis of the con-
tinuous variables was initially made. The results are shown in Table 1.

Table 1. — Descriptive Statistics of continuous variables.

Section Descriptive FRICTION TEXTURE Ac.AADT MAAT

Statistics (GN) (mm) (vehicles) (°C)

1 Minimum 0.45 0.79 48 945 12.0
(N=1580)  Maximum 0.85 1.69 6.00E+06 20.9
Mean 0.69 1.11 3.04E+06 16.5

StdDev 0.07 0.14 2.98E+06 4.5

2 Minimum 0.35 0.79 246 691 8.0
(N=1786)  Maximum 0.84 1.85 11.88E+06 21.0
Mean 0.57 1.25 6.52E+06 15.7

StdDev 0.11 0.22 4.74E+06 5.1

142 Minimum 0.35 0.79 48 945 8.0
(N=3366) Maximum 0.85 1.85 11.88E+06 21.0
Mean 0.62 1.19 4.89E+06 16.1

StdDev 0.11 0.20 4.37E+06 4.8

Section 1 showed friction values significantly higher than Section 2
(t-test = —40.72, p-value < 0.001). This result may be explained by the fact that Sec-
tion 2 has a higher accumulated annual average daily traffic (Ac.AADT) than Section
1(t-test = 21.28, p-value < 0.001). Furthermore, there is a greater variability of friction
in Section 2.

We may also observe that both Sections present a similar maximum value of the
mean average air temperature (21.0°C). However, Section 1 displayed a mean of the
average air temperature (MAAT) significantly higher than Section 2 (t- test = —4.55,
p-value < 0.001).

Concerning the texture, Section 1 displayed texture values significantly lower than
Section 2 (t- test = 25.82, p-value < 0.001).

We studied the presence or absence of an association between each explanatory
variable and the dependent variable FRICTION, aiming to reveal the individual pre-
dictive capacity of the explanatory variable. For continuous explanatory variables, the
correlation coefficient of Pearson was employed and for categorical explanatory vari-
ables that of the ANOVA test.

In Table 2, the coefficients of correlation between the variable friction and each of
the continuous explanatory variables are presented along with the respective p-value.
The variables Ac.AADT and TEXTURE reveal the most significant negative correla-
tion, whereas the variable Mean Average Air Temperature (MAAT) reveals different
correlations in Section 1 and Section 2.



Table 2. — The correlation coefficient for continuous covariates and variable Friction.

Section TEXTURE Ac.AADT MAAT

kk

1 —0.490 -0.831"" -0.831™
2 -0.557""  -0.871™"  0.369™"
1+2 -0.609™" -0.876""  0.021™"

“Correlation is significant at the 0.001 level (2-tailed).
The friction distribution per vertical alignment characteristics is shown in Table 3.

Table 3. — Friction distribution per vertical alignment characteristics.

Section Descriptive Ccv Ccex i
Statistics
1 N 88 348 1144
(5.57%) (22.03%) (72.41%)
Minimum 0.55 0.53 0.45
Maximum 0.79 0.83 0.85
Mean 0.69 0.69 0.69
Std. Dev 0.06 0.06 0.07
2 N 359 586 841
(20.00%) (32.43%) (47.57%)
Minimum 0.35 0.36 0.35
Maximum 0.84 0.82 0.82
Mean 0.56 0.56 0.56
Std. Dev 0.10 0.11 0.10
142 N 447 934 1985
(13.28%) (27.75%) (58.97%)
Minimum 0.35 0.36 0.35
Maximum 0.84 0.83 0.85
Mean 0.59 0.61 0.64
Std. Dev 0.11 0.12 0.11

The effect of alignment characteristics and sections on FRICTION and their inter-
action was analyzed by a two-way analysis of variance (ANOVA). Results of the two-
way ANOVA showed that the interaction was not significant (F = 0.117, p-value =
0.890).

In the situation of non-significant interaction, a common practice is proceeding by
fitting an additive model, whose results are shown in Table 4. We found no signifi-
cant differences between the alignment characteristics in terms of FRICTION
(F=0.405; p-value = 0.667) and, as shown, the mean friction in Section 1 was signifi-
cantly higher than in Section 2.



Table 4. - ANOVA table.

Model Df Mean F-value P-value
Square
Section 1 12.080 1457.629 <0.001
Alignment 2 0.003 0.405 0.667
Error 3362 0.008 0.53 0.45
4 Results

Table 4 indicates the estimates of the parameters for the three multiple linear re-
gression models. For each model, the adjusted coefficient of determination R2 is also
computed. To measure prediction error in these models, we used the average of 2000
random 5-fold cross-validation runs.

In all models, the included explanatory variables are highly significant. We also
found that when the texture and accumulated annual average daily traffic increase, in
average the friction value decreases. As expected, we observed that the vertical
alignment does not influence FRICTION.

As can be seen in Table 5, the quality of fit of the models is good
(0.693 < R? < 0.826). We also can observe that the prediction performance of three
models is similar.

Table 5. — Estimated parameters.

Section 1 Section 2 Section 1+2

Variable Estimate  StdError Estimate  StdError Estimate StdError
Constant 0.784™ 0.008 07717 0.010 0.742" 0.007
TEXTURE -0.034™ 0.008 -0.039™ 0.007 -0.035™" 0.006
Ac.AADT -1.83E-08"" 3.79E-10 -1.96E-08"™" 3.42E-10 -9.30E-09™"  2.46E-10
MAAT -0.002"" 2.78E-04 -1.00E-03”  1.87E-04
SECT(ref.:1)

2 -0.056™" 0.002
Summary
Statistics
R? 0.693 0.767 0.826
RMSEP 0.048 0.051 0.053

** Denotes the significan

*** Denotes the significal

ce at the 0.01 level

nce at the 0.001 level

Plots of the residuals are widely used to assess the adequacy of a regression model.
Figure 2 provides the QQ-plot of the standardized residuals of the three models,
which indicate that the standardized residuals follow normal distribution. The normal-



ity test computed for each model (Shapiro—Wilks) also does not lead to reject the null
Hypothesis.

Figure 3 shows the standardized residuals versus fitted values. This panel does not
show any pattern in the spread of the residuals and we concluded that homogeneity
assumption is verified.

We also constructed standardized residuals versus each explanatory variable to
check independence assumption and we found no residual patterns.
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Fig. 2. QQ-Plot of the standardized residuals
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Fig. 3. Standardized residuals versus fitted values

5 Conclusions

For the real data available, this study developed a multiple regression model that
describes the prevision of the pavements’ friction degradation and identifies the ef-
fects of various factors upon its behaviour.



This study also revealed the efficiency of the linear regression model in approach-
ing and explaining that data, especially with regard to the identification of the most
relevant factors involved in the evolution process of pavements’ friction.

In the future, mixed-effects models will be applied to the data used in this paper
taking into account that the data comprise a series of test results measured throughout
the time.
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