
Heuristic-Based Firefly Algorithm for Bound Constrained
Nonlinear Binary Optimization

M. Fernanda P. Costa1, Ana Maria A.C. Rocha2, Rogério B. Francisco1

and Edite M.G.P. Fernandes2

1Department of Mathematics and Applications,

Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal
2Algoritmi Research Centre, University of Minho, 4710-057 Braga, Portugal

September 22, 2014

Firefly algorithm (FA) is a metaheuristic for global optimization. In this paper, we address the practical testing
of a heuristic-based FA (HBFA) for computing optima of discrete nonlinear optimization problems, where the
discrete variables are of binary type. An important issue in FA is the formulation of attractiveness of each
firefly which in turn affects its movement in the search space. Dynamic updating schemes are proposed for
two parameters, one from the attractiveness term and the other from the randomization term. Three simple
heuristics capable of transforming real continuous variables into binary ones are analyzed. A new sigmoid
‘erf’ function is proposed. In the context of FA, three different implementations to incorporate the heuristics
for binary variables into the algorithm are proposed. Based on a set of benchmark problems, a comparison
is carried out with other binary dealing metaheuristics. The results demonstrate that the proposed HBFA
is efficient and outperforms binary versions of differential evolution (DE) and particle swarm optimization
(PSO). The HBFA also compares very favorably with angle modulated version of DE and PSO. It is shown
that the variant of HBFA based on the sigmoid ‘erf’ function with ‘movements in continuous space’ is the
best, both in terms of computational requirements and accuracy.

1 Introduction

This paper aims to analyze the merit, in terms of
performance, of a heuristic-based firefly algorithm
(HBFA) for computing the optimal and binary solu-
tion of bound constrained nonlinear optimization prob-
lems. The problem to be addressed has the form:

min f (x)
subject to x ∈ Ω ⊂ Rn (a compact convex set)

xl ∈ {0,1} for l = 1, . . . ,n
(1)

where f is a continuous function. Due to the compact-
ness of Ω, we also have Lbl ≤ xl ≤ Ubl , l = 1, . . . ,n
where Lb and Ub are the vectors of the lower and upper
bounds respectively. We do not assume that f is differ-
entiable and convex. Instead of searching for any local
(non-global) solution we want the globally best binary
point. Direct search methods might be suitable since
we do not assume differentiability. However, they are
only local optimization procedures and therefore there
is no guarantee that a global solution is reached. For
global optimization, stochastic methods are generally
used and aim to explore the search space and converge
to a global solution. Metaheuristics are higher-level

procedures or heuristics that are designed to search for
good solutions, known as near-optimal solutions, with
less computational effort and time than more classi-
cal algorithms. They are usually non-deterministic and
their behaviors do not depend on problem’s proper-
ties. Population-based metaheuristics have been used
to solve a variety of optimization problems, from con-
tinuous to the combinatorial ones.

Metaheuristics are common for solving discrete bi-
nary optimization problems [4, 6, 13, 14, 15, 18, 21,
23, 24, 29]. Many approaches have been developed
aiming to solve nonlinear programming problems with
mixed-discrete variables by transforming the discrete
problem into a continuous one [5]. The most used and
simple approach solves the continuous relaxed prob-
lem and then discretizes the obtained solution by using
a rounding scheme. This type of approach works well
on simple and small dimension academic and bench-
mark problems but may be somehow limited on some
real-world applications.

Recently, a metaheuristic optimization algorithm,
termed as firefly algorithm (FA), that mimics the so-
cial behavior of fireflies based on the flashing and at-
traction characteristics of fireflies, has been developed

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55630998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[30, 31]. This is a swarm intelligence optimization al-
gorithm that is capable of competing with the most
well-known algorithms, like ant colony optimization,
particle swarm optimization, artificial bee colony, arti-
ficial fish swarm, and cuckoo-search.

FA performance is controlled by three parameters:
the randomization parameter α , the attractiveness β ,
and the absorption coefficient γ . Authors have argued
that its efficiency is due to its capability of subdivid-
ing the population into subgroups (since local attrac-
tion is stronger than long-distance attraction), and its
ability to adapt the search to problem landscape by
controlling the parameter γ [9, 36]. Several variants
of the firefly algorithm do already exist in the litera-
ture. Based on the settings of their parameters a clas-
sification scheme has appeared. Gaussian FA [7], hy-
brid FA with harmony search [11], hybrid genetic al-
gorithm with FA [8], self-adaptive step FA [36] and
modified FA in [27] are just a few examples. Further
improvements have been made aiming to accelerate
convergence (see, for example, [17, 20, 34]). A prac-
tical convergence analysis of FA with different param-
eter sets is presented in [2]. FA has become popular
and widely used in recent years in many applications,
like economic dispatch problems [35] and mixed vari-
able optimization problems [10]. The extension of FA
to multiobjective continuous optimization has already
been investigated [33]. A recent review of firefly algo-
rithms is available in [9].

Based on the effectiveness of FA in continuous
optimization, it is predicted that it will perform well
when solving discrete optimization problems. Discrete
versions of the FA are available for solving discrete NP
hard optimization problems [16, 25].

The main purpose of this study is to incorporate
some heuristics aiming to deal with binary variables
in the firefly algorithm for solving nonlinear optimiza-
tion problems with binary variables. The binary deal-
ing methods that were implemented are adaptations of
well-known heuristics for defining 0 and 1 bit strings
from real variables. Furthermore, a new sigmoid func-
tion aiming to constrain a real valued variable to the
range [0,1] is also proposed. Three different im-
plementations to incorporate the heuristics for binary
variables and adapt FA to binary optimization are pro-
posed. We apply the proposed heuristic strategies to
solve a set of benchmark nonlinear problems and show
that the newly developed HBFA is effective in binary
nonlinear programming.

The remaining part of the paper is organized as fol-
lows. Section 2 reviews the standard FA and presents
new dynamic updates for some FA parameters, and
Section 3 describes different heuristic strategies and
reports on their implementations to adapt FA to binary
optimization. All the heuristic approaches are vali-
dated with tests on a set of well-known bound con-

strained problems. These results and a comparison
with other methods in the literature are shown in Sec-
tion 4. Finally, the conclusions and ideas for future
work are listed in Section 5.

2 Firefly Algorithm
Firefly algorithm is a bio-inspired metaheuristic algo-
rithm that is able to compute a solution to an optimiza-
tion problem. It is inspired by the flashing behavior of
fireflies at night. According to [27, 30, 31], the three
main rules used to construct the standard algorithm are
the following:

• all fireflies are unisex, meaning that any firefly
can be attracted to any other brighter one;

• the attractiveness of a firefly is determined by its
brightness which is associated with the encoded
objective function;

• attractiveness is directly proportional to bright-
ness but decreases with distance.

Throughout this paper, we let ∥ · ∥ to represent
the Euclidean norm of a vector. We use the vector
x = (x1,x2, . . . ,xn)

T to represent the position of a fire-
fly in the search space. The position of the firefly j
will be represented by x j ∈ Rn. We assume that the
size of the population of fireflies is m. In the con-
text of problem (1), firefly j is brighter than firefly i
if f (x j)< f (xi).

2.1 Standard FA
First, in the standard FA, the positions of the fireflies
are randomly generated in the search space Ω, as fol-
lows:

xi
l = Lbl + rand(Ubl −Lbl), for l = 1, . . . ,n

where rand is a uniformly distributed random number
in [0,1], hereafter represented by rand ∼ U [0,1]. The
movement of a firefly i is attracted to another brighter
firefly j and is given by:

xi = xi +β (x j − xi)+α(rand −0.5)S, (2)

where α ∈ [0,1] is the randomization parameter,
rand ∼ U [0,1], S ∈ Rn is a problem dependent vector
of scaling parameters, and

β = β0 exp
(
−γ∥xi − x j∥p) for p ≥ 1 (3)

gives the attractiveness of a firefly which varies with
the light intensity/brightness seen by adjacent fire-
flies and the distance between themselves and β0 is
the attraction parameter when the distance is zero
[30, 31, 32, 34]. Besides the presented ‘exp’ func-
tion, any monotonically decreasing function could be
used. The parameter γ characterizes the variation of
the attractiveness – is the light absorption coefficient

2



– and is crucial to determine the speed of convergence
of the algorithm. In theory, γ could take any value in
the set [0,∞). When γ → 0, the attractiveness is con-
stant β = β0, meaning that a flashing firefly can be
seen anywhere in the search space. This is an ideal
case for a problem with a single (usually global) opti-
mum since it can easily be reached. On the other hand,
when γ → ∞, the attractiveness is almost zero in the
sight of other fireflies and each firefly moves in a ran-
dom way. In particular, when β0 = 0, the algorithm
behaves like a random search method [31, 34]. The
randomization term can be extended to the normal dis-
tribution N(0,1) or to any other distribution [36]. Al-
gorithm 1 presents the main steps of the standard FA
(on continuous space).

Data: kmax, f ∗, η
Set k = 0;
Randomly generate xi ∈ Ω, i = 1, . . . ,m;
Evaluate f (xi), i = 1, . . . ,m, rank fireflies (from lowest to
largest f );
while k ≤ kmax and | f (x1)− f ∗|> η do

forall xi such that i = 2, . . . ,m do
forall x j such that j = 1, . . . , i−1 do

Compute randomization term;
Compute attractiveness β ;
Move firefly i towards j using (2);

Evaluate f (xi), i = 1, . . . ,m, rank fireflies (from lowest
to largest f );
Set k = k+1;

Algorithm 1: Standard FA

2.2 Dynamic updates of α and γ
The relative value of the parameters α and γ affects the
performance of FA. The parameter α controls the ran-
domness, or, to some extent, the diversity of solutions.
Parameter γ aims to scale the attraction power of the
algorithm. Small values of γ with large values of α
can increase the number of iterations required to con-
verge to an optimal solution. Experience has shown
that α must take large values at the beginning of the
iterative process to enforce the algorithm to increase
the diversity of solutions. However, small α values
combined with small values of γ in the final iterations
increase the fine-tuning of solutions since the effort is
focused on exploitation. Thus, it is possible to improve
the quality of the solution by reducing the randomness.
Convergence can be improved by varying the random-
ization parameter α so that it decreases gradually as
the optimum solution is approaching [32, 33, 34, 35].
In order to improve convergence speed and solution
accuracy, dynamic updates of the parameters α and γ
of FA, which depend on the iteration counter k of the
algorithm, are implemented as follows.

Similarly to the factor which controls the ampli-
fication of differential variations, in differential evo-
lution (DE) metaheuristic [14], the inertial weight, in
particle swarm optimization (PSO) [12, 32], and the

pitch adjusting rate, in the harmony search (HS) algo-
rithm [19], we allow the value of α to decrease linearly
with k, from an upper level αmax to a lower level αmin:

α(k) = αmax − k
αmax −αmin

kmax
, (4)

where kmax is the maximum number of allowed itera-
tions. To increase the attractiveness with k, the param-
eter γ is dynamically updated by

γ(k) = γmax exp
(

k
kmax

ln(
γmin

γmax
)

)
, (5)

where γmin and γmax are the minimum and maximum
variation of attractiveness respectively.

2.3 Lévy dependent randomization term
We remark that our implementation of the randomiza-
tion term in the proposed dynamic FA considers the
Lévy distribution. Based on the attractiveness β , in
(3), the equation for the movement of firefly i towards
a brighter firefly j can be written as follows:

xi = xi + yi with yi = β (x j − xi)+αL(x1)σ i
x, (6)

where L(x1) is a random number from the Lévy dis-
tribution centered at x1, the position of the brightest
firefly, with an unitary standard deviation. The vec-
tor σ i

x represents the variation around x1 (and based on
real position x)

σ i
x =

(
|xi

1 − x1
1|, . . . , |xi

n − x1
n|
)T

.

3 Dealing with Binary Variables
The standard FA is a real-coded algorithm and some
modifications are needed to enable it to deal with dis-
crete optimization problems. This section describes
the implementation of some heuristics with FA for bi-
nary nonlinear optimization problems. In the context
of the proposed HBFA, three different heuristics to
transform a continuous real variable into a binary one
are presented. Furthermore, to extend FA to binary
optimization, different implementations to incorporate
the heuristic strategies into FA are described. We will
use the term ‘discretization’ to define the process that
transforms a continuous real variable, represented for
example by x, into a binary one, represented by b.

3.1 Sigmoid logistic function
This discretization methodology is the most com-
mon in the literature when population-based stochas-
tic algorithms are considered in binary optimization,
namely PSO [15, 21, 23], DE [6], HS [22, 29], artifi-
cial fish swarm [3], artificial bee colony [13, 18, 24].

3



When xi moves towards x j, the likelihood is that
the discrete components of xi change from binary num-
bers to real ones. To transform a real into a binary
number, the following sigmoid logistic function con-
strains the real value to the interval [0,1]:

sig(xi
l) =

1
1+ exp

(
−xi

l

) (7)

where xi
l , in the context of FA, is the component l of the

position vector xi (of firefly i) after movement – recall
(6) and (3). The equation (7) interprets the floating-
point components of a solution as a set of probabili-
ties. These are then used to assign appropriate binary
values by using:

bi
l =

{
1, if rand ≤ sig(xi

l)
0,otherwise (8)

where sig(xi
l) gives the probability that the compo-

nent itself is 0 or 1 [25] and rand ∼ U [0,1]. We note
that during the iterative process the firefly positions, x,
were not allowed to move outside the search space Ω.

3.2 Proposed sigmoid erf function
The error function is a special function with a shape
that appears mainly in probability and statistics con-
texts. Denoted by ‘erf’, this is a mathematical func-
tion defined by the integral

erf(x) =
2√
π

∫ x

0
exp(−t2)dt,

satisfies the following properties

erf(0) = 0, erf(−∞) =−1, erf(+∞) = 1,
erf(−x) =−erf(x), (9)

and has a close relation with the normal distribution
probabilities. When a series of measurements are de-
scribed by a normal distribution with mean 0 and stan-
dard deviation σ , the erf function evaluated at x

σ
√

2
,

for a positive x, gives the probability that the error
of a single measurement lies in the interval [−x,x].
The derivative of the erf function follows immedi-
ately from its definition:

d
dt

erf(t) =
2√
π

exp(−t2), for t ∈ R. (10)

The good properties of the erf function are thus used
to define a new sigmoid function – the sigmoid erf

function:

sig(xi
l) = 0.5(1+erf(xi

l)), (11)

which is a bounded differentiable real function, de-
fined for all x ∈R and has a positive derivative at each
point. A comparison of both functions (7) and (11) is

depicted in Figure 1. Note that the slope at the origin
of the sigmoid function in (11) is around 0.5641895,
while that of function (7) is 0.25, thus yielding a faster
growing from 0 to 1.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

si
gm

oi
d 

fu
nc

tio
n

 

 

1/(1+ exp(−x))
0.5(1+ erf(x))

Figure 1: Sigmoid functions

3.3 Rounding to integer part

The simplest discretization procedure of a continuous
component of a point into a 0/1 bit uses the rounding
to the integer part function, known as floor function,
and is described in [26]. Each continuous value xi

l ∈R
is transformed into a binary one, 0 bit or 1 bit, bi

l , for
l = 1, . . . ,n in the following way

bi
l = ⌊

∣∣xi
l mod2

∣∣⌋ (12)

where ⌊z⌋ represents the floor function of z, and gives
the largest integer not greater than z. The floating-point
value xi

l is first divided by 2 and then the absolute value
of the remainder is floored. The obtained integer num-
ber is the bit value of the component.

3.4 Heuristics implementation

In this study, three methods capable of computing
global solutions to binary optimization problems using
FA are proposed.

3.4.1 Movement on continuous space

In this implementation of the previously described
heuristics, denoted by ‘movement on continuous
space’ (mCS), the movement of each firefly is made
on the continuous space and its attractiveness term is
updated considering the real position vector. The real
position of firefly i is discretized only after all move-
ments towards brighter fireflies have been carried out.
We note that the fitness evaluation of each firefly, for
firefly ranking, is always based on the binary position.

4



Algorithm 2 presents the main steps of HBFA with
mCS.

Data: kmax, f ∗, η
Set k = 0;
Randomly generate xi ∈ Ω, i = 1, . . . ,m;
Discretize position of firefly i: xi → bi, i = 1, . . . ,m;
Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest to
largest f );
while k ≤ kmax and

∣∣ f (b1)− f ∗
∣∣> η do

forall xi such that i = 2, . . . ,m do
forall x j such that j = 1, . . . , i−1 do

Compute randomization term;
Compute attractiveness β ;
Move position xi of firefly i towards x j

using (6);

Discretize positions: xi → bi, i = 1, . . . ,m;
Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest
to largest f );
Set k = k+1;

Algorithm 2: HBFA with mCS

3.4.2 Movement on binary space

This implementation, denoted by ‘movement on bi-
nary space’ (mBS), moves the binary position of each
firefly towards the binary positions of brighter fireflies,
i.e., each movement is made on the binary space al-
though the corresponding position may fail to be a 0
or 1 bit string and must be discretized before the up-
dating of attractiveness. Here, fitness is also based on
the binary positions. Algorithm 3 presents the main
steps of HBFA with mBS.

Data: kmax, f ∗, η
Set k = 0;
Randomly generate xi ∈ Ω, i = 1, . . . ,m;
Discretize position of firefly i: xi → bi, i = 1, . . . ,m;
Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest to
largest f );
while k ≤ kmax and

∣∣ f (b1)− f ∗
∣∣> η do

forall bi such that i = 2, . . . ,m do
forall b j such that j = 1, . . . , i−1 do

Compute randomization term;
Compute attractiveness β based on distance
∥bi −b j∥p;
Move binary position bi of firefly i towards b j

using xi = bi +β (b j −bi)+αL(b1)σ i
b;

Discretize position of firefly i: xi → bi;

Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest
to largest f );
Set k = k+1;

Algorithm 3: HBFA with mBS

3.4.3 Probability for binary component

For this implementation, named ‘probability for binary
component’ (pBC), we borrow the concept from the
binary PSO [15, 23, 28] where each component of the
velocity vector is directly used to compute the proba-
bility that the corresponding component of the particle
position, xi

l , is 0 or 1. Similarly, in the FA algorithm,
we do not interpret the vector yi in (6) as a step size,

but rather as a mean to compute the probability that
each component of the position vector of firefly i is 0
or 1. Thus, we define

bi
l =

{
1, if rand ≤ sig(yi

l)
0,otherwise , (13)

where sig() represents a sigmoid function. Algo-
rithm 4 is the pseudo code of HBFA with pBC.

Data: kmax, f ∗, η
Set k = 0;
Randomly generate xi ∈ Ω, i = 1, . . . ,m;
Discretize position of firefly i: xi → bi, i = 1, . . . ,m;
Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest to
largest f );
while k ≤ kmax and

∣∣ f (b1)− f ∗
∣∣> η do

forall bi such that i = 2, . . . ,m do
forall b j such that j = 1, . . . , i−1 do

Compute randomization term;
Compute attractiveness β based on distance
∥bi −b j∥p;
Compute yi using binary positions (see (6));
Discretize yi and define bi using (13);

Compute f (bi), i = 1, . . . ,m, rank fireflies (from lowest
to largest f );
Set k = k+1;

Algorithm 4: HBFA with pBC

4 Numerical Experiments

In this section, we present the computational results
that were obtained with HBFA – Algorithms 2, 3 and
4, using (7), (11) or (12) – aiming to investigate its per-
formance when solving a set of binary nonlinear opti-
mization problems. Two small 0–1 knapsack problems
are also used to test the algorithms’ behavior on linear
problems with 0/1 variables.

The numerical experiments were carried out on a
PC Intel Core 2 Duo Processor E7500 with 2.9GHz
and 4Gb of memory. The algorithms were coded in
Matlab Version 8.0.0.783 (R2012b).

4.1 Experimental setting

Each experiment was conducted 30 times. The size
of the population is made to depend on the problem’s
dimension and is set to m = min{40,2n}. Some ex-
periments have been carried out to tune certain param-
eters of the algorithms. In the proposed FA with dy-
namic α and γ , they are set as follows: β0 = 1, p = 1,
αmax = 0.5, αmin = 0.01, γmax = 10, γmin = 0.1. In
Algorithms 2 (mCS), 3 (mBS) and 4 (pBC), iterations
were limited to kmax = 500 and the tolerance for find-
ing a good quality solution is η = 10−6. Results re-
ported are averaged (over the 30 runs) of best function
values, number of function evaluations and number of
iterations.

5



4.2 Experimental results
First, we use a set of ten benchmark nonlinear func-
tions with different dimensions and characteristics.
For example, five functions are unimodal and the re-
maining multimodal [1, 6, 23, 24]. They are displayed
in Table 1. Although they are widely used in continu-
ous optimization, we now aim to converge to a 0/1 bit
string solution.

First, we aim to compare with the results reported
in [6, 23, 24]. Due to poor results, the authors in
[24] do not advice the use of ABC to solve binary-
valued problems. The other metaheuristics therein im-
plemented are the following:

• angle modulated PSO (AMPSO) and angle
modulated DE (AMDE) that incorporate a
trigonometric function as a bit string generator
into the classic PSO and DE algorithms respec-
tively;

• binary DE and PSO based on the sigmoid lo-
gistic function and (8), denoted by binDE and
binPSO respectively.

We noticed that the problems Foxholes, Griewank,
Rosenbrock, Schaffer and Step are not correctly de-
scribed in [6, 23, 24]. Table 2 shows both the av-
eraged best function values (obtained during the 30
runs), favg, with the St.D. in parentheses, and the av-
eraged number of function evaluations, n f e, obtained
with the sigmoid logistic function (see in (7)) and (8),
while using the three implementations: mCS, mBS and
pBC. Results obtained for these ten functions indicate
that our proposal HBFA produces high quality solu-
tions and outperforms the binary versions binPSO and
binDE, as well as AMPSO and AMDE. We also note
that mCS has the best ‘n f e’ values on 6 problems,
mBS is better on 3 (one is a tie with mCS) and pBC
on 2 problems. Thus the performance of mCS is the
best when compared with those of mBS and pBC. The
latter is the least efficient of all, in particular for the
large dimensional problems.

To analyze the statistical significance of the results
we perform a Friedman test. This is a non-parametric
statistical test to determine significant differences in
mean for one independent variable with two or more
levels - also denoted as treatments - and a dependent
variable (or matched groups taken as the problems).
The null hypothesis in this test is that the mean ranks
assigned to the treatments under testing are the same.
Since all three implementations are able to reach the
solutions within the η error tolerance on 9 out of 10
problems, the statistical analysis is based on the per-
formance criterion ‘n f e’. In this hypothesis testing, we
have three treatments and ten groups. Friedman’s chi-
square has a value of 2.737 (with a p-value of 0.255).
For a 2 degrees of freedom reference χ2 distribution,

the critical value for a significance level of 5% is 5.99.
Hence, since 2.737 ≤ 5.99, the null hypothesis is not
rejected and we conclude that there is no evidence that
the three mean ranks values have statistically signifi-
cant differences.

To further compare the sigmoid functions with the
rounding to integer strategy, we include in Table 3 the
results obtained by the ‘erf’ function in (11), together
with (8), and the floor function in (12). Only the im-
plementations mCS and mBS are tested. The table also
shows the averaged number of iterations, nit. The re-
sults illustrate that implementation mCS (Algorithm 2)
works very well with strategies based on (11), together
with (8), and (12). The success rate for all the prob-
lems is 100%, meaning that the algorithms stop be-
cause the f value at the position of the best/brightest
firefly is within a tolerance η of the optimal solution
f ∗, in all runs. Further, mBS (Algorithm 3) works bet-
ter when the discretization of the variables are carried
out by equation (12). Overall, mCS based on (11) pro-
duces the best results on 6 problems, mCS based on
(12) gives the best results on 7 problems (including 4
ties with the former case), mBS based on (11) wins
only on one problem and mBS based on (12) wins on
3 problems (all are ties with mCS based on (12)).

Further, when performing the Friedman test on the
four distributions of ‘n f e’ values, the chi-square statis-
tical value is 13.747 (and the p-value is 0.0033). From
the χ2 distribution table, the critical value for a signif-
icance level of 5% and 3 degrees of freedom is 7.81.
Since 13.747 > 7.81, the null hypothesis is rejected
and we conclude that the observed differences of the
four distributions are statistically significant.

We now introduce in the statistical analysis the re-
sults reported in Tables 2 and 3 concerned with both
implementations mCS and mBS. Six distributions of
‘n f e’ values are now in comparison. The Friedman’s
chi-square value is 18.175 (p-value=0.0027). The crit-
ical value of the chi-square distribution for a signifi-
cance level of 5% and 5 degrees of freedom is 11.07.
Thus, The null hypothesis of “no significant differ-
ences on mean ranks” is rejected and there is evidence
that the six distributions of ‘n f e’ values have statis-
tically significant differences. Multiple comparisons
(two at a time) may be carried out to determine which
mean ranks are significantly different. The estimates
of the 95% confidence intervals are shown in the graph
of Figure 2 for each case under testing. Two compared
distributions of ‘n f e’ are significantly different if their
intervals are disjoint and are not significantly different
if their intervals overlap. Hence, from the six cases,
we conclude that the mean ranks produced by mCS
based on (12) is significantly different from those of
mBS based on (7) and mBS based on (11). For the
remaining pairs of comparison there are no significant
differences on the mean ranks.

6



Table 1: Problems set

Ackley f (x) =−20exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

( 1
n ∑n

i=1 cos(2πxi)
)
+20+ e

n = 30, Ω = [−30,30]30, f ∗ = 0 at x∗ = (0, . . . ,0)

Foxholes
f (x) = 1/

(
0.002+∑25

j=1
1

j+(x1−a1 j)
6+(x2−a2 j)

6

)
[ai j] =

[
−32 −16 0 16 32 −32 −16 . . . 16 32
−32 −32 −32 −32 −32 −16 −16 . . . 32 32

]
n = 2, Ω = [−65.536,65.536]2, f ∗ ≈ 13 at x∗ = (0,0)

Griewank f (x) = 1+ 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
n = 30, Ω = [−300,300]30, f ∗ = 0 at x∗ = (0, . . . ,0)

Quartic f (x) = ∑n
i=1 ix4

i +U [0,1]
n = 30, Ω = [−1.28,1.28]30, f ∗ = 0+noise at x∗ = (0, . . . ,0)

Rastrigin f (x) = 10n+∑n
i=1(x

2
i −10cos(2πxi))

n = 30, Ω = [−5.12,5.12]30, f ∗ = 0 at x∗ = (0, . . . ,0)

Rosenbrock2 f (x) = 100(x2
1 − x2)

2 +(1− x1)
2

n = 2, Ω = [−2.048,2.048]2, f ∗ = 0 at x∗ = (1,1)

Rosenbrock f (x) = ∑n−1
i=1 100(x2

i − xi+1)
2 +(1− xi)

2

n = 30, Ω = [−2.048,2.048]30, f ∗ = 0 at x∗ = (1, . . . ,1)

Schaffer f (x) = 0.5+
((

sin(
√

x2
1 + x2

2)
)2

−0.5
)
/
(
1+0.001(x2

1 + x2
2)
)2

n = 2, Ω = [−100,100]2, f ∗ = 0 at x∗ = (0,0)

Spherical f (x) = ∑n
i=1 x2

i
n = 3, Ω = [−5.12,5.12]3, f ∗ = 0 at x∗ = (0,0,0)

Step
f (x) = 6n+∑n

i=1⌊xi⌋
n = 5, Ω = [−5.12,5.12]5, f ∗ = 30 at x∗ = (0,0,0,0,0)

0 1 2 3 4 5 6

mBS based on (12)

mCS based on (12)

mBS based on (11)

mCS based on (11)

mBS based on (7)

mCS based on (7)

mBS based on (7) and (11)  have mean ranks significantly different from mCS based on (12)

Figure 2: Confidence intervals for mean ranks of n f e

For comparative purposes we include in Table 4 the
results obtained by using the proposed Lévy (L) distri-
bution in the randomization term, as shown in (6), and
those produced by the Uniform (U) distribution, us-
ing rand ∼U [0,1] as shown in (2). The reported tests
use implementation mCS (described in Algorithm 2)
with the two heuristics for binary variables: i) the
‘erf’ function in (11), together with (8); ii) the floor
function in (12). It is shown that the performance of
HBFA with Uniform distribution is very sensitive to
the dimension of the problem, since the efficiency is
good when n is small but gets worse when n is large.
Thus, we have shown that the Lévy distribution is a
very good bid.

We add to some problems with n= 30 from Table 1
– Ackley, Griewank, Rastrigin, Rosenbrock, Spheri-
cal – three other functions Schwefel 2.22, Schwefel
2.26 and Sum of Different Power to compare our re-
sults with those reported in [29]. Schwefel 2.22 is

unimodal and for Ω = [−10,10]30, the binary solu-
tion is (0, . . . ,0) with f ∗ = 0; Schwefel 2.26 is multi-
modal and in Ω = [−500,500]30, the binary solution is
(1,1, . . . ,1) with f ∗ = −25.244129544; Sum of Dif-
ferent Power is unimodal and in Ω = [−1,1]30, the
minimum is 0 at (0, . . . ,0). For the results of Table 5,
we use HBFA based on mCS, with both ‘erf’ function
in (11), together with (8), and the floor function (12).
The table reports on the average function values, av-
erage number of function evaluations and success rate
(SR). Here, 50 independent runs were carried out to
compare with the results shown in [29]. The maxi-
mum number of function evaluations therein used was
90000. It is shown that our HBFA outperforms the
proposed adaptive binary harmony search (ABHS).

4.3 Effect of problem’s dimension on
HBFA performance

We now consider six problems with varied dimensions
from the previous set to analyze the effect of problem’s
dimension on the HBFA performance. We test three
dimensions: n = 50, n = 100 and n = 200. The algo-
rithm’s parameters are set as previously defined. We
remark that the size of the population for all the tested
problems and dimensions is 40 points.

Table 6 contains the results for comparison based
on averaged values of f , number of function evalua-
tions and number of iterations. The ‘St.D.’ of the f val-
ues are also displayed. Since the implementation mCS,
shown in Algorithm 2, performs better and shows more
consistent results than the other two, we tested only

7



Table 2: Comparison with AMPSO, binPSO, binDE, AMDE, based on favg and St.D. (shown in parentheses)

mCS based on (7) mBS based on (7) pBC based on (7) AMPSO binPSO binDE AMDE
Prob. favg n f e favg n f e favg n f e favg favg favg favg

Ackley 8.88e-16 80 8.88e-16 1156 8.88e-16 2168 1.97e01 2.01e01 1.73e01 1.64e01
(0.00e00) (0.00e00) (0.00e00) (0.57e-01) (0.49e-01) (0.31e01) (0.76e00)

Foxholes 1.27e01 6.1 1.27e01 7.2 1.27e01 6.3 0.53e-10 0.53e-10 1.29e01 5.0e02
(9.03e-15) (9.03e-15) (9.03e-15) (0.00e00) (0.97e-14) (0.86e00) (0.0e00)

Griewank 0.00e00 80 0.00e00 1332 0.00e00 2300 1.06e02 6.79e01 2.63e02 2.06e02
(0.00e00) (0.00e00) (0.00e00) (0.44e01) (0.98e01) (0.10e02) (0.39e01)

Quartic 4.55e-01 2012 5.37e-01 1771 4.88e-01 2951 4.15e01 2.09e01 1.49e00 3.55e00
(3.01e-01) (3.03e-01) (2.71e-01) (0.19e01) (0.19e01) (0.66e00) (0.81e00)

Rastrigin 0.00e00 80 0.00e00 1282.7 0.00e00 2406.7 2.25e02 3.08e02 2.14e02 9.05e01
(0.00e00) (0.00e00) (0.00e00) (0.35e02) (0.28e01) (0.45e02) (0.31e02)

Rosenbrock2 0.00e00 6.5 0.00e00 5.7 0.00e00 6.1 0.49e-04 0.14e-03 0.20e-05 0.55e-04
(0.00e00) (0.00e00) (0.00e00) (0.11e-03) (0.88e-04) (0.15e-04) (0.17e-04)

Rosenbrock 0.00e00 180 0.00e00 2190.7 0.00e00 2088 2.20e03 2.24e03 1.81e03 9.14e01
(0.00e00) (0.00e00) (0.00e00) (0.86e02) (0.77e02) (0.16e02) (0.42e02)

Schaffer 0.00e00 6.1 0.00e00 8 0.00e00 4.9 0.24e-01 0.73e-01 -0.995e00 -1.0e00
(0.00e00) (0.00e00) (0.00e00) (0.42e-02) (0.11e-01) (0.27e-06) (0.0e00)

Spherical 0.00e00 12 0.00e00 12 0.00e00 11.7 0.30e-03 0.30e-03 0.15e-03 0.20e-04
(0.00e00) (0.00e00) (0.00e00) (0.00e00) (0.0e00) (0.41e-04) (0.15e-04)

Step 3.00e01 42.7 3.00e01 42.7 3.00e01 48 0.00e00 0.17e-04 0.15e-01 0.25e00
(0.00e00) (0.00e00) (0.00e00) (0.00e00) (0.15e-04) (0.0e00) (0.60e-01)

Table 3: Comparison mCS vs. mBS and (11) vs. (12), based on favg, n f e and nit

mCS based on (11) mBS based on (11) mCS based on (12) mBS based on (12)
Prob. favg n f e nit favg n f e nit favg n f e nit favg n f e nit

Ackley 8.88e-16 80 1 8.88e-16 678.7 16 8.88e-16 80 1 8.88e-16 82.7 1.1
Foxholes 1.27e01 5.7 0.4 1.27e01 8 1 1.27e01 6.1 0.5 1.29e01 404.8 100.2
Griewank 0.00e00 80 1 0.00e00 717.3 16.9 0.00e00 80 1 0.00e00 82.7 1.1
Quartic 2.38e-01 81.3 1.03 4.66e-01 794.7 18.9 9.48e-02 80 1 3.93e-01 80 1
Rastrigin 0.00e00 80 1 0.00e00 702.7 16.6 0.00e00 80 1 0.00e00 80 1
Rosenbrock2 0.00e00 6.4 0.6 0.00e00 5.3 0.3 0.00e00 6.3 0.6 2.33e-01 470.8 116.7
Rosenbrock 0.00e00 80 1 0.00e00 105.3 1.6 0.00e00 80 1 2.90e01 20040 500
Schaffer 0.00e00 6.8 0.7 0.00e00 12.9 2.2 0.00e00 5.1 0.3 7.08e-02 205.1 50.3
Spherical 0.00e00 9.9 0.2 0.00e00 22.7 1.8 0.00e00 10.1 0.3 0.00e00 11.5 0.4
Step 3.00e01 45.9 0.4 3.00e01 62.9 1 3.00e01 40.5 0.3 3.00e01 40.5 0.3

mCS based on (11) and mCS based on (12).

Besides testing significant differences on the mean
ranks produced by the two treatments – mCS based
on (11) and mCS based on (12) – we also want to de-
termine if the differences on mean ranks produced by
problem’s dimension – 50, 100 and 200 – are statisti-
cally significant at a significance level of 5%. Hence,
we aim to analyze the effects of two factors ‘A’ and
‘B’. ‘A’ is the HBFA implementation (with two levels)
and ‘B’ is the problem’s dimension (with three levels).
For this purpose, the results obtained for the six prob-
lems for each combination of the levels of ‘A’ and ‘B’
are considered as replications. When performing the
Friedman test for factor ‘A’, the chi-square statistical
value is 1.225 (p-value=0.2685) with 1 degree of free-
dom. The critical value for a significance level of 5%
and 1 degree of freedom in the χ2 distribution table
is 3.84, and there is no evidence of statistically signif-
icant differences. From the Friedman test for factor
‘B’, we also conclude that there is no evidence of sta-
tistically significant differences, since the chi-square

statistical value is 0.746 (p-value=0.6886) with 2 de-
grees of freedom. (The critical value of the χ2 distri-
bution table for a significance level of 5% and 2 de-
grees of freedom is 5.99.) Hence, we conclude that
the dimension of the problem does not affect the algo-
rithm’s performance. Only with problem Quartic, the
efficiency of mCS based on (11) gets worse as dimen-
sion increases. Overall both tested strategies are rather
effective when binary solutions are required on small
as well as on large nonlinear optimization problems.

4.4 Solving 0–1 knapsack problems

Finally, we aim to analyze the behavior of our best
tested strategies when solving well-known binary and
linear optimization problems. For this preliminary ex-
periment, we selected two small knapsack problems.
The 0–1 knapsack problem (KP) can be described as
follows. Let n be the number of items, from which we
have to select some of them to be carried in a knap-
sack. Let wl and vl be the weight and the value of item

8



Table 4: Comparison between Lévy and Uniform distributions in the randomization term, based on favg, n f e
and nit (with St.D. in parentheses)

mCS based on (11) + L mCS based on (11) + U mCS based on (12) + L mCS based on (12) + U
Prob. favg n f e nit favg n f e nit favg n f e nit favg n f e nit

Ackley 8.88e-16 80 1 8.88e-16 1096 26.4 8.88e-16 80 1 1.41e00 20040 500
(0.00e00) (0.00e00) (0.00e00) (1.26e-02)

Foxholes 1.27e01 5.7 0.4 1.27e01 8 1 1.27e01 6.1 0.5 1.27e01 6.8 0.7
(9.03e-15) (9.03e-15) (9.03e-15) (9.03e-15)

Griewank 0.00e00 80 1 0.00e00 2436 59.9 0.00e00 80 1 1.27e-01 20040 500
(0.00e00) (0.00e00) (0.00e00) (2.76e-02)

Quartic 2.38e-01 81.3 1.03 6.90e00 14692 366.2 9.48e-02 80 1 5.10e-01 10581 263.5
(1.70e-01) (1.16e01) (1.03e-01) (2.90e-01)

Rastrigin 0.00e00 80 1 0.00e00 1157 27.9 0.00e00 80 1 1.00e-01 18104 451.6
(0.00e00) (0.00e00) (0.00e00) (4.03e-01)

Rosenbrock2 0.00e00 6.4 0.6 0.00e00 36.8 8.2 0.00e00 6.3 0.6 0.00e00 5.9 0.5
(0.00e00) (0.00e00) (0.00e00) (0.00e00)

Rosenbrock 0.00e00 80 1 8.22e01 14136 352.4 0.00e00 80 1 7.42e01 17698 441.2
(0.00e00) (1.02e02) (0.00e00) (8.43e01)

Schaffer 0.00e00 6.8 0.7 0.00e00 18.5 3.6 0.00e00 5.1 0.3 0.00e00 5.6 0.4
(0.00e00) (0.00e00) (0.00e00) (0.00e00)

Spherical 0.00e00 9.9 0.2 0.00e00 13.3 0.7 0.00e00 10.1 0.3 0.00e00 14.7 0.8
(0.00e00) (0.00e00) (0.00e00) (0.00e00)

Step 3.00e01 45.9 0.4 3.00e01 46.9 0.5 3.00e01 40.5 0.3 3.00e01 52.3 0.6
(0.00e00) (0.00e00) (0.00e00) (0.00e00)

Table 5: Comparison of HBFA (with mCS) with ABHS in [29], based on favg, n f e and SR (%)

mCS based on (11) mCS based on (12) ABHS in [29]
Prob. favg n f e SR (%) favg n f e SR (%) favg n f e SR (%)

Ackley 8.88e-16 80 100 8.88e-16 80 100 1.56e-01 62350 90
Griewank 0.00e00 80 100 0.00e00 80 100 3.30e-02 79758 38
Rastrigin 0.00e00 80 100 0.00e00 80 100 1.32e01 90000 0
Rosenbrock 0.00e00 80 100 0.00e00 80 100 6.80e02 90000 0
Schwefel 2.22 0.00e00 80 100 0.00e00 80 100 0.00e00 59870 100
Schwefel 2.26 -2.52e01 80 100 -2.47e01 10867 87 -1.195e04 90000 0
Spherical 0.00e00 80 100 0.00e00 80 100 0.00e00 62234 100
Sum Different Power 0.00e00 91 100 0.00e00 168 100 0.00e00 80371 100

l respectively, and let W be the knapsack’s capacity. It
is usually assumed that all weights and values are non-
negative. The objective is to maximize the total value
of the knapsack under the constraint of the knapsack’s
capacity:

maxx V (x)≡
n

∑
l=1

vlxl

s.t.
n

∑
l=1

wlxl ≤W, xl ∈ {0,1}, l = 1, . . . ,n.

If item l is selected, xl = 1; otherwise, xl = 0. Using a
penalty function, this problem can be transformed into

min
x

−
n

∑
l=1

vlxl +µ max{0,
n

∑
l=1

wlxl −W}

where µ is the penalty parameter which was set to be
100 in this experiment.
Case 1: an instance of a 0–1 KP with 4 items. The
knapsack’s capacity is W = 6 and the vectors of values
and weights are v=(40,15,20,10) and w=(4,2,3,1).

Based on the above mentioned parameters, the HBFA
with mCS based on (11) was run 30 times and the av-
eraged results were the following. With a success rate
of 100%, items 1 and 2 are included in the knapsack,
items 3 and 4 are excluded, with a maximum value
of 55 (St.D.= 0.0e00). on average, the runs required
0.8 iterations and 29.3 function evaluations. With a
success rate of 23%, the heuristic based on the floor
function, thus mCS based on (12), reached favg = 49
(St.D.= 4.0e00) after an average of 6161.1 function
evaluations and an average of 384.1 iterations.

Case 2: an instance of a 0–1 KP with 8
items. The maximum capacity of the knap-
sack is set to 8 and the vectors of values and
weights are v = (83,14,54,79,72,52,48,62) and w =
(3,2,3,2,1,2,2,3). The results are averaged over the
30 runs. After 8.7 iterations and 386.7 function eval-
uations, the maximum value produced by the strategy
mCS based on (11) is 286 (St.D. = 0.0e00), with a suc-
cess rate of 100%. Items 1,4,5,6 are included in the
knapsack and the others are excluded. The heuristic

9



Table 6: Results for varied dimensions (n = 50,100,200), considering m = 40

mCS based on (11) mCS based on (12)
f ∗ n favg St.D. n f e nit favg St.D. n f e nit

Ackley 0.00e+00 50 8.88e-16 0.00e+00 80 1 8.88e-16 0.00e+00 80 1
0.00e+00 100 8.88e-16 0.00e+00 80 1 8.88e-16 0.00e+00 80 1
0.00e+00 200 8.88e-16 0.00e+00 80 1 8.88e-16 0.00e+00 80 1

Griewank 0.00e+00 50 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 100 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 200 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1

Quartic 0.00e+00+noise 50 2.24e-01 1.95e-01 82.7 1.1 1.43e-01 1.59e-01 80 1
0.00e+00+noise 100 4.32e-01 2.73e-01 146.7 2.7 1.73e-01 1.10e-01 80 1
0.00e+00+noise 200 5.23e-01 2.94e-01 1738.7 42.5 1.96e-01 2.13e-01 81.3 1.03

Rosenbrock 0.00e+00 50 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 100 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 200 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1

Spherical 0.00e+00 50 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 100 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1
0.00e+00 200 0.00e+00 0.00e+00 80 1 0.00e+00 0.00e+00 80 1

Step 3.00e+02 50 3.00e+02 0.00e+00 80 1 3.00e+02 0.00e+00 80 1
6.00e+02 100 6.00e+02 0.00e+00 80 1 6.00e+02 0.00e+00 80 1
1.20e+03 200 1.20e+03 0.00e+00 80 1 1.20e+03 0.00e+00 80 1

mCS based on (12) did not reached the optimal solu-
tion. All runs required 500 iterations and 20040 func-
tion evaluations and the average function values was
favg = 227 with St.D.= 3.14e01.

5 Conclusions and Future Work

In this work we have implemented several heuristics
to compute a global optimal binary solution of bound
constrained nonlinear optimization problems, which
have been incorporated into FA, yielding the herein
called HBFA. The problems addressed in this study
have bounded continuous search space. Our FA pro-
posal uses dynamic updating schemes for two param-
eters, γ from the attractiveness term and α from the
randomization term, and considers the Lévy distribu-
tion to create randomness in firefly movement. The
performance behavior of the proposed heuristics have
been investigated. Three simple heuristics capable
of transforming real continuous variables into binary
ones are implemented. A new sigmoid ‘erf’ func-
tion is proposed. In the context of the firefly algo-
rithm, three different implementations aiming to in-
corporate the heuristics for binary variables into FA
are proposed (mCS, mBS and pBC). Based on a set of
benchmark problems, a comparison is carried out with
other binary dealing metaheuristics, namely AMPSO,
binPSO, binDE and AMDE. The experimental results
show that the implementation denoted by mCS, when
combined with either the new sigmoid ‘erf’ function
or with the rounding scheme based on the floor func-
tion, is quite efficient and superior to the other meth-
ods in comparison. The statistical analysis carried out
on the results shows evidence of statistically signifi-
cant differences on efficiency, measured by the num-

ber of function evaluations, between the implementa-
tion mCS based on the floor function approach and the
mBS based on both tested sigmoid functions schemes.
We have also investigated the effect of problem’s di-
mension on the performance of our algorithm. Using
the Friedman statistical test we conclude that the dif-
ferences on efficiency are not statistically significant.
Another simple experiment has shown that the imple-
mentation mCS with the sigmoid ‘erf’ function is ef-
fective in solving two small 0–1 KP. The performance
of this simple heuristic strategy will be further ana-
lyzed to solve large and multidimensional 0–1 KP.

Future developments concerning the HBFA will
consider its extension to deal with integer variables in
nonlinear optimization problems. Different heuristics
to transform continuous real variables into integer vari-
ables will be investigated. Challenging mixed-integer
nonconvex nonlinear problems will be solved.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this article.

Acknowledgments

The authors wish to thank two anonymous referees for
their valuable suggestions to improve the paper.

This work has been supported by FCT (Fundação
para a Ciência e Tecnologia, Portugal) in the scope of
the projects: PEst-OE/MAT/UI0013/2014 and PEst-
OE/EEI/UI0319/2014.

10



References
[1] M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A

numerical evaluation of several stochastic algo-
rithms on selected continuous global optimiza-
tion test problems, Journal of Global Optimiza-
tion, vol. 31, pp. 635–672, 2005.

[2] S. Arora, S. Singh, The firefly optimization algo-
rithm: convergence analysis and parameter selec-
tion, International Journal of Computer Applica-
tions, vol. 69(3), pp. 48–52, 2013.

[3] M.A.K. Azad, A.M.A.C. Rocha, E.M.G.P. Fer-
nandes, A simplified binary artificial fish swarm
algorithm for uncapacitated facility location
problems, in Proceedings of World Congress on
Engineering 2013, S.I. Ao, L. Gelman, D.W.L.
Hukins, A. Hunter and A.M. Korsunsky (Eds.)
Vol. I, pp. 31–36, IAENG London, UK, 2013.

[4] M.A.K. Azad, A.M.A.C. Rocha, E.M.G.P. Fer-
nandes, Improved binary artificial fish swarm al-
gorithm for the 0-1 multidimensional knapsack
problems, Swarm and Evolutionary Computa-
tion, Vol. 14 pp. 66–75, 2014.

[5] S. Burer, A.N. Letchford, Non-convex mixed-
integer nonlinear programming: a survey, Sur-
veys in Operations Research and Management
Science, vol. 17, pp. 97–106, 2012.

[6] A.P. Engelbrecht, G. Pampará, Binary differen-
tial evolution strategies, in Proceedings of 2007
IEEE Congress on Evolutionary Computation,
pp. 1942–1947, 2007.

[7] Sh.M. Farahani, A.A. Abshouri, B. Nasiri, M.R.
Meybodi, A Gaussian firefly algorithm, Interna-
tional Journal of Machine Learning and Comput-
ing, vol. 1(5), pp. 448–453, 2011.

[8] Sh.M. Farahani, A.A. Abshouri, B. Nasiri, M.R.
Meybodi, Some hybrid models to improve fire-
fly algorithm performance, International Journal
of Artificial Intelligence, vol. 8(S12), pp. 97–117,
2012.

[9] I. Fister, I. Fister Jr., X.-S. Yang, J. Brest, A com-
prehensive review of firefly algorithms, Swarm
and Evolutionary Computation, vol. 13, pp. 34–
46, 2013.

[10] A.H. Gandomi, X.-S. Yang, A.H. Alavi, Mixed
variable structural optimization using firefly al-
gorithm, Computers and Structures, vol. 89(23–
24) (2011), pp. 2325–2336, 2011.

[11] L. Guo, G.-G. Wang, H. Wang, D. Wang, An
effective hybrid firefly algorithm with harmony

search for global numerical optimization, The
Scientific World Journal, Volume 2013, Article
ID 125625, 9 pages, 2013.

[12] A. R. Jordehi, J. Jasni, Parameter selection in
particle swarm optimisation: a survey, Journal
of Experimental & Theoretical Artificial Intelli-
gence, vol. 25(4), pp. 527–542, 2013.

[13] M.H. Kashan, N. Nahavandi, A.H. Kashan, Dis-
ABC: A new artificial bee colony algorithm for
binary optimization, Applied Soft Computing,
vol. 12(1), pp. 342–352, 2012.

[14] M.H. Kashan, A.H. Kashan, N. Nahavandi, A
novel differential evolution algorithm for binary
optimization, Computational Optimization and
Applications, vol. 55(2), pp. 481–513, 2013.

[15] J. Kennedy, R.C. Eberhart, A discrete binary ver-
sion of the particle swarm optimiser, in Proceed-
ings of IEEE International Conference on Com-
putational Cybernetics and Simulation, vol. 5,
pp. 4104–4108, 1997.

[16] A.N. Kumbharana, G.M. Pandey, Solving trav-
elling salesman problem using firefly algorithm,
International Journal for Research in Science &
Advanced Technologies, Vol. 2(2), pp. 53–57,
2013.

[17] X. Lin, Y. Zhong, H. Zhang, An enhanced firefly
algorithm for function optimisation problems, In-
ternational Journal of Modelling, Identification
and Control, vol. 18(2), pp. 166–173, 2013.

[18] T. Liu, L. Zhang, J. Zhang, Study of binary ar-
tificial bee colony algorithm based on particle
swarm optimization, Journal of Computational
Information Systems, Vol. 9(16), pp. 6459–6466,
2013.

[19] M. Mahdavi, M. Fesanghary, E. Damangir, An
improved harmony search algorithm for solv-
ing optimization problems, Applied Mathemat-
ics and Computation, vol. 188, pp. 1567–1579,
2007.

[20] A. Manju, M.J. Nigam, Firefly algorihtm with
fireflies having quantum behavior, in Institute
of Electrical and Electronics Engineers, 2012
ICRCC, India, December 2012, pp. 117–119,
2012.

[21] S. Mirjalili, A. Lewis, S-shaped versus V-shaped
transfer functions for binary particle swarm op-
timization. Swarm & Evolutionary Computation,
vol. 9, pp. 1–14, 2013.

[22] M. Padberg, Harmony search algorithms for bi-
nary optimization problems, in Operations Re-
search Proceedings 2011, pp. 343–348, 2012.

11



[23] G. Pampará, A.P. Engelbrecht, N. Franken, Bi-
nary differential evolution, in Proceedings of
2006 IEEE Congress on Evolutionary Computa-
tion, pp. 1873–1879, 2006.

[24] G. Pampará, A.P. Engelbrecht, Binary artificial
bee colony optimization. In IEEE Symposium on
Swarm Intelligence, IEEE Perth, pp. 1–8, 2011.

[25] M.K. Sayadi, A. Hafezalkotob, S.G.J. Naini,
Firefly-inspired algorithm for discrete optimiza-
tion problems: an application to manufacturing
cell formation, Journal of Manufacturing Sys-
tems, vol. 32(1), pp. 78–84, 2013.

[26] M. Sevkli and A. R. Guner, A continuous particle
swarm optimization algorithm for uncapacitated
facility location problem, in: M. Dorigo et al.
(Eds.), ANTS 2006, Lecture Notes in Computer
Sciences, Vol. 4150, Springer-Verlag, pp. 316–
323, 2006.

[27] S.L. Tilahun and H.C. Ong, Modified firefly algo-
rithm, Journal of Applied Mathematics, Volume
2012, Article ID 467631, 12 pages, 2012.

[28] L. Wang, C. Singh, Unit commitment consider-
ing generator outages through a mixed-integer
particle swarm optimization algorithm, Applied
Soft Computing, vol. 9, pp. 947–953, 2009.

[29] L. Wang, R. Yang, Y. Xu, Q. Niu, P.M. Pardalos,
M. Fei, An improved adaptive binary harmony
search algorithm, Information Sciences, vol. 232,
pp. 58–87, 2013.

[30] X.-S. Yang, Firefly algorithms for multimodal
optimization, in O. Watanabe, T. Zeugmann
(Eds.) Stochastic Algorithms: Foundations and
Applications (SAGA 2009) Lecture Notes in
Computer Sciences, Vol. 5792, pp. 169–178,
2009.

[31] X.-S. Yang, Firefly algorithm, stochastic test
functions and design optimization, International
Journal of Bio-Inspired Computation, vol. 2(2),
pp. 78–84, 2010.

[32] X.-S. Yang, Firefly algorithm, in Nature-Inspired
Metaheuristic Algorithms, 2nd edition, pp. 81–
96, Luniver Press, University of Cambridge, UK,
2010.

[33] X.-S. Yang, Multiobjective firefly algorithm for
continuous optimization, Engineering with Com-
puters, vol. 29(2), pp. 175–184, 2013.

[34] X.-S. Yang, X. He, Firefly algorithm: recent ad-
vances and applications, International Journal of
Swarm Intelligence, vol. 1(1), pp. 36–50, 2013.

[35] X.-S. Yang, S.S.S. Hosseini, A.H. Gandomi,
Firefly algorithm for solving non-convex eco-
nomic dispatch problems with valve loading ef-
fect, Applied Soft Computing, vol. 12(3), pp.
1180–1186, 2012.

[36] S. Yu, S. Yang, S. Su, Self-adaptive step firefly
algorithm, Journal of Applied Mathematics, Vol-
ume 2013, Article ID 832718, 8 pages, 2013.

12


