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ABSTRACT: The fabrication of micrometer-sized core—shell
particles for ultrasound-triggered delivery offers a variety of
applications in medical research. In this work, we report the
design and development of a glass capillary microfluidic system
containing three concentric glass capillary tubes for the
development of core—shell particles. The setup enables the
preparation of perfluorocarbon-alginate core—shell micro-
spheres in a single process, avoiding the requirement for
further extensive purification steps. Core—shell microspheres

PFC-alginate core shell particles

in the range of 110—130 ym are prepared and are demonstrated to be stable up to 21 days upon immersion in calcium chloride
solution or water. The mechanical stability of the particles is tested by injecting them through a 23 gauge needle into a
polyacrylamide gel to mimic the tissue matrix. The integrity of the particles is maintained after the injection process and is
disrupted after ultrasound exposure for 15 min. The results suggest that the perfluorcarbon-alginate microparticles could be a
promising system for the delivery of compounds, such as proteins, peptides, and small-molecule drugs in ultrasound-based

therapies.

B INTRODUCTION

Nanoparticles and microparticles have been described for a
large number of drug-delivery applications because these
systems offer several advantages as controlled release systems
and drug carriers. In particular, they can be administered to the
patient by minimally invasive procedures to the target site,
providing spatial control.' Another significant advantage of
these systems is the flexibility to select sizes from the nano to
the microscale, providing an easily adjustable surface area per
volume, drug loading, and bioavailability. Extensive reviews on
the application of microparticles in tissue engineering and
regenerative medicine (TERM) have been published in the
literature.> ™ In this context, microparticles can be used per se
but also may be used in combination with 3D matrices for the
delivery of active agents. Furthermore, microparticles allow the
development of complex delivery systems such as the sequential
release of macromolecules from dual-release systems, providing
a time-controlled delivery of different agents.”~ "

The possibility to develop on—off delivery devices has been
largely explored through different stimuli-triggered delivery
devices."" These are particularly attractive for controlling the
delivery of bioactive agents in a temporally controlled
manner.”*""* One way to exiplore these systems is by the use
of ultrasound energy (US). v1s Additionally ultrasound can
enhance intracellular delivery of the active compounds
promoting tissue uptake. Ultrasound can also be used to
promote healing, combined with the delivery of bioactive
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agents, such as cells, signaling molecules, or genes, enhancing
the healing processes.'® The development of ultrasound-
triggered delivery devices has not been extensively investigated
for TERM applications. In a recent work, Fabilli and coworkers
reported the development of disperse perfluorocarbon-filled
hydrogel microparticles that can be triggered by applying an
acoustic field. The microparticles released the growth factors on
demand in a spatiotemporally controlled manner upon
stimulation by an acoustic field."”” US enhances the release of
active compounds from a polymeric system because of the
response of the system to one of the following physical effects:
pressure variation, acoustic fluid streaming, cavitation, and/or
local hyperthermia."

Different carriers such as micelles, liposomes, and micro-
bubbles have been described in the literature as systems able to
respond to external ultrasound stimuli. Such microparticles can
be cavitated by ultrasound energy, acting as mediators through
which the energy of pressure waves is concentrated, producing
forces able to disrupt the particles.'® Micelles and liposomes
can be considered to be nanocarriers and have a typical average
size in the 10—100 and 100—200 nm ranges, respectively.
However, microbubbles are gas-filled particles that are 1—10
pum in diameter. Air and nitrogen have been used in the
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Table 1. Literature Overview of the Production of Alginate Particles Using Microfluidic Approaches

particle
no. microfluidic system oil phase type of particle core fill gelation size (um) application ref
1 PDMS microfluidic device soybean oil beads internal 50—110  cell encapsulation 24
external
2 PDMS microfluidic device soybean oil beads external 50—60 immobilization of 29
antibodies
3 glass capilary (cylindrical + decanol beads external 100—200  drug delivery 30
square)
4 microfluidic chip “snake mixer sunflower oil beads internal 225— cell encapsulation 31
slide” partial 320
external
S PDMS microfluidic device soybean oil beads internal 20—-80 32
6  PDMS microfluidic device n-hexadecane beads CaCl2 60—95 cell encapsulation 33,
coflow 34
7 PDMS microfluidic device oil beads external smart drug delivery 35
system
8 PDMS microfluidic device sunflower seed  beads external 60—105  drug delivery system 36
oil
9  glass capilary glycerol + tween beads external 60—230  cel encapsulation 37
20
10  PDMS microfluidic device Novec 7500 beads internal 25 cel encapsulation 38
fluorocarbon
oil
11  PDMS microfluidic device undecanol beads polysterene beads external 30-230 39
microcapsules  dispersed in undecanol
phase
12 glass capilary oil core—shell oil CaCI2 250—340  drug delivery system 40
particles coflow
13 PDMS microfluidic device microbubbles CO, internal <10 US and magnetic 25
ressonance imaging
14 3D microfluidic device beads air external 500-800  cell encapsulation 41
prepared by rapid
prototyping

preparation of microbubbles. However, the preparation of these
microbubbles presents several challenges because the particles
dissolve rapidly when in contact with a liquid phase, thus
compromising the stability of the system.

Perfluorocarbons (PFCs) present several advantages over air
and nitrogen. The possibility to prepare liquid-PFC-filled
microparticles from volatile PFCs such as perfluoropentane and
perfluorohexane is particularly interesting.'” The choice of the
encapsulating material is crucial to the stabilization of the
bubbles against coalescence and dissolution. The shell plays a
major role in the mechanical stability of microparticles. The
more elastic the shell material, the more acoustic energy that
can be withstood for a longer time before bursting or breaking
up. Various types of shell materials can be used, including
proteins, carbohydrates, phospholipids, and biodegradable
polymers. Polymers that are obtained from natural sources,
such as polysaccharides and proteins, have been reported in
numerous applications. These materials have been widely used
in biomedical applications because they are renewable, produce
degradable products, and are biocompatible.***"

In this work, we focus on the application of alginate, a
biopolymer derived from sea algae, that has been described for
a large number of pharmaceutical and biomedical applications
because of its biocompatibility and ease of gelation.*”
Conventional methods that are commonly used for the
preparation of microbubble delivery systems include sonication,
high-shear emulsification, and membrane emulsification.”®
However, these methods present significant disadvantages,
namely, poor control over the particle size and distribution. To
date, engineering core—shell microparticles remains a challeng-
ing task. Thus, there is a demand for new techniques that can
enable control over the size, composition, stability, and
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uniformity of microparticles.”**> Microfluidic techniques offer
great advantages in the fabrication of microparticles over the
conventional processes because they require mild and inert
processing conditions. Furthermore, particles produced from
microfluidic systems present a narrow size distribution.”~2®
Research groups have reported the production of alginate
particles using different microfluidic devices; however, only few
report the development of capsules or core—shell particles,
particularly from a glass capillary microfluidic device (Table 1).
Herein, we report a new fabrication technique for the
development of “infusion-like” systems for local delivery
triggered by ultrasound, which can potentially be used in
various therapeutic applications. More specifically, we present
the design and implementation of a new glass capillary
microfluidic device to fabricate and engineer stable perfluor-
ocarbon-biopolymer core—shell microspheres.

B MATERIALS AND METHODS

Materials. Alginic acid sodium salt from brown algae was
purchased from Fluka (Switzerland). Calcium chloride dihydrate
powder was obtained from Mallinrock (Japan). Fluorescein S(6)
isothiocyanate (FITC), acrylamide (AC), N,N’-methylenebis-
(acrylamide) (Bis), ammonium persulfate (APS) and N,N,N',N’-
tetramethylethylenediamide (TEMED) and were purchased from
Sigma-Aldrich. Phosphate buffer without calcium and magnesium ions
was obtained from Caroning Cellgo (USA). Perfluorohexane (C6F14)
3 M Fluorinert Electronic Liquid FC-72 was purchased from 3 M
(Germany). All chemical were used as received without further
purification.

Methods. A new robust microfluidic device was designed for the
fabrication of perfluorocarbon microspheres. Perfluorohexane and
sodium alginate solutions (0.25 wt %) were injected using two
independent syringe pumps at a constant flow rate. The microparticles
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Figure 1. (A) Glass capillary microfluidic device designed. (B) Schematic representation of the microfluidic device designed.

were collected in a calcium chloride (2 M) cross-linking bath. We
constructed a new microfluidic device (Figure 1) with the coaxial
injection of multiple fluids.

The new device consisted of three concentric glass capillaries as
shown in Figure 1. The inner capillary had an inner diameter (ID) of
50 um and an outer diameter (OD) of 80 ym, the middle capillary had
an ID of 150 ym and an OD of 250 ym, and the outer glass capillary
tube had an ID of 800 ym. The device has been designed to allow the
coaxial flow of three different solutions in each capillary, and the flow
rates of each solution can be controlled by independent syringe pumps
(Harvard Apparatus PHD 2000 infusion). The inner fluid was a
perfluorocarbon, namely, perfluorohexane (CgF,,). Perfluorohexane
has a boiling point above room temperature, 57 °C, and a vapor
pressure of 27 kPa. This liquid volatile PFC was selected in order to
enhance particle stability and prevent the coalescence of the
particles.” The middle aqueous phase was the polymeric solution,
constituted of a solution of 0.25% w/v alginate.

A summary of the experiments performed is listed in Table 2.

Table 2. Summary of the Experiment Performed

flow rate (uL/min)

experiment no. air (psi) alginate PFC
1 S S50 10
2 10 50 10
3 15 50 10
4 20 S50 10
5 22.5 S50 25
6 22.5 S50 20
7 22.5 S50 15
8 22.5 50 10
9 22.5 60 25
10 22.5 70 25

The particles were characterized by image analysis after observation
under a Carl Zeiss Axivert 200 inverted microscope. Da.Vis 8.1.6
(LaVision, Germany) software was used to image the samples. Image]
software was used to measure the mean particle size and distribution of
the microspheres. Particles (80—100) were analyzed by Image]
software for each experiment, and the mean particle size is represented
as the average of the particle size + the standard deviation of three
independent experiments.

A statistical analysis of the data was conducted using IBM SPSS
Statistics version 20 software. The Shapiro-Wilk test was employed to
evaluate the normality of the data sets. Once the results obtained do
not follow a normal distribution, a nonparametric test, namely, the
Kruskal-Wallis test, was used to infer statistically significant differences.
Differences between the groups with p < 0.05 were considered to be
statistically significant.

A Zeiss LSM710 confocal microscope (Carl Zeiss Microscopy,
Thornwood, NY) was used to image the stability of microparticles that
containing FITC over a period of 21 days.

Acrylamide gels were prepared according to standard protocols
described in the literature.*”® Briefly, a solution containing $22 uL of
water, 150 uL of AC solution (30%), 120 uL of Bis solution (0.3%), 8
uL of APS (10%), and 2 uL of TEMED was prepared. After stirring,
200 puL of the final solution was dispensed in a 96-well plate. The
samples were allowed to polymerize for 24 h before they were used in
further experiments.

B RESULTS AND DISCUSSION

Microfluidic devices can be prepared from glass capillary tubes
or by microfabrication techniques such as the soft lithography-
based fabrication of poly(dimethylsiloxane) (PDMS) devices.
Glass capillary microfluidics is an advantageous technique for
preparing devices for particle production at high rates with
controlled particle sizes and a narrow size distribution. Different
designs have been reported in the literature.””***> Most of the
glass capillary microfluidics systems described are based on a
circular glass capillary inserted in a square capillary. The major
constraint of these devices is their limited ability to inject only
two different fluids at the same time. In this work, we develop a
new robust microfluidic device designed to promote the
injection of multiple fluids coaxially as described in the
Methods section.

The rheological properties of the alginate solution, including
the intrinsic viscosity of the polymeric solution, are an
important aspect to consider. Cooper and coworkers report
that for a very low viscosity polymeric solution the elasticity of
the polymeric solution will affect droplet formation in a drop or
capillary breakup process.””*® Furthermore, it has been
reported in the literature that both the polymer molecular
weight and polymer concentration in solution affect the
breakup dynamics. Solutions with a higher extensional viscosity
and relaxation time are more effective at retarding breakup.*”**
However, the hydrodynamic resistance on the capillary tubing
in microfluidic systems depends linearly upon the viscosity of
the solution, thus the relevance to the understanding of the
viscoelastic properties of the polymeric solution. In particular,
alginate solutions present non-Newtonian behavior and are
considered to be complex fluids. Small amounts of alginate in
water lead to a drastic increase in the viscosity of the
solutions.*” Three viscosity regimes can be identified as a
function of the polymer concentration in solution: dilute,
semidilute unentangled, and semidilute entangled.so The choice
of the alginate concentration was such that the solution
presents a diluted regime, ie., there are no interactions or
overlapping of the polymeric chains. At 0.25% w/v, the
viscosity of the solution was calculated to be 5.31 mPa-s, and
this viscosity corresponds to a pressure drop of approximately
2.2 bar within the glass capillary tube for the highest flow rate
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Figure 2. (A) Optical and (B, C) confocal microscopy images of the perfluorocarbon-alginate core—shell particles. Particles were prepared at a 10
uL/min PFC flow rate, a S0 uL/min polymer solution flow rate, and 10 psi of air flow. (C) Representative profile of fluorescence intensity for the

PFC-alginate core—shell particle presented.

tested. Air is allowed to flow through the outer tube, and the air
pressure is controlled by a pressure gauge.

Different microfluidic geometries, such as a T-junction or
cross-junction, were tested for the preparation of various
alginate systems for different applications. The papers reported
in the literature refer to the preparation of alginate micro-
spheres from multiple emulsions using different oil phases
(Table 1), including sunflower oil,*! soybean 0il,***® n-decanol
with S wt % Span 80,%° and an acidic oil solution.*®**! However,
these systems refer mostly to the preparation of beads and not
to capsules or core—shell alginate microparticles. Other
microfluidic approaches have been reported in the literature
for the preparation of liquid core—shell particles. In particular,
double or multiple emulsion droplets of water in oil in water
(W/O/W) or oil in water in oil (O/W/O) have been
described.***"

To the best of our knowledge, the microfluidic preparation of
alginate microcapsules has been demonstrated by Zhang and
coworkers for the first time.> In their work, they present as a
proof of concept the possibility of preparing core—shell
particles from a Y-shaped microfluidic device prepared by a
soft lithography method. The preparation of gas core—shell
alginate particles has been reported by Park et al., who describe
a new approach to the development of carbon dioxide-filled
alginate microbubbles as imaging agents.25 In this work, we
propose the preparation of perfluorocarbon-alginate core—shell
microspheres using a simple glass capillary microfluidic device
and a single oil-in-water (O/W) emulsion where no additional
stabilizing agents and/or surfactants are required. The system
studied consisted of an inner oil phase that formed droplets in

the aqueous polymeric phase that in turn formed spheres when
coaxially sprayed with air. The microspheres were precipitated
in a cross-linking solution of calcium chloride (2 M). The
methodology developed provides a simple technique for the
preparation of liquid-core particles and eliminates the need for
any subsequent washing or purification steps to remove the oil
phase, with a production rate of approximately 200 particles/
min. The microspheres were collected and kept in CaCl,
solution. PFC particles were processed as a control, following
the same procedure but using water as the middle fluid instead
of the polymeric solution. As a result, small droplets of PFC
were dispersed in CaCl, solution. After some time, the particles
start to coalesce and larger particles of PFC are observed,
indicating that PFC droplets per se are not stable in an aqueous
solution.

Figure 2A presents an optical microscope image of the
microspheres prepared. After stable spheres were produced, the
shell-like structure was visualized by dispersing FITC within the
polymeric shell. Confocal microscopy (Figure 2B) reveals the
alginate shell covering the inner liquid core of PFC. The green
signal of FITC, present in the aqueous polymeric phase, is
observed in a thin concentric circle. The profile of fluorescence
intensity provided strong evidence that FITC is contained
within the polymeric shell of the particles. The thickness of the
shell is 5.5 + 1.3 pum on the basis of Image] analysis of the
confocal images (Figure 2C). The images demonstrate that the
particle is composed of two different phases in addition to
proving the successful encapsulation of the perfluorcarbon in
the alginate shell. These images show the feasibility of
preparing core—shell particles from the newly designed
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capillary glass microfluidic device. Although the particles consist
of a hydrophobic core and an aqueous shell, it is also possible to
fabricate particles having a inner hydrophilic core and a
hydrophobic shell using the same device.

In a liquid—liquid flow, capillary instabilities produce
segmented flows with uniform droplet size and depend on
the superficial velocities, inlet 5%eometlry, and wetting properties
of the microfluidic channel.>** Particles from microfluidic
devices are generated in either dripping or jetting regimes,
depending on the balance between the applied forces and the
surface tension forces. The effect of the flow rate of the inner
and middle flows and air flow on the particle size and particle
size distributions was studied under different conditions.

The air flow rate is the parameter most affecting the particle
size and size distribution of the alginate spheres (Figure 3). For
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Figure 3. Effect of processing conditions (inner fluid flow, middle fluid
flow rate, and air flow) on the average particle size of microspheres
prepared, with the different symbols corresponding to different air flow
ratios: (#) S, (0) 10, and (A) 15 psi.

all conditions tested, the average particle size decreases with
increasing air flow. The particle size distribution is broader for
samples prepared at 1S psi, and the samples are not as
homogeneous as the samples prepared at 5 or 10 psi. The inner
and middle fluid flows of PFC and alginate solution are the
parameters that determine whether the system is flowing in the
dripping or jetting regime, respectively.”*>> According to our
results, under the conditions tested, changing the inner and
middle flows did not produce significant differences in the
particle size of the microspheres obtained.

Particles were externally cross-linked in a calcium chloride
bath. Ionic cross-linking of alginate is the most common
approach to producing hydrogels, even though it may lead to
poor stability of the materials in some cases.”* For this reason,
alginate gelation has been the object of different studies because
the gelation rate is a crucial factor that controls gel strength and

homogeneity. Several authors have described the effect of the
gelation method in the stability of alginate particles prepared by
microfluidics. Zhang et al. reported the differences observed in
alginate garticles cross-linked by an internal or external gelation
method.”” Although upon external gelation the particles are
precipitated in a solution containing calcium ions, upon internal
gelation the continuous phase carries Ca** in the form of
calcium carbonate and the cross-linking will be triggered by a
change in the pH of the solution. Their findings suggest that
alginate particles cross-linked by an external gelation method
would be more stable than the ones prepared by an internal
gelation method with an elastic modulus similar to those of
other alginate beads prepared by conventional methodologies.
Capreto and coworkers have studied the effect of three different
gelation methods of alginate particles and have concluded that
spherical, smooth monodisperse particles were preferentially
produced by a partial gelation method that consisted of the
addition of barium ions to the alginate solution.” In their work,
when an external gelation method was tested, the particles
presented a tail-like structure, but this was not observed in the
case of our experiments. Another work by Hu et al. reports the
differences in particle morphology depending on the cross-
linking solution and height from the tip of the microfluidic
device to the solution.”® We tested the influence of the distance
from the tip of the microfluidic device to the cross-linking
solution bath on the geometry and morphology of the particles
prepared and did not observe significant differences.
Furthermore, the particle size of the core—shell particles
produced was not affected by this parameter. The height
between the tip of the microfluidic device and the solution was
hereafter adjusted to 3 cm in all experiments.

The poor stability of alginate materials in solution has been
reported to be mostly due to the exchange of ions from the
matrix to the solution. It is therefore important to determine
the stability of the microspheres produced. The stability of the
microspheres was evaluated during 21 days in different
solutions. Particles prepared at a 10 uL/min PFC flow rate, a
50 uL/min ALG solution, and 10 psi (air flow) were immersed
in 500 uL of calcium chloride (2 M) solution, phosphate buffer
(PBS), and water. At days 0, 7, 14, and 21 the samples were
analyzed by optical and confocal microscopy and the particle
size and particle size distribution were evaluated (Figure 4).

The stability experiments demonstrate that the microspheres
are stable for up to 21 days in calcium chloride or water. As a
control, PFC particles in the absence of polymer were sprayed
into CaCl, solution and observed. PFC particles coalesced into
larger droplets in 24 h, indicating that the presence of the shell
is essential to the preservation of particle size. The presence of
the alginate shell was further confirmed by confocal
microscopy. In PBS, however, the particles are not stable and
degrade after 1 day of immersion. The poor stability of alginate
materials ionically cross-linked with calcium ions in phosphate
buffer solutions has been reported by other authors. Ionic
cross-linking of alginate molecules results from the chelation of
two alginate molecules by a calcium ion. In the presence of
monovalent ions, there will be a competition between these and
Ca’, i.e,, there will be an exchange of Ca** by the monovalent
ions and consequently the loss of mechanical properties of the
materials and eventually disintegration of the structures.””*°

The results demonstrate, nonetheless, that the methodology
proposed for the development of perfluorocarbon-filled alginate
microspheres leads to the preparation of particles with a long
shelf life, overcoming disadvantages of other technologies
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Figure 4. (A) Optical images of initial particles. (B) Optical images after 14 days of immersion (C) Confocal microscope images of particles
immersed after 12 days and particle size distribution of particles immersed in calcium chloride and water as a function of immersion time.

previously used for the preparation of this type of system. The
alginate shell further provides a barrier that is able to prevent
PFC diffusion and evaporation and the collapse of the particles
for up to 21 days.

Statistical analysis performed on the data revealed that no
significant differences were observed for the average particle
size of the microspheres for up to 21 days of immersion (Table
3). The particle size distribution (Figure 4C) was also not
affected throughout the length of this study.
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Perfluorocarbon-filled particles are interesting for ultrasound-
triggered delivery systems. To demonstrate the ability to
disrupt the PFC-loaded microspheres by ultrasound, the
particles prepared at a 10 pL/min PFC flow rate, S0 #L/min
ALG solution, and 10 psi (air flow) were exposed to ultrasound
for 15 min (Figure S).

From the images, we can observe the breakup of the particles
after 15 min of ultrasound exposure. In this system,
perfluorohexane undergoes a liquid—gas phase transition
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Table 3. Average Particle Size (um) of Microspheres in
Solution

CaCl, water

time (days) average SD average SD
0 119.0 4.9 124.5 3.3
0.1 1223 02 116.7 11.8
0.2 124.6 0.1 122.8 0.2
1 1264 0.3 106.8 23.7
2 1213 0.2 119.7 33
7 117.2 1.8 118.5 9.2
14 118.7 9.5 119.2 1.0
21 123.5 14 123.5 0.1

promoted by an increase in local temperature and acoustic
energy provided locally after ultrasound application, leading to
the disruption of the particles.

To demonstrate the mechanical strength of the particles and
simulate the intramuscular injection without disruption,
acrylamide gels were prepared following a protocol described
by Park.®® Acrylamide gels are commonly used as phantom
matrices for needle insertion studies because they can mimic
different tissue properties in terms of mechanical and acoustic
properties.”” The mechanical properties of the gels prepared
present an elastic modulus G” on the order of 2 kPa, according
to the results presented by Calvet et al.>® These are in good
agreement with the literature values reported for muscle.*”
Microspheres loaded with FITC were injected using a 23 gauge
needle in the gel and were observed under optical and confocal
microscope before and after US exposure (Figure 6).

Optical and confocal images of the particles injected within
the acryalmide gel demonstrate that the perfluorocarbon-
alginate microspheres have enough resistance to be used as an
injectable system. The particles were able to resist manipulation
and present intact morphology within the gel just like they were
in the solution presented previously in Figure 2. The optical
and confocal microscopy images provided complementary
information in the case of the particles after US exposure. The
optical images indicated the presence of smaller PFC droplets
within the gel, proving the disruption of the alginate spheres.
By confocal microscopy, the round alginate particles are no
longer observed, and instead a blurry green image was
observed.

The homogeneous FITC dispersion within the alginate shell,
observed by confocal microscopy, provided strong evidence
that the incorporation of another molecule in this FITC system

50 um

\L US exposure

Figure 6. (A) Acrylamide gel. (B) Injection of perfluorocarbon-
alginate particles within a gel. (C) Optical and (D) confocal
microscopy images of the encapsulated particles before (Cl, D1)
and after (C2, D2) ultrasound exposure.

did not affect the preparation of the microspheres, suggesting
that more complex systems can be prepared using the
microfluidic device designed and presented in this work. As
future perspectives, we envisage the possibility of loading
proteins, growth factors, or other hydrophilic molecules
dispersed in the shell and the encapsulation of hydrophobic
molecules in the liquid core. Upon exposure to US, the particles
will be disrupted and the active compounds will be immediately
delivered to the site of action. It may also be possible to
generate microparticles with sustained release properties using
our setup. The work presented can potentially lead to new

Figure 5. Optical microscope images of the alginate microspheres (A) before and (B) after ultrasound exposure.
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approaches in therapies by integrating local and targeted
delivery of the active agents encapsulated within the micro-
particles with low-pulsatile ultrasound.

B CONCLUSIONS

A new microfluidic device based on three concentric glass
capillary tubes was designed and implemented for the
preparation of perfluorocarbon-filled alginate microspheres.
The results demonstrate that the core—shell microspheres
prepared have an average particle-size diameter of 120 ym. The
presence of the outer shell was proven by confocal microscopy.
The particles prepared following the proposed methodology are
intact for up to 21 days when immersed in calcium chloride
solution or water. The disruption of the particles can be
triggered by ultrasound exposure as the perfluorohexane
undergoes a liquid—gas phase transition offering potential
advantages in regenerative therapies. Furthermore, we have
proven that the particles maintained their integrity upon
injection in a hydrogel matrix, mimicking intramuscular
injection, and that the injected microspheres can be disrupted
after ultrasound exposure. The work presented herein may
open new possibilities in ultrasound regeneration therapies,
providing systems for the simultaneous delivery of hydrophilic
and hydrophobic active compounds such as proteins, growth
factors, cells, and anti-inflammatory agents.
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