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Abstract

The time discretization of a very high-order finite volume method may give rise to new
numerical difficulties resulting into accuracy degradations. Indeed, for the simple one-
dimensional unstationary convection-diffusion equation for instance, a conflicting situa-
tion between the source term time discretization and the boundary conditions may arise
when using the standard Runge-Kutta method. We propose an alternative procedure by
extending the Butcher Tableau to overcome this specific difficulty and achieve fourth-,
sixth- or eighth-order of accuracy schemes in space and time. To this end, a new finite
volume method is designed based on specific polynomial reconstructions for the space
discretization, while we use the Extended Butcher Tableau to perform the time discretiza-
tion. A large set of numerical tests has been carried out to validate the proposed method.

Keywords: finite volume, very high-order, convection-diffusion, polynomial
reconstruction, Butcher Tableau.

1. Introduction

Very high-order finite volume schemes involving diffusive or viscous contributions is
a recent but important challenge [1, 2] (see [3] for a generic framework of the finite
volume method with diffusion terms). In [4], a new high-order finite volume method
has been developed providing up to a sixth-order approximation for the two-dimensional
steady-state convection-diffusion problem. The method is based on specific polynomial
reconstructions used for the convection and the diffusion fluxes [5, 6, 7, 2, 8]. The issue
we address here is the extension to the time-dependent case. The semi-discretization
in space results in an initial value Ordinary Differential Equation (ODE) system where
standard methods produce a fully discretized system. The Runge-Kutta method [9] is
one of the most popular schemes but alternative techniques such as the strong stabil-
ity preserving time discretization schemes [10] or the ADER method [11, 12, 8] may be
considered. Nevertheless, a straightforward application of the time discretization of the
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ODE is not fully satisfactory since, as we shall prove in the paper, accuracy deterio-
ration is observed when dealing with fourth-, sixth- or eighth-order methods. Indeed,
numerical problems appear close to the boundary resulting from an inadequacy between
the time discretization of the diffusion term of the differential equation and the Dirichlet
or Neumann boundary conditions where such a phenomenon arises when dealing with
time dependent boundary conditions. The goal of the present study is to overcome this
problem introducing two time-discretizations (one for the differential equation and an-
other for the boundary conditions) such that they match in the sense that a class of
functions (for example constant in space) are exactly solved. We present the method for
one-dimensional geometries for the sake of simplicity since the main difficulty concerns
the time discretization, being the extension for higher spatial dimension the subject of a
future work.

The paper is organized as follows. In the second section, we introduce the notations
and ingredients to perform the space discretization for the steady-state problem rephra-
sing [4] for the one-dimensional context. The motivation is that the time discretization
is based on the stationary case by using the method of lines. Section three is dedicated
to the design of high-order finite volume schemes for the time-dependent case where we
develop a new class of time discretization to preserve the compatibility between the source
term and the boundary conditions. Section four deals with the numerical tests showing
that the scheme provides fourth-, sixth- or eighth-order accuracy both in space and time.
We propose examples which show that the straightforward time discretization may not
provide the expected order whereas the new method effectively gives the optimal order of
convergence or a significant improvement. In the last section we present the conclusions
of the work.

2. Steady-state convection-diffusion problem

Very high-order finite volume discretization in space is introduced in the present sec-
tion. We first deal with the steady-state context since it is an important building-block
for the time-dependent problem we shall tackle in the next section. The main ingre-
dient is a polynomial reconstruction procedure which provides accurate representations
of the solution further used to evaluate the flux for the convection and the diffusion
contributions.

2.1. Finite volume discretization

We seek function φ “ φpxq solution of the steady-state convection-diffusion equation

pvφq1 ´ pκφ1q1 “ f, in Ω, (1)

where Ω “ pxL, xRq is an open bounded interval of R, the diffusive coefficient κ “ κpxq
and the convective coefficient v “ vpxq are regular functions on Ω with κpxq ě κ0 ą 0,
and f “ fpxq represents a regular source term. We shall consider three different types
of boundary conditions:

• Dirichlet: φpx̄q “ φDpx̄q;

• total Neumann: vpx̄qφpx̄q ´ κpx̄qφ1px̄q “ φTpx̄q;
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Figure 1: Notation for the mesh, cells, and interfaces.

• partial Neumann: ´κpx̄qφ1px̄q “ φPpx̄q,

where x̄ is a boundary point and φD “ φDpxq, φT “ φTpxq, and φP “ φPpxq are given
functions (only defined at points xL and xR for the one-dimensional case, being the
extension for the two-dimensional situation straightforward). Other boundary conditions
as the Robin condition can also be considered (see [13] for instance).

We underline the main difference between the total Neumann condition and the par-
tial Neumann condition. In the first case, the natural flux involving both the convection
and the diffusion are linked to a given function φT, whereas in the second case only the
diffusive part is controlled by an external function φP. We shall see in the following that
Neumann conditions shall bring numerical difficulties when dealing with large Péclet
numbers.

To perform the space discretization we denote by Th a mesh of the interval Ω constitu-
ted of cells Ki “ rxi´ 1

2
, xi` 1

2
s, i “ 1, . . . , I, with centroid xi, where x 1

2
“ xL, xI` 1

2
“ xR,

and xi` 1
2
“ xi´ 1

2
` hi, i “ 1, . . . , I stand for the interfaces (cf. Fig. 1).

Using the classical finite volume methodology, equation (1) is integrated over cell Ki,
i “ 1, . . . , I, resulting in

1

hi

´

Fi` 1
2
´ Fi´ 1

2

¯

´ fi “ 0, (2)

where we set the physical flux as

Fi˘ 1
2
“ vpxi˘ 1

2
qφpxi˘ 1

2
q ´ κpxi˘ 1

2
qφ1pxi˘ 1

2
q

and the mean value of the source term as

f̄i “
1

hi

ż

Ki

fpξqdξ.

The exact mean source term f̄i is approximated by fi through Gaussian quadrature
approximation and the numerical approximation for the exact fluxes Fi˘ 1

2
is the subject

of the next two subsections.

2.2. Polynomial reconstructions

To achieve high-order numerical approximations, we introduce local polynomial re-
constructions of the underlying solution whereas second-order popular techniques use
local interpolation based on centroids or vertices (see [14] for the two-dimensional case).
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We adapt the reconstruction procedure developed in [4] for the one-dimensional situa-
tion and highlight three specific and important points: interpolations are carried out with
mean values such that the mass matrix deriving from time discretization turns out to be a
diagonal one (see next section); conservative polynomials are well adapted for convection
fluxes while non-conservative polynomials associated to the interfaces are required for the
diffusive contribution; and the weights distribution in the minimization process is crucial
to provide a positivity preserving scheme when dealing with pure diffusive problems.

At the first stage, we define the stencils associated to the cells and the interfaces.
For any cell Ki, i “ 1, . . . , I, and any degree d of the polynomial reconstruction, we
shall denote by Si the stencil composed of the even n closest neighbor cells (excluding
cell Ki). In the same way, for any interface xi` 1

2
, i “ 0, . . . , I, and and any degree d of

the polynomial reconstruction, we denote by Si` 1
2

the stencil constituted of the even n
closest neighbor cells of the interface.

The second stage consists in defining the polynomial reconstructions based on the
data of the associated stencil. To this end, we assume that Φ “ pφiqi“1,...,I , φi P R, is a
vector gathering approximations of the mean value of φ over cells Ki, i “ 1, . . . , I. We
have to consider three cases:

• Conservative polynomial reconstruction on cells: let i P t1, . . . , Iu. The polynomial
reconstruction of degree d associated to cell Ki is defined as

φφφipxq “ φi `
d
ÿ

α“1

Ri,α rpx´ xiq
α ´Mi,αs ,

where we have set Mi,α “
1
hi

ş

Ki
px´ xiq

α dx to provide a conservativity property,

that is, 1
hi

ş

Ki
φφφipxqdx “ φi, and the vector Ri “ pRi,αqα“1,...,d gathers the poly-

nomial coefficients. For a given stencil Si and vector ωi “ pωi,jqj“1,...,#Si
, ωi,j

positive weights of the reconstruction, we consider the quadratic functional

pEipRiq “
ÿ

jPSi

ωi,j

«

1

hj

ż

Kj

φφφipxqdx´ φj

ff2

.

We denote by pRi the unique vector which minimizes the quadratic functional and

set pφφφi the associated polynomial that corresponds to the best approximation in the
least squares sense of the data of the stencil.

• Conservative polynomial reconstruction on boundary interfaces: to take the Dirich-
let conditions into account, we introduce two polynomials associated to the bound-
ary interfaces x “ xL and x “ xR. The polynomial reconstruction of degree d
associated to the boundary interface x “ xL is defined as

φφφ 1
2
pxq “ φDpx 1

2
q `

d
ÿ

α“1

R 1
2 ,α
px´ x 1

2
qα,

where again we have a conservativity property, that is, φφφ 1
2
px 1

2
q “ φDpx 1

2
q, and the

vector R 1
2
“ pR 1

2 ,α
qα“1,...,d gathers the polynomial coefficients. For a given stencil
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2

the unique vector which minimizes the quadratic functional and

set pφφφ 1
2

the associated polynomial that corresponds to the best approximation in
the least squares sense of the data of the stencil. We proceed in the same way for

polynomial pφφφI` 1
2

at interface xI` 1
2
“ xR.

• Non-conservative polynomial reconstruction at inner interfaces: let i P t1, . . . , I ´ 1u.
The polynomial reconstruction of degree d associated to interface xi` 1

2
is defined

as

φφφi` 1
2
pxq “

d
ÿ

α“0

Ri` 1
2 ,α
px´ xi` 1

2
qα,

where the vector Ri` 1
2
“ pRi` 1

2 ,α
qα“1,...,d gathers the polynomial coefficients. For a

given stencil Si` 1
2

and vector ωi` 1
2
“ pωi` 1

2 ,j
qj“1,...,#S

i` 1
2

, ωi` 1
2 ,j

positive weights

of the reconstruction, we consider the quadratic functional

rEi` 1
2
pRi` 1

2
q “

ÿ

jPS
i` 1

2

ωi` 1
2 ,j

«

1

hj

ż

Kj

φφφi` 1
2
pxqdx´ φj

ff2

.

We denote by rRi` 1
2

the unique vector which minimizes the quadratic functional

and set rφφφi` 1
2

the associated polynomial that corresponds to the best approximation
in the least squares sense of the data of the stencil.

2.3. Numerical scheme

To provide an accurate approximation to the convection-diffusion problem, the poly-
nomial reconstructions are employed to design the numerical fluxes. We propose the
following expressions based on [4] (we use the notations rvpxqs` “ maxpvpxq, 0q and
rvpxqs´ “ minpvpxq, 0q):

• left boundary interface:

F 1
2
pΦq “

$

’

&

’

%

rvpx 1
2
qs`φDpx 1

2
q ` rvpx 1

2
qs´pφφφ1px 1

2
q ´ κpx 1

2
qpφφφ
1
1
2
px 1

2
q, if Dirichlet;

φTpx 1
2
q, if total Neumann;

vpx 1
2
qpφφφ1px 1

2
q ` φPpx 1

2
q, if partial Neumann;

• inner interfaces (i “ 1, . . . , I ´ 1):

Fi` 1
2
pΦq “ rvpxi` 1

2
qs`pφφφipxi` 1

2
q ` rvpxi` 1

2
qs´pφφφi`1pxi` 1

2
q ´ κpxi` 1

2
qrφφφ
1

i` 1
2
pxi` 1

2
q;
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• right boundary interface: similar to the left boundary interface.

Remark 1. Total Neumann boundary condition at point x̄ contains the convective con-
tribution which implicitly provides a Dirichlet-like condition. Indeed, for a zero diffusion
process, this type of boundary condition prescribes the convective flux, namely vpx̄qφpx̄q.
Since vpx̄q is given, the φpx̄q value is implicitely fixed. The problem is that such a sit-
uation is not physically relevant for pure convection problem with an outflow condition.
When dealing with partial Neumann boundary condition, one has to discretize the con-
vective contribution. Since no value on the boundary x̄ is available, the scheme does not
involve the upwinding for inflow conditions. It implies that the method is not uncondi-
tionally stable with respect to the space parameter. In particular, for an inflow situation,
we are dealing with a downwind scheme which requires a stability condition with respect
to the velocity, the diffusion, and the characteristic length of the mesh.

Based on the linearity of the polynomial reconstruction, the definition of the numeri-
cal fluxes, and the finite volume formulation (2), we obtain an affine operator such that
for any Φ P RI , we associate GpΦq P RI given component-wise by

GipΦq “
1

hi

´

Fi` 1
2
pΦq ´ Fi´ 1

2
pΦq

¯

´ fi,

where the affine operator is parameterized by the data of the problem κ, v, f , φD, φT,
φP, the mesh, the stencils, and the weights of the quadratic functionals.

The numerical solution is then given by vector Φ: “ pφ:i qi“1,...,I which is the solution
of the linear problem GpΦq “ 0I .

Remark 2. Notice that the problem is matrix-free in the sense that we do not explicitly
produce the matrix and the right-hand side associated to the affine problem. Iterative
methods like Krylov or Jacobi methods take advantage of it.

3. Time-dependent convection-diffusion problem

We now turn to the time-dependent situation and develop very accurate finite volume
schemes both in space and time. We reuse the notation introduced in the previous section,
just pointing out the necessary adaptations. For instance, the boundary conditions and
the polynomial reconstructions now depend on the time parameter t.

3.1. Finite volume discretization

We seek for function φ “ φpx, tq solution of the time-dependent convection-diffusion
equation

Btφ` Bxpvφq ´ BxpκBxφq “ f, in Ωˆ p0, tfs, (3)

where κ “ κpx, tq and v “ vpx, tq are regular functions with κpx, tq ě κ0 ą 0, f “ fpx, tq
is a regular source term, and tf ą 0 is the final time. We also prescribe the initial
condition

φp¨, 0q “ φ0, in Ω,

and consider three different types of boundary conditions:
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• Dirichlet: φpx̄, tq “ φDpx̄, tq;

• total Neumann: vpx̄, tqφpx̄, tq ´ κpx̄, tqBxφpx̄, tq “ φTpx̄, tq;

• partial Neumann: ´κpx̄, tqBxφpx̄, tq “ φPpx̄, tq,

where again x̄ is a boundary point and φD “ φDpx, tq, φT “ φTpx, tq, and φP “ φPpx, tq
are given functions. Of course, compatibility conditions with the initial condition are
required to provide the full regularity when dealing with smooth functions.

We apply the method of lines starting by integrating equation (3) over cell Ki to
provide the semi-discretization in space

dφ̄i
dt
ptq `

1

hi

´

Fi` 1
2
ptq ´ Fi´ 1

2
ptq

¯

´ f̄iptq “ 0, t P p0, tfs,

with

φ̄iptq “
1

hi

ż

Ki

φpξ, tqdξ,

Fi˘ 1
2
ptq “ vpxi˘ 1

2
, tqφpxi˘ 1

2
, tq ´ κpxi˘ 1

2
, tqBxφpxi˘ 1

2
, tq,

f̄iptq “
1

hi

ż

Ki

fpξ, tqdξ.

3.2. Discretization in space

To derive the space discretization we first introduce vector Φptq “ pφiptqqi“1,...,I ,
where φiptq is an approximation of φ̄iptq. We now substitute the exact fluxes Fi˘ 1

2
ptq

on interfaces by the numerical approximations Fi˘ 1
2
ptq. To this end, we consider an

extension of the polynomial reconstruction where the time is a parameter. For t fixed,
we determine vectors pRi, i “ 1, . . . , I, pR 1

2
, pRI` 1

2
, and rRi` 1

2
, i “ 1, . . . , I ´ 1, in the

same way we have done in the previous section. Thus, we get the time-parameterized

polynomial reconstructions pφφφipx, tq, i “ 1, . . . , I, pφφφ 1
2
px, tq, pφφφI` 1

2
px, tq, and rφφφi` 1

2
px, tq,

i “ 1, . . . , I´1. From this polynomial reconstruction extension, we propose the following
expressions for the numerical fluxes:

• left boundary interface:

F 1
2
pt,Φptqq “

$

’

’

’

’

&

’

’

’

’

%

rvpx 1
2
, tqs`φDpx 1

2
, tq ` rvpx 1

2
, tqs´pφφφ1px 1

2
, tq

´κpx 1
2
, tqBxpφφφ 1

2
px 1

2
, tq, if Dirichlet;

φTpx 1
2
, tq, if total Neumann;

vpx 1
2
, tqpφφφ1px 1

2
, tq ` φPpx 1

2
, tq, if partial Neumann;

• inner interfaces (i “ 1, . . . , I ´ 1):

Fi` 1
2
pt,Φptqq “ rvpxi` 1

2
, tqs`pφφφipxi` 1

2
, tq ` rvpxi` 1

2
, tqs´pφφφi`1pxi` 1

2
, tq

´ κpxi` 1
2
, tqBxrφφφi` 1

2
pxi` 1

2
, tq;

• right boundary interface: similar to the left boundary interface.
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The exact mean source term f̄iptq is substituted by the Gaussian quadrature approxima-
tion fiptq and the residual form of the finite volume scheme on cell Ki writes

dφi
dt
ptq ` Gipt,Φptqq “ 0, i “ 1, . . . , I, (4)

where

Gipt,Φptqq “
1

hi

´

Fi` 1
2
pt,Φptqq ´ Fi´ 1

2
pt,Φptqq

¯

´ fiptq.

The time parameterized function Φ:ptq “ pφ:i ptqqi“1,...,I is the solution of the differential
system (4), which gathers all the components for t P p0, tfs such that

φ:i p0q “
1

hi

ż

Ki

φ0pξqdξ.

The main issue we shall address in the following subsections is that, in the present
form, operator G “ Gpt,Φptqq does not distinguish the source term and the boundary
Dirichlet or Neumann conditions. It results that the time discretization, for instance
a Runge-Kutta method, operates in the same way with the three time-dependant con-
tributions which, as we shall highlight, is responsible in some loss of accuracy. Indeed,
incompatibilities in the time discretization between the source term and the boundary
Dirichlet or Neumann conditions may arise leading to a convergence order degradation
of the overall scheme.

3.3. Runge-Kutta methods

To proceed with the time discretization, let N be a positive integer and set the time
step ∆t “ tf

N and the time subdivision tn “ n∆t, n “ 0, . . . , N . Operator G “ Gpt,Φptqq
is a time-parameterized function and the generic s-stage Runge-Kutta method to solve
the initial value ODE system (4) is given by

Φn`1 “ Φn `∆t
s
ÿ

k“1

bkKn,k, (5)

starting from an initial value vector Φ0. In the previous equation we have set (notice the
minus sign)

Kn,k “ ´G
˜

tn,k,Φn `∆t
s
ÿ

`“1

ak,`Kn,`
¸

, k “ 1, . . . , s, (6)

at time tn,k “ tn`∆tck, with a “ pak,`q, an sˆ s real matrix, and b “ pbkq and c “ pckq,
two vectors of Rs, usually presented in a table called Butcher Tableau like Table 1. We
recall that we have an explicit Runge-Kutta — ERK if the elements ai,j “ 0 for i ď j;
if there exists at least one element ai,j for i ď j that is non-null, then we obtain an
implicit Runge-Kutta method — IRK; if ai,j “ 0 for i ă j and a1,1 “ 0 with all diagonal
entries equal, we have an explicit singly diagonally implicit Runge-Kutta — ESDIRK).
We rewrite the Runge-Kutta formulation (5-6) into an equivalent but more convenient
formulation using intermediate stage vectors

Φn,k “ Φn `∆t
s
ÿ

`“1

ak,`Kn,`,
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Table 1: Butcher Tableau for the generic s-stage Runge-Kutta method

c1 a1,1 ¨ ¨ ¨ a1,s

...
...

. . .
...

cs as,1 ¨ ¨ ¨ as,s

b1 ¨ ¨ ¨ bs

being the s-stage Runge-Kutta methods given by

Φn,k ´ Φn `∆t
s
ÿ

`“1

ak,`Gptn,`,Φn,`q “ 0I , k “ 1, . . . , s,

and

Φn`1 “ Φn ´∆t
s
ÿ

k“1

bkGptn,k,Φn,kq.

As a consequence, the source term and the boundary conditions are evaluated at the
same time tn,k to compute stage Φn,k which will bring some numerical errors leading to
a loss of accuracy as we show in the two next subsections.

3.4. The Dirichlet case

We first deal with Dirichlet boundary conditions on both boundary points.

3.4.1. Example of accuracy losing for the Dirichlet case

We detail an example to highlight that the interaction between the time discretization
and the time-dependent boundary condition may lead to a loss of accuracy. To do so,
let consider an example with null velocity since the difficulty is already contained in
the diffusive contribution so we assume that the following conditions hold: Ω “ p0, 1q,
vpx, tq “ 0, κpx, tq “ 1, fpx, tq “ 2t, φ0pxq “ 0, and φDpx̄, tq “ t2, where x̄ is a
boundary point. The solution to this problem is the function φpx, tq “ t2 and it is well-
known that the explicit Runge-Kutta three-stage third-order method (RK3) defined by
Butcher Tableau presented in Table 2 is exact for polynomial functions up to degree 2.
Consequently, the initial value ODE problem ψ1ptq “ 2t, ψp0q “ 0, will be solved exactly.
Thus, as φ, the solution of the one-dimensional time-dependent diffusion problem we are
considering, is constant in space, the diffusion contribution vanishes. Applying the RK3
time discretization with the finite volume scheme presented in section 3.2 even with d “ 1
should provide the exact solution.

We now detail each stage of the RK3 method performing one time step from t0 “ 0
using a uniform mesh h “ hi “

1
I , i “ 1, . . . , I. Let Φn,k “ pφn,ki qi“1,...,I , where

φn,ki is an approximation of φ̄ipt
n,kq. The numerical fluxes write: F 1

2
ptn,k,Φn,kq “

´
φn,k
1 ´φDp0,t

n,k
q

h{2 “ ´
φn,k
1 ´ptn,k

q
2

h{2 , Fi` 1
2
ptn,k,Φn,kq “ ´

φn,k
i`1´φ

n,k
i

h , i “ 1, . . . , I ´ 1, and

FI` 1
2
ptn,k,Φn,kq “ ´

φDp1,t
n,k
q´φn,k

I

h{2 “ ´
ptn,k

q
2
´φn,k

I

h{2 .
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Table 2: Butcher Tableau for RK3 method

0 0 0 0
1
2

1
2 0 0

1 ´1 2 0
1
6

2
3

1
6

• Since φ0pxq “ 0 and φDpx̄, 0q “ 0, we easily check that at time t0,1 “ 0, we have
Φ0,1 “ Φ0 “ 0I and Gpt0,1,Φ0,1q “ 0I .

• For the second stage, the Butcher Tableau yields

Φ0,2 ´ Φ0 `
∆t

2
Gpt0,1,Φ0q “ 0I ,

and we deduce that Φ0,2 “ 0I . We now compute expression Gpt0,2,Φ0,2q with

t0,2 “ ∆t
2 , which implies that φDpx̄, t

0,2q “ ∆t2

4 and fpx, t0,2q “ ∆t. Since
φDpx̄, t

0,2q ‰ 0 whereas Φ0,2 “ 0I , the diffusion contribution is not equal

to zero and we get F 1
2
pt0,2,Φ0,2q “ ∆t2

2h and FI` 1
2
pt0,2,Φ0,2q “ ´∆t2

2h on the
boundaries. Consequently, on the first cell K1 and the last cell KI , the residual
values G1pt

0,2,Φ0,2q and GIpt0,2,Φ0,2q correspond to the contribution of the source
term and the non-null diffusion fluxes whereas inner cells Ki, i “ 2, . . . , I ´ 1, are
not affected by the diffusion contribution since Φ0,2 is a constant vector. After
calculations, we obtain

Gpt0,2,Φ0,2q “ ´p∆t,∆t, . . . ,∆t,∆tqT ´

ˆ

∆t2

2h2
, 0, . . . , 0,

∆t2

2h2

˙T

.

• We now evaluate the last stage. Since we have

Φ0,3 ´ Φ0 ´∆tGpt0,1,Φ0,1q ` 2∆tGpt0,2,Φ0,2q “ 0I ,

we deduce that

Φ0,3 “ ´2∆tGpt0,2,Φ0,2q

“
`

2∆t2, 2∆t2, . . . , 2∆t2, 2∆t2
˘T
`

ˆ

∆t3

h2
, 0, . . . , 0,

∆t3

h2

˙T

.

To provide Gpt0,3,Φ0,3q, we notice that t0,3 “ ∆t which yields that φDpx̄, t
0,3q “ ∆t2

and fpx, t0,3q “ 2∆t. Both cells K1 and K2 are affected by the left bound-
ary condition (and symmetrically cells KI´1 and KI). Fluxes calculation give

F 1
2
pt0,3,Φ0,3q “ ´2∆t2

h ´ 2∆t3

h3 , F 3
2
pt0,3,Φ0,3q “ ∆t3

h3 , Fi` 1
2
pt0,3,Φ0,3q “ 0, i “

2, . . . , I ´ 2, FI´ 1
2
pt0,3,Φ0,3q “ ´∆t3

h3 , and FI` 1
2
pt0,3,Φ0,3q “ 2∆t2

h ` 2∆t3

h3 . After
some algebraic manipulations we get:

Gpt0,3,Φ0,3q “ p´2∆t,´2∆t,´2∆t, . . . ,´2∆t,´2∆t,´2∆tqT

`

ˆ

2
∆t2

h2
` 3

∆t3

h4
,´

∆t3

h4
, 0, . . . , 0,´

∆t3

h4
, 2

∆t2

h2
` 3

∆t3

h4

˙T

.
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• At last, we compute the approximations at time t1 “ ∆t with

Φ1 “ Φ0 ´
∆t

6
Gpt0,1,Φ0,1q ´

2∆t

3
Gpt0,2,Φ0,2q ´

∆t

6
Gpt0,3,Φ0,3q,

obtaining

Φ1 “
`

∆t2,∆t2,∆t2, . . . ,∆t2,∆t2,∆t2
˘T
`

ˆ

´
∆t4

2h4
,

∆t4

6h4
, 0, . . . , 0,

∆t4

6h4
,´

∆t4

2h4

˙T

.

The solution at the first time step does not present the correct values on the cells close to
the boundaries and the solution is no longer constant in space. Numerical perturbation
appears due to the fact that the values deriving from the boundary conditions discretiza-

tion do not match with the ones deriving from the equation discretization. Error ∆t4

h4

is generated at the very beginning of the computation. High-order reconstructions may
reduce such phenomenon but will not cure it since the fundamental problem remains:
the source term discretization does not match the Dirichlet discretization in time.

3.4.2. Extended Butcher Tableau for the Dirichlet conditions

To overcome the incompatibility problem, we shall consider a relaxation of the dis-
cretization considering now that the time discretizations for the source term and for the
Dirichlet condition can be different. Let us define

Φn,kD “

˜

φDpxL, t
n,kq

φDpxR, t
n,kq

¸

.

We re-qualify the residual operator setting

Gn,k “ Gptn,k,Φn,k, Fn,k,Φn,kD‹ q,

where Fn,k “ pfipt
n,kqqi“1,...,I and vector Φn,kD‹ , the substitute of Φn,kD , should be evalu-

ated/discretized in a different way. We here introduce a generic principle to derive the
two discretizations:

Principle: The time discretizations of the source term and the
Dirichlet condition are compatible up to degree d if the scheme
exactly solves the solutions tm, m “ 0, . . . , d, constant in space.

Such a principle may not be fulfilled if one considers whatever time and space dependent
convection or diffusion coefficients. Therefore, we restrict the principle to a very simple
situation taking κ “ 1, v “ 0 and build the extension for this particular case. Hence
we shall check in the numerical section that the method based on the extended tableau
significantly increases the accuracy even for complex situations with non-constant coef-
ficients.

Since we are now dealing with constant in space functions, the diffusive contribution
vanishes. Therefore, we naturally introduce the initial value Ordinary Differential Equa-
tion ψ1ptq “ gptq, ψp0q “ ψ0 P R where we shall take the functions tm, m “ 0, . . . , d, for

11



ψ. Based on the Butcher Tableau, the Runge-Kutta method for the initial value ODE
problem is governed by the linear relations

ψn,k “ ψn `∆t
s
ÿ

`“1

ak,`gpt
n,`q, k “ 1, . . . , s,

and

ψn`1 “ ψn `∆t
s
ÿ

k“1

bkgpt
n,kq,

since g does not depend on ψ.
The choice of degree m is directly linked to the Runge-Kutta method order to provide

the optimal convergence. For the sake of simplicity we assume that we use an s-stage RK
method for an ODE which exactly solve all the polynomial solutions up to degree s´1, i.e.
m “ s´ 1 (the more general case will be tackled in the examples section). The principle
we introduce states that we shall recover the same convergence order when dealing with
a constant in space solution for the convection-diffusion problem. We highlight that
an s-order in time for constant in space solution and a p-order in space for constant
in time solution method does not necessarily solve in an exact way monomial functions
of the form xσtτ , τ ă s, σ ă p. Hence the global error may be lower than minps, pq.
Nevertheless, the principle reveals the origin of the error: in the RK method, the solution
at the different substeps does not correspond to the intermediate approximations, only
the final combination provides the good approximation.

To reproduce constant is space solutions for the one-dimensional convection-diffusion
problem, the key idea is to define a boundary condition discretization Φn,kD‹ which is not

necessarily Φn,kD as we have done in the previous paragraph but to consider a linear
combination of the different time stages, namely

Φn,kD‹ “

s
ÿ

`“1

pk,`Φ
n,`
D , k “ 1, . . . , s.

To determine the sˆs matrix p “ ppk,`q, we apply the principle setting ψptq “ φDpx, tq “
tm, m “ 0, . . . , d, such that the vectorial equality

Φn,kD‹ “ ψn,k

˜

1

1

¸

, k “ 1, . . . , s (7)

holds. Since the solution is constant in space, the vectorial equality (7) turns out to be

a scalar one. Therefore, only the first component is relevant. In other words, Φn,kD‹ is
evaluated such that the values in the domain (governed by Runge-Kutta method) exactly
match the values at the boundary for a class of polynomial functions.

To effectively determine matrix p entries, let t̄ be a reference time. As we can always
shift the time referential, one can choose t̄ “ 0 and the time discretization writes

s
ÿ

`“1

pk,` “ 1, k “ 1, . . . , s,
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for m “ 0 and
s
ÿ

`“1

pk,`pc`∆tq
m “ ∆t

s
ÿ

`“1

ak,`mpc`∆tq
m´1, k “ 1, . . . , s,

for m “ 1, . . . , d. Let us consider the Vandermonde matrices

Qd “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pc1q
0 pc2q

0 ¨ ¨ ¨ pcsq
0

pc1q
1 pc2q

1 ¨ ¨ ¨ pcsq
1

pc1q
2 pc2q

2 ¨ ¨ ¨ pcsq
2

...
...

. . .
...

pc1q
d´1 pc2q

d´1 ¨ ¨ ¨ pcsq
d´1

pc1q
d pc2q

d ¨ ¨ ¨ pcsq
d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

pQd “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0

1pc1q
0 1pc2q

0 ¨ ¨ ¨ 1pcsq
0

2pc1q
1 2pc2q

1 ¨ ¨ ¨ 2pcsq
1

...
...

. . .
...

pd´ 1qpc1q
d´2 pd´ 1qpc2q

d´2 ¨ ¨ ¨ pd´ 1qpcsq
d´2

dpc1q
d´1 dpc2q

d´1 ¨ ¨ ¨ dpcsq
d´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the condition writes for k “ 1, . . . , s,

Qd

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pk,1

pk,2

pk,3
...

pk,s´1

pk,s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ pQd

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ak,1

ak,2

ak,3
...

ak,s´1

ak,s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

0

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

which provides the row k of matrix p. In compact form, one has QdpT “ pQdaT `Ed`1,s
1 ,

where Ed`1,s
1 is a pd ` 1q ˆ s matrix, such that the elements of the first row are ones

and all the other elements are zeros. We assume that coefficients c`, ` “ 1, . . . , s, are
different from each others for the sake of simplicity but the case when two coefficients
are equal can be also treated as proposed in section 3.7. If s “ d` 1, the Vandermonde
matrix Qd is square and invertible while s ą d` 1 corresponds to an under-determined
linear system associated to a maximal rank matrix Qd. In the first case, existence and
uniqueness of matrix p is straightforward but for the second case one has to develop a
strategy to determine a unique matrix p. We here propose two ways to determine matrix
p namely:

• LS-way: find p in the Least Square sense;

• AC-way: Augment the number of Constraints adding polynomial functions td`1,
. . ., ts´1 such that we get a invertible Vandermonde square matrix Qs´1.
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From the Extended Butcher Tableau, we derived the new Runge-Kutta formulation
for the Dirichlet-Dirichlet problem: find the Φn,k, k “ 1, . . . , s, such that

Φn,k ´ Φn `∆t
s
ÿ

`“1

ak,`Gptn,`,Φn,`, Fn,`,Φn,`D‹q “ 0I

and compute

Φn`1 “ Φn ´∆t
s
ÿ

k“1

bkGptn,k,Φn,k, Fn,k,Φn,kD‹ q

where we have set

Φn,`D‹ “

s
ÿ

`“1

pk,`Φ
n,`
D .

In Table 3 we represent in compact form the data needed for the presented extension.

Table 3: Extended Butcher Tableau for the generic s-stage Runge-Kutta method

c1 a1,1 ¨ ¨ ¨ a1,s p1,1 ¨ ¨ ¨ p1,s

...
...

. . .
...

...
. . .

...

cs as,1 ¨ ¨ ¨ as,s ps,1 ¨ ¨ ¨ ps,s

b1 ¨ ¨ ¨ bs

3.5. The Neumann case

We now turn to the situation where we have a total Neumann boundary condition
on both boundary points.

3.5.1. Example of accuracy loss for the Neumann case

We here give an example to highlight the incompatibility between the the source term
discretization and the Neumann condition. We again consider a pure diffusive and data
of the test case are the followings: Ω “ p0, 1q, vpx, tq “ 0, κpx, tq “ 1, fpx, tq “ 2xt,
φ0pxq “ 0, and φTpx̄, tq “ ´t

2, where x̄ is a boundary point. One easily checks that the
solution is function φpx, tq “ xt2.

Let ψ “ ψptq be the solution of the initial value ODE problem ψ1ptq “ 2t, ψp0q “ 0.
Since the source term is a linear function, again the RK3 scheme exactly solves this
problem. Therefore, noticing that φ, the solution of the one-dimensional time-dependent
diffusion problem we are considering, satisfies the relation φpx, tq “ xψptq, we expect that
the RK3 time scheme applied to the φ problem would also produce the exact solution.

As for the Dirichlet case, we detail each stage of the RK3 method performing one
time step from t0 “ 0 using a uniform mesh h “ hi “

1
I , i “ 1, . . . , I. Let Φn,k “

pφn,ki qi“1,...,I , where φn,ki is an approximation of φ̄ipt
n,kq. The numerical fluxes write

F 1
2
ptn,k,Φn,kq “ ´φTp0, t

n,kq “ ´ptn,kq2, Fi` 1
2
ptn,k,Φn,kq “ ´

φn,k
i`1´φ

n,k
i

h , i “ 1, . . . , I´1,

FI` 1
2
ptn,k,Φn,kq “ ´φTp1, t

n,kq “ ´ptn,kq2.
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• Since φ0pxq “ 0 and φTpx̄, 0q “ 0, we easily check that at time t0,1 “ 0 we have
Φ0 “ Φ0,1 “ 0I and Gpt0,1,Φ0,1q “ 0I .

• For the second stage, the Butcher Tableau yields

Φ0,2 ´ Φ0 `
∆t

2
Gpt0,1,Φ0q “ 0I

and we deduce that Φ0,2 “ 0I . We now compute expression Gpt0,2,Φ0,2q with

t0,2 “ ∆t
2 , which implies that φTpx̄, t

0,2q “ ∆t2

4 , and fpx, t0,2q “ x∆t. The fluxes

at the interfaces are F 1
2
pt0,2,Φ0,2q “ ´∆t2

4 , Fi` 1
2
pt0,2,Φ0,2q “ 0, i “ 1, . . . , I ´ 1,

and FI` 1
2
pt0,2,Φ0,2q “ ´∆t2

4 . After calculations, we obtain

Gpt0,2,Φ0,2q “ ´ px1∆t, x2∆t, . . . , xI´1∆t, xI∆tq
T
`

ˆ

∆t2

4h
, 0, . . . , 0,´

∆t2

4h

˙T

.

• At last, we compute the third stage. Using

Φ0,3 ´ Φ0 ´∆tGpt0,1,Φ0,1q ` 2∆tGpt0,2,Φ0,2q “ 0I ,

we deduce that

Φ0,3 “ ´2∆tGpt0,2,Φ0,2q

“
`

2x1∆t2, 2x2∆t2, . . . , 2xI´1∆t2, 2xI∆t
2
˘T
`

ˆ

´
∆t3

2h
, 0, . . . , 0,

∆t3

2h

˙T

.

With t0,3 “ ∆t, we have fpx, t0,3q “ 2x∆t, φTpx̄, t
0,3q “ ∆t2, and obtain F 1

2
pt0,3,Φ0,3q “

´∆t2, F 3
2
pt0,3,Φ0,3q “ ´2∆t2 ´ ∆t3

2h2 , Fi` 1
2
pt0,3,Φ0,3q “ ´2∆t2, i “ 2, . . . , I ´ 2,

FI´ 1
2
pt0,3,Φ0,3q “ ´2∆t2 ´ ∆t3

2h2 , FI` 1
2
pt0,3,Φ0,3q “ ´∆t2. We then deduce

Gpt0,3,Φ0,3q “ ´p2x1∆t, 2x2∆t, 2x3∆t, . . . , 2xI´2∆t, 2xI´1∆t, 2xI∆tq

`

ˆ

´
∆t2

h
´

∆t3

2h3
,

∆t3

2h3
, . . . ,´

∆t3

2h3
,

∆t2

h
`

∆t3

2h3

˙T

.

• We compute the approximations at time t1 “ ∆t with

Φ1 “ Φ0 ´
∆t

6
Gpt0,1,Φ0,1q ´

2∆t

3
Gpt0,2,Φ0,2q ´

∆t

6
Gpt0,3,Φ0,3q

and we obtain

Φ1 “
`

x1∆t2, x2∆t2, x3∆t2, . . . , xI´2∆t2, xI´1∆t2, xI∆t
2
˘T

`

ˆ

∆t4

12h3
,´

∆t4

12h3
, 0, . . . , 0,

∆t4

12h3
,´

∆t4

12h3

˙T

.

We get this time an error controlled by ∆t4

h3 .
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3.5.2. Extended Butcher Tableau for the Neumann conditions

The principle proposed in the Dirichlet case can not be here applied since a constant in
space function gives rise to homogeneous Neumann conditions. Therefore, we introduce
a slightly different generic principle to derive the two discretizations:

Principle: The time discretizations of the source term and the
Neumann conditions are compatible up to degree d if the scheme
exactly solves the solutions xtm, m “ 0, . . . , d, linear in space.

As in the Dirichlet case, the criterion may not be fulfilled with non-constant coefficients
hence we restrict the criterion to the simple situation κ “ 1, v “ 0 to build the extended
Butcher tableau. We numerically check that the method deriving from the extension
effectively improves the accuracy. To this end, let us define

Φn,kT “

˜

φTpxL, t
n,kq

φTpxR, t
n,kq

¸

.

We consider the residual operator for Neumann conditions setting

Gn,k “ Gptn,k,Φn,k, Fn,k,Φn,kT‹ q,

where again Fn,k “ pfipt
n,kqqi“1,...,I and vector Φn,kT‹ , the substitute of Φn,kT , will be

defined in the sequel. For null velocity, constant diffusion κ, and functions φpx, tq “ xtm,
m “ 0, . . . , d, we have

Btpxt
mq ´ κBxxpxt

mq “ mxtm´1 “: fpx, tq.

Consequently, if ψ “ ψptq is the solution of ψ1ptq “ mtm´1 “: gptq, with ψp0q “ 1 if
m “ 0 and ψp0q “ 0 if m ą 0, then φ “ xψ is the solution of the heat equation

Btφ´ κBxxφ “ fpx, tqp“ xgptqq,

with the initial condition φ0pxq “ x if m “ 0 and φ0pxq “ 0 if m ą 0 and the Neumann
condition φTpx, tq “ ´κt

m.
As in the Dirichlet case, we consider a linear combination of the different time stages,

namely

Φn,kT‹ “

s
ÿ

`“1

qk,`Φ
n,`
T , k “ 1, . . . , s,

where one has to determine an s ˆ s matrix q “ pqk,`q. Noticing that ψ “ Bxpxψq and
φTpx, tq “ ´κt

m “ ´κφDpx, tq where φD is the Dirichlet function considered in section
3.4.2, the principle for Neumann condition yields

Φn,kT‹ “ ´κΦn,kD‹ “ ´κψ
n,k

˜

1

1

¸

, k “ 1, . . . , s. (8)

We deduce that relation (7) is identical to relation (8), hence q “ p. Consequently, we
can use the same time discretization both for the Dirichlet and the Neumann conditions
characterized by the Extended Butcher Tableau.
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3.6. Time discretization with Dirichlet and Neumann boundary conditions

We now generalize the extended Runge-Kutta formulation for the Dirichlet-Neuman
problem. Let us consider the Extended Butcher Tableau given in Table 3 and set Φn,kD “

φDpxL, t
n,kq, Φn,kT “ φTpxR, t

n,kq. Assume that Φn is a given approximation of the
solution at time tn. We seek vectors Φn,k, k “ 1, . . . , s, solution of

Φn,k ´ Φn `∆t
s
ÿ

`“1

ak,`Gptn,`,Φn,`, Fn,`,Φn,`D‹ ,Φ
n,`
T‹ q “ 0I .

and we determine

Φn`1 “ Φn ´∆t
s
ÿ

k“1

bkGptn,k,Φn,k, Fn,k,Φn,kD‹ ,Φ
n,k
T‹ q,

where we have set

Φn,`D‹ “

s
ÿ

`“1

pk,`Φ
n,`
D , Φn,`T‹ “

s
ÿ

`“1

pk,`Φ
n,`
T .

Remark 3. Extension for higher dimension problems can be considered where vectors
Φn,`D and Φn,`T correspond to the evaluation of the Dirichlet and Neumann conditions at
the Gauss points on edges or faces.

3.7. Extended Butcher Tableaux examples

We present the construction of Extended Butcher Tableaux for different orders. We
also propose a technique to evaluate matrix p even if two time stages (or more) are equal.

• Examples of second-order time discretization.

For two-stage methods we have the matrices

Q2 “

˜

1 1

c1 c2

¸

, pQ2 “

˜

0 0

1 1

¸

, E2,2
1 “

˜

1 1

0 0

¸

.

In Table 4 we present three second-order two-stage methods: the Midpoint method
(explicit), the Heun method (explicit), and the Crank-Nicholson method (an im-
plicit unconditionally stable discretization).

Table 4: Extended Butcher Tableaux for second-order Runge-Kutta methods: Midpoint
method (left), Heun method (center), and Crank-Nicholson method (right).

0 0 0 1 0
1
2

1
2 0 0 1

0 1

0 0 0 1 0

1 1 0 0 1
1
2

1
2

0 0 0 1 0

1 1
2

1
2 0 1

1
2

1
2

For all these examples we notice that the source term time discretization and the
boundary conditions time discretization are equal since p is the identity matrix.
Therefore no specific treatment is required for the Boundary condition.
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• Example of third-order time discretization.

Let us consider the RK3 given by Table 2 with s “ 3 and d “ 2. For three-stage
methods we have the matrices

Q3 “

¨

˚

˝

1 1 1

c1 c2 c3

pc1q
2 pc2q

2 pc3q
2

˛

‹

‚

, pQ3 “

¨

˚

˝

0 0 0

1 1 1

2c1 2c2 2c3

˛

‹

‚

, E3,3
1 “

¨

˚

˝

1 1 1

0 0 0

0 0 0

˛

‹

‚

.

The linear system to compute matrix p writes as
¨

˚

˝

1 1 1

0 1
2 1

0 1
4 1

˛

‹

‚

¨

˚

˝

p1,1 p2,1 p3,1

p1,2 p2,2 p3,2

p1,3 p2,3 p3,3

˛

‹

‚

“

¨

˚

˝

0 0 0

1 1 1

0 1 2

˛

‹

‚

¨

˚

˝

0 1
2 ´1

0 0 2

0 0 0

˛

‹

‚̀

¨

˚

˝

1 1 1

0 0 0

0 0 0

˛

‹

‚

,

where we use the transpose matrices of p and a. Solving the linear system, we then
deduce Table 5. Since matrix p is different to the identity one, specific boundary

Table 5: Extended Butcher Tableau for RK3

0 0 0 0 1 0 0
1
2

1
2 0 0 ´ 1

2 2 ´ 1
2

1 ´1 2 0 2 ´4 3
1
6

2
3

1
6

treatment is required to achieve an optimal convergence order.

• Example of fourth-order time discretization with two equal time stage.

Let us consider the explicit 4-stage RK4. Since c2 “ c3, we can not directly apply
the methodology developed in the previous section because matrix Q4 is singular.
To overcome the problem, we introduce a new vector z “ pz1, z2, z3, z4q

T and new
time stages τn,k “ tn ` zk∆t, k “ 1, . . . , s. We present the proof for the Dirichlet
situation since the Neumann case will provide the same matrix p. We then define

Φn,kD‹ “

s
ÿ

`“1

pk,`Φ
n,`
D , k “ 1, . . . , s,

where we have to take, for m “ 0, . . . , d,

Φn,`D “ pτn,`qm

˜

1

1

¸

.

Applying the principle that the source term discretization matches with the Dirich-
let condition and taking tn “ 0 as the reference time, we get the matrices

Q4 “

¨

˚

˚

˚

˝

1 1 1 1

z1 z2 z3 z4

pz1q
2 pz2q

2 pz3q
2 pz4q

2

pz1q
3 pz2q

3 pz3q
3 pz4q

3

˛

‹

‹

‹

‚

, pQ4 “

¨

˚

˚

˚

˝

0 0 0 0

1 1 1 1

2c1 2c2 2c3 2c4

3pc1q
2 3pc2q

2 3pc3q
2 3pc4q

2

˛

‹

‹

‹

‚

.
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It is important to notice that matrix Q4 involves the new coefficients z while matrix
pQ4 still uses coefficients c. We choose arbitrary z “ p0, 1

2 ,
3
4 , 1q and we get the

Extended Butcher Tableau in Table 6 where vector z has been stored on the right-
hand side of the Tableau.

Table 6: Extended Butcher Tableau for RK4 method

0 0 0 0 0 1 0 0 0 0
1
2

1
2 0 0 0 ´ 7

6 6 ´ 16
3

3
2

1
2

1
2 0 1

2 0 0 5
6 ´2 8

3 ´ 1
2

3
4

1 0 0 1 0 2
3 ´4 16

3 ´1 1
1
6

1
3

1
3

1
6

• Example of fourth-order time discretization with s ą d` 1.

All the previous cases correspond to the situation where s “ d ` 1. We now
consider an implicit version (DIRK) which requires 6 stages, hence s ą d ` 1.
As we mentioned in the previous section, the linear system is under-determined
and we here propose two strategies: the Least Square method and the Augmented
Constraint method.

For the Least square method, the matrices write

Q4 “

¨

˚

˚

˚

˝

1 1 1 1 1 1

c1 c2 c3 c4 c5 c6

pc1q
2 pc2q

2 pc3q
2 pc4q

2 pc5q
2 pc6q

2

pc1q
3 pc2q

3 pc3q
3 pc4q

3 pc5q
3 pc6q

3

˛

‹

‹

‹

‚

and

pQ4 “

¨

˚

˚

˚

˝

0 0 0 0 0 0

1 1 1 1 1 1

2c1 2c2 2c3 2c4 2c5 2c6

3pc1q
2 3pc2q

2 3pc3q
2 3pc4q

2 3pc5q
2 3pc6q

2

˛

‹

‹

‹

‚

and we solve the linear system Q4pT “ pQ4aT `E4,6
1 in the least square sense. We

present in Table 7 the resulting Extended Butcher Tableau.

A second way consists in augmenting the numbers of constraints assuming that the
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two discretizations also match for t4 and t5. In that case the matrices write

Q6 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1

c1 c2 c3 c4 c5 c6

pc1q
2 pc2q

2 pc3q
2 pc4q

2 pc5q
2 pc6q

2

pc1q
3 pc2q

3 pc3q
3 pc4q

3 pc5q
3 pc6q

3

pc1q
4 pc2q

4 pc3q
4 pc4q

4 pc5q
4 pc6q

4

pc1q
5 pc2q

5 pc3q
5 pc4q

5 pc5q
5 pc6q

5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

pQ6 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0

1 1 1 1 1 1

2c1 2c2 2c3 2c4 2c5 2c6

3pc1q
2 3pc2q

2 3pc3q
2 3pc4q

2 3pc5q
2 3pc6q

2

4pc1q
3 4pc2q

3 4pc3q
3 4pc4q

3 4pc5q
3 4pc6q

3

5pc1q
4 5pc2q

4 5pc3q
4 5pc4q

4 5pc5q
4 5pc6q

4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and we solve the linear system Q6pT “ pQ6aT ` E6,6
1 . We present in Table 8 the

resulting Extended Butcher Tableau.

4. Numerical tests

At a first stage, we consider the steady-state situation and show that the discretiza-
tion in space provides an effective sixth-order scheme when dealing with low and large
Péclet numbers. We also address the stability question of the total or partial Neumann
conditions for the convection-diffusion with large Péclet number. The second part is
dedica-ted to the time-dependent equation where we numerically confirm that the Ex-
tended Butcher Tableau is a necessary ingredient to significantly improve the effective
order both in space and time.

The notation Pdpnq means that the polynomial reconstructions have degree d using
stencils of n elements. The weights we will consider are summarized with the notation
ωi,j “ q|r, q, r P R`, with the following meaning: if i and j are contiguous cells, then
ωi,j “ q; otherwise, ωi,j “ r (this notation extends in the natural way for the cases
ω 1

2 ,j
, ωi` 1

2 ,j
, and ωI` 1

2 ,j
). In the present study, all the computations have been carried

out with weights 2|1 and a study on the weights choice is given in [4]. Moreover, to
reduce the computational effort, a preconditioning matrix is used as proposed in [4] for
the steady-state problems as well as when dealing with time-dependent implicit schemes.
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Table 9: Results for the steady-state Dirichlet boundary conditions.

I vpxq “ 3 vpxq “ 20

E8 O8 E8 O8

P3p4q

80 5.6E´08 — 7.7E´06 —

160 3.7E´09 3.9 7.3E´07 3.4

320 2.4E´10 4.0 5.7E´08 3.7

640 1.5E´11 4.0 3.9E´09 3.8

P5p6q

40 3.5E´09 — 9.4E´06 —

80 6.3E´11 5.8 3.7E´07 4.7

160 1.1E´12 5.9 9.0E´09 5.3

320 1.7E´14 6.0 1.8E´10 5.7

4.1. Steady-state cases

To perform the numerical simulations, we consider uniform meshes of domain Ω “

p0, 1q constituted of I cells. Since we shall only deal with regular solutions, we use the
L8 norm to compute the error between the solution and the approximation, which is
given by

E8pIq “
I

max
i“1

|φi ´ φ̄i|,

and the convergence order between two meshes characterized by I1 and I2 cells is given
by

O8pI1, I2q “
| logpE8pI1q{E8pI2qq|

| logpI1{I2q|
.

4.1.1. Dirichlet condition

We consider the convection-diffusion problem with homogeneous Dirichlet conditions

and set fpxq “ 1 such that the solution is given by φpxq “ 1
v

´

x´ exppvxq´1
exppvq´1

¯

. We set

κpxq “ 1 and test two velocities: vpxq “ 3 and vpxq “ 20. We report in Table 9 the
errors.The numerical scheme is stable even with a large Péclet number and provides the
theoretical order (second-, fourth-, and sixth-order respectively) for the P1, P3, and P5

reconstructions respectively. For the large Péclet number, the convergence is effective
when the mesh parameter is small enough to capture the boundary layer.

4.1.2. Total and partial Neumann conditions

Two types of Neumann condition can be prescribed whether we consider the total flux
or the diffusive flux leading to two different discretizations. We study here the impact
of the Neumann condition as a function of the Péclet number. To this end, we consider
the convection-diffusion problem with a left boundary Dirichlet condition and a right
boundary Neumann condition. For the sake of simplicity, we set κpxq “ 1 and prescribe
several constant velocities for v, namely ´20, ´3, 3, and 20. We take φpxq “ 1

1`x so that
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Table 10: Results for the steady-state Dirichlet + total Neunann boundary conditions.

I vpxq “ ´20 vpxq “ ´3 vpxq “ 3 vpxq “ 20

E8 O8 E8 O8 E8 O8 E8 O8

P3p4q

40 1.9E´07 — 6.3E´07 — 1.1E´06 — 8.9E`01 —

80 2.8E´08 2.7 4.6E´08 3.8 8.3E´08 3.8 5.4E`00 4.1

160 2.5E´09 3.5 3.1E´09 3.9 5.6E´09 3.9 3.5E´01 3.9

320 1.8E´10 3.8 2.0E´10 3.9 3.8E´10 3.9 2.3E´02 3.9

P5p6q

20 1.1E´07 — 3.0E´07 — 6.8E´06 — 5.4E`01 —

40 4.8E´09 4.5 7.7E´09 5.3 1.6E´07 5.4 4.3E`00 3.6

80 1.3E´10 5.2 1.6E´10 5.6 3.0E´09 5.7 8.1E´02 5.7

160 2.5E´12 5.7 2.8E´12 5.8 5.2E´11 5.8 1.3E´03 5.9

the source term is fpxq “ ´ 2
px`1q3 ´

v
px`1q2 and the Dirichlet conditions at point xL “ 0

writes φDp0q “ 1.
For a left total Neumann boundary condition, we have φTp1q “

1`2v
4 . From Ta-

ble 10, where we report the L8 error for the four velocities, we observe that the total
flux condition provides lower accurate approximations for positive velocity although we
obtain the optimal convergence order for all velocities. Moreover, the accuracy degrada-
tion increases with the Péclet number and decreases with finer mesh. Discrepancies with
positive velocities derive from the incompatibility to prescribe the flux for a pure convec-
tion problem. Indeed, outflow does not require external information for pure convection
problem while the total flux with κpxq “ 0 implicitly imposes an external condition for
the convective contribution. For κpxq ą 0 diffusion helps to incorporate the external in-
formation but a stability condition involving the Péclet number and the mesh parameter
such as κh ă C|v|, C P R, is required. No instability appears with negative velocities
since we now deal with an inflow condition for the pure convection case and one has to
prescribe the external condition to fix the inflow.

For a left partial Neumann boundary condition, we have φPp1q “
1
4 . From Table 11,

where we report the L8 error for the four velocities, we observe that we obtain opposite
results in the sense that the scheme is stable for positive velocities while lower accuracy
approximations are obtained with negative velocities. The explanation is the following.
For positive valued velocity, the discretization of the convective flux turns out to be an
upwind scheme which provides a very stable solution even for the diffusion-free problem
(κ “ 0). For negative values, the discretization turns into a downwind scheme which
provides larger errors. For pure convection problem, the external information should not
be prescribed and leads to an under-determined problem. When κ ą 0, the diffusion
scheme brings stability conditioned by the Péclet number and the mesh parameter like
ah ă C|v|, C P R.

To sum up, one has to prescribe the total flux Neumann condition for inflow boundary
and the diffusive flux (or partial flux) Neumann condition for the outflow boundary.
Notice that total flux and diffusive flux are equal when dealing with a boundary with a
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Table 11: Results for the steady-state Dirichlet + partial Neunann boundary conditions.

I vpxq “ ´20 vpxq “ ´3 vpxq “ 3 vpxq “ 20

E8 O8 E8 O8 E8 O8 E8 O8

P3p4q

40 1.2E`02 — 4.0E´06 — 7.3E´07 — 7.8E´07 —

80 5.7E`00 4.4 2.4E´07 4.1 4.9E´08 3.9 5.1E´08 3.9

160 3.3E´01 4.1 1.5E´08 4.0 3.2E´09 3.9 3.3E´09 4.0

320 2.0E´02 4.0 9.1E´10 4.0 2.1E´10 4.0 2.1E´10 4.0

P5p6q

20 2.5E`00 — 1.1E´06 — 4.2E´07 — 5.9E´07 —

40 5.4E´01 2.2 8.0E´09 7.1 8.9E´09 5.6 1.2E´08 5.6

80 6.4E´03 6.4 1.5E´10 5.7 1.7E´10 5.7 2.1E´10 5.9

160 8.9E´05 6.2 2.7E´12 5.8 2.9E´12 5.9 3.3E´12 6.0

null velocity.

4.2. Time-dependent cases

To perform the numerical simulations, we consider uniform meshes for domain Ω “

p0, 1q constituted of I cells. The computation are carried out up to the final time tf “ 1
for the explicit methods and tf “ 10 for non-explicit methods. Several time schemes will
be tested where we identify by “BT” the Butcher Tableaux and by “EBT” the Extended
Butcher Tableaux. Errors between the solution and the approximation are evaluated at
the final time with

E8pIq “
I

max
i“1

|φNi ´ φ̄
N
i |.

4.2.1. An explicit sixth-order scheme

We aim at comparing the BT and EBT methods when dealing with time-independent or
time-dependent Dirichlet conditions. For this purpose, we consider the classical explicit
RK3 method for a pure diffusive problem taking κpx, tq “ 1 and vpx, tq “ 0 given by
Table 2 and by Table 5, respectively. In a first case we assume that the exact solution
writes φpx, tq “ px ´ 1q lnpx ` 1q expp´tq and deduce the source term fpx, tq “

“

p1 ´

xq lnpx`1q´ x`3
px`1q2

‰

expp´tq with time-independent Dirichlet condition. In a second case,

we assume that the exact solution is φpx, tq “ coshpxq expp´tq such that the source term
is fpx, tq “ ´2 coshpxq expp´tq and the Dirichlet conditions are now time-dependent.
Since we use a P5 reconstruction and one has to respect stability condition for the explicit
time scheme, the time step is given by ∆t “ 1

3h
2 to provide a full sixth-order scheme

with respect to h. We reproduce the errors and convergence rates with the BT and EBT

methods for the first situation in Table 12 and in Table 13 for the second situation . We
observe that the effective order are optimal for both methods in the time-independent
case whereas for the time-dependent with BT there is a clear reduction in the accuracy
to a fourth-order method. The EBT method manages to recover the optimal order and
shows the effectiveness of the correction.
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Table 12: Results for the time-independent Dirichlet example with κpx, tq “ 1, vpx, tq “
0, and φpx, tq “ px´ 1q lnpx` 1q expp´tq for RK3

I BT EBT

E8 O8 E8 O8

10 1.6E´06 — 1.6E´06 —

P5p6q 20 5.0E´08 5.0 5.0E´08 5.0

∆t “ 1
3h

2 40 1.2E´09 5.4 1.2E´09 5.4

80 2.2E´11 5.7 2.2E´11 5.7

Table 13: Results for the time-dependent Dirichlet example with κpx, tq “ 1, vpx, tq “ 0,
and φpx, tq “ coshpxq expp´tq for RK3

I BT EBT

E8 O8 E8 O8

10 5.2E´07 — 3.7E´08 —

P5p6q 20 3.2E´08 4.0 6.1E´10 5.9

∆t “ 1
3h

2 40 2.0E´09 4.0 1.0E´11 5.9

80 1.3E´10 4.0 1.6E´13 6.0
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Table 14: Orders of convergence for the time-dependent Dirichlet problems with κpx, tq “
1, vpx, tq “ 0, φpx, tq “ xσtτ , polynomial reconstructions of degree 5, and time step
∆t “ 1

3h
2 for RK3 BT/EBT (expected order of convergence: 6)

@
@@
τ 0 1 2 3 4

σ
0 E/E E/E 4/E 4/6 4/6

1 E/E E/E 4/E 4/6 4/6

2 E/E E/E 4/6 4/6 4/6

3 E/E E/E 4/6 4/6 4/6

4 E/E E/E 4/6 4/6 4/6

Table 15: Results for the time-independent Dirichlet example with κpx, tq “ 1, vpx, tq “
0, and φpx, tq “ px´ 1q lnpx` 1q expp´tq for RK4

I BT EBT

E8 O8 E8 O8

10 3.4E´07 — 3.4E´07 —

P7p8q 20 4.0E´09 6.4 4.0E´09 6.4

∆t “ 1
3h

2 40 2.9E´11 7.1 2.9E´11 7.1

80 1.6E´13 7.5 1.6E´13 7.5

To go deeper in the convergence study, we shall check the convergence order for
monomial functions of the form xσtτ with σ, τ P t0, 1, 2, 3, 4u. We prescribe the cor-
responding source term and Dirichlet condition and carry out the computation using
the P5 reconstruction in space. We sum-up in Table 14 the test convergence where “E”
(for Exact) means that the approximation corresponds to the exact solution otherwise
we indicate the rate of convergence. Moreover in expression 4{6 the first digit indicates
the convergence order with the BT while the second digit corresponds to the EBT one.
Relevant cases are the monomial functions t2 and xt2 which are exactly solved using the
EBT scheme while the traditional RK3 only provides a fourth-order approximation. In
the same way, for monomial functions such as x2t2 or xt3, the EBT technique gives a
sixth-order approximation whereas the BT one only reaches the fourth-order.

4.2.2. An explicit eighth-order scheme

We consider the diffusion case where we set κpx, tq “ 1 and vpx, tq “ 0 and we use a
P7 reconstruction in space associated to the explicit RK4 Runge-Kutta method proposed
in Table 6. As in the previous case, the time-independent and time-dependent Dirichlet
conditions are addressed to assess the EBT method capacity to improve convergence order.
For stability reasons, we impose ∆t “ 1

3h
2 and expect a global convergence of order 8.

In Table 15 we present the errors and convergence rates for the first situation and in
Table 16 we present the errors and convergence rates for the second situation.

As in the previous case, the EBT technique clearly improves the accuracy of the
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Table 16: Results for the time-dependent Dirichlet example with κpx, tq “ 1, vpx, tq “ 0,
and φpx, tq “ coshpxq expp´tq for RK4

I BT EBT

E8 O8 E8 O8

10 2.8E´06 — 3.5E´09 —

P7p8q 20 1.6E´07 4.1 5.2E´11 6.1

∆t “ 1
3h

2 40 1.0E´08 4.0 8.2E´13 6.0

80 6.4E´10 4.0 1.1E´14 6.3

Table 17: Orders of convergence for the time-dependent Dirichlet problems with κpx, tq “
1, vpx, tq “ 0, φpx, tq “ xσtτ , polynomial reconstructions of degree 7, and time step
∆t “ 1

3h
2 for RK4 BT/EBT (expected order of convergence: 8)

@
@@
τ 0 1 2 3 4

σ
0 E/E E/E 4/E 4/E 4/8

1 E/E E/E 4/E 4/E 4/8

2 E/E E/E 4/6 4/6 4/6

3 E/E E/E 4/6 4/6 4/6

4 E/E E/E 4/6 4/6 4/6

method. For the time-independent case, we get the optimal order for both cases whereas
the classical Runge-Kutta fails to accurately integrate the time-dependent boundary
conditions and dramatically cuts the accuracy by two orders of magnitude. As in the
previous section, we analyse in Table 17 the convergence of the method for the monomials
xσtτ considering polynomial reconstructions of degree 7 and the RK4 method with time
step ∆t “ 1

3h
2. We observe that we get the exact solution for monomials t2 and t3 by

construction and achieve the eighth-order of convergence for t4 whereas the BT method
only provides the fourth-order convergence. Unfortunately, for some monomials functions
like x2t2, we only achieve a sixth-order of convergence since solving exactly t2 and t3 do
not guarantee solving exactly x2t2. It results that polynomial Taylor expansions will
be approximated with a sixth-order method which explains the sixth-order convergence
observed with function coshpxq expp´tq as shown in Table 16.

4.2.3. An implicit fourth-order scheme

We aim to test an implicit version of the Runge-Kutta method in order to use an un-
conditionally stable scheme allowing larger time step. In section 3.7 we have proposed two
versions for the EBT technique applied to the ESDIRK4 method, namely (LS) and (AC),
since the number of stages is larger than the number of conditions (Tables 7 and 8, respec-
tively). To perform the simulation, we consider a pure diffusive problem setting κpx, tq “
1 and vpx, tq “ 0 and consider again time-independent and time-dependent Dirichlet
boundary conditions. The exact solution writes φpx, tq “ px ´ 1q lnpx ` 1q expp´tq for
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Table 18: Results for the time-independent Dirichlet example with κpx, tq “ 1, vpx, tq “
0, and φpx, tq “ px´ 1q lnpx` 1q expp´tq for ESDIRK4

I BT EBT (LS-way) EBT (AC-way)

E8 O8 E8 O8 E8 O8

20 2.5E´09 — 2.5E´09 — 2.5E´09 —

P3p4q 40 1.6E´10 3.9 1.6E´10 3.9 1.6E´10 3.9

∆t “ 10h 80 1.1E´11 4.0 1.1E´11 4.0 1.1E´11 4.0

160 6.8E´13 4.0 6.8E´13 4.0 6.8E´13 4.0

Table 19: Results for the time-dependent Dirichlet example with κpx, tq “ 1, vpx, tq “ 0,
and φpx, tq “ coshpxq expp´tq for ESDIRK4

I BT EBT (LS-way) EBT (AC-way)

E8 O8 E8 O8 E8 O8

20 1.3E´04 — 2.0E´05 — 2.2E´05 —

P3p4q 40 1.1E´05 3.6 1.1E´06 4.2 1.1E´06 4.3

∆t “ 10h 80 1.2E´06 3.2 6.6E´08 4.0 6.7E´08 4.1

160 1.3E´07 3.1 4.2E´09 4.0 4.0E´09 4.1

10 4.3E´08 — 3.6E´08 — 3.5E´08 —

P5p6q 20 1.1E´09 5.4 6.0E´10 5.9 5.9E´10 5.9

∆t “ h1.5 40 3.4E´11 4.9 9.8E´12 5.9 9.7E´12 5.9

80 1.4E´12 4.6 2.0E´13 5.6 2.0E´13 5.6

the first situation while function φ “ coshpxq expp´tq corresponds to the second one.
Due to unconditional stability, we take a larger time step ∆t “ 10h and apply a P3

polynomial reconstruction to achieve a global fourth-order accurate scheme. An other
possibility consists in choosing ∆t “ h1.5 with a P5 reconstruction in space to provide
a global sixth-order accurate scheme. The error and convergence orders are reproduced
in Tables 18 and 19 for the time-independent and time-dependent Dirichlet boundary
conditions, respectively. As expected, both methods provide the optimal order for the
time-independent case. For the time-dependent boundary condition the BT method only
provides a third-order scheme wiht the P3 reconstruction and we observe an order 4.5
with ∆ “ h1.5 and a P5 reconstruction. On the contrary, EBT method clearly releases the
accuracy reduction and provides the optimal order for the two situations. We highlight
that both methods — LS and AC —, give very similar errors.

4.2.4. An explicit sixth-order scheme with Neumann condition

We now test the explicit RK3 schemes in time for a pure diffusive problem with
κpx, tq “ 1 and Neumann conditions. The exact function is φpx, tq “ coshpxq expp´tq
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Table 20: Results for the time-dependent Neumann example with κpx, tq “ 1, vpx, tq “ 0,
and φpx, tq “ coshpxq expp´tq for RK3

I BT EBT

E8 O8 E8 O8

10 7.1E´09 — 3.5E´10 —

P7p8q 14 1.3E´09 5.0 3.1E´11 7.2

∆t “ 1
3h

2 17 5.1E´10 5.0 8.1E´12 6.9

20 2.3E´10 5.0 2.9E´12 6.3

which provides the function φTpx, tq “ ´ sinhpxq expp´tq. To perform the simulations, we
take ∆t “ 1

3h
2 for the sake of stability and use the P7 to better highlight the convergence

in time. Indeed, the approximation in space is more accurate hence the errors derives
from the time discretization. We presents the errors and convergence rates in Table 20.
We first observe that we get a fifth-order converge for the BT technique in place of the
fourth-order obtained in the case of time-dependent Dirichlet condition. The observation
is confirmed with the EBT technique: for convection-diffusion problem with Neumann
conditions, we obtain a better approximation (one order of magnitude) than for the case
with Dirichlet condition. On the other hand, the scheme in time based on Extended
Butcher Tableau provides an optimal seventh-order.

4.2.5. A complex example

To end the numerical section we compare the three discretizations in time equipped
with the BT or the EBT method for a convection-diffusion problem with time and space
dependent coefficients. We take κpx, tq “ 3e´t coshpxq and vpx, tq “ ´0.5etpx2 ` 1q
and assume that the exact function writes φpx, tq “ coshpxq expptq which implies that
fpx, tq “ expptq coshpxq ´ 3 cosh2

pxq ´ 3 sinh2
pxq ´ 1

2 sinhpxqpx2 ` 1q ´ x coshpxq. We
prescribe the Dirichlet condition both at x “ 0 and x “ 1. The explicit RK3 scheme is
used with ∆t “ 1

10h
2 and the P5 reconstruction in space to provide a global sixth-order

scheme. The explicit RK4 scheme is using the same time step and a P7 reconstruction
in space to provide a global eighth-order scheme. For the implicit ESDIRK4, we use
larger time step ∆t “ 10h and apply a P3 reconstruction in space to provide a global
fourth-order scheme. Table 21 clearly shows the effectiveness of the EBT method since we
recover the optimal sixth-order method even with non-constant diffusion and velocity.

The situation of the RK4 scheme presented in Table 22 highlights the dramatic in-
fluence of the boundary condition with very high-order approximation. The BT method
only produces a global fourth-order scheme whereas the extended version recover the
optimal order.

In the implicit case presented in Table 23, the EBT method provides the optimal order
in contrast with the BT method which strongly cuts by an half the accuracy order.
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Table 21: Results for the time-dependent Dirichlet example with κpx, tq “

3 coshpxq expp´tq, vpx, tq “ ´ 1
2 expptqp1` x2q, and φpx, tq “ coshpxq expptq for RK3

I BT EBT

E8 O8 E8 O8

10 2.7E´07 — 2.5E´07 —

P5p6q 20 1.2E´08 4.5 4.3E´09 5.9

∆t “ 1
10h

2 30 2.2E´09 4.1 3.9E´10 5.9

40 7.0E´10 4.0 7.1E´11 5.9

Table 22: Results for the time-dependent Dirichlet example with κpx, tq “

3 coshpxq expp´tq, vpx, tq “ ´ 1
2 expptqp1` x2q, and φpx, tq “ coshpxq expptq for RK4

I BT EBT

E8 O8 E8 O8

10 1.5E´08 — 3.2E´09 —

P7p8q 20 8.8E´10 4.1 1.4E´11 7.8

∆t “ 1
15h

2 30 1.7E´10 4.0 5.8E´13 7.9

40 5.5E´11 4.0 5.6E´14 8.1

Table 23: Results for the time-dependent Dirichlet example with κpx, tq “

3 coshpxq expp´tq, vpx, tq “ ´1
2 expptqp1`x2q, and φpx, tq “ coshpxq expptq for ESDIRK4

I BT EBT

E8 O8 E8 O8

40 4.6E´02 — 7.2E´02 —

P3p4q 80 9.2E´03 2.3 5.1E´03 3.8

∆t “ 10h 160 2.5E´03 1.9 3.5E´04 3.9

320 5.6E´04 2.1 2.3E´05 3.9
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5. Conclusion

We have shown that straightforward application of the Runge-Kutta time schemes
based on the Butcher Tableau fails to provide the optimal convergence order in numerous
cases. The main reason is a wrong synchronization between the Runge-Kutta scheme
applied to the linear system deriving from the finite volume formulation and the boundary
conditions. Constant in space solution are not preserved and numerical perturbations
are generated at the boundary and further propagate into the whole domain. We have
proposed a strategy to cure the undesirable phenomenon introducing an extension to the
Butcher Tableau such that we preserve solutions tτ for Dirichlet boundary conditions
and xtτ for Neumann boundary conditions up to a certain degree. Numerical simulations
show the high effectiveness of the method for both boundary condition types. Extension
of the method for the two- and three-dimension geometries seems straightforward and
will be investigated in a future study.
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