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Abstract

We assess U.S. monetary policy across time and frequencies in the framework of the

Taylor Rule (TR). First, we portray the deviations between policy interest rates and the

TR-prescribed rates with a set of continuous wavelet tools, comprising the coherency, phase-

di¤erence and gain. Then, using their multivariate counterparts, including a multivariate

generalization of the wavelet gain, we estimate the TR coe¢ cients in the time-frequency

domain. We uncover a set of new stylized facts of the TR implicit in U.S. monetary policy

that would not be possible to detect with pure time- or frequency-domain methods, nor with

the time-frequency domain tools available thus far.
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1 Introduction

This paper analyzes U.S. monetary policy between 1965 and 2014 in the framework of a Tay-

lor Rule (TR) that is allowed to vary simultaneously along time and across frequencies. To do

so, we use tools derived from the continuous wavelet transform, namely the wavelet coherency,

phase-di¤erence, and gain. Firstly, we describe the deviations of policy interest rates from those

prescribed by the original Taylor (1993) Rule across time and frequencies. We then estimate the

coe¢ cients of the Rule implicit in actual policy interest rates in the time-frequency domain, using

the partial wavelet gain, a novel generalization of the wavelet gain for the case of more than two

variables.

More than 20 years ago (Taylor, 1993), John B. Taylor showed that U.S. monetary policy in

1986-92 was very well described by a simple relation between policy interest rates (the federal

funds rate), the output gap and in�ation. The rule he proposed, which came to be known as the

Taylor Rule (TR), is the following:

FFTt = 2 + �t +
1

2
yt +

1

2
(�t � 2) : (1)

In (1), FFR is the (e¤ective) federal funds rate, � is the in�ation rate over the previous four

quarters and y is the percent deviation of output from its potential. His calibration assumed a

real equilibrium interest rate of 2 percent and an in�ation target of 2 percent. According to the

TR, when output or in�ation are above their targets, interest rates should increase; when in�ation

is 2 and output equals its potential, then the nominal interest rate will be 4 and the real rate of

interest will be 2.

The TR was thought out not only as a positive device � a parsimonious description of U.S.

monetary policy since the mid-1980s � but also as a normative prescription � a useful benchmark

for monetary policy, highly valuable to inform and aid policymakers�decisions, even though not

to be followed mechanically. In fact, the TR has proved to be quasi-optimal and more robust than

a wide array of strictly optimal policy rules derived in speci�c macroeconomic models (Taylor and

Williams, 2010), with the further advantage that its simplicity makes it very easy to communicate

and understand. Moreover, it has been argued that under the TR, policy is conducted in a more
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predictable, systematic, and thus e¤ective way (Taylor, 2012). In addition to its positive and

normative worth, the TR might still be seen as an accountability device for policymakers, in line

with the predictions by Taylor and Williams (2010), as discussed in a Bill recently introduced to

the U.S Congress.1

Further to its appealing attributes, the TR is empirically quite successful, as depicted in Figure

3 in Section 3 of this paper. Using real-time output gap and in�ation data available to policymakers

at the time they decided monetary policy, the policy rate implied by the TR mimics remarkably

well the overall path of U.S. policy interest rates. Such success is particularly noticeable given that

the TR was proposed only in 1993 and that, as documented inter alia by Kahn (2012), there were

frequent references to Taylor-type rules in the Federal Open Market Committee meetings since

1993 but not before �when discussions and decisions did not explicitly refer to policy rules, and

policy appears to be more discretionary and focusing on �ne-tuning real activity with no special

focus on long-run price stability, as documented, for example, by Taylor (2012).

It is widely acknowledged �and shown in our Figure 3 �that in spite of the overall very good

�t of the interest rates prescribed by the original TR, there are several episodes of systematic

deviations between the FFR and the implied TR rate. The literature has dealt with such deviations

essentially in three alternative approaches, from which we develop two in this paper.

First, there has been proposed a vast set of variations and enhancements to the explanatory

variables in the original TR. For example, following Clarida, Galí and Gertler (2000), many au-

thors have replaced in�ation with expected in�ation (as policymakers need to be forward-looking

because of the lags in the transmission of monetary policy), and have included lagged interest rate

(to account for policy inertia); others have suggested replacing the output gap with alternative

measures of real activity easier to observe and possibly allowing for some welfare gain, such as

output growth (e.g. Sims, 2013); others have enhanced the Rule with a reaction to additional

variables, such as asset prices (e.g. Sack and Rigobon, 2003), exchange rates (e.g. Lubik and

Schorfheide, 2007), or long-term bond yields (e.g. Christensen and Nielsen, 2009). In this paper

1H.R. 5018 (113th) Federal Reserve Accountability and Transparency Act of 2014, discussed in the House Finan-
cial Service Committee, according to which the FED should explain to the House any systematic deviations of the
policy interest rates from a reference policy interest rate that would correspond precisely to that implied by Taylor�s
(1993) Rule presented in (1). For details, see https://beta.congress.gov/113/bills/hr5018/BILLS-113hr5018ih.pdf.
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we do not follow this approach, but rather focus on the original Taylor Rule, because of its sim-

plicity, robustness, well-documented relevance for actual policymaking, and, moreover, because we

want to avoid econometric issues that are subsidiary to our purpose of conducting a time-frequency

analysis of U.S. monetary policy � such as the problems of identi�cation (see e.g. Cochrane, 2011)

and estimation (see e.g. Jondeau, Le Bihan and Gallès, 2004) of forward-looking rules. Further-

more, our wavelet tools are intrinsically able to detect lead-lag relations, and so there is no point

in including forward or backward-looking components in the policy rule.

A second approach has described the episodes in which the FFR has deviated signi�cantly from

the interest rate implied by the original TR as eras of discretionary monetary policy, as opposed to

rules-based eras. Notably, Taylor (2012) has suggested an account of U.S. monetary policy based

on such approach, which Nikolsko-Rzhevskyy, Papell, and Prodan (2014) have broadly con�rmed

with evidence from formal structural stability tests (see Section 3 for details on this view of the

data). In the �rst step of our econometric analysis in this paper, we develop this approach,

speci�cally describing the deviations between the FFR and the interest rate implied by the TR

along time and across frequencies.

A third approach has considered that deviations of policy rates from the TR resulted from

changes along time in the value of the parameters of the Taylor-type Rule actually followed by

policymakers. After the �nding that the U.S. interest rate policy has been more sensitive to in-

�ation after 1979 than before (Clarida, Galí and Gertler, 2000), numerous studies have looked at

the stability of the U.S. Taylor Rule using di¤erent data and di¤erent econometric approaches,

such as threshold models (e.g. Bunzel and Wenders, 2010), time-varying parameters models (e.g.

Trecroci and Vassalli, 2010), Markov-switching models (e.g. Assenmacher-Wesche, 2006), smooth-

transition models (e.g. Alcidi, Flamini and Fracasso, 2011), instrumental variables quantile re-

gressions (e.g. Wolters, 2012), and Hamilton�s (2001) �exible approach to nonlinear inference

(e.g. Kim, Osborn and Sensier, 2005), among others. The possible role that changes in U.S.

monetary policy may have had in the Great Moderation then fed a proli�c research program fea-

turing a Taylor Rule in a variety of models, from structural time-varying coe¢ cients VARs with

stochastic volatility (e.g. Sims and Zha, 2006), to structural small-scale New Keynesian mod-

els (e.g. Canova, 2009), and to DSGE models with stochastic volatility and parameter drifting
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(e.g. Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez, 2010); in spite of disagreement

about the magnitude of its impact on macroeconomic volatility, a common result in this literature

is that the U.S. policy rule did change ahead of the Great Moderation. Changes in monetary policy

regimes have also been associated to shifts in the persistence of in�ation (e.g. Benati, 2008), and

an extensive literature suggests that the persistence of U.S. in�ation has been inversely associated

with the coe¢ cient of in�ation in the policy rule, thus being higher during the Great In�ation of

the 1970s; such result withstands across models that allow for regime switching in the in�ation

target and look at the persistence of in�ation (e.g. Davig and Doh, 2013) as well as models that,

in addition to changing regimes, allow for trend in�ation and consider in�ation-gap persistence

(e.g. Cogley, Primiceri and Sargent, 2010).

As the Taylor Rule is a reduced-form relation, its functional form and coe¢ cients depend on

the policymaker�s preferences as well as on the structure of the economy, and so they may change

along time for many possible reasons. First, because of changes in the preferences of the monetary

policymaker, i.e. shifts in the weights attributed to the targets or in the levels of the targets

themselves in his loss function (e.g. Favero and Rovelli, 2003; Owyang and Ramey, 2004; Dennis,

2006; Aguiar and Martins, 2005a). Second, because there may be non-linearities in the policymak-

ers�preferences, i.e. di¤erent reactions to outcomes below or above the targets (e.g. Nobay and

Peel, 2003; Dolado, Maria-Dolores and Ruge-Murcia, 2004; Surico, 2007; Cukierman and Mus-

catelli, 2008). Third, the Rule may change because of non-linearities or breaks in the structure

of the macroeconomy and, thus, in the transmission of monetary policy � for example, changes

or non-linearities in the Phillips Curve (e.g. Dolado, Maria-Dolores and Naveira, 2005; Huh, Lee

and Lee, 2009; Aguiar and Martins, 2005b). Finally, the policy rule may change, at some stages,

because the policymaker is uncertain about the state and/or the functioning of the economy and

uses additional information and/or judgement to design policy (e.g. Alcidi, Flamini and Fracasso,

2011; Tillmann, 2011; Billi, 2012). Moreover, the observed relation between the policy interest

rate and the main macroeconomic variables may vary because agents�or markets�perception of

the policymaker�s policy rule may be heterogeneous, uncertain and subject to important changes,

thus modifying the transmission mechanisms of monetary policy; indeed, a recent literature has

found, using survey-based macroeconomic forecasts (e.g. Buraschi, Carnelli and Whelan, 2013) or
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measures of the e¤ect of news on fundamentals�and policy forecasts (e.g. Hamilton, Pruitt and

Borger, 2011), that there is considerable time- and state- dependence in the public�s perception of

the U.S. Taylor Rule.

In the second step of our econometric analysis in this paper, we explore this third approach,

as we estimate the TR allowing for variation in its coe¢ cients. We contribute to the literature

going beyond the mere possibility of variation of the TR coe¢ cients along time, and estimating

the coe¢ cients of the TR in the time-frequency domain, thus considering the possibility of changes

also across frequencies.

We argue that a purely time-domain approach falls short of a thorough description of the na-

ture and consequences of the changes in the coe¢ cients of the TR, as they may occur di¤erently at

distinct frequencies. In fact, given that monetary policy focuses on cyclical stabilization, one key

concern of policymakers should be to understand and control which speci�c cyclical oscillations

they want to, can, and do control at each period of time. For example, policymakers should care

about the impact of policy in the frequency-domain, because oscillations at di¤erent frequencies

may have di¤erent impacts on social welfare, or because controlling oscillations at some frequencies

may imply larger variability at other frequencies (Yu, 2013). Also, policymakers may react di¤er-

ently to permanent and to short-lived �uctuations in the main macroeconomic variables (Ashley,

Tsang and Verbrugge, 2013). Furthermore, it may be argued that speci�c changes in monetary

policy regimes may be related to changes in the relative intensity of the policy reaction at di¤erent

frequencies � for example, a policymaker trying to conquer credibility may have to react very

strongly to transitory changes in in�ation, but once credibility is established, he may increase the

focus on �uctuations of a more permanent nature.

Yet, the analysis of shifts in the Taylor Rule at di¤erent frequencies is extremely scarce. The

only study of the Taylor Rule in the frequency-domain is, to the best of our knowledge, Ashley,

Tsang and Verbrugge, (2013), who compare the estimated coe¢ cients of the U.S. Taylor Rule

before and after 1979:8 for 19 separate frequencies; they �nd a signi�cant frequency dependence

of the Taylor Rule coe¢ cients, with monetary policy reacting more strongly to �uctuations with

a lower frequency (longer period) after 1979, specially of in�ation; overall, they conclude that

ignoring frequency dependence leads to an underestimation of the break in the U.S. Taylor Rule.
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In spite of the compelling arguments suggesting that U. S. monetary policy may follow a TR

with coe¢ cients that changes both along time and across frequencies, the literature is silent about

the assessment of changes in the TR simultaneously in the time and in the frequency domains;

hence the motivation for this paper. Our approach � a sequential analysis of partial wavelet

coherences, phase diagrams and gains � allows for a thorough assessment of the Taylor Rule in

the time-frequency domain. The partial coherencies and partial phase-diagrams determine, for

each time and frequency, the signi�cance, sign and synchronization (or the lags or leads) between

the U.S. policy interest rate and each of the macroeconomic variables in the Rule, controlling for

the other variable; the partial gains provide estimates of the coe¢ cients on each macro variable

in the Rule, along time and across frequencies.

Regarding methods, our contribution to the literature is twofold. First, we provide a p-variable

generalization of the wavelet gain that allows for estimating multivariate functions in the time-

frequency domain. Second, we are the �rst authors to we use the multiple coherency (Aguiar-

Conraria and Soares 2014) jointly with the partial coherency (and phase-di¤erence) to re�ne the

interpretation of the estimates given by the partial gain.

Regarding results, we provide a set of new stylized facts of the Taylor-type Rule implicit in

U.S. monetary policy in the last �ve decades that would not have been possible to detect with

pure time- or frequency-domain tools, nor with the time-frequency domain tools available thus

far. From our results, we highlight the following.

We �nd that the coe¢ cient of in�ation in the U.S. Taylor Rule (i) has changed more markedly

for frequencies corresponding to 4 � 8 years period cycles, than 8 � 20 and 1:5 � 4 frequencies;

(ii) has gradually decreased until 1979 and rapidly increased until the mid-1980s, rather than

changing from a lower to a higher coe¢ cient around 1979 as much literature suggests; (iii) has

fallen below 1, thus violating the Taylor principle, in the late-1970s for cycles of period 4 � 8 years

(and, for a smaller period, 1:5 � 4 year cycles), but not for longer cycles of period above 8 years;

(iv) has been above 1.5, the original Taylor Rule value, after the beginning of Great Moderation

in 1985, for cycles of period 4 � 8 and 8 � 20 years. We �nd that the coe¢ cient of the output

gap in the U.S. Taylor Rule (i) has changed rather symmetrically across the several frequencies,

with the original Taylor value and full-sample estimate of 0.5 appearing to be an artifact of such
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pattern; and has featured a unique combination of high coe¢ cients at all frequencies, since 2009,

which appears to account for the success of the modi�ed Taylor Rule with a slope of 1 on the gap

in explaining policy since 2009, in particular the implicit negative interest rates.

The paper proceeds as follows. In Section 2, we describe the methodology, with a special

emphasis on our partial wavelet tools, and in particular the partial wavelet gain that we use to

estimate the coe¢ cients of the Taylor Rule in the time-frequency domain. In Section 3 we describe

our data. In Section 4 we apply our methodology to the data and provide an assessment of U.S.

monetary policy. We do so in two steps: �rst, we compare the actual policy interest rate with the

rate prescribed by the original Taylor Rule along time for all frequencies; then, we estimate the

coe¢ cients associated to in�ation and the output gap in the time-frequency domain. Section 5

summarizes and concludes the paper.

2 Methodology

The Continuous Wavelet Transform is an increasingly popular tool in econometric analysis. The

most common argument to justify its use is the possibility of tracing transitional changes across

time and frequencies. Recent applications include Aguiar-Conraria, Magalhães and Soares (2012),

Aguiar-Conraria, Martins and Soares (2012), Rua (2012), Vacha et al. (2013), Dewandarua, Masih

and Masih (2015) and Marczak and Gómez (2015), just to mention a few; see Aguiar-Conraria

and Soares (2014) for a review.

So far, the analysis in the time-frequency domain with the continuous wavelet transform has

been mostly limited to the use of the wavelet power spectrum, the wavelet coherency and the

wavelet phase-di¤erence. Aguiar-Conraria and Soares (2014) already extended these tools to

allow for multivariate analyses. These multivariate tools are su¢ cient to assess the strength of

the relation between several variables, but they are insu¢ cient to estimate the magnitude of the

relation. Just like (partial) correlation coe¢ cients do not provide the same information as the

regression coe¢ cients.

Mandler and Scharnabl (2014) use the concept of the wavelet gain as a regression coe¢ cient

in the regression of y on x. In this paper, and, to our knowledge, for the �rst time, we will
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estimate an equation relating more than two variables (just like a regression of y on x and z) in

the time-frequency domain. To do so, we generalize the concept of wavelet gain and de�ne the

partial wavelet gain, which can be interpreted as a regression coe¢ cient in the regression of y on

x after controlling for other variables.

2.1 The Continuous Wavelet Transform

For all practical uses, a wavelet  (t) is a function that oscillates around the t-axis and looses

strength as it moves away from the center, behaving like a small wave, hence its name.2 Given

a time-series x (t), its continuous wavelet transform (CWT), with respect to a given wavelet  , is

a function of two variables, Wx (� ; s), obtained by "comparing" x(t) with a family of functions �

the so-called wavelet-daughters � which are simply scaled and translated versions of  :

Wx (� ; s) =
1p
jsj

Z 1

�1
x(t) 

�
t� �

s

�
dt: (2)

The scaling parameter s controls the width of the wavelet and the translation parameter � controls

its location along the t-axis; they both vary continuously over R, with the constraint that s 6= 0:

In the above formula and throughout, we use the bar to denote complex conjugation.

The speci�c wavelet we use in this paper is a complex-valued function selected from theMorlet

wavelet family,

 !0 (t) = ��
1
4 ei!0te�

t2

2 ; (3)

and corresponds to the particular choice of !0 = 6.3

The popularity of the Morlet wavelets in economics is mainly due to three characteristics.

First, with the Morlet wavelet, there is a one-to-one relation between wavelet scales and fre-

quencies, which economists are more used to. Since  !0 is simply a complex sinusoid of angular

frequency !0 damped by a Gaussian window, it is natural to associate the angular frequency !0

� i.e. the usual Fourier frequency f = !0=(2�) � to this function; hence, the wavelets at scale

2Usually one uses functions with either compact support or exponential decay and with zero mean , i.e.R1
�1  (t) dt = 0.
3Strictly speaking the above function is not a "true" wavelet, since it has no zero mean, but the value ofR1

�1  6(t)dt is so small that, for all numerical purposes, it can be considered as a wavelet.
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s can be associated with frequencies fs = !0
2�s
; for the value of !0 = 6, used in this paper, we

have fs � 1
s
, which greatly facilitates the interpretation of the wavelet analysis � that is, strictly

speaking, a time-scale analysis � as a time-frequency analysis.

Second, this function has optimal joint time-frequency concentration. The wavelet trans-

form, by mapping the original series in � and s, gives us information simultaneously on time and

scale/frequency. However, this localization in time and frequency is not perfect. The Heisenberg

uncertainty principle, which in quantum theory tells us that it is impossible to determine simul-

taneously both the position and momentum of an electron with certainty, in our context tells us

that there is always some uncertainty associated to the time-frequency location. This uncertainty

is minimized with the choice of the Morlet wavelet.

Third, it reaches the best possible compromise between time and frequency accuracy, in the

sense that accuracy in time and in frequency are similar.

2.2 Uni and bivariate tools

All the quantities we are going to introduce are functions of time and scale. To simplify the

notation, we will describe these quantities for a speci�c value of the argument, (� ; s), and this

value of the argument will be omitted in the formulas.

2.2.1 Wavelet power spectrum and the phase angle

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum

(sometimes called scalogram or wavelet periodogram) is de�ned as

(WPS)x = jWxj2 : (4)

This gives us a measure of the variance distribution of the time-series in the time-frequency plane.

When the wavelet  is chosen as a complex-valued function, as in our case, the wavelet trans-

form Wx is also complex-valued. In this case, the transform can be expressed in polar form as

Wx = jWxj ei�x ; �x 2 (��; �]: The angle �x is known as the (wavelet) phase.4

4Recall that given a complex number z = <z + i=z, its phase-angle is given by the formula � = Arctan
�=z
<z
�
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2.2.2 Cross wavelet tools

The cross-wavelet transform of two time-series, x(t) and y(t), is de�ned as

Wxy = WxW y ; (5)

where Wx and Wy are the wavelet transforms of x and y, respectively. The absolute value of the

cross-wavelet transform, jWxyj, will be referred to as the cross-wavelet power . The cross-wavelet

power of two time-series depicts the covariance between two time-series at each time and frequency.

We de�ne the complex wavelet coherency of x and y, %xy, by

%xy =
S (Wxy)

[S (jWxj2)S (jWyj2)]1=2
; (6)

where S denotes a smoothing operator in both time and scale.5 For notational simplicity, we will

denote by Sxy the smoothed cross-wavelet transform of two series x and y and also use �x and �y

to denote, respectively,
p
S(jWxj)2 =

p
Sxx and

p
S(jWyj)2 =

p
Syy. With these notations, we

will simply write the formula for the complex coherency as

%xy =
Sxy
�x�y

: (7)

By analogy with the Fourier case, the wavelet coherency, Rxy, is de�ned simply as the absolute

value of the complex wavelet coherency, i.e. is given by Rxy = j%xyj:

With a complex-valued wavelet, we can compute the phase of the wavelet transform of each

series and, by computing their di¤erence, we can then obtain information about the possible delays

of the oscillations of the two series, as a function of time and frequency. It follows immediately

from (5) that the phase-di¤erence, which we will denote by �xy, can also be computed as the

phase-angle of the cross-wavelet transform.6 A phase-di¤erence of zero indicates that the time-

together with the information on the signs of the real and imaginary parts of z to complete determine to which
quadrant the angle belongs to.

5As in the Fourier case, smoothing is necessary, otherwise the magnitude of coherency would be identically one;
smoothing can be achieved by convolution with appropriate windows.

6Another slightly di¤erent way to de�ne the phase-di¤erence makes use of the angle of the complex wavelet
coherency, instead of the angle of the cross-wavelet transform; this de�nition, although not strictly coinciding with
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series move together at the speci�ed frequency; if �xy 2 (0; �2 ), then the series move in phase,

but the time-series x leads y; if �xy 2 (��
2
; 0), then it is y that is leading; a phase-di¤erence of

� indicates an anti-phase relation; if �xy 2 (�2 ; �), then y is leading; time-series x is leading if

�xy 2 (��;��
2
).

Finally, we follow Mandler and Scharnabl (2014) and de�ne the wavelet gain of y over x as

follows:

Gyx =
jSyxj
Sxx

= Ryx
�y
�x
: (8)

Recalling the interpretation of the Fourier gain as the modulus of the regression coe¢ cient of y on

x at a given frequency (see, e.g. Engle 1976), it is perfectly natural to interpret the wavelet gain as

the modulus of the regression coe¢ cient in the regression of y on x, at each time and frequency.

2.3 Multivariate wavelet analysis

Let p (p > 2) time-series x1; x2; : : : ; xp be given. We �rst introduce a set of notations.

We will denote by Wi the wavelet spectrum corresponding to the time-series xi and by Wij

the cross-wavelet spectrum of the two series xi and xj. Just as in the case of ordinary wavelet

coherency, to compute partial wavelet coherencies it is necessary to perform a smoothing operation

on the cross-spectra. We will denote by Sij the smoothed version of Wij, i.e. Sij = S (Wij), where

S is a certain smoothing operator. We will use S to denote the p� p matrix of all the smoothed

cross-wavelet spectra Sij, i.e. S = (Sij)
p
i;j=1.

7

For a given matrix A, Aji denotes the sub-matrix obtained by deleting its i-th row and j-th col-

umn and Adij denotes the co-factor of the element in position (i; j) of A, i.e. A
d
ij = (�1)(i+j) detA

j
i :

For completeness, we use the notation Ad = detA.

Finally, for a given integer j such that 2 � j � p, we denote by qj the set of all the indexes

from 2 to p with the exception of j, i.e. qj = f2; : : : ; pg n fjg:

the di¤erence between the individual phases, due to the smoothing, has the advantage of allowing a more direct
generalization for the multivariate case.

7To be more correct, S depends on the speci�c value (� ; s) at which the spectra are being computed, i.e. there
is one such matrix for each (� ; s).

12



2.3.1 Multiple and partial wavelet coherency and partial phase-di¤erence

The squared multiple wavelet coherency between the series x1 and all the other series x2; : : : ; xp

will be denoted by R21(23:::p) and is given by the formula

R21(23:::p) = 1�
S d

S11S d
11

(9)

The complex partial wavelet coherency of x1 and xj (2 � j � p) allowing for all the other series

will be denoted by %1 j:qj and is given by

%1 j:qj = �
S d
j1p

S d
11

q
S d
jj

: (10)

The partial wavelet coherency of x1 and xj allowing for all the other series, denoted by R1 j:qj ,

is de�ned as the absolute value of the above quantity, i.e. R1 j:qj =
jS d

j1jp
S d
11

p
S d
jj

; and the squared

partial wavelet coherency of x1 and xj allowing for all the other series, is simply the square of

R1 j:qj .

Having de�ned the partial wavelet coherency %1 j:qj of series x1 and xj controlling for all the

other series, we simply de�ne the partial phase-di¤erence of x1 and xj given for all the other series,

denoted by �1 j:qj , as the angle of %1 j:qj :

2.3.2 Partial wavelet gain

We de�ne the partial wavelet gain of series x1 over series xj allowing for all the other series,

denoted by G1 j:qj , by the formula

G1 j:qj =
jS d

j1j
S d
11

: (11)

Naturally, the partial wavelet gain can also be computed using the partial wavelet coherency, as

G1 j:qj = R1 j:qj

q
S d
jjp

S d
11

: (12)
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For j = 2; : : : ; p, the valuesG1;j:qj can be interpreted as the coe¢ cients (in modulus) in the multiple

linear regression of x1 in the explanatory variables x2; : : : ; xp, at each time and frequency.

2.3.3 Formulas in terms of coherencies

The above formulas for the partial wavelet coherency and for the partial wavelet gain were given in

terms of the smoothed spectra Sij. We can also de�ne these quantities in terms of simple complex

coherencies (i.e. wavelet complex coherencies between pairs of series).

Corresponding to the matrix S , we now consider the matrix C = (%ij)
p
i;j=1 of all the complex

wavelet coherencies %ij. Then, we can de�ne the multiple wavelet coherencies by the following

alternative formula

R21(23:::p) = 1�
C d

C d
11

; (13)

the complex partial wavelet coherency by

%1 j:qj = �
C d
j1p

C d
11

q
C d
jj

; (14)

and the partial wavelet gain by

G1 j:qj =
jC d
j1j

C d
11

�1
�j
: (15)

The proof of the above results is a simple application of the properties of determinants; see Aguiar-

Conraria and Soares (2014) for details concerning the multiple and partial coherencies.

2.3.4 Application to three variables

We illustrate the use of the above formulas for the case where we just have three series x1, x2 and

x3. In this case, it can easily be shown (see Aguiar-Conraria and Soares 2014) that the multiple

wavelet coherency is given by:

R21(2 3) =
R212 +R213 � 2< (%12 %23 %13)

1�R223
(16)
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whilst the complex partial wavelet coherency is given by:

%1 2:3 =
%12 � %13%23p

(1�R213)(1�R223)
: (17)

On the other hand, applying formula (12),it is easy to show that the partial wavelet gain G1 2:3 is

given by:

G1 2:3 =
j%12 � %13%23j
(1�R223)

�1
�2
: (18)

A formula involving only smoothed spectra would be:

G1 2:3 =
jS12S23 � S13S23j
S22S33 � jS23j2

: (19)

2.3.5 Example: Partial gain, coherency and phase-di¤erence

Before analyzing the data, we start with an example that applies the wavelet gain and partial

wavelet gain, proposed in this paper. Given the full control of the data generating processes, our

example makes it clear that the partial Wavelet gain may be interpreted as a regression coe¢ cient

in the time-frequency domain. The example also highlights that, because the (partial) wavelet

gain is an absolute value, its interpretation must be associated with that of the (partial) phase-

di¤erence, which will tell us if the relation is a positive or negative one.

Imagine that we have 200 years of monthly data and that the data generating processes for X

and Z are given by

Xt = sin
�
2� t

3

�
+ sin

�
2� t

8

�
+ "x;t;

Zt = sin
�
2� t

9

�
+ "z;t;

while for Y is given by

Yt =

8><>: 2 sin
�
2� t+3=12

3

�
+ 1 sin

�
2� t�1

8

�
+ Zt + "y;t; for t � 100

2 sin
�
2� t+3=12

3

�
� 3 sin

�
2� t�1

8

�
+ Zt + "y;t; for t > 100

:

Suppose that we are interested in regressing Y against X in the time-frequency domain. What

should we expect?
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Figure 1: On the left �wavelet coherency between Y and X (top) and partial wavelet coherency between
Y and X , after controlling for Z (bottom). The color code for coherency ranges from blue (low coherency
�close to zero) to red (high coherency �close to one). In the middle �phase-di¤erences (top) and partial
phase-di¤erences (bottom) between Y and X . On the right �wavelet gain (top) and partial wavelet gain,
after controlling for Z (bottom) between Y and X .

At frequencies that correspond to a period of 3 years, the estimated coe¢ cient should be 2

throughout the sample, implying that the wavelet gain should be 2 also. The phase-di¤erence

should also indicate that Y slightly leads (by 3 months) X, meaning that the phase-di¤erence

between Y and X should be between 0 and �=2.

At the 8 year frequency, the coe¢ cient should be +1 in the �rst half of the sample and �3

in the second half. However, given that the wavelet gain is an absolute value, it would yield an

estimate of +3 for the coe¢ cient in the second half of the sample. To capture the negative sign

of the relation, one has to use the information given by the phase-di¤erence. In the �rst half of
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the sample, at this frequency, Y lags X (by 1 year) and the variables are in-phase. Therefore, the

phase di¤erence should be between ��=2 and 0. In the second half, Y lags X (by 1 year) and the

variables are out-of-phase. Therefore, the phase-di¤erence should be between �=2 and �:

Finally, note the in�uence of Z on variable Y : given that its in�uence occurs at the 9 year

frequency, excluding this variable, and therefore incurring in an omitted variable bias, should

contaminate the relation between Y and X at the 8 year frequency.

All these results are con�rmed in Figure 1, where we plot the (partial) wavelet coherency, the

(partial) phase-di¤erence and the (partial) wavelet gain between Y and X (after controlling for

Z). In particular, note how the relations between Y and X around the 8 year frequency are much

more accurately estimated using the partial wavelet tool, meaning that we are controlling for the

e¤ects of variable Z:

3 The Data

Our data are quarterly time-series of the federal funds rate (FFR), in�ation and the output

gap, for the United States (U.S.) 1965:IV-2014:IV and correspond to the data used by Nikolsko-

Rzhevskyy, Papell, and Prodan (2014) updated through the end of 2014. These are real-time data

that were available to policymakers when interest rate decisions were made, consistently with the

vast majority of empirical research on monetary policy rules since Orphanides (2001). The source

for output and in�ation is the Real-Time Data Set for Macroeconomists created by Croushore and

Stark (2011) and available at the Philadelphia Federal Reserve website, which provides vintages

of data available since 1965:IV with the data in each vintage starting in 1947:I.8

In�ation is the year-over-year rate of change of the real-time GDP de�ator. The output gap

is the percent di¤erence between real GDP and a real-time quadratic trend, i.e. a trend obtained

�tting a quadratic function of time to the real GDP data from 1947:I through the vintage date

(see Nikolsko-Rzhevskyy, Papell, and Prodan 2014 for further details, namely on the choice of the

functional form for the trend and on timing issues).

The source for the FFR is the FRED (Federal Reserve Economic Data) available at the website

8http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-�les/.
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of the Federal Reserve of St. Louis, until 2008:IV.9 From 2009:I onwards, when the policy interest

rate has been constrained by the zero lower bound, we use the shadow FFR of Wu and Xia (2014)

which is computed from a nonlinear term structure model and captures the overall monetary policy

stance, including the e¤ects of unconventional policies.10

In Figure 2 we plot the three time-series, on the left-hand side charts, and their wavelet power

spectra, on the right-hand side; these are a measure of the variance of the series at each time-

frequency locus, and provide a �rst time-frequency description of the data (in the power spectrum

charts, as well as in the coherency charts of the following sections of the paper, hotter colors

(yellow and red) correspond to higher volatility/coherence and colder colors (green and blue) to

lower volatility/coherence; the white stripes mark local maxima, and gray/black contours mark

signi�cance at the 10/5 percent level).

A �rst overall conclusion from Figure 2 is that, with the exception of the output and in�ation

instability of the 1970s, the variability of the three time-series occurs at frequencies of period

larger than 4 years.

The chart of in�ation shows its well-known gradual rise between the mid-1960s and the 1970s,

the disin�ation between 1980 and 1986, and the ensuing period of low and stable in�ation, with

particularly low rates following the recent �nancial and economic crisis. The wavelet power spec-

trum of in�ation shows signi�cant variability since the mid-1960s both at long period cycles (more

than 12 years) and at business-cycle frequencies (4 � 8 years), consistently with the tendency of

rising in�ation and the instability of the 1970s (the episode with a larger power occurs for cycles

of a period around 6 years, between 1973 and 1980). Following the post-1979 disin�ation, the

areas of statistically signi�cant power spectrum become gradually thinner, which illustrates the

success of the U.S. disin�ation, the subsequent anchoring of in�ation (and its expectations) and

the prolonged period of very low in�ation variance during the Great Moderation.

The chart of the output gap shows the strong recession associated with the �rst oil shock in the

mid-1970s, as well as of a recession in the early 1980s associated with the disin�ation; it then shows

how policymakers were aware of the Great Moderation between 1984 and 2007, and of the Great

9http://research.stlouisfed.org/fred2/.
10http://faculty.chicagobooth.edu/jing.wu/research/data/WX.html.
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Figure 2: On the left: Plot of each time-series. On the right: The corresponding wavelet power spectrum.
The black/gray contour designates the 5%/10% signi�cance level. The cone of in�uence, which indicates
the region a¤ected by edge e¤ects, is shown with a black line. The color code for power ranges from blue
(low power) to red (high power). The white lines show the local maxima of the wavelet power spectrum.
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Recession starting in 2008, with large negative output gaps persisting through the end of 2014.

The wavelet power spectrum indicates that the real-time output gap featured a stronger variance

at three main cycles: one with a period close to 20 years, another with a period around 12 years,

and a third with a period around 6 years. It further indicates that shorter cycles gradually lost

importance and longer cycles gradually gained relevance along the sample. The Great Moderation

is apparent, with narrower areas of signi�cant power spectrum between 1985 and 2007; the Great

Recession shows up as an increase in the power spectrum at cycles larger than 8 years at the end

of the sample.

The chart of the federal funds rate (FFR) shows that nominal interest rates tended to increase

with in�ation since the mid-1960s, peaked at very high levels at the beginning of the 1980s and

then gradually decreased until the end of the sample. The power spectrum of the FFR indicates

that, overall, the variability of the policy rate is systematically strong at two main regions of

cyclical frequencies, namely cycles of period 8 � 10 years, and cycles of period close to 20 years.

While during the 1970s there was also a strong variability of the FFR at shorter cycles (4 � 8

years), it gradually faded and gave rise to an extremely large variability at cycles of 8 � 10 years,

during the �rst half of the 1980s, apparently associated to the Volcker policy of disin�ation and

anchoring of in�ation at low levels. The Great Moderation is evident in the weak variability of

the FFR in 1985-2008 for most frequencies, with the wavelet power spectrum signi�cant only for

the dominant cycles, of period around 8 years and close to 20 years.

In Figure 3, we plot the Federal Funds Rate (FFR) (e¤ective for 1965:IV-2008:IV, shadow for

2009:I-2014:IV) and the Reference Policy Rule (RPR), i.e. the Taylor Rule interest rate implied

by equation (1) computed with our real-time output gap and in�ation. The message of the �gure

is twofold.

First, it is remarkable how such a simple formula broadly mimics the overall path of the policy

interest rate. While there are extensive references to Taylor-type rules in the Federal Open Market

Committee discussions of U.S. monetary policy decisions since 1993 (Kahn, 2012), policymakers

have never committed to a speci�c functional form and coe¢ cients for the rule. Hence, researchers

often consider various alternative formulations for the rule, such as the modi�ed Taylor Rule with
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Figure 3: The Classic Taylor Rule � the proposed Reference Policy Rule, computed with our real-time
output gap and in�ation � and the Federal Funds Rate since 1965 (e¤ective for 1965:IV-2008:IV, shadow
for 2009:I-2014:IV).

the coe¢ cient on the output gap increased from 0.5 to 1 in Nikolsko-Rzhevskyy, Papell, and Prodan

(2014). A fortiori, before 1993 policy was much more discretionary, with no explicit reference to

feed-back rules, and policymakers� discussions focusing more on �ne-tuning real activity than

maintaining long-run price stability (Taylor, 2012).

The overall compliance of U.S. monetary policy to the Taylor Rule gains some support from

the results of an OLS regression of the Rule with our real-time data for 1965:IV-2014:IV (standard

errors in parenthesis):

FFTt = 0:17
(0:30)

+ 1:54
(0:07)

�t + 0:51
(0:05)

yt

In fact, the estimates for the coe¢ cients on in�ation and the output gap are remarkably close

to the original formulation of Taylor�s Rule (the smaller intercept may be due to a higher in�ation

target or to a lower equilibrium real interest rate).

The second message, coming from a closer look at the �gure, is that in some periods the FFR

looks systematically close to the RPR, while in others it deviates systematically from the RPR.

Such pattern led several researchers to identify episodes of rules-based U.S. monetary policy, distin-

guished from episodes of a more discretionary policy, typically associating better macroeconomic
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outcomes with the former. Taylor (2012) identi�ed a rules-based era in 1985-2003 and argued that

the predictable systematic approach to monetary policy in that period has been key to the Great

Moderation. Taylor (2011) labeled the period of 2003-06, in which the FFR was substantially

and persistently below the RPR, the Great Deviation, and Taylor (2012) argued that it may have

fueled the �nancial and housing boom that led to the 2008 bust and the ensuing Great Recession.

Since then, an ad-hoc era endures, as the FFR has been consistently below the RPR, including

negative interest (shadow) interest rates that are not prescribed by the original Taylor Rule. As re-

gards before 1985, noting that policy has been discretionary rather than rules-based, Taylor (2012)

underlines that until 1979 the FFR was consistently below the RPR, arguably fueling the Great

In�ation, and then, during the Volcker disin�ation, it has been systematically above the RPR. In

the same vein, but using formal structural breaks tests, Nikolsko-Rzhevskyy, Papell, and Prodan

(2014) �nd that the FFR followed quite closely the original Taylor Rule in 1965:IV-1974:III and

in 1985:II-2001:I, deviating substantially from the rule in 1974:IV-1985:I and in 2001:II-2013:IV,

with the former period split into one of too low interest rates (until 1979:IV) and another of too

high interest rates (from 1980:I to 1985:I).

Interestingly, when they use a modi�ed Taylor Rule with a coe¢ cient of 1 on the output gap,

Nikolsko-Rzhevskyy, Papell, and Prodan (2014) detect a further structural break at 2006:III and

classify the 2006:IV-2013:IV period as one of a rules-based policy. Such result is highly relevant,

as the Governor of the FED has stated that the interest rates implied by this modi�ed Taylor

Rule are closer to those given by the optimal control solution of the FRB/US model than the

interest rates implied by the original Taylor Rule. Similar observations have been made by other

sources, see references in Nikolsko-Rzhevskyy, Papell, and Prodan (2014). Indeed, such modi�ed

rule prescribes negative interest rates since 2009 � in line with the shadow FFR depicted in

Figure 3 � which the original Taylor Rule does not �as shown in the picture.

Ultimately, there is a problem of observational equivalence that empirical studies of monetary

policy based on Taylor-type rules cannot solve: it is not possible to discriminate between delib-

erate deviations of policy rates from the interest rates prescribed by the original Taylor Rule (a

discretionary policy), and a policy that abides by an interest rate rule which itself deviates from

the speci�cation of the original Taylor Rule, even though the latter is a discretionary policy and
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the former is a rules-based-policy. Hence the relevance of an agnostic approach that lets the data

reveal how close the implied policy rule coe¢ cients are to the original Taylor Rule coe¢ cients.

Moreover, as argued in Section 1, there are plenty of reasons to believe that the coe¢ cients of a

Taylor-type linear Rule may change both along time (see the literature brie�y surveyed in that

section) and across frequencies. Hence the worth of the continuous wavelet transform tools that

we use in the next section of this paper to study the U.S. Taylor-type policy rule.

4 Results: The Taylor rule in the Time-Frequency domain

To study the relation between the FFR and the macroeconomic variables in the Taylor Rule

simultaneously in the time and frequency domains, we use the partial wavelet coherency, the

partial phase-di¤erence, and the partial gain. The latter is especially useful because with it we

can estimate a parametric function, such as the Taylor Rule, in the time-frequency domain.

The interpretation of our econometric results proceeds along the standard approach in similar

literature (see e.g. Aguiar-Conraria, Martins and Soares, 2012), but extends it to consider the

parametric estimation provided by the partial gain.

Our analysis proceeds in two steps. We start by describing the time-frequency relations between

the FFR and RPR (the Reference Policy Rate, i.e. the interest rate implied by the Taylor Rule).

Then, using multivariate wavelet tools, we assess the time-frequency relation between the FFR

and each of the macroeconomic variables in the Taylor Rule.

4.1 The Policy and the Reference Policy interest rates

Figure 4 presents the �rst step of our analysis, describing the time-frequency relations between the

FFR and the RPR in 1965:IV-2014:IV. In this �gure, as throughout the paper, we present phase-

diagrams and gains for three frequency intervals, namely for cycles of period 1:5 � 4 years (the

short end of business cycles), cycles of period 4 � 8 years (the bulk of business cycles �uctuations)

and cycles of period 8 � 20 years (capturing long run relations).

There is a widespread, strong and statistically signi�cant coherency between the FFR and the
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Figure 4: On the left �wavelet coherency between the policy interest rate and the interest rate prescribed
by the Taylor Rule. The black/gray contour designates the 5%/10% signi�cance level. The color code for
coherency ranges from blue (low coherency �close to zero) to red (high coherency �close to one). In the
middle �phase-di¤erences between FFR and RPR. On the right �wavelet gain between FFR and RPR.

RPR, particularly important at the 4 � 8 years frequency band. Yet, as expected, there is a region

of weak coherency for a range of important cycles within this band (period between 3 and 6 years)

in the second half of the 1970s and the �rst half of the 1980s, when interest rates have not followed

the path implied by the Taylor Rule. In contrast to what is observed during the 1970s and 1980s,

after 1991 there is not much coherency between the FFR and the RPR at short cycles (period

of 1:5 � 4 years). From that period onward there is, in turn, a strengthening of the coherency

between the FFR and the RPR for cycles of period 4 � 10 years, and a widening of the frequency

bands towards 11 � 12 years cycles by the end of the sample. We conclude that the shift from

discretionary policies to a rules-based policy has strengthened the co-movement between the FFR

and the RPR at the business cycle frequencies.

For cycles of 4 � 8 years, the phase-di¤erence is essentially zero throughout the whole period,

indicating that the FFR and the RPR are synchronized at business cycles frequencies. At longer

run frequencies, namely in the frequency band of 8 � 20 years, the phase-di¤erence is about

��=2 at the beginning of the sample and then approaches 0, especially after 1985, eventually

reaching 0 around the end of the 1990s. This means that until the late 1990s the Taylor Rule has

been a leading indicator of the movements in the FFR for low frequencies, and that when policy

became rules-based, the FFR became gradually more synchronized with the interest rate implied
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by the Taylor Rule. Thus, the change from discretionary to rules-based policies was especially

important in the lower frequencies, as policy was already rather aligned at the most standard

business cycle frequencies. For higher frequencies (1:5 � 4 years), the phase-di¤erence indicates

that until 1991, when coherency has been strong, e¤ective and implied interest rates have overall

been synchronized. An exception that is important to highlight occurs between 1973 and 1979;

then, the phase-di¤erence increased from 0 to values closer to �=2, indicating that the FFR has

led the RPR, i.e. monetary policy was too accommodative by reducing interest rates at short-run

frequencies before the TR would recommend so.

We now turn to the analysis of the time-frequency gain from the FFR to the RPR, i.e. the

estimates for � shown in the right-hand-side charts of Figure 4. Estimates close to 1 (di¤erent

from 1) mean that monetary policy has closely followed (deviated from) the Taylor Rule at the

corresponding time-frequency location.

The gain is remarkably close to 1 throughout most of the time for frequencies of 4 � 8 years

and 8 � 20 years, the ones in which the coherency and phase-di¤erence suggest a higher and

steady synchronization between the FFR and the RPR. At the 4 � 8 years cycles there is a small

downward swing of the gain around 1979, followed by a visible upward oscillation until the early

1990s, when it brie�y reaches a value around 1:25. Notably, the gain is around 1 both at the

beginning and the end of the rules-based era of 1985-2003, in line with what would be expected.

Moreover, the gain is also close to 1 at the beginning and the end of the 1985-2003 rules-based

era at frequencies of 8 � 20 years. At these frequencies, there is a downward oscillation of the

gain centered in the early 1990s, when the gain falls to about 0:75, that is precisely symmetric

to the oscillation observed in the gain for the business cycles frequencies (4 � 8 years). Such fall

in the gain at 8 � 20 cycles occurs when the synchronization between the FFR and the RPR is

increasing, but also when the range of frequencies of that band for which the coherency is strong

experiences a slight decrease. Hence, during the �rst half of the rules-based era of 1985-2003, the

FFR has received a stronger signal from the interest rate implied by the Taylor Rule at business

cycles frequencies and less so at longer cycles, while in the second half of that period the FFR has

evolved in line with the signal emanating from the RPR both at cycles of 4 � 8 years and of more

than 8 years.
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The variation of the gain from the FFR to the RPR is much larger for short-run cycles, i.e.

those of periods of 1:5 � 4 years. While starting from values around 1, the gain falls markedly from

1974 onwards, reaching a value as small as 0:5 in 1977-1978, consistently with the deviations of the

FFR from the RPR detected in the phase-di¤erences. It then increases sharply, to values higher

than 1 since around 1980, and when the rules-based era of 1985-2003 begins it stands around 1:5.

Our wavelet gain analysis thus allows us to conclude that during the disin�ation there has been

an increase in the signal from the RPR to the FFR at the short-end of cyclical oscillations, and a

strong signal in the second half of the 1980s, which have been crucial for the advent of the ensuing

era of rules-based policy and stable macroeconomic environment. During most of the 1985-2003

period the gain from the FFR to the RPR has overall been above 1, with a transient exception in

the late 1980s/early 1990s, when it nevertheless has not fallen below 0:75.

4.2 Estimation of the Taylor Rule in the time-frequency domain

In Figure 5, we proceed to the second and central step of our analysis of the Taylor Rule in

the time-frequency domain. We �rst present the multiple coherency, which is the time-frequency

analog of the R2 in the typical regression. Then, we show the partial coherency, the partial phase-

di¤erences and the partial gain between the FFR and each of the macroeconomic variables in the

Taylor Rule, controlling for the e¤ects of the other.

The multiple coherency indicates, for each time-frequency location, the proportion of the vari-

ation in the FFR that is jointly explained by the corresponding variations of in�ation and the

output gap. Hence, it measures the overall �t of the Taylor Rule in the time-frequency domain:

regions with a signi�cant multiple coherency mean that in�ation and the output gap are jointly

signi�cant explanatory variables of the FFR at those time-frequency locations. The �rst chart of

Figure 5 con�rms that the TR is overall a very good model for the FFR, as shown by the preva-

lence of regions depicted in red and yellow, as well as by the large regions within the gray and

dark contours of statistical signi�cance. The further time-frequency details given by the multiple

coherency suggest that the overall �t of the TR has gradually shifted towards cycles of longer

length. At higher frequencies (1:5 � 4 year cycles) it is high during the 1970s and 1980s, but
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Figure 5: On the left �multiple wavelet coherency (top) and partial wavelet coherency between interest
rate and in�ation (middle) and between interest rate and the output gap (bottom). The black/gray
contour designates the 5%/10% signi�cance level. The color code for coherency ranges from blue (low
coherency �close to zero) to red (high coherency �close to one). In the middle �partial phase-di¤erences.
On the right �partial wavelet gain.
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hardly after 1991. At typical business cycles frequencies (4 � 8 years) it is strong throughout and

signi�cant most of the time, with the exception of the 1960s and the disin�ation period (1979-85).

At longer cycles (8 � 20 years) multiple coherency starts increasing in the mid-1980s and becomes

statistically signi�cant after the end of the 1990s.

The multiple coherency is of assistance in the interpretation of the results given by the partial

coherencies, especially when the explanatory variables are highly related, as is the case in the

TR. Our partial coherencies capture the co-movement between each explanatory variable and the

FFR, �ltering out the e¤ect of the other. Yet, there is a strong co-movement between in�ation and

the output gap, the Phillips Curve (indeed, the predictive power of the gap over in�ation is often

invoked to motivate its inclusion in the TR). In such circumstances, while the overall signi�cance

of the model is high, the signi�cance of individual co-movements for both explanatory variables

may become mistakenly low. It is therefore important that the partial coherencies are interpreted

together with the multiple coherency. A notable example is the time-frequency region between

1970 and 1980 for frequencies of 4 � 8 years: while both partial coherencies are mostly blue,

the multiple coherency is mostly red and statistically signi�cant; hence, in spite of the apparent

lack of statistical signi�cance of the partial coherencies, we are able to interpret the evolution of

the coe¢ cients on in�ation and on the output gap in that time-frequency region. Indeed, we will

proceed likewise in a number of situations throughout the remaining of this section, even though

without explicit mention, to keep the text as parsimonious as possible.

FFR and in�ation The partial coherency between the FFR and in�ation clearly exhibits dif-

ferent patterns across the three ranges of frequency-bands that we consider in this paper. At the

lower frequencies, cycles of period 8 � 20 years, the coherency is strong throughout the whole

period, even though being particularly signi�cant until 1973 and, then, after the beginning of the

1990s. At the most typical business cycles frequencies (4 � 8 years cycles), the coherency is strong

only since the early 1980s, becomes statistically signi�cant from 1985 onwards and then looses

power around the end of the rules-based era, 2003. At the short-run cycles, those with period of

1:5 � 4 years, the partial coherency is strong essentially in the �rst half of the sample period, until

1991, featuring two marked episodes of particularly intense and signi�cant co-movement, one in
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the second half of the 1970s and the other in the second half of the 1980s.

The phase-di¤erence for the 8 � 20 years cycles is impressively stable, and consistently located

in the lower end of the interval (��=2; 0), which indicates a positive co-movement, with in�ation

leading FFR. At the 4 � 8 years frequency band, the phase-di¤erence is in the same quadrant

but much closer to 0, especially in the episode of signi�cant coherency (1980-2003); such result

indicates that during the rules-based era U.S. monetary policy has e¤ectively and more timely

reacted to changes in in�ation. The phase-di¤erence varies much more in the frequency band

corresponding to shorter cycles, 1:5 � 4 years: while until 1986 in�ation and FFR have been

virtually synchronized (possibly with some lead of in�ation in the �rst half of the 1980s), in the

episode of high and signi�cant coherency between 1986 and 1991, short-run oscillations of the FFR

have led the corresponding oscillations of in�ation (with a positive co-movement).

Overall, the coherency and phase-di¤erences between the FFR and in�ation indicate that

policy interest rates have consistently co-moved positively with in�ation in the U.S., typically

with a lag. While such co-movement has been pervasive at long cycles, at cycles of intermediate

duration (4 � 8 years) it has been strong essentially during the disin�ation and the rules-based

Great Moderation. At short-run cycles, 1:5 � 4 years, it has been stronger during the 1970s

and 1980s (with FFR leading in�ation in the second half of the 1980s, when the disin�ation had

been completed, in�ation was anchored and credibility achieved). Informative as these results

may be, to draw further conclusions about the conduct of monetary policy in these periods and

frequencies, one needs some measure of the reaction of the FFR to in�ation; therefore, we now

move to the time-frequency gain from FFR to in�ation, displayed in the upper three charts of the

right-hand-side of Figure 5.

Gains from FFR to in�ation exhibit considerable variation around the full sample OLS estimate

of 1.5; although such variation has some common features across our three frequency bands, there

are also important di¤erences in both the size and the variations of the gains across the three

frequency bands; together, those resemblances and di¤erences provide important additional (time-

frequency) information on the evolution of the Taylor-type Rule implicit in U.S. monetary policy.

At frequencies corresponding to cycles of a 8 � 20 years period, the gain is about 1:5 in the

beginning of the sample, then gradually decreases until 1979, when it reaches a value of 1, and

29



next increases sharply to a value around 2 at the beginning of the 1990s. The rise in the gain

matches the start of the Great Moderation and the strengthening of the coherency between the

FFR and in�ation. Afterwards, essentially maintains a value close to 2.

There is a similar evolution, but much more marked, of the gain along time at the frequency

band that corresponds to most business cycles �uctuations (4 � 8 years period cycles). Since the

mid-1960s, when it amounts to 2:5, the gain falls sharply until 1979, when it reaches a value below

1. Then, it increases yet more rapidly until 1987, and during the rules-based era it remains at

values between 2 and 2:5 (with a slight decrease in the early 2000s, when it nevertheless does not

fall beyond 1:5). Most importantly, the gain is below 1 �violating the well-known Taylor principle

�only in the second half of the 1970s, and rises above 1 since the early 1980s (when the coherency

between the FFR and in�ation becomes stronger).

The changes in the gain are less marked and rather more erratic at the short cycles frequency

band (1:5 � 4 years). Until 1991, the gain generally �uctuates between 1 and 1:5. The only

exception is in 1977-78 when its value falls below 1. Then rapidly increases to recover the baseline

level of 1:5 from 1981 onwards. Compared with the 4 � 8 years cycles band, at the 1:5 � 4 years

cycles the fall and rise of the in�ation gain that occurs at the beginning of the Volcker disin�ation

occurs earlier and is much less marked; moreover, the violation of the Taylor principle occurs

during a smaller period and involves a smaller negative deviation of the gain from 1.

Our results are consistent with many studies of U.S. monetary policy that consider time-

variation in the coe¢ cients of the Taylor Rule, such as the �nding that policy reacted more

to in�ation after 1979 by e.g. Clarida et al (2000); they are also consistent with some studies

that include frequency-domain information, such as the �nding by Ashley, Tsang and Verbrugge

(2013) that U.S. policy reacted more to in�ation after 1979 at cycles of period higher than 3 years.

However, our framework allows for a much more thorough assessment of the Taylor Rule behind

U.S. monetary policy, given our continuous time-frequency approach.

In particular, we show that the in�ation coe¢ cient in the U.S. policy rule has changed much

more markedly for cycles of intermediate duration (4 � 8 years) than for longer cycles (8 � 20) and

shorter cycles likewise (1:5 � 4 years); that rather than a change from a lower coe¢ cient before

1979 to a higher coe¢ cient after 1979, there seems to exist a gradual decrease of the in�ation
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coe¢ cient until 1979 followed by a much quicker increase after 1979 which is essentially completed

at the start of the 1985-2003 rules-based era; that the Taylor principle has been violated at cycles

of period 4 � 8 years and, for a shorter period, for cycles of period 1:5 � 4 years, but not for cycles

with period above 8 years; that during most of the rules-based era of 1985-2003 and in fact most

of the Great Moderation (1985-2007) the coe¢ cient on in�ation has been systematically higher

than the baseline value of 1:5 at cycles of period 4 � 8 and 8 � 20, but less so for cycles with

shorter period.

FFR and the output gap We now turn to the assessment of the time-frequency relation

between the FFR and our real-time output gap.

Partial coherency exhibits di¤erent patterns across our three ranges of cyclical frequencies. At

the lower frequencies, cycles of period 8 � 20 years, the coherency is strong until the mid-1970s,

but then essentially disappears and becomes strong only from the mid-1980s onward. During the

rules-based era, the co-movement between the FFR and the output gap within this frequency

band strengthens markedly and becomes highly signi�cant since the mid-1990s. At the most

typical business cycles frequencies (4 � 8 years cycles), partial coherency is strong only during

the rules-based era of 1985-2003, and is statistically signi�cant merely during the 1990s. At the

short-run cycles (period of 1:5 � 4 years) partial coherency has several regions of intensity since

the beginning of the 1970s until the end of the rules-based era, in 2003.

The phase-di¤erences are located most of the time and for most frequencies within the interval

(��=2; �=2), indicating that the FFR and the real-time output gap are in-phase, i.e. co-move

positively. The only signi�cant exception occurs for the 8 � 20 years cycles until the mid-1970s,

when oscillations of the FFR appear to lead oscillations of the output gap in the opposite direction,

which is consistent with a monetary policy persistently concerned with �ne-tuning real activity,

as described in the literature. From 1985 on, the phase-di¤erence for the 8 � 20 years cycles

is impressively stable and consistently located close to 0 in the interval (0; �=2), which indicates

that the low frequency oscillations of the FFR and the gap are positive and synchronized, with

possibly a small lead by the FFR. A similar phase-di¤erence is observed for frequencies that

correspond more closely to business cycles, 4 � 8 years, during the period when the coherency is
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signi�cant (1985-2003). Such result indicates that during the rules-based era U.S. monetary policy

has timely reacted to cyclical movements in real activity. The phase-di¤erence at the frequency

band corresponding to shorter cycles, 1:5 � 4 years are quite in line with this conclusion, with the

exception of the 1990s, when there is a signi�cant episode in which real-time output gap oscillations

slightly lead those in the FFR, rather than the usual pattern of positive synchronization with a

slight lead from the FFR.

Overall, the coherency and phase-di¤erences between the FFR and the real-time output gap

indicate that interest rates have consistently co-moved positively with the output gap perceived

by policymakers at the time they decided policy, typically with a lead. At business cycles (4 � 8

years) and longer cycles (8 � 20 years) such co-movement has been strong since the beginning of

the rules-based era (1985), and while it endured for the longer cycles frequencies, it disappeared

after the rules-based era (2003) for the cycles of intermediate duration. At shorter cycles (1:5 � 4

years) the co-movement is signi�cant as of the early 1970s, but also looses power after the end of

the rules-based era; within this frequency band, the 1990s appear as an exception in the sense that

the gap led movements in the FFR. While the coherency and phase-di¤erence results are broadly

consistent with the standard anti-cyclical stance of monetary policy, to draw further conclusions

about monetary policy across time and frequencies, we now move to the time-frequency gain from

the FFR to the output gap, displayed in the three charts on the bottom right-hand-side of Figure 5.

A �rst message given by the gains from the FFR to the real-time output gap is that for all

the three frequency bands (with some minor exceptions in the case of 1:5 � 4 years cycles), the

gains evolve most of the time between 0:5 and 1, i.e. between the original Taylor coe¢ cient (and

linear regression estimate for our data and sample) and the coe¢ cient of the modi�ed Taylor Rule

considered by many researchers, as e.g. Nikolsko-Rzhevskyy, Papell and Prodan (2014).

A second message is that gains exhibit considerable variation. Di¤erently from what occurs in

the case of the gain from the FFR to in�ation, the pattern of variation is quite di¤erent across

our three frequency bands (with no clear common pattern comparable, for example, to the change

in in�ation�s gain around 1979). In fact, it may be argued that the full sample linear regression

coe¢ cient of 0:5 may be an artifact of opposite changes in the coe¢ cients at di¤erent frequencies,

as further explained in our analysis for each frequency band, to which we now turn.
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At the frequencies corresponding to cycles of a 8 � 20 years period, the real-time output gap

gain is about 0:5 in the beginning of the sample, and then gradually increases after 1985 (when

the coherency regains statistical signi�cance) to 1 around 1992, a value that it maintains until

the end of the sample. At the frequency band corresponding to cycles of 4 � 8 years, the gain is

between 0:5 and 1 at 1985, increases to about 1 in the late 1980s, and then gradually falls during

the remaining of the rules-based era to a value of 0:5 at 2003. Hence, with the exception of a brief

period in the early 1990s, whenever the gain is closer to 0:5 in one of these frequency bands, it is

closer to 1 in the other. Regarding the early-1990s episode, the high values of the gain at both the

4 � 8 and 8 � 20 years frequency bands are o¤set by the gain at the 1:5 � 4 years cycles, which

is particularly low (and equal to 0:5) between 1989 and 1992.

Further analyzing the gain at the frequency band corresponding to cycles with period of 1:5 � 4

years, one remarkable result is that during the �rst half of the 1970s the gain is higher than 1

and reaches almost 1:5 in 1973, a level that is matched only in the very last years of the sample,

after 2011. Interestingly, in both episodes, the U.S. economy su¤ered grave recessions �the oil

shocks and the Great Recession, respectively �and, in both, monetary policy has been aggressively

expansionary. During the disin�ation and the anchoring of in�ation (1979-1986) the output gap

gain is consistently close to 1, and after the above mentioned episode of the early 1990s it recovers

that level from the mid-1990s onwards. The gain deviates again from 1 and approaches 0.5 during

the Great Deviation, when it also features a low level, close to 0.5, at the 4 � 8 years cycles.

The evolution of the gains in the latter part of our sample further reinforces our argument

that the full sample estimate (0.5) may be an artifact resulting from di¤erent coe¢ cients across

frequencies, and actually leads us to a third main message regarding the coe¢ cient on the gap

in the Taylor Rule. After 2007, while the gain for the 8 � 20 years cycles band keeps the value

of 1 observed since the early 1990s, the gain for the 4 � 8 years cycles increases from about 0:5

to 1 and the gain at the 1:5 � 4 years frequency band sharply increases from about 0:5 to more

than 1:5 (actually approaching 2). This unique combination of output gap gains well above 0:5

at all frequency bands is surely the explanation for the �nding of Nikolsko-Rzhevskyy, Papell and

Prodan (2014) that since 2007 U.S. monetary policy is both discretionary with regard the baseline

Taylor Rule and rules-based with regard to a modi�ed Taylor Rule with a coe¢ cient of 1 on the
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real-time output gap. A coe¢ cient on the output gap twice as large as that in the original TR is

consistent with the preferences stated by Federal Reserve Governors during the Great Recession

�see Bernanke (2011) and Yellen (2012), in particular the references to the need of a balanced

approach of monetary policy to stabilize both prices and real activity; moreover, it is consistent

with negative policy interest rates since 2009, in line with the estimated shadow FFR for that

period �which the original TR with a 0.5 coe¢ cient on the output gap is not. Our framework

allowing for variation of the Taylor rule�s coe¢ cients both in the time and frequency domain thus

solves the inconsistency, noted by Nikolsko-Rzhevskyy and Papell (2013), between rules justi�ed

by historical experience that do not �t recent policy and rules that are unjusti�ed by historical

experience but do �t recent policy: the answer is that the coe¢ cients of the Taylor Rule may vary

across time and frequencies.

5 Conclusions

In this paper we assessed U.S. monetary policy in 1965:IV-2014:IV across time and frequencies

in the framework of the Taylor Rule (TR). While variation in the TR coe¢ cients along time

has already been the subject of a vast literature, studies of changes of the TR coe¢ cients across

frequencies are exceedingly rare, and there is no study yet of variations of the TR coe¢ cients

simultaneously in the time and frequency domains.

Following the most common and fruitful practice in the literature, we use real-time data (on

in�ation and the output gap) available to policymakers when policy decisions were made. As

regards the policy interest rate, we pursue a recently proposed approach and, in 2009-2014, replace

the e¤ective fed funds rate (FFR) with a shadow FFR able to capture the negative interest rates

implied by recent unconventional quantitative monetary policy.

We use a set of wavelet tools �the wavelet coherency, phase-di¤erence, and gain �that allow

for assessing the intensity, signi�cance, sign and synchronization (or lead/lag) of the co-movement

between our time-series, as well as for estimating the respective regression coe¢ cient in the time-

frequency domain. In a �rst step we use bivariate tools to describe the deviations of policy interest

rates from those prescribed by the original TR across time and frequencies. In a second step, we
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employ partial tools to describe the co-movements along time and across frequencies between the

policy interest rate and in�ation (controlling for the output gap) and between the policy interest

rate and the output gap (controlling for in�ation). In particular, we propose a generalization of the

partial wavelet gain for the case of a p�variable multivariate function that allows for estimating

the coe¢ cients of the TR in the time-frequency domain.

The �rst step of our empirical analysis is a time-frequency extension of the literature that

distinguishes rules-based eras from eras of discretionary policy on the basis of the deviations of

policy interest rates from those prescribed by the TR. Our �ndings indicate that the 1985-2003

rules-based era resulted from a pervasive, strong and synchronized co-movement between the FFR

and the TR rate, with the regression coe¢ cient consistently close to 1, at the business cycles

frequencies; in turn, deviations of policy from the TR were essentially associated with oscillations

at shorter cycles, at which co-movement is not signi�cant after the completion of the disin�ation

(1986) and, when it has been signi�cant (before 1986), the regression coe¢ cient fell much below

1 in the 1970s�accommodative policy, and rised much above 1 during the 1979-86 disin�ation.

In the second and crucial step of our empirical analysis we extend the literature of varying TR

coe¢ cients, allowing for variation simultaneously along time and across frequencies. Regarding

the coe¢ cient of in�ation, we emphasize four main �ndings. First, it has changed more markedly

at business cycles than at cycles of longer or shorter duration, notably changing from 0.5 to 2.5

between 1979 and 1987 at cycles of period between 4 and 8 years. Second, we con�rm that the

coe¢ cient was particularly low before the disin�ation, but �nd that it gradually decreased until

1979 and rapidly increased until the mid-1980s, rather than abruptly changing from a lower to

a higher coe¢ cient around 1979 as most of the time-varying literature suggests, and that such

variation is more marked at business cycles frequencies. Third, we con�rm that there has been

some episodes of violation of the Taylor principle (a coe¢ cient below 1) but �nd that they were

very limited, occurring for about 3-4 years in the late-1970s at business cycles frequencies, and for

an even smaller period at shorter cycles; notably, the Taylor principle has never been violated at

cycles of period above 8 years, at which the pervasive, strong and positive co-movement between

the FFR and in�ation (with a slight lead of in�ation), and the coe¢ cient estimates always above 1,

(and around 2 since the late-1980s) show that monetary policy has never lost track of the objective
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of controlling in�ation in the long run. Finally, the coe¢ cient has been consistently above 1.5 (the

original TR coe¢ cient) since the beginning of the Great Moderation, both at business cycles and

at longer cycles, which suggests that the full sample estimate of 1.5 results from a combination of

coe¢ cients below 1.5 before 1985 and above 1.5 after 1985.

As regards the coe¢ cient of the output gap in the U.S. TR, we emphasize two �ndings. First,

we �nd that it has changed rather symmetrically across the several frequencies, with the original

TR value (and full-sample estimate) of 0.5 appearing to be an artifact of such pattern. Second,

there has been a unique combination of high coe¢ cients at all frequencies since 2009 (around 1

at business and long cycles, and even above 1 at cycles of period below 4 years), which appears

to account for the success of the modi�ed Taylor Rule with a slope of 1 on the gap in explaining

policy since 2009.
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