
Defining a Probabilistic Translation
Dictionaries Algebra

Alberto Simões1, José João Almeida2, and Nuno Ramos Carvalho2

1 Centro de Estudos Humanísticos
Universidade do Minho

ambs@ilch.uminho.pt
2 Departamento de Informática

Universidade do Minho
{jj,narcarvalho}@di.uminho.pt

Abstract. Probabilistic Translation Dictionaries are around for some time, but
there is a lack of a formal definition for their structure and base operations. In
this article we start by discussing what these resources are, what researchers are
using them for, and what tools can be used to create this them. Including a formal
definition and a proposal for a XML schema for dictionaries interchange. Follows
a discussion of a set of useful operations that can be performed over probabilistic
translation dictionaries, like union, intersection, domain restriction and compo-
sition. Together with this algebra formalization some insights on the operations
usefulness and application are presented.

1 Introduction

Multilingual research is usually supported by translation dictionaries, some kind of
mapping between words or terms written in different languages.

Translation dictionaries are not easy to find, especially for languages with few re-
sources available. This lead to the development of methods for automatically creating
translation dictionaries using as base parallel corpora [12]. There are different algo-
rithms available to extract bilingual mappings, like Kvec [3], Kvec++ [20], Twente-
Aligner [7], NATools [18] or Giza++ [13].

Although these algorithms compute different types of resources, they share a base-
line: the possibility to extract probabilistic translation dictionaries from the resulting
resources. A probabilistic translation dictionary associates, for each word from a lan-
guage LA, a set of probable translations3 in a language LB , together with a translation
probability measure. The term Probabilistic Translation Dictionaries (PTD) is used to
refer to these dictionaries. They can be seen as some kind of fuzzy translation dictio-
naries. Section 2 discusses briefly these objects, defining their formal structure.

PTD have been used for different tasks by different authors: Guinovart and Fontenla [6]
describe a method to bootstrap a conventional translation dictionary from a PTD. A

3 While these algorithms return high probable translations it is important to notice that they just
assume that words and respective translations have a high probability to co-occur on parallel
corpora. This means that some suggested translations may be imprecise or not correct at all.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55630814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PTD was created and a try-and-error approach was used to define a translation prob-
ability threshold for filtering purposes. The filtered dictionary was used for manual
validation. Caseli et al. [2] use PTD for a similar task: bootstrapping a machine trans-
lation dictionary. In this case the manual validation was not necessary. Simões and
Almeida [14] use PTD as a mechanism to present parallel concordances and guess-
ing translations of searched terms, highlighting them when presenting the search result.
Simões and Almeida [15] and Guinvart and Simões [5] present methods to extract bilin-
gual terminology, using translation patterns and PTD for translations alignment. Simões
and Almeida [16] also use PTD as a mechanism to align chunks of text when creating
translation examples. Kraaij [9] uses PTD for cross-language information retrieval.

While PTD are being useful for these researchers, there is lack of a concrete defini-
tion of the PTD object (making them harder to share) and a concrete definition of PTD
operations (helping researchers to manipulate and enrich these resources)4.

In this article we, (i) define a formal model for PTD, and propose a simple XML
schema for PTD interchange (section 2); and (ii) formalize a subset of a PTD algebra,
defining functions and operators to add, filter, intersect, subtract and compose these
dictionaries. They will be presented together with a discussion on their usefulness (sec-
tion 3). Examples will be from word-to-word dictionaries, but the presented methods
are easily extensible for multi-word term dictionaries.

2 Probabilistic Translation Dictionaries

PTD are extracted automatically from bilingual corpora, being it aligned [18] or simply
comparable [4] corpora. Processing a bilingual corpus results in a pair of PTD: one,
mapping words from the corpus source-language to its target-language, and another,
mapping words from the corpus target-language to its source-language5.

When talking about a PTD we are referring to one of these dictionaries. When
needing to refer to the PTD that maps words in the opposite direction we will use the
inverse dictionary.

2.1 PTD Definition

Before defining the formal structure of a PTD, let us analyze a real PTD entry example,
extracted from a Portuguese/English dictionary:

T (codificada) =

codified 62.83%
uncoded 13.16%
coded 6.47%
. . .

4 The operations defined in this article are implemented and available freely as a Perl module:
http://search.cpan.org/dist/Lingua-PTD/

5 Refer to [7] for further discussion about having a pair of directional dictionaries instead of just
one non directional dictionary.

The common way of reading this structure is: “the Portuguese word codificada can be
translated by the English words codified, uncoded and coded”. The truth is that the al-
gorithms that extract this data do not deal with translations, but correlations between
words. Therefore, the correct reading would be: “the Portuguese word codificada is
highly correlated with the English words codified, uncoded and coded”, and the per-
centages are correlation measures.

Nevertheless, given the main goal for these resources, we will opt to use the first
reading, and considerate the correlation measures as translation probabilities.

Each dictionary, maps words from a source-language LS6 to a set of possible trans-
lations on a target-language LT . For each possible translations wit ∈ LT for a word
ws ∈ LS , we have an associated probability measure, that will be read asP

(
wit ∈ T (ws)

)
,

where T stands for the translation function.
Together with this lexical information we keep track of the occurrence count for

each word (usually for the source language, as the count for the target language can be
found in the inverse dictionary).

Some meta-data should also be available. Two main meta-data values are required:
the involved languages. Other optional meta-data information can contain: the creation
date, used tool, source corpus, etc.

We will define formally the PTD type, from a language LA to a language LB , as7:

PTD = MetaData×Dictionary (1)
MetaData = ID⇀ Value (2)
Dictionary = LA ⇀ N× (LB ⇀ [0..1]) (3)

Equation 1 defines a PTD as a pair, where the first element is of type MetaData, and
the second element of type Dictionary. Equation 2 defines the MetaData element as a
finite function from identifiers to random values. Although not completely clear above,
the “source” and “target” languages identifiers are present in the meta-data portion of
the PTD. Finally, equation 3 defines the main structure of the dictionary itself: a finite
function from words in language LA to a pair of elements; where the first element is the
total number of occurrences of the word in the source corpus, and the second element
is a finite function mapping possible translations in language LB to their translation
probability.

Note that for efficiency purposes some systems discard translations whose probabil-
ities are too small (for instance,≤ 0.0005), or when the number of translations for some
word is greater than a predefined number, storing only the k more probable translations.
This leads to the fact that it is usual that the translation probabilities for a specific word
do not sum up to 1.

2.2 PTD Interchange

Different tools store their probabilistic translation dictionaries in different formats, rang-
ing from simple text files, serialization formats (some of them specific to some program-

6 We will use L to represent a language, as the set of words accepted by that language.
7 Different algorithms can extract these dictionaries with different kind of probabilities. Never-

theless, it should be possible to normalize these probabilities into percentage values.

ming languages) or even relational databases (usually non-server databases systems like
SQLite). Nevertheless, usually these formats only store the dictionary itself, relegating
some of the meta-information to the file name, or the file position in the file system.
This leads to interchange problems.

Our proposal, following other formats widely used in computational linguistics,
like TEI (Text Encoding Initiative), TMX (Translation Memory Exchange), TBX (Term
Base Exchange), XLIFF (XML Localisation Interchange File Format) and others, is
based on XML (Interchange Markup Language).file:/Users/ambs/Desktop/ptd.xsd <oXygen/> XML Editor

1 of 4Continue on page 3

C
on

tin
ue

 o
n

pa
ge

 2

Element Form Default qualified

schema

ptd

head prop @ attributes
0..∞

dic

@ attributes

prop @ attributes
0..∞

dic
0..∞

entry trans @ attributes
0..∞

prop @ attributes
0..∞

Type xs:string

word

0..∞

head

dic

attlist.dic

entry

attlist.trans

Fig. 1. Probabilistic Translation Dictionary Interchange Format.

Figure 1 shows our proposed format8 to store a PTD. The structure is straightfor-
ward: a PTD is composed of a header, containing some meta-information represented
by property elements, that map a key (element attribute) to some value. The body is a
dictionary that is composed by sub-dictionaries, optional properties, and a list of entries.
Each dictionary has source and target languages as element attributes. In its turn, each
entry has a word in the source language, optional properties, and a set of translations,
whose probability is encoded as an element attribute.

The structure was designed to be extensible, making it easy to add property elements
to most levels of the dictionary. These properties can be used to store word morpholog-
ical properties, their domain, etc. Also, instead of coding directly into the document
structure the occurrence count for each word, we encourage users to encode that infor-
mation as a property. This way there is no need to define a set of elements that would
be empty when this information is not available.

3 PTD Algebra

There are some relevant operations that can be performed with Probabilistic Translation
Dictionaries. Some of them are trivial to define and implement, and their use is mostly

8 PTD schema is available at http://natura.di.uminho.pt/PTD.

standard, but others need to be defined carefully, and can be applied for some surprising
results.

A special detail must be made clear: we will use standard mathematical operation
names and symbols, but their meaning might not be exactly the expected one. As a rule
of thumb, remember that these dictionaries are, in fact, a special case of multisets (bag).

3.1 Dictionary Union (or sum)

The PTD Union (or sum) is the base of the NATools9 algorithm when dealing with large
corpora, this makes the tool scalable. Large corpora are spliced in smaller chunks that
are processed independently, and the extracted dictionaries are added at the end.

The union has a single prerequisite: both dictionaries should be for the same source
and target languages.

When formalizing this operation our main goal is to give different weights to trans-
lation probabilities, accordingly with the size of the corpora the dictionary was based
on, and the number of occurrences of those words on that specific corpora.

When adding two entries for a specific word, the following rules are used:

– the occurrence count for the resulting entry is the sum of the separate occurrences
of the word in each one of the dictionaries being summed;

– the resulting translations set is the union of the translations from both dictionaries;
– for each translation, the probability is computed by a weighted mean, as follows10:

P (wLB
∈ Td1 (wLA

))Od1 (wLA
)Sd2 + P (wLB

∈ Td2 (wLA
))Od2 (wLA

)Sd1
Od1 (wLA

)Sd2 +Od2 (wLA
)Sd1

(4)

Given this operation relevance when processing big corpora (as tools depend on it
for a map-reduce approach), we did some experiments comparing if the result of a PTD
computed for a specific corpus is similar with the PTD obtained by summing up PTDs
computed for n chunks of that same corpus:

ptd(c)
?
= ptd(c1) ∪ ptd(c2) ∪ . . . ∪ ptd(cn) for a corpus c = c1 · c2 · . . . · cn (5)

This experiment was done using JRC-Acquis[19] corpus for the English–Portuguese
pair, that contains 1 293 815 translations units. This corpus was also divided in ten
chunks: the first nine chunks with 130 000 translations units each, and the last chunk
with the remaining 123 815 translation units.

Each one of these ten corpora were aligned independently, but we also aligned the
full original corpus in a single run (without using the map-reduce approach).

The final dictionaries were then filtered using the same heuristics (removing non-
words and translations with probabilities below 0.005%) and compared. Table 1 shows
the differences on the obtained dictionaries.

9 Available from http://search.cpan.org/dist/Lingua-NATools/
10 In this and future formulae, wLA represents a word, wLA ∈ LA; Odi (wLA) is the number

of occurrences of word wLA using dictionary di; and Sdi is the sum of occurrences for all

Table 1. Comparison between two PTD: first extracted from a single corpus file, and the second
resulting of the sum of the extraction from ten chunks.

ptd(c)
⋃

i ptd(ci)

number of entries 220 155 219 895
average translations per entry 4.07 5.03
average of 1st trans. prob. 62% 52%

entries sharing best translation: 71%

Table 1 summarizes the differences between these two dictionaries11. Analyzing the
results, we can conclude that:

– the number of translations available per entry is higher in the second dictionary (the
result of the union) because the extraction algorithm has limitations on the number
of translations calculated. In order to maintain memory usage low only the eight
more probable translations are extracted.

– the average probability for the best translation is lower for the union as the number
of translations is higher. If we reduce the number of translations per entry to the
same number as the one computed by the extractor, the probabilities are similar.

– nevertheless, for 29% of entries we have different best translations. This happens
mainly for low occurrence words, that when aligned independently in the 10 chunks
have yet lower occurrence counts.
To understand better this problem we used a smoothed version of the Kullback-
Leibler divergence [11] (equation 6, where P and Q are the translations distri-
butions to compare, and P ′ and Q′ are the ε smoothed distributions) to compare
dictionaries entries accordingly with their probability distribution.

DKL (P,Q) =
∑
w P

′(w) ln P ′(w)
Q′(w)

where

P ′(w) =

{
P (w)− ε

n if w ∈ P
ε if w 6∈ P and Q′(w) =

{
Q(w)− ε

n if w ∈ Q
ε if w 6∈ Q

(6)

Table 2 shows some dictionary entries that have big differences when using Kullback-
Leibler measure.
This table shows that more different entries are entries with a low number of occur-
rences. This leads to a main problem: each chunk will have still lower number of
occurrences, and therefore, the algorithm will have more difficulty succeeding in
the alignment process. Nevertheless, the average Kullback-Leibler divergence for
the full dictionary is of 1.296 (a relatively low value).

entries in dictionary di (that is, the corpus size). Therefore,
Odi(wLA)

Sdi
is a percentage value of

the occurrence of the word wLA in the dictionary. This ratio is then used to weight the mean
formula.

11 The compared dictionaries have Portuguese as source-language, and English as target-
language.

Table 2. High difference entries comparison.

word/occs. using ptd(c) using
⋃

i ptd(ci)

Guiana Guiana 100% State 99%
(36) — — — —
Centro-Africana African 100% Central 100%
(35) — — — —
Carina Carina 100% EL 23%
(10) — — Kyrgyzstan 14%
Maestro Maestro 100% NL 36%
(13) — — H 9%
radioastronomia astronomy 100% radio 71%
(13) — — pertaining 6%

Although we can argue that the union algorithm is not good enough, as the resulting
dictionary is not exactly the same as the obtained when extracting directly from the full
corpus, note that:

– for some huge corpora (and nowadays we have bigger and bigger corpus, as Eu-
roparl [8], JRC-Acquis [19] or even the newest DGT-Acquis12) the full alignment
in memory is not possible for most machines. Using the map-reduce approach re-
searchers are able to align these corpora and extract useful dictionaries, where with-
out it, probably no dictionary would be available;

– in some situations there are different dictionaries obtained from different corpora
that could be merged to create a bigger and, hopefully, better dictionary. While
full-realignment of the concatenated corpora might give better results, it would take
extra time, and the original corpora might not be available (for instance, it might be
possible to get some corpora owners to extract and share the dictionary, but not the
full corpus).

3.2 Dictionary Intersection

The definition of the intersection operation is not as complex as the union:

– the domains are intersected (therefore, removing any word not present in both dic-
tionaries);

– for each kept word, the minimum number of occurrences is used;
– for probable translations, only the ones that are proposed as translations in both

dictionaries are kept;
– regarding the word probability, again the minimum value is used.

This process returns a dictionary with fewer words, and fewer translations. Never-
theless, the maintained translations are highly probable as they occur in both dictionar-
ies. Also, the associate probabilities not only decrease (as we are using the minimum),
but also lose their significance as a probability (and become some kind of measure).

Intersection can be used for different tasks as, for instance:
12 Available from http://ipsc.jrc.ec.europa.eu/?id=783

– compute the intersection of dictionaries obtained from different domain corpora, to
compute the shared or base lexicon (that can be used later to subtract and obtain a
specific domain dictionary);

– also, the intersection with a specific small hand-controlled dictionaries can be used
to tune PTD extraction algorithms;

– the intersection function can be also used to compute semantic distances between
entries (words).

3.3 Dictionary Domain Restriction and Subtraction

These two operations have high similarities, being the main difference the definition of
the words to be kept, or to be removed from the dictionary.

Domain restriction is similar to dictionaries intersection: instead of intersecting the
domains of two dictionaries, this operation intersects the domain of one dictionary with
a set of words13.

Domain restriction main application is the reduction of dictionary size. While the
usual approach is to accumulate dictionaries creating bigger ones, with more certain,
they grow quickly in size and may become heavy for some specific processes. Restrict-
ing the domain of a dictionary to the set of words occurring in the corpus to process
may reduce drastically the dictionary size.

Domain subtraction is the complementary operation. Instead of restricting the dic-
tionary domain to set of words, it removes from the dictionary all entries whose words
appear in the supplied set of words.

This operation can complement the dictionary intersection as a method to extract
terminology lists, or at least, detect main terminological differences. For example, after
computing PTD = PTD1∩PTD2, we can subtract the PTD domain from PTD1 to
get a terminological dictionary PTDT

1 , that only contains entries for those words that
are specific to PTD1:

PTDT
1 = PTD1\ (PTD1 ∩ PTD2) (7)

However, using this approach, all common entries to the two dictionaries that have
completely different translations sets are lost. For these cases, the distance measure
defined earlier is a better approach.

3.4 Dictionary Totalization

There are some operations (like the intersection) that remove some possible transla-
tions from dictionary entries. The resulting dictionary will have entries whose transla-
tion probabilities do not sum to 1 (100%). In fact, this is even true when obtaining a
dictionary using some tools that limit the number of extracted probable translations.

13 Although domain restriction and domain subtraction are defined in this article as operating
on a PTD and a set of words, their implementation supports domain restriction and domain
subtraction between two PTD (where the second is converted to the set of words from its
domain).

For some situations this is not a problem. But when comparing dictionaries, for
instance, probabilities take a relevant role. These probabilities can be recomputed (or
totalized), forcing the sum to be one, and computing the remaining probabilities accord-
ingly.

3.5 Dictionary Composition

Composition is another interesting operator that can be used to obtain very curious
results. Although a dictionary is not a proper map, or a function, we can define some
way for it to behave as one:

fD(LA→LB) : LA −→ (LB ⇀ [0..1]) (8)

Given this functional behavior, we can define the composition for these functions (sim-
ilar to [10]):

fD(LA→LB) ◦ fD(LB→LC) = fD(LA→LC) (9)

Each value in the range of this function

(wLC
,P (wLC

)) ∈ ran
(
fD(LA→LC)

)
(10)

exists only if

∃wLA
, wLB

, wLC
: wLB

∈ TD(LA→LB) (wLA
) ∧ wLC

∈ TD(LB→LC) (wLB
) (11)

and the translation probability of wLC
being a translation of wLA

is computed as:∑
wLB

P
(
wLC

∈ TD(LA→LB) (wLB
)
)
× P

(
wLB

∈ TD(LA→LB) (wLA
)
)

(12)

for all wLB
that is a translation of wLA

, and translated by wLC
.

The composition of two dictionaries, taking into account what occurrence count,
and what translation probability to use, is defined textually as:

– the occurrence count for each entry is maintained as the occurrence count for the
word in the original first dictionary;

– the probability of a translation is computed summing up the products from translat-
ing from the original language to the pivot language, and from the pivot language
to the target language.

This operation can be used for different tasks:

– compute a new dictionary for a language pair that does not exist as parallel corpora,
or which parallel corpora exists but in small quantities [17]. One problem of this
approach is that the obtained probabilities are smaller than the ones we would ob-
tain with a direct extraction. Nevertheless, the use of the totalization operation can
help mitigate this issue.

– compute similar or parent words, or even, some kind of probabilistic synsets, com-
posing a dictionary with its inverse. The result is a dictionary from a language to
itself. In this dictionary, each entry maps a word to a set of probable translations
or probable synonyms. To illustrate this mechanism, consider the following two
entries obtained when composing the dictionaries extracted from EuroParl corpus:

house

house 49%
parliament 29%
assembly 7%
chamber 6%
plenary 2%
home 2%

evil

badly 17%
wrong 14%
evil 12%
bad 6%
poorly 5%
scourge 3%

A similar approach to build weighted synsets using PTD, has also been used in
the context of software reverse engineering to build mappings between program
identifiers (terms) and real word concepts [1].

3.6 Dictionary Filtering and Mapping

Depending on the source corpus, the dictionaries may contain non-words, like punc-
tuation, numbers, e-mails, URLs or any other kind of junk. Although this might be
achieved using domain restriction, a robust filtering mechanism is relevant.

In fact, it might be useful to filter dictionaries in other ways. For instance, removing
all entries with a low number of occurrences, or all translations with low probability. To
allow different kind of filtering approaches the filtering function has been defined as an
high-order function, receiving as argument a predicate that evaluates if an entry should
be preserved.

For example, creating a PTD composed only of verbs (PTDV) can be defined
using the filter function as:

PTDV = filter(PTD, verb)

where, verb is a function defined as:

verb(entry) =

{
True if word in entry is a verb
False otherwise

Considering the predicate as a function, which instead of returning a boolean value,
returns a dictionary entry (modified or unmodified) or a null value, this filter mechanism
can work also as a function mapper (typically known as map function).

This mapping approach is even more flexible if we can produce lateral effects. In
this case this operation can work as an iterator, to process each entry, and save its result
some where else.

This set of filters is quite useful and versatile. In fact, most of the functions defined
in this article are implemented as filters.

3.7 Dictionary Algebra Summary

Table 3 presents a summary of the defined algebra, together with the operation signa-
ture, and a reference to the section that discusses it14.

Table 3. Summary of Dictionary Algebra operations and their signatures.

Function Syntax Domain Range Section
domain dom (_) PTDA→B −→ WA*
range ran (_) PTDA→B −→ WB*
union _ ∪ _ PTDA→B × PTDA→B −→ PTDA→B 3.1
intersection _ ∩ _ PTDA→B × PTDA→B −→ PTDA→B 3.2
composition _ ◦ _ PTDA→B × PTDB→C −→ PTDA→C 3.5
domain restrict _ / _ PTDA→B × WA* −→ PTDA→B 3.3
domain subtract _ \ _ PTDA→B × WA* −→ PTDA→B 3.3
totalization tot (_) PTDA→B −→ PTDA→B 3.4
filter filter (_ , _) PTDA→B × (ENTRYA→B −→ Bool) −→ PTDA→B 3.6
map map (_ , _) PTDA→B × (ENTRYA→B −→ ENTRYA→B) → PTDA→B 3.6

4 Conclusions

Probability Translation Dictionaries are being used widely, although not always identi-
fied as such. The lack of a standard name and a formal definition makes resources hard
to share, and discussion on their usage mostly impossible.

While there is not a standard way of defining them, or a standard way to compute
them, all the approaches share a common trunk: words are mapped to probable transla-
tions, together with a probability measure.

In this article we defined formally the base structure of a PTD (that can be extended
easily with further information) as well as a XML schema to make the sharing process
easier.

The definition of a PTD algebra clarifies a set of standard operations that can be
performed with these objects, and gives some insights on what can be obtained using
these operations, with some usage examples.

The algebra was not just defined, but is being already used as a Perl module to
manage and operate with PTD. This module also includes a set of programs that let
the user apply these operations directly to dictionaries without the need of writing any
code. It includes other tools, like the computation of statistics of a dictionary.

Acknowledgements

This work is partially supported by Per-Fide.
The Per-Fide project is supported in part by a grant (Reference No. PTDC/CLEL-

LI/108948/2008) from the Portuguese Foundation for Science and Technology and it is
co-funded by the European Regional Development Fund.

14 For compactness this table abbreviates LA as just A. So, wLA is represented as WA, etc.

We would like to thank all contributing authors, translators, publishers and institu-
tions for their generosity in allowing us to include their texts in the *Per-Fide* Corpus.

References

1. Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and Pedro Rangel
Henriques. Probabilistic synset based concept location. In Alberto Simões, Ricardo Queirós,
and Daniela da Cruz, editors, SLATE’12 — Symposium on Languages, Applications and
Technologies, volume 21, pages 239–253. OASIC – Open Access Series in Informatics,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, June
2012.

2. Helena M. Caseli, Maria G. V. Nunes, and Mikel L. Forcada. Evaluating the LIHLA lexi-
cal aligner on Spanish, Brazilian Portuguese and Basque parallel texts. Procesamiento del
Lenguaje Natural, September 2005.

3. Pascale Fung and Kenneth Church. Kvec: A new approach for aligning parallel texts, 1994.
4. Pablo Gamallo Otero and José Ramom Pichel Campos. Automatic generation of bilingual

dictionaries using intermediary languages and comparable corpora. In Proceedings of the
11th international conference on Computational Linguistics and Intelligent Text Processing,
CICLing’10, pages 473–483, Berlin, Heidelberg, 2010. Springer-Verlag.

5. Xavier Gomez Guinovart and Alberto Simões. Terminology extraction from English-
Portuguese and English-Galician parallel corpora based on probabilistic translation dictio-
naries and bilingual syntactic patterns. In António Teixeira, Miguel Sales Dias, and Daniela
Braga, editors, I Iberian SLTech 2009, pages 13–16, Porto Salvo, Portugal, September, 3–4
2009.

6. Xavier Gómez Guinovart and Elena Sacau Fontenla. Métodos de optimización de la extrac-
ción de léxico bilingüe a partir de corpus paralelos. Procesamiento del Lenguaje Natural,
33:133–140, 2004.

7. Djoerd Hiemstra. Using statistical methods to create a bilingual dictionary. Master’s thesis,
Department of Computer Science, University of Twente, August 1996.

8. Philipp Koehn. EuroParl: A parallel corpus for statistical machine translation. In Proceedings
of MT-Summit, pages 79–86, 2005.

9. W. Kraaij. TNO at CLEF-2001: Comparing Translation Resources. Lecture Notes in Com-
puter Science, pages 78–93, 2002.

10. W. Kraaij. Exploring transitive translation methods. In Proceedings of DIR, 2003.
11. Solomon Kullback and Richard A. Leibler. On Information and Sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, 1951.
12. I. Dan Melamed. Models of translational equivalence among words. Computational Lin-

guistics, 26(2):221–249, 2000.
13. Franz Josef Och and Hermann Ney. A systematic comparison of various statistical alignment

models. Computational Linguistics, 29(1):19–51, 2003.
14. Alberto Simões and J. João Almeida. NatServer: a client-server architecture for building

parallel corpora applications. Procesamiento del Lenguaje Natural, 37:91–97, September
2006.

15. Alberto Simões and José João Almeida. Bilingual terminology extraction based on transla-
tion patterns. Procesamiento del Lenguaje Natural, 41:281–288, September 2008.

16. Alberto Simões and José João Almeida. Bilingual example segmentation based on Markers
Hypothesis. In António Teixeira, Miguel Sales Dias, and Daniela Braga, editors, I Iberian
SLTech 2009, pages 95–98, Porto Salvo, Portugal, September, 3–4 2009.

17. Alberto Simões and Xavier Gómez Guinovart. Translation dictionaries triangulation. In
Carmen Mateo, Francisco Díaz, and Francisco Pazó, editors, FALA2010 – II Iberian SLTech
Workshop, pages 171–174, Vigo, November 2010.

18. Alberto M. Simões and J. João Almeida. NATools – a statistical word aligner workbench.
Procesamiento del Lenguaje Natural, 31:217–224, September 2003.

19. Ralf Steinberger, Bruno Pouliquen, Anna Widiger, Camelia Ignat, Tomaž Erjavec, Dan
Tufiş, and Dániel Varga. The JRC-Acquis: A multilingual aligned parallel corpus with
20+ languages. In 5th International Conference on Language Resources and Evaluation
(LREC’2006), Genoa, Italy, 24–26 May 2006.

20. Nitin Varma. Identifying word translations in parallel corpora using measures of association.
Master’s thesis, University of Minnesota, 2002.

