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Abstract. Breast reduction is one of the most common procedures in breast surgery.
The aim of this work is to develop a computational model allowing one to forecast the
final breast geometry according to the incision marking parameters. This model can be
used in surgery simulators that provide preoperative planning and training, allowing the
study of the errors origin in breast reduction.

1 INTRODUCTION

Although the number of works on the breast soft tissue modelling has increased sig-
nificantly during the last few years [1, 2, 4, 5, 6], the development of an adequate breast
model still continues to be an unsolved problem. The main areas of the breast modelling
application are aesthetic surgery [4] and medical imaging analysis [2]. The breast reduc-
tion surgery simulator presented here is based on the numerical solution of the so called
general problem of plastic surgery. From the mathematical point of view this is a problem
of calculus of variations with unusual boundary conditions, known as knitting conditions.
The breast tissue is considered as a hyperelastic material. Although most of soft tissues
are incompressible, we consider the breast as a compressible Neo-Hookean material. The
complex structure of the breast involves several tissues that form it. Its elastic properties
cannot be readily deduced from the elastic properties of the tissues forming it. The com-
pressibility of the breast is an experimental fact. (The breast reduction surgery where
only a part of the skin is removed from the breast, diminishes the breast volume without
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removing any part of its internal tissue.) The skin has elastic properties very different
from those of the breast gland and fat tissue, and therefore, must be modelled differently.
The breast tissue is modelled using three-dimensional elements and the skin is modeled
using two-dimensional elements. The skin function is to contain the jelly-like breast tis-
sue. Its modelling is a very important point in the understanding and forecasting of the
results of breast reduction.

A realistic breast model is impossible without so called Chassaignac’s space. This tissue
plays a special role in the breast mobility and is responsible for the connection between
the breast and the chest. We model it as a mass-spring system [3]. The determination
of the elastic parameters is carried out from the breast geometry observation [4]. This
methodology is based on the fact that when the patient changes her position (upright,
prone, on the back, etc.), the breast geometry also changes and these transformations
depend on the elastic properties of the breast. All necessary measurements do not need
special equipment and can be fulfilled in a usual consulting room.

The paper is organized as follows. We present in Section 2 the mathematical formu-
lation of the two problems we will address : the breast under gravitational force and the
suturing problem. In Section 3 we detail the numerical algorithms to solve them. Numer-
ical tests are given in the fourth section and the study ends with a conclusion and some
perspectives.

2 PROBLEM STATEMENT

2.1 Motivation

The breast reduction surgery consists of the following steps. First, the nipple is placed
in a new position and the breast is incised by two planes orthogonal to the chest and
by an oblique plane (Fig. 1(a)). Next, the tissues incised by the orthogonal planes are
sutured to each other (Fig. 1(b)). After that, the tissues incised by the oblique plane
are sutured to the chest (Fig. 1(c)). In this work we want to develop a computational
tool to simulate this suturing process in order to predict the format of the breast after a
reduction surgery.

2.2 Breast under gravitational force

Due to the gravitational force action, the breast is deformed with respect to an initial
null-gravity configuration Bgrav and f : Bgrav → R3 characterizes the deformation of the
body, i.e. for a given point p of the initial configuration, f(p) is the new position after
applying the gravity force.

The boundary of Bgrav is Γ = Γ1 ∪ Γ2 ∪ ΓIm. The set Γ1 represents the part of Bgrav

(subset of S = {p : h(p) = 0}) containing the Chassaignac space, while Γ2 stands for
the skin. At last, the breast is fixed on its lower part — inframammary fold. We shall
represent it by ΓIm (see Fig. 2).
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Figure 1: Scheme of breast reduction surgery.

Figure 2: Free surface of the breast (left — front view) and Chassaignac space and inframammary fold
(right — back view).

The problem consists of minimizing the functional

Jgrav(f) =

∫
Bgrav

Wbr(∇f(p))dp−
∫
Bgrav

ρ ag · f(p)dp

+

∫
Γ2

Wsk(∇f||(p))dSp +

∫
Γ1

c‖f(p)− p‖dSp, (1)

where Wbr : R3×3 → R is the volume strain-energy density and Wsk : R2×2 → R stands
for the skin strain-energy density. Moreover, the breast displacement is subject to the
constraints

f(p) = p, in ΓIm, (2)

h(f(p)) = 0, in Γ1. (3)
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Stéphane Clain, Gaspar J. Machado, Rui M. S. Pereira and Georgi Smirnov

We consider the breast as a hyperelastic neo-Hookean compressible material with the
strain-energy density function given by

Wbr(F ) =
µbr

2

(
tr(FF t)− 3− 2 ln (det(F ))

)
+
λbr

2
(det(F )− 1)2 ,

where F = ∇f is the Jacobi matrix of f and (λbr, µbr) are the Lamé parameters for the
breast.

For the skin strain-energy density Wsk, we consider the gradient along the tangent
plane of the surface, denoted by ∇f||(p). So, we have

Wsk(F||) =
µsk

2

(
tr(F||F

t
||)− 2− 2 ln

(
det(F||)

))
+
λsk

2

(
det(F||)− 1

)2
,

where F|| = ∇f|| is the Jacobi matrix of the superficial (skin) displacement f|| detailed in
the next section, and (λsk, µsk) are the Lamé parameters for the skin.

At last, vector ag stands for the gravity vector. The density ρ is assumed to be constant.
The mass-spring model of the Chassaignac space is characterized by the constant c.

2.3 Suturing problem

In order to mathematically model the suturing problem, we denote by Bcut the do-
main which corresponds to the incised breast and prescribe the conditions to perform
the suturing. As a first step, we neglect the gravity force assuming that the suturing
process is mainly independent of the external field. We also neglect the effect due to
the Chassaignac space. We introduce the boundaries Γ =

⋃4
i=1 Γi to model the suturing.

Boundary Γ1 is fixed and remains on the chest, while Γ2 is the surface associated to the
skin. Boundary Γ3 = Γ+ ∪ Γ− corresponds to the first incision and is composed by two
surfaces Γ± (incised tissues) to be sutured to each other. The surface Γ4 corresponds to
the second incision where the tissues have to be sutured to a fixed surface characterized
by S = {p : h(p) = 0} (see Fig. 3). In our model the interface between the chest and the
breast corresponds to the plane x = 0 while the symmetry plane of the first incision is
y = 0, as shown in Fig. 3, left panel.

Assuming that the gravity and the Chassaignac space contributions are negligible, the
problem writes as the minimization of the functional

Jcut(f) =

∫
Bcut

Wbr(∇f(p))dp+

∫
Γ2

Wsk(∇f||(p))dSp (4)

subject to the constraints

f(p) = p, in Γ1, (5)

f(p)− f(g(p)) = 0, in Γ+, (6)

h(f(p)) = 0, in Γ4. (7)
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Stéphane Clain, Gaspar J. Machado, Rui M. S. Pereira and Georgi Smirnov

Figure 3: Geometrical representation of the breast: front view (left) and back view (right).

The expressions for the strain-energy densities Wbr and Wsk are the ones presented in the
previous section and f(Bcut) is the new position of the body after the suturing one has to
determine. The map g : Γ+ → Γ− corresponds to the suturing operation since it provides
the point-to-point correspondance between the left and right side of the cut.

3 NUMERICAL SCHEME FOR THE BREAST

3.1 Mesh and discretisation

The breast tissue is modelled using a three-dimensional integral energy while the skin
effect is represented by a two-dimensional integral. The domain B ⊂ R3 denotes the
body Bgrav or the body Bcut corresponding to the initial configuration before applying the
gravitational field or the suturing operation respectively.

To design the numerical scheme, we denote by T a mesh of B constituted of I non-
overlapping tetrahedrons cells τi, i = 1, . . . , I, where we represent by |τi| its volume, and
N vertices Pn = (Pnx, Pny, Pnz), n = 1, . . . , N . We denote by Pij = (Pijx, Pijy, Pijz) ∈ R3,
j = 1, 2, 3, 4, the vertices of tetrahedron τi and by Tk, k = 1, . . . , K, the faces of the
tetrahedrons of the mesh that belong to Γ2 and by Pkj = (Pkjx, Pkjy, Pkjz) ∈ R3, j = 1, 2, 3,
the vertices of Tk. To discretize the new position function f , for each node Pn, we associate
an approximation fn and denote by fh the usual continuous linear piecewise function.
Notice that no displacement at node Pn means fn = fh(Pn) = Pn.

3.2 Triple integrals of the functionals

For a new configuration characterized by the approximation p ∈ B → fh(p) ∈ R3, the
internal energy on tetrahedron τi is given by

Wτi = |τi|
(
µ

2

[
tr(FiF

t
i )− 2− 2 ln(det(Fi))

]
+
λ

2

[
det(Fi)− 1

]2
)
,
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where Fi is the 3× 3 matrix solution of the linear system

fi2 − fi1 = Fi(Pi2 − Pi1), fi3 − fi1 = Fi(Pi3 − Pi1), fi4 − fi1 = Fi(Pi4 − Pi1).

The total internal energy is approximated by Jh1 =
∑
τi

Wτi .

The second volume integral of (1) is approximated by

Jh2 =
∑
τi

|τi|
4
ρag ·

(
fi1 + fi2 + fi3 + fi4

)
.

3.3 Surface integrals of the functionals

We now detail the tangential gradient ∇f|| we use to compute the skin energy. The
discrete piecewise linear function fh transforms a triangle Tk with vertices OAB into a
triangle T ′k with vertices O′A′B′. Since the translation and the rotation does not change
the stress due to the deformation, we assume that O′B′ is colinear to OB and A′ belongs
to the same plane than triangle OAB. Function f|| is a two-dimensional function locally
given by f||(O) = O, f||(A) = A′, f||(B) = B′. The Jacobian matrix of f|| is the constant
matrix

Jf|| = A =

[
a b
c d

]
.

Using the assumption, one has[
a b
c d

] [
‖OB‖

0

]
=

[
‖O′B′‖

0

]
,

[
a b
c d

] [
‖OA‖ cos(α)
‖OA‖ sin(α)

]
=

[
‖O′A′‖ cos(α′)
‖O′A′‖ sin(α′)

]
,

where α = ∠(OA,OB) and α′ = ∠(O′A′, O′B′). The first linear system gives c = 0 and

a = ‖O′B′‖
‖OB‖ . Substituting these expressions in the second linear system we obtain

d =
‖O′A′‖ sin(α′)

‖OA‖ sin(α)
, c =

‖O′A′‖ cos(α′)− a‖OA‖ cos(α)

‖OA‖ sin(α)
.

The superficial energy on triangle T for the skin is then given by

WT = |T |
(
µsk

2

[
tr(Jf||Jf

t
||)− 2− 2 ln(det(Jf||))

]
+
λsk

2

[
det(Jf||)− 1

]2
)

and the whole superficial energy is approximated by

Jh3 =
∑
T∈Γ2

WT .

To compute an approximation of the fourth integral of (1) we use

Jh4 =
∑
Ti∈Γ1

c
|Ti|
3

(
‖fi1 − Pi1‖+ ‖fi2 − Pi2‖+ ‖fi3 − Pi3‖

)
,

where c is assumed to be constant.
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3.4 Optimization problem for the breast under gravitational force

The unknowns of the discretized version of the minimization of (1) subject to the
constraints (2) and (3) form a subset of fn = (fnx, fny, fnz), n = 1, . . . , N . Indeed,
constraint (2) implies that the vertices in ΓIm are fixed and considering S as the vertical
plane x = 0, constraint (3) imposes a null displacement in the x coordinates of the vertices
in Γ1. We gather all the discrete unknowns in vector Xh and denote by

Jhgrav(Xh) = Jh1 + Jh2 + Jh3 + Jh4

the numerical energy functional we have to minimize with respect to vector Xh.

Remark. From vector Xh and the boundary conditions, we deduce a unique continuous
linear piecewise function fh we use in the integral computation. Vector Xh only contains
the unknown displacement components. For example, if point P1 is fixed, the components
f1x, f1y, f1y for the displacement are not integrated in vector Xh since f1 = P1. In the
same way, the displacement of point P2 on plane x = 0 is fulfilled setting f2x = 0. In
consequence, only components f2y and f2y belong to vector Xh.

In order to determine the minimizer X̄h of the discrete functional Jhgrav(Xh), we employ
the conjugate gradients method. To this end, one has to compute an approximation of the
derivative of the discrete functional in order to X`, ` = 1, . . . ,#Xh. Since the function is
nonlinear and has complex structure, numerical derivatives are computed in a very simple
way. For example, the derivatives with respect to direction X` is given by

∂Jhgrav

∂X`

=
Jhgrav(X` + ε`)− Jhgrav(X`)

ε
,

where ε` is a vector of zeros except value ε for the `−th entry.

3.5 Optimization for the suturing problem

For the suturing problem, the reference mesh corresponds to the body Bcut at the
initial position (before the suturing). Constraint (6) implies that for any vk on Γ±, we
set fky = 0 to enforce the suturing in the symmetric plane y = 0. Constraint (7) implies
that for any vk on Γ4, we set fkx = 0. At last, constraint (5) is similar to (2). We then
introduce the functional

Jhcut(Xh) = Jh1 + Jh3

which integrates the constraints while vector Xh only contains the unknown displacement
components.

4 NUMERICAL TESTS

In this section we present some numerical results. First, we consider a breast before
the surgery and apply the gravitational field. The breast is considered as a symmetric
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body and the plane of symmetry is orthogonal to the chest and passes through the nipple
dividing the breast in two equal parts. It is assumed that in the neutral state (i.e. if
all forces are equal to zero) the breast is a spherical cap. The nipple pedicle is not
modelled. The mesh is in Fig. 4 (left) and the result is in Fig. 5 (left). Then, we consider
the reduction surgery. To this end, we consider the incised breast where we apply the
suturing. Numerically speaking, we consider the mesh given in Fig. 4 (centre and right)
where we apply the optimization procedure for the suturing problem and after that we
apply the optimization problem for the breast under gravitational force. We present in
Fig. 5 (right) the final result. Notice that the nipple position is very high. This is the
result of an error committed during the surgery planning. Namely, the angle between the
cutting planes of the first cut is too small. The result corresponding to the right choice
of parameters is shown in Fig. 6.

Figure 4: Mesh for the gravitational field (left) and meshes for the suturing problem (centre and right).

5 CONCLUSION

The software developed for breast reduction modelling allows one to forecast the final
breast geometry according to the incision marking parameters. The comparison of our
simulations with a real surgery gives satisfactory results. Although the model is of low
precision, we were able to verify that it is sufficient for a satisfactory analysis of errors
frequently done during breast reduction surgery and allows to understand how to avoid
or correct them.
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Stéphane Clain, Gaspar J. Machado, Rui M. S. Pereira and Georgi Smirnov

Figure 5: Breast before (left) and after (right) reduction surgery.

Figure 6: Breast before (left) and after (right) reduction surgery.
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