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ABSTRACT: The rehabilitation and repair of existing structures requires inspection. This generally 

includes in situ non-destructive testing. A very economical test is the non-destructive ultrasonic pulse 
velocity test (UPV). Lower information is available in the literature in relation to the use of this 
technique for the estimation of the tensile strength of materials. Therefore, this paper aims at using 
artificial neural networks (ANN) in the prediction of the mechanical behaviour of granites under tensile 
loading. The parameters under analysis are the tensile strength, displacement at peak stress and 
critical crack opening. For this, experimental results obtained from the physical and mechanical 
characterization under tension of distinct types of granites are combined and the performance of the 
developed models using the UPV index alone and combined with other physical parameters is 
analysed. The results of the ANN models are also compared with respect to the results of regression 
models. The criteria used to evaluate the predictive performances of the models were the coefficient 
of correlation (R) and root mean square error (RMSE). 

 

Keywords: granite, tensile strength, ultrasonic pulse velocity, artificial neural networks  

NOTATION 
ANN artificial neural network; ft tensile strength; LVDT linear variable displacement transducer; UPV

  ultrasonic pulse velocity; wc critical crack opening; δft displacement peak stress  

1 INTRODUCTION  

Nowadays there is a growing concern regarding the preservation of ancient monuments, many of 
which are built in stone. Generally, non-destructive testing is used to assess the degree of 
deterioration of the stones. Among other tests, the ultrasonic velocity tests are those most used. 
Therefore, many correlations between the ultrasonic velocity and other physical and mechanical 
parameters are presented in the specialized bibliography. 

In Portugal, and particularly in the north region, there are many monuments built with granite. 
That’s why this paper includes granites and aims at establishing relationships between ultrasonic 
pulse velocity (UPV) and other properties of granite that best define its tensile behaviour. These 
properties are tensile strength (ft), displacement at peak stress (δft) and critical crack opening (wc). 
Models using artificial neural networks (ANN) are also developed. For this, experimental results 
obtained from the physical and mechanical characterization under tension of distinct types of granites 
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are combined and the performance of using the UPV index alone and combined with other physical 
parameters (porosity, η, and dry density, ρ) in the prediction of key parameters defining the complete 
tensile behaviour of granites is analysed. 

Many authors have been used ultrasonic pulse velocity applied to artificial intelligent techniques 
(AIT) to predict physical and mechanical characteristics of rocks, being the ANN the most used. 
However, Support Vector Machines (SVM) and Genetic Programming (GP) have also been used. 
Çanakci, H. and Pala [1] obtained a formula based on ANN for the determination of tensile strength of 
Turkish basalt based on ultrasonic pulse velocity, dry density and water absorption parameters. They 
obtained good results and their formula showed good generalization. Baykasoglu et al. [2] applied a 
set of genetic programming techniques to the uniaxial compressive strength (UCS) and tensile 
strength prediction of chalky and clayey soft limestone from Turkish Gaziantep region. They used as 
input parameters ultrasonic pulse velocity, water absorption, dry density, saturated density and bulk 
density. It is claimed the ability of genetic programming techniques to provide good prediction 
equations for strength forecast. Gokceoglu et al. [3] constructed weathering degree prediction models 
of granites with artificial neural networks and fuzzy inference systems. Model inputs were porosity, P-
wave velocity and uniaxial compressive strength. According to them the developed models exhibited 
high prediction performances and can be used for indirect determination of weathering degree. 
Dehghan et al. [4] used regression analysis and ANN to predict the uniaxial compressive strength and 
modulus of elasticity of Travertine samples. The P-wave velocity, the point load index, the Schmidt 
hammer rebound number and porosity were used as inputs for both methods. The ANN models had 
two outputs, namely modulus of elasticity, E, and uniaxial compression strength, UCS. Karakus [5] 
developed three genetic programming models to establish the relationship between granitic rock 
properties collected from different regions in Turkey. The first model builds up a function for modulus 
of elasticity using UCS, total porosity, sonic velocity-vp, point load index and Schmidt Hammer value. 
Second and third models derived functions for uniaxial compressive and tensile strength of granitic 
rocks using total porosity, sonic velocity, point load index and Schmidt Hammer values. All the 
generated models showed a good prediction capacity. Martins et al. [6] applyed multiple regressions 
(MR), ANN and SVM to predict the UCS and the deformation modulus of the Oporto granite. They 
used a database containing 55 rock sample records which contains the values of free porosity (N48), 
dry bulk density, ultrasonic velocity, UCS and the modulus of elasticity. All the models have good 
predictive capacities. However, the best forecasting capacity was obtained with the SVM model with 
N48 and UPV as input parameters. Yesiloglu-Gultekin  et al. [7] used non-linear multiple regression, 
ANN and adaptive-neurofuzzy inference system (ANFIS) to predict the UCS of various granitic rocks 
selected from Turkey. Three different models were constructed based on two input parameters. One 
model with the tensile strength and P-wave velocity, other with block punch index test (BPI) and P-
wave velocity, and another with the point load index test (Is(50)) and P-wave. The ANFIS was the 
best predictive tool. The model that includes tensile strength and P-wave velocity data was the best 
for estimating UCS. Mishra and Basu [8] presented regression analyses and fuzzy inference system 
(FIS) in predicting UCS of granite, schist and sandstone using as input variables indices such as 
block punch index, point load strength, Schmidt rebound hardness, ultrasonic P-wave velocity, and 
physical properties (effective porosity and density). Both MR analyses and the FIS exhibited good 
performances. Nevertheless, according to the authors, FIS model is a more competent analysis 
technique than the MR model because of its efficacy in dealing with uncertainties and impreciseness 
in the test results with transparency and accuracy. Yurkadul and Akdas [9] used ANN for the 
development of a model that predicts the UCS of natural building stones corresponding to 37 different 
carbonate rock samples. UPV, Schmidt hammer hardness and Shore hardness were used as input 
parameters. Developed models using only one input parameter or their combinations showed good 
performances. Kumar et al. [10] developed ANN and multiple nonlinear regression models to predict 
rock properties. Drill bits peed, penetration rate, drill bit diameter and equivalent sound level produced 
during drilling were used as input parameters. The developed models allow the prediction of UCS, 
Schmidt rebound number, dry density, P-wave velocity, tensile strength, modulus of elasticity and 
percentage porosity. All of these parameters are simultaneously the output of the ANN models. It was 
concluded that, in general, the ANN and multiple regressions lead to similar results and are efficient in 
predicting rock properties from sound levels produced during drilling. Beiki et al. [11] developed 
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prediction models for estimating UCS and elasticity modulus of carbonate rocks in Iran using GP and 
regression. Porosity, density, and P-wave velocity were used as input parameters. Both MR models 
and GP models have reasonable prediction capacities. However, GP models have better performance 
than multiple regression models.  

The overview on the use of the AIT shows that the prediction of mechanical properties of rock 
materials is much focused on the prediction of the compressive strength and very few studies are 
available in the scope of the prediction of tensile strength. Thus, this paper has as the main goal to 
provide information about the use of the ANN for the prediction of the main parameters describing the 
tensile behaviour of granites based on the results of an extensive experimental campaign carried out 
on distinct types of granites. 

2 OVERALL BEAVIOUR OF THE GRANITE IN TENSION 

Granite is the most used stone in the construction of ancient buildings, ornamental elements and 
movable stone heritage artifacts (e.g. statues, altar pieces, benches, etc.) in the North of Portugal, 
either in monumental or vernacular architecture. A wide range of granitic rocks is present in masonry 
buildings and artifacts, depending on their petrographic features, such as grain size and internal 
texture. The granitic types considered in the present study were mostly collected from the Northern 
region of Portugal. The selection of the granite types was based on mineralogical, textural and 
structural characteristics. Thus, fine to medium, medium to coarse, and coarse-grained granites were 
selected (some with porphyritic textures). In addition to these criteria, the presence of planar 
anisotropies and the weathering condition were also considered. 

Granite is a quasi-brittle material that has a disordered internal structure. Its tensile behaviour can 
be well described by the cohesive crack model proposed initially by Hillerborg et al. [12]. Two 
constitutive laws are necessary to describe the tensile behaviour of granites. The elastic–plastic 
stress–strain relationship is valid until the peak load is reached. After the peak there is a softening 
behaviour at the fracture process zone. The definition of the constitutive laws of the material can be 
done by direct tensile tests and indirect tensile tests (Brazilian splitting test). Figure 1 shows the 
typical response of granites under direct tension with the stress-strain diagram until peak (Figure 1a) 
and the softening branch of the stress vs. crack opening diagram (Figure 1b).The area under this 
branch defines the fracture energy, Gf. The results of the direct tensile tests carried out on granites 
are used in this work because this test is considered to be more appropriate to characterize the basic 
failure mechanism of quasi-brittle materials. Details of the experimental tests are given in Figure 2. 

Figure 3 shows an example of stress–displacement diagrams corresponding to the LVDTs placed 
at each side of the specimen. The linear stretch of the stress–displacement diagram is associated 
with the elastic behaviour of the material, whereas the stable microcracking process is reflected by a 
nonlinear stretch before the peak stress is reached. 
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Figure 1. Typical response of granites under direct tension: a) stress-strain diagram until peak 
stress; b) softening branch of the stress vs. crack opening. (Vasconcelos [13]) 

 



Martins, Vasconcelos and Miranda 

 
 9th

 International Masonry Conference, Guimarães 2014 4 

 
(a) 

 
(b) 

Figure 2. Details of the experimental tests: (a) test setup. (Vasconcelos et al. [13]); (b) view of 
fracture surface and  the location of LVDTs to measure the crack opening 

 

 
(a) 

 
(b) 

Figure 3. Typical response of granites under direct tension for a fine to medium-grained, with 
porphyritic trend, two mica granite: a) stress-displacement diagram at each LVDT; b) evolution of the 
displacement with time. (Vasconcelos et al. [14]) 

After this point, macrocracking propagation is established and increasing of the crack opening can be 
observed with naked eye. This macroscopic fracture process is associated with the steep negative 
stretch in the softening branch with a slope that depends on the type of granite. Finally, a stress 
transfer mechanism, due to the bridging effect, appears to be responsible for the long tail of the 
softening branch. Further details of the performed tests can be found on Vasconcelos et al. [13]. 

3 ARTIFICIAL NEURAL NETWORKS 

ANN are intended to be an approximation to the architecture of the human brain. These networks 
consist of processing units (nodes) interconnected according to a given configuration being the multi-
layer perceptron the most popular (Haykin [15]). The nodes are constituted by a set of connections, 
each associated to a weight, wij (i and j are neurons or nodes),, that has an excitatory effect for 
positive values and negative values for inhibition, an integrator (g) that reduces n input arguments 
(stimuli) to a single value, and an activation function (f) that can introduce a component of non-
linearity in the computational process. In our case the network weights are initially randomly 
generated in the range [-0.7, +0.7], and the f logistic function (1 / (1 + exp (-x)) is used as activation 
function. Then, the training algorithm is applied adjusting successively the weights, stopping when the 
slope of the error is approximately zero or after a maximum number of iterations. In the case of 
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regression the forecast is made by summing the contribution of all the activated connections. The 
general model is given by the following equation (Hastie et al. [16]): 
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where xi are the input parameters or nodes, I is the number of input parameters and o is the output 
parameter. The predictive capacity of the ANN and MR techniques was tested using only one part of 
the whole dataset. 

This part, corresponding to two-thirds of the whole dataset, was used in an evaluation scheme 
using 10-fold cross validation. In this scheme nine subsets were used to adjust the model whereas 
the remaining subset was used to test de model. This process was repeated until all the subsets have 
been tested and ten runs were performed. After this process the model was fitted using the whole 
dataset. The one-third of dataset that was not used to fit the model was used to test the model. The 
evaluation of the predictive capacities of the models was done using the coefficient of correlation of 
pearson, R, and the root mean square error, RMSE:  
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where yi is the measured value, ŷi is the predicted value and N is the number of samples. 

An RMSE value closer to zero indicates a better fit whereas higher values of R correspond to 
better performances. The computing process was performed in the R environment (R Development 
Core Team [17]) using the RMiner library developed by Cortez [18] that makes easier the use of Data 
Mining algorithms such as ANN and multiple regressions.  

In the next chapters the ANN techniques will be applied to evaluate the parameters defining the 
tensile-displacement diagrams and to predict the mechanical properties in function of the physical 
properties. Furthermore multiple regression analysis will also be performed to compare the obtained 
results. 

4 PREDICTION OF THE MAIN PROPERTIES THAT CHARACTERIZE THE TENSILE 
BEHAVIOUR OF THE GRANITES 

This section is devoted to the prediction of the key parameters that defining the stress-strain diagram 

of granites under tensile loading, namely tensile strength, ft, displacement at peak stress, ft, and 
critical crack opening, wc. The ANN and MR models are tested using a single input variable and 
combinations of two or three variables (UPV, η and ρ). This was done to compare the performance of 
the models that only use UPV with the performance of models that use other physical parameters with 
different combinations including or not UPV. Models that use a single input variable are denominated 
by M1. Models M2 and M3 use two and three input variables, respectively. 

The dataset for tensile strength and critical crack opening was composed of 240 registers, whereas 
for displacement at peak stress the dataset was composed by 251 registers. The general statistical 
overviews of the rock properties used in databases are presented in Tables 1 and 2. 

It can be emphasized that the coefficients of variation of almost all the variables are relatively high. 
This is related with the wide range of granitic rocks used in this study. It should be stressed that the 
different mineralogical, textural and structural characteristics, and particularly the distinct weathering 
state, control the variables employed in this study. When compared to the other variables, the density 
ρ is less affected by the variability of properties. 
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Table 1. General statistical overview of the rock properties used in database for 
prediction of fc and wc 

Symbol Minimum Mean Maximum Standard 

Deviation 

Coefficient 

Variation 

UPV  (m/s) 1578.0 2851.9 4480.6 797.7 28.0 

η(%) 0.61 2.96 7.40 2.11 71.2 

ρ (kg/m
3
) 2520.6 2611.8 2704.7 45.75 1.75 

ft (N/mm
2
) 1.28 3.38 9.04 1.61 47.8 

wc (mm) 0.048 0.355 0.950 0.210 59.2 

 
Table 2. General statistical overview of the rock properties used in database for 

prediction of displacement at peak stress. 

Symbol Minimum Mean Maximum Standard 

Deviation 

Coefficient 

Variation 

UPV  (m/s) 1578.01 2973.32 4577.14 851.98 28.65 

η(%) 0.41 2.70 7.42 2.18 80.74 

ρ (kg/m
3
) 2452.48 2596.11 2705.41 66.01 2.54 

δft (mm) 0.008 0.026 0.062 0.012 44.37 

 

4.1. Prediction of tensile strength 

Table 3 shows the best relationships between the tensile strength and the physical parameters using 
all the dataset and considering unique independent variables, namely UPV, , and .  It must be 
highlighted the good coefficients of correlation obtained when UPV and porosity (η) are used. 
Nevertheless, the relation between ft and ρ is the poorest one. Before the construction of the model 
the groups of data were split into two sets. The training set with two thirds of the groups of the data 
(160 cases) and the testing set with one third of the groups of data (80 cases).The mean values of the 
root mean square error (RMSE) and the coefficient of correlation (R) obtained during the training 
process are presented in Tables 4 and 5 for all models considered.  
 

Table 3. Correlation between ft with other parameters and the corresponding 
coefficients of correlation (R). 

 

Correlations R 

 
0.931 

 
0.804 

 
0.696 
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According to Johnson [19], correlation coefficient values (R) higher than ±0.8 are considered 
statistically significant at 95% confidence. It can be seen that most of the values presented in Table 5 
are greater than 0.8, which confirms the good predictive capacity of the majority of the models. 
Despite the nonlinear correlations presented in the Table 3 have been obtained with the whole 
dataset, the values of correlation coefficients obtained from the ANN approaches were higher than 0.8 
(Table 5). Notice that in this case, the ANN model is able to better describe the nonlinear relationship 
between the variables even with less data.  Analysing Tables 4 and 5 it can be concluded that ANN 
gives better results than MR for all the combinations of input parameters. For M1 and M2 models the 
best results were obtained including UPV. When two input parameters are used the best result 
isobtained with ANN model that also include the porosity, η. Among all the combinations and models, 
the best performance was obtained with the ANN model using all the input variables. Both the model 
using only UPV and the best model were fitted with all the training and testing set and the results are 
graphically presented in Figure 4. 

Table 4. Mean values of RMSE obtained in the cross-validation scheme for different combination 
of input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.5400 0.8050 1.0065 0.4965 0.8850 0.4294 0.4111 

MR 0.6321 1.1684 1.1827 0.6370 1.1598 0.6235 0.6215 

Table 5. Mean values of R obtained in the cross-validation scheme for different combination of 
input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.942 0.868 0.782 0.951 0.839 0.964 0.967 

MR 0.920 0.687 0.678 0.918 0.693 0.922 0.922 

 

 
(a) 

 
(b) 

Figure 4. Performance of the ANN model using: (a) only UPV; (b) all the input parameters. 
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It can be seen that the values obtained with the model based only on UPV are not far away from the 
measured values, even if it present more variability. However, the best model, based on three input 
parameters, has the better accuracy to obtain the measured results. 

4.2. Displacement at peak stress 

Table 6 shows the best relationships between the displacement at peak stress, ft, and the other 
parameters using all the dataset.  It must be stressed the good coefficients of correlation obtained 

when UPV and η are used. Nevertheless, the relation between ft and ρ is the poorest one, similarly to 
what was observed when the tensile strength is predicted. 
 

Table 6. Correlations between δft with other parameters and the 
corresponding coefficients of correlation (R). 

Correlations R 

 
0.911 

 
0.896 

 
0.761 

 
Before the construction of the model the groups of data were also split into two sets. The training 

set with two thirds of the groups of the data (167 cases) and the testing set with one third of the 
groups of data (84 cases). The mean values of the root mean square error (RMSE) and the coefficient 
of correlation (R) obtained during the training process are presented in Tables 7 and 8. Despite the 
correlation presented in the Table 6 have been obtained with the whole dataset the values of 
correlation coefficients obtained with M1 models from the ANN approaches were higher (Table 8). 
Notice that also in this case, the ANN model is able to better describe the nonlinear relationship 
between the variables even with less data.     

Table 7. Mean values of RMSE obtained in the cross-validation scheme for different combination 
of input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.0041 0.0047 0.0066 0.0041 0.0059 0.0052 0.0043 

MR 0.0054 0.0067 0.0075 0.0049 0.0068 0.0050 0.0049 

 
Table 8. Mean values of R obtained in the cross-validation scheme for different combination of 

input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.931 0.911 0.817 0.933 0.862 0.898 0.926 

MR 0.880 0.808 0.752 0.904 0.805 0.897 0.904 
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From the analysis of Tables 7 and 8 it can be seen that ANN give the best results for all the 
combinations of input parameters. This confirms the nonlinear relationships between δft with the other 
parameters. The best performance is obtained using only UPV or UPV with η.  These models were 
fitted with all the training and testing set and the result are graphically presented in Figure 5. It can be 
seen that both models perform similarly and have a great accuracy to obtain the measured results. 

 
(a) 

 
(b) 

Figure 5. Performance of the ANN model using: a) only UPV;  b) UPV and η. 

4.3. Critical crack opening 

Comparing the coefficients of correlation presented in Table 9 with those obtained using the ANN 
models with one input variable it can be seen that only the coefficient of correlation obtained with ρ is 
better using the ANN model. However, the correlation presented in the Table 9 has been obtained 
with the whole dataset. 

 

Table 9. Correlations between wc with other parameters and the corresponding coefficients of 
correlation (R). 

Correlations R 

 
0.847 

 
0.815 

 
0.670 

 

From the analysis of Tables 10 and 11 it can be seen that ANN is clearly better than MR for all the 
combinations of input parameters. This confirms the nonlinear relationships between wc with other 
parameters. The best performance is obtained using all the input parameters, even if only very slight 
improvements were obtained. Furthermore, the best results using one or two input parameters are 
obtained with η. The best model was fitted with all the training and testing set and the result is 



Martins, Vasconcelos and Miranda 

 
 9th

 International Masonry Conference, Guimarães 2014 10 

graphically presented in Figure 6. It can be seen that there is a considerable scatter around the 45 
degree line but the prediction remain significant when ANN is considered. 

 
Table 10. Mean values of RMSE obtained in the cross-validation scheme for different combination 

of input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.1196 0.1193 0.1435 0.1153 0.1136 0.1156 0.1133 

MR 0.1334 0.1310 0.1586 0.1178 0.1283 0.1307 0.1138 

 

Table 11. Mean values of R obtained in the cross-validation scheme for different combination of 
input parameters. 

 M1 M2 M3 

 UPV η ρ UPV&η η&ρ UPV&ρ UPV&η&ρ 

ANN 0.810 0.812 0.717 0.827 0.833 0.826 0.836 

MR 0.755 0.765 0.627 0.815 0.776 0.767 0.829 

 

 
(a) 

 
(b) 

Figure 6. Performance of the ANN model using: (a) only UPV; (b) all the input parameters. 

5 CONCLUSIONS 

This paper deals with the prediction of the main parameters describing the complete tensile 
behaviour of granites under direct tensile testing, namely tensile strength, displacement at peak stress 
and critical crack opening parameters using ANN and MR. Both models consider the UPV alone and 
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combined with more one or two physical parameters. Single and Multiple regression analyses were 
also performed. The best single relationships between the predicted parameters and UPV are 
nonlinear. Therefore, it is not surprising that the ANN models have given better results than the MR 
models. The tensile strength and the displacement peak stress were well predicted by the ANN 
models using UPV alone, even if the more accurate prediction would be obtained using UPV with 
porosity and density for the tensile strength and using UPV with porosity for the displacement at peak 
stress. However, if only the UPV is available very reasonable prediction can be achieved. 

The results for the prediction of the critical crack opening are considerably poorer, which should be 
related to the more scatter found for this variable. However, if ANN is used all the prediction trials are 
significant and one more time the UPV can give reasonable predictions. 
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