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ABSTRACT: The present paper aims to contribute to the knowledge of the long-term performance and 
durability of concrete structures strengthened with the Near-Surface Mounted (NSM) technique. The 
durability of strengthening systems is affected by environmental conditions, such as freeze-thaw and 
temperature cycling, exposure to aggressive chemical agents and ultraviolet light. Additionally, the long-
term performance of the NSM system could be compromised by fatigue loading, which may result in 
deterioration and weakening of individual components (steel, FRP, concrete), or loss of bond 
performance and composite action. Thus, in order to assess the bond and flexural behavior of NSM 
CFRP strengthening system under fatigue loading, an experimental program was carried out, composing 
of direct pullout tests and loading of slab specimens. The main investigated parameters were the stress 
level (or fatigue stress) and the amplitude of cycle. This paper describes the conducted tests and 
presents and analysis the obtained results. 

1. Introduction 
In the context of strengthening of reinforced concrete (RC) structures, fiber reinforced polymers (FRP) 
have been emerging in the last decades, to extend the service life of existing transportation 
infrastructures, such as heavy traffic highways and, specially, bridges. This type of structures is submitted 
to fatigue loading caused by fluctuating cycles of vehicle loads with different intensities. Therefore, it is of 
paramount importance to study the performance of RC structures strengthened with FRP when subjected 
to millions of load cycles over their service lives. Although the typical loading levels associated with this 
type of structures are considerably less than their ultimate capacity, the repeated cyclic loading can cause 
failure by fatigue (Yun et al., 2008). Moreover, fatigue loading presents a significant influence on the FRP-
concrete interface properties, as described in a recent research work (Carloni and Subramaniam, 2013). 
Few publications were found to focus on the fatigue behavior of strengthened structures using the NSM 
technique, e.g. Sena-Cruz et al. (2012) and Badawi and Soudki (2009). Even though these studies 
pertained to a reduced number of testes, they revealed an excellent response of the overall NSM system 
under cyclic loading. 
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The present study has the main objective of improving the knowledge of the bond and flexural behavior of 
RC structures strengthened with NSM CFRP strips under fatigue loading conditions. This objective is 
pursued through an experimental program that comprises both direct pullout tests (bond behavior 
evaluation) and load tests on slab specimens (evaluation of overall structural behavior). The influence of 
stress level and cycle amplitude was investigated. 

2. Experimental program 
The experimental program was composed of nine direct pullout tests (DPT) and five load tests on slab 
specimens (SL). The pullout specimens were divided into three series, each one composed of three 
specimens, whereas the slabs specimens were grouped into two series, as shown in Table 1. The code 
names given to the specimens ID consist on alphanumeric characters separated by underscores. The 
first set of characters designates the specimen type (DPT and SL). The second set of characters 
specifies the specimen number for the case the pullout specimens (see also Fig. 2), while in the case of 
slabs it indicates whether it is strengthened (STR) or not (UN). The third set of characters defines the load 
configuration (M for the monotonic test and F for the fatigue test). Finally, for the fatigue tests the last 
character indicates the percentage of the maximum load (Fp) applied during the fatigue cycles when 
compared to the ultimate strength of the corresponding specimen type.  

Table 1 – Experimental program (average values). 
Specimen 
type Series Specimen ID Fp [kN] Fmin [kN] Fmax [kN] Smin [%] Smax [%] 

Direct 
pullout 
test 

S1 DPT_M 30.36 (2.0%) - - - - 

S2 DPT_F50 28.67 (0.7%) 7.02 15.81 23 52 

S3 DPT_F60 - 7.77 17.70 26 58 

Slabs 

S4 
SL_UN_M 12.03 - - - - 

SL_STR_M 31.63 - - - - 

S5 

SL_UN_F75 - 5.1 9.0 42.4 74.8 

SL_STR_F50 - 8.3 15.1 26.2 47.8 

SL_STR_F70 - 16.2 22.5 51.2 71.0 

SL_STR_F80 - 19.6 26.3 62.0 83.1 

Note: the values between parentheses are the coefficients of variation of the series. 

2.1. Specimens and test configuration 
The geometry and test configuration adopted both for monotonic and fatigue experiments in DPT and SL 
specimens are shown in Fig. 1. The pullout tests were performed in concrete cubic blocks 
(edge=200 mm), into which a NSM CFRP laminate strip was embedded (see Fig. 1a and b). To avoid 
premature failure due to the formation of a concrete fracture cone at the loaded end, the bond length 
started 100 mm from the top of the cube. The cross-section of the slab is 300 mm wide and 80 mm thick, 
whereas its free span is 1800 mm (see Fig. 1c and d). The longitudinal reinforcement is composed of 
4Ø6, which corresponds to a longitudinal reinforcement ratio, ρl, equal to 0.47%. The flexural 
strengthening solution is composed of 3 NSM CFRP (10×1.4 mm2) laminate strips, which corresponds to 
an equivalent longitudinal reinforcement ratio, ρs,eq, of 0.68%. 

The fatigue tests were conducted in three main steps: (i) specimens were initially pre-loaded under force 
control up to mean value between the maximum, Fmax, and minimum, Fmin, load of a fatigue cycle; (ii) 
then, 3 and 2 million cycles were imposed at 3 and 2 Hz of frequency between Smin × Fp and Smax × Fp for 
the DPT and SL tests, respectively; (iii) finally, the specimens that did not fail by fatigue action were 
submitted to a monotonic loading up to failure. The monotonic tests were performed under displacement 
control, at a rate of 2 µm/s and 20 µm/s for the DPT and SL, respectively. The maximum and minimum 
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fatigue levels applied in the present work are presented in Table 1. The fatigue tests were performed 
under force control. 

Additional information related to the preparation/configuration of specimens, as well as the adopted 
instrumentation can be found elsewhere (Sena-Cruz et al., 2013). 
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Fig. 1 – Tests configuration: (a) direct pullout specimen; (b) geometry details of the strengthening; 
(c) longitudinal view of slab specimen; (d) cross-section of slab specimen (dimensions in mm). 

2.2. Materials characterization  
The fatigue tests on slab specimens began when concrete had approximately 1 year of age (19 months in 
the case of pullout bond specimens), and its compressive strength in cylinders of 150mm/300mm was 
assessed by means of compression tests. A compressive strength of 48.2 MPa with a coefficient of 
variation (CoV) of 3.2% was obtained. The tensile properties of the CFRP laminate strips were assessed 
according to ISO 527-5:1997. A tensile strength of 2648.3 MPa (CoV=1.8%) and a Young’s modulus of 
169.5 GPa (CoV=2.5%) were obtained for the CFRP laminates. The uniaxial tensile properties of 
hardened epoxy adhesive used to bond the CFRP laminate strips to the concrete were assessed 
according to ISO 527-2:1993. From these tests, the following average values were obtained: 22 MPa 
(CoV=4.5%) for tensile strength, 7.2 GPa (CoV=3.7%) for Young’s modulus and 0.36% (CoV=15.2%) for 
the strain at the peak stress. The main mechanical properties of the steel reinforcement used are 
available elsewhere (Sena-Cruz et al., 2013). 

3. Results and discussion 

3.1. Pullout specimens 
As previously mentioned, six pullout specimens were tested under two different fatigue load ranges: 
(i) 23%-52% (series S2), and (ii) 26%-58% (series S3) of the average maximum pullout force, Fp, 
obtained from the three specimens tested under monotonic loading (see also Table 1).  

Fig. 2a depicts the envelope of pullout force versus loaded end slip (Fl-sl) relationship for all three 
specimens tested monotonically up to the failure (DPT_M). The obtained Fl-sl responses are coherent 
with the results observed in monotonic tests performed by Sena-Cruz et al. (2013). 

(c) (d) 

(a) 

(b) 
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Regarding the fatigue tests, the variation of loaded end slip (sl) with respect to number of cycles are 
plotted in Fig. 2b for both minimum and maximum loads applied during the fatigue tests of series S2 and 
S3. For the three fatigue tests of series S3, the number of cycles at the failure (Nf) were 95,000, 561,000 
and 376,000 cycles for the specimens DPT1_F60, DPT2_F60 and DPT3_F60, respectively. Even though 
these specimens were submitted to the same fatigue and amplitude load, they present a significantly 
scattered behavior in terms of their number of cycles at failure. Nevertheless, the failure mode observed 
in these three specimens was identical and corresponded to progressive debonding of the CFRP at the 
adhesive/laminate interface up to a complete separation between both materials. For the three specimens 
of series S3, three regions can be identified: a region of fast increase of the slip in the first cycles, 
followed by a progressive slip growth zone, and finally a region where the slip increased faster again until 
the specimen reached the failure. The magnitude of values of the slip at the failure is in agreement with 
the ones obtained in monotonic tests, i.e. approximately 0.6 mm (see Fig. 2a). In series S2, after a similar 
initial behavior (when compared with S3 series), the slip-rate increase was much lower in the second 
stage. In this series the specimens did not fail after being submitted to a 3 million of cycles.  

As shown in Table 1, the stress levels adopted for both series S2 and S3 were quite close. In spite of 
that, fatigue failure was only observed in the S3 series. In order to clarify this different behavior, the local 
bond stress-slip relationship −τ s  was assessed by applying an analytical-numerical strategy, based on 
the experimental results obtained in series S1 (Sena-Cruz and Barros, 2004). The Fl-sl analytical-
numerical response calibrated from S1 average experimental Fl-sl curve is plotted in Fig. 2a. It is possible 
to observe that the implemented numerical strategy was able to predict the Fl-sl response with good 
accuracy. Based on this simulation, it can be concluded that for an applied load of 50% (S2) and 60% 
(S3) of Fp, 74.3% and 84.4% of the total bond length is effective, respectively. During the fatigue test, as 
the effective bond length (closer to the loaded end) is becoming damaged by the fatigue cycles, the 
stresses shift to the undamaged zone of the total bonded length (closer to the free end). Although the 
stress transfer process occurred in an identical way for both series (S2 and S3), since the applied stress 
level in series S3 was higher than in S2, it probably led to a faster bond degradation and, consequently, 
to the corresponding failure. 
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Fig. 2 – (a) Fl-sl responses under monotonic loading and numerical inverse analysis; (b) Loaded 
end slip versus number of cycles. 

As mentioned above, after the fatigue tests, all the pullout specimens that did not fail by fatigue (S2 
series) were loaded monotonically up to failure. The post-fatigue Fl-sl monotonic responses are presented 
in Fig. 2a. Table 1 also includes the average Fp obtained in the post-fatigue monotonic tests. In terms of 
bond performance, as expected, the fatigue loading caused a significant reduction in the initial bond 
stiffness, which leads to the conclusion that the fatigue loading damaged the system (Fig. 2a). It can be 
observed that, in comparison to series S1, the maximum pullout force had a slight decrease of about 6% 
(in terms of average values), and the loaded end slip was not influenced by the fatigue load. In general, 
with exception of the reduction in terms of initial bond stiffness, the overall bond behavior was not much 
affected by the stress level applied in the S2 series. 

(a) (b) 
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3.2. Slab specimens 
Fig. 3a presents the evolution of the midspan deflection of SL specimens according to the number of load 
cycles. During the fatigue tests some technical problems occurred (overheating of the servo-controlled 
system), which induced deflection discontinuities for the slabs SL_STR_F70 and SL_STR_80. During the 
fatigue tests, the slab SL_UN_F75 (unstrengthened slab) recorded an increase of midspan deflection 
between the first and last cycle of approximately 8%, while for the strengthened slabs, the increment was 
about 6%, in spite of SL_STR_F80 has been submitted to a higher fatigue level. The deflection increase 
may be attributed to the bond degradation between steel and concrete, as well as between CFRP and 
concrete. 
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Fig. 3 – (a) Midspan deflection versus cycle number; (b) Total load versus deflection relationship 
of the tested slabs under monotonic loading. 

During the fatigue cycles the evolution of the stiffness of the slabs was also evaluated. This stiffness was 
calculated as the slope of the line defined between the lower and the upper points of the load–deflection 
curve of a complete cycle. Based on the results forwarded in the 2nd column of Table 2, it is possible to 
observe a slight reduction of the stiffness between the first and the last cycle of the fatigue tests. It is clear 
that the unstrengthened slab experience the highest stiffness degradation (at about 14%). As expected, 
when the fatigue limits increase, the stiffness degradation also increases. The slabs did not fail after have 
been submitted to 2 million fatigue cycles. In the pullout tests that failed by fatigue, the CFRP laminate 
strips were submitted to a strain level of about 0.79% (DPT_F60 series), while for the slab SL_STR_F80 
(worst case) the measured CFRP strain has ranged between 0.84% at midspan and 0.04% at the 
extremity. This very low CFRP strain level at the extremities can justify why the slabs did not fail by 
fatigue. 

Table 2 – Results of the slabs submitted to the fatigue loading. 
 Fatigue test Post-fatigue monotonic test 

Slab ID (δ f - δ i)/δ i [%] (Kf-K1)/K1 [%] Fmax [kN] KII / KM
 

SL_UN_F75 7.93 13.7% 12.41 (3.1%) 1.74 

SL_STR_F50 6.58 2.0% 34.32 (8.5%) 1.42 

SL_STR_F70 6.37 3.6% 34.06 (7.7%) 1.22 

SL_STR_F80 6.05 7.2% 34.64 (9.5%) 1.11 

Notes: δi = deflection registered at the first fatigue cycle; δf = deflection registered at the last fatigue cycle; 
K1 = stiffness at the first fatigue cycle; Kf = stiffness at the last fatigue cycle; KII = stiffness at stage II in the 
post-fatigue test; KM = stiffness at stage II of a specimen without being submitted to the fatigue test. 

Fig. 3b presents the relationship between the applied load and deflection at midspan for all the slabs 
obtained from the post-fatigue tests. Comparing these slabs (F series) with the corresponding control 
ones (SL_UN_M and SL_STR_M), an increase in terms of maximum force (Fmax), as well as stiffness (KII) 

(a) (b) 
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at the stabilized cracked stage is observed. This better behavior was observed in previous research 
works, such as those reported by Yost et al. (2007) and Sena-Cruz et al. (2012). The increase of the KII 
may be justified by the hardening behavior of the steel reinforcement during the fatigue cycles. 

Finally, it is remarked that the main failure mode observed in the slabs submitted to the post-fatigue 
monotonic tests (as well as in the SL_UN_M and SL_STR_M slabs) was concrete crushing.  

4. Conclusions 
This paper presented an experimental study on bond and flexural behavior of concrete elements 
strengthened with NSM CFRP laminate strips under fatigue loading, through direct pullout tests (DPT) 
and load tests on slab specimens (SL). 

From the bond pullout tests, it was observed that debonding failure at adhesive/laminate interface 
occurred for a maximum fatigue stress level of about 60%. For a maximum fatigue stress level of about 
50% the specimens did not fail after had been submitted to 3 million of cycles. Progressive and 
continuous loss degradation in terms of bond stiffness was observed, for both fatigue load levels studied.  

Regardless the stress level of fatigue loading, the strengthened slabs presented a lower decrease in 
terms of midspan deflections and stiffness than the unstrengthened slab at the end of 2 million of cycles. 
After fatigue loading, the slabs were submitted to the monotonic tests, and an increase of about 8% of 
ultimate load and stiffness was observed. Therefore it can be concluded that the damage accumulation 
due the fatigue cycles did not affect the ultimate capacity of the strengthened NSM CFRP slabs. 
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