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Machado–Joseph disease (MJD) is a late-onset neurodegenerative disorder caused by a polyglutamine
(polyQ) expansion in the ataxin-3 protein. We generated two transgenic mouse lineages expressing the
expanded human ataxin-3 under the control of the CMV promoter: CMVMJD83 and CMVMJD94, carrying
Q83 and Q94 stretches, respectively. Behavioral analysis revealed that the CMVMJD94 transgenic mice
developed motor uncoordination, intergenerational instability of the CAG repeat and a tissue-specific
increase in the somatic mosaicism of the repeat with aging. Histopathological analysis of MJD mice at early
and late stages of the disease revealed neuronal atrophy and astrogliosis in several brain regions; however,
we found no signs of microglial activation or neuroinflammatory response prior to the appearance of an
overt phenotype. In our model, the appearance of MJD-like symptoms was also not associated with the
presence of ataxin-3 cleavage products or intranuclear aggregates. We propose the transgenic CMVMJD94
mice as a useful model to study the early stages in the pathogenesis of MJD and to explore the molecular
mechanisms involved in CAG repeat instability.
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Introduction

Machado–Joseph disease (MJD), also known as Spinocerebellar
Ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative
disorder caused by the expansion of a polyglutamine tract (polyQ) in
the C-terminus of the ATXN3 gene product, ataxin-3 (ATXN3)
(Kawaguchi et al., 1994). In this gene, the polyQ tract length ranges
between 12 and 44 in the normal population and between 53 and 87
in patients (Maciel et al., 2001; van Alfen et al., 2001).

Clinically, MJD is characterized by a late-onset spinocerebellar
ataxia, ophthalmoplegia and spasticity associated to variable degree
with amyotrophy or extrapyramidal features (Coutinho and
Andrade, 1978). The pathological hallmark of the disease is the
presence of nuclear inclusions of aggregation-prone expanded
ATXN3 in the patients' brains. Although ATXN3 is ubiquitously
expressed (Paulson et al., 1997), only restricted neuronal popula-
tions of the central nervous system (CNS) are classically described
as affected, namely the cerebellar dentate nucleus, pallidum,
substantia nigra, thalamus, subthalamic, red, and pontine nuclei,
cranial nerve nuclei and the anterior horn and Clarke's column of
the spinal cord (Romanul et al., 1977; Rosenberg et al., 1976;
Woods and Schaumburg, 1972). Recent pathological studies have
suggested that the extension of CNS degeneration in MJD patients at
end stages may be more widespread, including the visual, auditory,
vestibular, somatosensory, ingestion-related, dopaminergic and
cholinergic systems (Rub et al., 2008).

Fifteen years have passed since the cloning of the MJD causative
gene (Kawaguchi et al., 1994), and to date the mechanism of cell
demise taking place in specific regions of the brains of MJD patients
remains largely ignored. However, the numerous studies of polyQ and
other neurodegenerative diseases undertaken during these years have
raised important questions: i) How are neurons dying: is active cell
death occurring, or is necrosis the main pathway of death? ii) What is
the contribution of somatic mosaicism in cell-specific vulnerability?
thology in a transgenic mouse model of Machado–
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iii) Which are the toxic species: the aggregated, cleaved or soluble
forms of ataxin-3? iv) What is the role of neuroinflammation in the
disease process?

To attempt to answer these questions, several transgenic mouse
models of MJD were created using different promoters to drive the
expression of the human cDNA/gene: the L7 specific Purkinje cell
promoter (Ikeda et al., 1996); the ATXN3 promoter (Cemal et al.,
2002); the HD promoter (Boy et al., 2009a); and different portions of
the PrP promoter (which originates high brain expression levels)
(Bichelmeier et al., 2007; Chou et al., 2008; Goti et al., 2004). More
recently, a conditional MJD mouse model using the Tet-Off system
was described showing reversibility of the phenotype (Boy et al.,
2009b).

Although the most central questions still remain unanswered,
thesemousemodels provide excellentmammalian systems to be used
in the study ofMJD pathogenesis. In this study, we have generated and
characterized a new transgenic mouse model in which the human
cDNA is ubiquitously expressed under the regulation of the cytomeg-
alovirus promoter (pCMV). This mouse model mimics some key
features of MJD including the ataxia and the dynamics of the CAG
repeat, and we used it to study the cellular pathway(s) involved
in cell death and the potential role of neuroinflammation in MJD
pathogenesis.

Methods

Generation of CMVMJD transgenic mice

To generate transgenic MJD mice, the cDNA ATXN3c variant
(GenBank accession no. U64820.1) (Goto et al., 1997) carrying a
repeat tract (CAG)2CAAAAGCAGCAA(CAG)77 coding for 83 glutamines
was amplified by PCR, introducing 5′ and 3′ flanking NotI restriction
sites, and then cloned into the pCMV vector (kindly provided
by Dr. Mónica Sousa, Univ. Porto). This plasmid, designated as
pCMVMJD1-1E, was linearized by partial digestion with PstI (Fer-
mentas), the fragment of interest (3150 bp) was then purified from an
agarose gel using the QiaQuick gel extraction system (Qiagen,
Hamburg, Germany) and microinjected into fertilized murine oocytes
of the FVB/N mouse strain (Eurogentec, Seraing, Belgium). Two
female founders were obtained from two different microinjections,
establishing the transgenic CMVMJD94 and CMVMJD83 mouse
lineages, which were backcrossed with C57Bl/6 mice (Harlan Iberica,
Barcelona, Spain) over nine and seven generations, respectively.
Hemizygous, homozygous CMVMJD transgenic mice (hemi CMVMJD
and homo CMVMJD, respectively) and control littermates were
obtained from colony inbreeding.

Animals

All animals were maintained under standard laboratory condi-
tions: an artificial 12 h light/dark cycle (lights on from 8:00 to
20:00 h), with an ambient temperature of 21±1 °C and a relative
humidity of 50–60%; the mice were given a standard diet (4RF25
during the gestation and postnatal periods, and 4RF21 after weaning,
Mucedola SRL, Settimo Milanese, Italy) and water ad libitum. Health
monitoring was performed according to FELASA guidelines (Nicklas
et al., 2002), confirming the Specified Pathogen Free health status of
sentinel animals maintained in the same animal room. All procedures
were conducted in accordance with European regulations (European
Union Directive 86/609/EEC). Animal facilities and the people
directly involved in animal experiments (ASF, MCC, SS, CB) were
certified by the Portuguese regulatory entity — Direcção Geral de
Veterinária. All of the protocols performedwere approved by the joint
Animal Ethics Committee of the Life and Health Sciences Research
Institute, University of Minho, and the Institute for Molecular and Cell
Biology, University of Porto.
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Mouse genotyping

DNA was isolated from tail biopsy using the Puregene DNA
isolation kit (Gentra Systems, Minneapolis, MN). In this single PCR
genotyping tube, the primers TR1 (5′-GAAGACACCGGGACCGATCCAG-
3′) and TR2 (5′-CCAGAAGGCTGCTGTAAAAACGTGC-3′) were used to
amplify the transgene (454 bp), and the primers mmMJD8 (5′-
CAAAGTAGGCTTCTCGTCTCCT-3′) and mmMJD24 (5′-AGTGCTGA-
GAACACTCCAAG-3′) to amplify the mouse homologous Atxn3 gene
(800 bp) as an internal control for the PCR. Hemizygosity/homozy-
gosity and the transgene copy number were discriminated by semi-
quantitative PCR, in which the transgene was amplified using the pair
of primers TR1/TR2, and an intronic fragment (546 bp) of the mouse
homologous gene Atxn3 was amplified, as a reference gene (number
of copies), using the primers mmMJD89 (5′-GCTAGCTAGAGCTACT-
TATTG-3′) and mmMJD54 (5′-GACTCCAGAGAGCACCTG-3′). Briefly,
to determine the number of cycles in which the amplification was at
the middle of the exponential phase, a sequential series of PCRs using
both pairs of primers were performed for each lineage of transgenic
mice. Gels were visualized with AlphaImager 2200 (AlphaInnotech,
San Leandro, CA, USA) and analyzed by densitometry with the
corresponding AlphaEase software.
Molecular analysis of the (CAG)n repeat

The analysis of the intergenerational instability of the repeat was
assessed in two different genetic backgrounds, FVB/N and C57Bl/6, in
male (n=22, n=32) and female meioses (n=24, n=18). The repeat
tract (CAG)2CAAAAGCAGCAA(CAG)X and a 75-bp flanking region of
the ATXN3 gene were amplified by PCR using the primers MJD25a (5′-
GGCTGGCCTTTCACATGGAT-3′) and MJDcDNA (5′-CGGAAGAGACGA-
GAAGCCTAC-3′).

The relative (CAG)n size variation across generations was studied
by PCR amplification of DNA extracted from tail biopsies using the
primers described above and incorporation of [35S] dATP (Amer-
sham). PCR products were loaded in a denaturating 6% polyacryl-
amide gel as previously described (Maciel et al., 2001). The major
allele size was determined by densitometry using AlphaEase software
to detect the peak with the highest height in the AlphaImager 2200
(AlphaInnotech). CAG repeat length variation was determined by
comparison with the highest height peak band from PCR products
generated from progenitor DNAs.

For the analysis of the repeat in different tissues, hemi CMVMJD94
transgenic males with 5 (n=3), 24 (n=5), 60 (n=6) and 72 (n=4)
weeks of age, were transcardially perfused with PBS under anaesthe-
sia (ketamine hydrochloride (150 mg/kg) plus medetomidine
(0.3 mg/kg)) and tissues were rapidly removed, frozen in dry ice
and stored at −80 °C. DNA extraction from brain regions (cerebellar
cortex, deep cerebellar nuclei, motor cortex, hippocampus, amygdala,
hypothalamus, substantia nigra, striatum and pontine nuclei) and
peripheral tissues (heart, skeletal muscle, testis, kidney, liver and tail)
was performed using the Puregene DNA isolation kit (Gentra
Systems). Somatic mosaicism was studied in the transgenic mice by
determination of the CAG repeat number using the same PCR strategy
as described above, except for the usage of a 6-FAM fluorescently
labeled MJDcDNA primer. Products were displayed in an ABI 310
automated DNA sequencer (Applied Biosystems, Foster City, CA). The
degree of mosaicism of different tissues of mutant mice was analyzed
by calculating the mosaicism index (MI). In order to avoid inclusion of
PCR artifacts, only bands larger than the major bands were taken into
account (Cancel et al., 1998). The number of bands with peak areas of
at least 10% of the major band was counted and their surfaces
summed.MIwas defined as the ratio between this sum and the area of
the major size band. The CAG tract length of the major size band was
determined using an equation from the calibration curve obtained
ion and neuropathology in a transgenic mouse model of Machado–
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with cloned alleles containing known numbers of CAG repeats
(Williams et al., 1999).

Transgene expression analysis

Anaesthetized animals (n=3 or 4 for each genotype) were
euthanized by transcardial perfusion with PBS, tissues were collected,
frozen in dry ice and stored at −80 °C. For protein isolation, mouse
tissues were homogenized in 5 volumes of cold resuspension buffer
(RB): 0.1 M Tris–HCl, pH 7.5, 0.1 M EDTA, 0.4 mM PMSF and a mixture
of protease inhibitors (Roche, Indianapolis, IN). Protein concentra-
tions were determined using the Bradford protein assay (Bio-Rad,
Hercules, CA, USA), and samples were diluted in RB and Laemmli
sample buffer at a final concentration of 2.5 mg/ml. Samples were
sonicated for 10 s, heated for 3 min at 100 °C and centrifuged for 10 s
before loading 20 µl per sample in 10% SDS-PAGE minigels. The blots
were blocked in 5% dry milk/PBS before incubation overnight at 4 °C
with the primary antibody: serum anti-ataxin-3 (kindly provided by
Dr. Henry Paulson) (1:20,000), 1H9 (1:2000) or anti-GAPDH
(Advanced ImmunoChemical. Inc., Long Beach, CA, USA) (1:500).
Bound primary antibodies were visualized with goat anti-mouse or
goat anti-rabbit HRP-conjugated secondary antibodies at 1:500
(PIERCE, Rockford, IL), chemiluminescent substrate (PIERCE), and
exposure on autoradiography films (Amersham, Uppsala, Sweden).
Signal bands were quantified using the ImageJ Software.

Total RNA from wild-type or CMVMJD mice (n=4 or 5) brain
tissue was isolated using TRIZOL (Invitrogen, Calrsbad, CA, USA)
according to the manufacturer's protocol. First-strand cDNA synthe-
sized using oligo-dT was amplified by quantitative reverse-transcrip-
tase PCR (qRT-PCR) using primers in the 3′ UTR region to detect
specifically human and mouse ataxin-3 mRNA (MJD_UTR1b_r: 5′
GCCCTAACTTTAGACATGTTAC3′; MJD_UTR3_F: 5′GGAACAAT-
GCGTCGGTTG3′; mjd_3UTR_2r: 5′GTTACAAGAACAGAGCTGACT3′;
mjd_3UTR_1f: 5′TGTCTTGTTACAGAAAGATCAG3′). Primer specificity
was controlled by two negative PCR reaction controls: one with the
primers for mouse ataxin-3 mRNA using the pCMVMJD1-1E plasmid
(carrying the human cDNA) as template; and the other with the
primers for human ataxin-3 mRNA and a total cDNA template from a
wild-type mouse.

Immunohistochemistry

Transgenic (hemi and homozygotes) and control non-transgenic
littermate mice (n=4 or 5 for each group) at different ages (16, 49
and 84 weeks) were deeply anaesthetized and transcardially perfused
with PBS followed by 4% paraformaldehyde (PFA) in PBS. Brains were
post-fixed overnight in fixative solution and embedded in paraffin.
Slides with 4-µm-thick paraffin sections were steamed for antigen
retrieval and then incubated with rabbit GFAP antibody (DAKO
Corporation, Carpinteria, CA) (1:500) or rabbit anti-MJD1.1 (Ferro
et al., 2007) (1:40). A biotinylated secondary antibody was applied,
followed by ABC coupled to horseradish peroxidase (DAKO) and DAB
substrate (Vector Laboratories Inc., Burlingame, CA, USA). The slides
were counterstained with hematoxylin according to standard proce-
dures and analyzed with an optical microscope (Olympus, Hamburg,
Germany). For morphological brain analysis, we performed hema-
toxylin & eosin and cresyl violet staining. The stereological analysis of
GFAP-positive cells was performed in the vestibular region and in the
substantia nigra using StereoInvestigator software (MicroBrightField,
Williston/VT, USA). From each set of serial sections, 2 photomicro-
graphs of the areas of interest were obtained at a primary mag-
nification of ×25 and analyzed at a final magnification of ×1000.
Measurements were performed on regions randomly selected by the
software. The densitometric analysis was performed in Purkinje cells,
locus coeruleus, dentate nuclei and substantia nigra using a Zeiss light
microscope coupled to a PC, using NIH Image 1.52 software. Density
Please cite this article as: Silva-Fernandes, A., et al., Motor uncoordinat
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levels were quantified and, for all sections, background density
measurements were subtracted to these values.

For anti-Iba-1 immunohistochemistry, brains from hemi
CMVMJD94 mice and littermates at 10 and 25 weeks of age (n=3
per group) were fixed in a 4% PFA/PBS solution for 3 days, after which
they were kept in an 8% sucrose solution. Forty-micron-thick
vibratome sections were incubated with rabbit anti-Iba-1 (Wako
chemicals, 019-19741) (1:250). The antibodies were detected as
above, as was the counterstaining and visualization of the slides.

Apoptosis was analyzed using the TUNEL assay. In situ DNA end-
labeling was accomplished using the Apoptag Peroxidase In situ
Apoptosis Detection Kit (Chemicon International, USA) according to
the manufacturer's instructions. Mice were deeply anaesthetized,
transcardially perfused with PBS and brains were removed and frozen
at −80 °C embedded in OCT. Frozen brain sections (10 μm) of
transgenic CMVMJD94 and wild-type mice (n=4 for each genotype)
with 86 to 100 weeks of age, were fixed in 1% PFA/PBS for 30 min and
post-fixed in pre-cooled ethanol:acetic acid (2:1) at−20 °C for 5 min.
Endogenous peroxidase was inactivated by immersing the tissue
sections in 3% H2O2 in PBS solution for 30 min and rinsing several
times with water and PBS.

For caspase-3 detection, frozen sections of the same experimental
group used for TUNEL assay, were fixed in 4% PFA/PBS and incubated
with rabbit anti-active-caspase-3 (R&D systems AF835, 1:250, diluted
in TBS) overnight at 4 °C. The detection of active-caspase-3 was
assessed according to the streptavidin–biotin peroxidase complex
system (Ultra Vision Large Volume Detection System Anti-Polyvalent,
HRP; Lab Vision Corporation, Fremont, CA, USA) according to the
manufacturer's instructions.

Fluoro-jade B staining was also performed in the animals group
described above, to evaluate the presence of non-apoptotic cell
death according to the manufacturer's instructions (Chemicon
International).

Phenotype analysis

Behavioral analysis was performed during the diurnal period in
groups of 5 animals per cage of CMVMJD83 and CMVMJD94
transgenic mice (hemi and homo) and wild-type littermates (n=10
per genotype and gender). Animals were evaluated at 16, 24, 36, 48,
60, 72 and 84 weeks of age in the Rotarod followed by the SHIRPA
protocol.

SHIRPA protocol
We established a protocol for phenotypic assessment based on the

primary screen of the SHIRPA protocol, which mimics the diagnostic
process of general neurological and psychiatric examination in
humans (Rogers et al., 1997). Each mouse was placed in a viewing
jar (15 cm diameter) for 5 min, transferred to a 15-labeled-squares
arena (55×33×18 cm), and then a series of anatomical and
neurological measures were determined. The full details of the
SHIRPA protocol are available at the site: http://www.mgu.har.mrc.
ac.uk/facilities/mutagenesis/mutabase/shirpa_summary.html.

In addition, we included the vertical pole test (Wallace et al.,
1980), the footprint pattern test (Carter et al., 1999) and the counting
of rears over 5 min in the viewing jar as a measure of spontaneous
exploratory activity. The protocol was adjusted in order to minimize
animal handling and to generate uniformity in waiting times between
the tests (Rafael et al., 2000).

Vertical pole test
This test was performed on a wood pole of approximately two cm

in diameter and 40-cm long, wrapped with cloth tape for improved
traction. The mouse was placed in the center of the pole, held
horizontally, and then the pole was gradually lifted to a vertical
ion and neuropathology in a transgenic mouse model of Machado–
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position. Latency to fall off the pole was recorded with a maximum
time of 1 min.
Footprint pattern
The footprint test was used to evaluate the gait of the animals. To

obtain footprints, the hind- and forepaws of the mice were coated
with black and red non-toxic paints, respectively. A clean sheet was
placed on the floor of the runway for each run. The animals were then
allowed to walk along a 100-cm-long×4.2 cm width×10 cm height
corridor in the direction of an enclosed black box. Each animal was
allowed to achieve one valid trial per age. The footprint patterns were
analyzed for four step parameters (all measured in cm): the front- and
hind-base width, the foot step uniformity and the length of the step.
For each step parameter, three values were measured for three
consecutive steps, with the exclusion of the first four steps to allow for
habituation.
Rotarod
Mice were tested in a rotarod apparatus (TSE systems, Bad

Homburg, Germany) to evaluate their motor performance. The
protocol consisted of 3 days of training at a constant speed (15 rpm)
for a maximum of 60 s in four trials, with a 10 min interval between
each trial. On the fourth day, animals were tested for each of 6
different speeds (5 rpm, 8 rpm, 15 rpm, 20 rpm, 24 rpm and 31 rpm)
for a maximum of 60 s in two trials, with a 10-min-long interval
between each trial. After a one-hour rest period, the animals were
subjected to four trials on an acceleration rod (4–40 rpm, 5 min) with
a 10–15-long interval between each trial.
RT2 Profiler™ PCR Array (Superarray) analysis of neuroinflammation

The mRNA expression level of 84 key genes involved in the
inflammatory response, 5 house-keeping genes and controls for DNA
contamination, reverse transcription and PCR efficiency were deter-
mined simultaneously using Superarray technology (SABiosciences™).
For this experiment, animals were euthanized by decapitation, and the
cerebellum was collected and immediately snap frozen and stored at
−80 °C. RNA samples extracted from the cerebellum of CMVMJD94
transgenic and wild-type animals at 8 and 24 weeks of age (n=10
or 12) were pooled onto individual Superarrays with 3–4 samples per
array for a total of 3 arrays per condition. The RNA was first converted
into first-strand cDNA using the RT2 First Strand Kit following the
manufacturer's guidelines. In addition, we analyzed the expression
levels of the tumor necrosis factor (Tnfα), interleukin 6 (Il6), interleukin
1 beta (Il1β) and ionized calcium-binding adapter molecule 1 (Iba-1)
genes by the qRT-PCR assay using the following primers, respectively:
mu Tnfa Sy F (5′GCCACCACGCTCTTCTGTCT3′); mu Tnfa Sy R (5′
TGAGGGTCTGGGCCATAGAAC3′); mu Il-6 Sy F (5′ACACATGTTCTCTGG-
GAAATCGT3′); mu Il-6 Sy R (5′AAGTGCATCATCGTTGTTCATACA3′);
SP_Il-1b (5′ACCTTCCAGGATGAGGACATGA3′); AS_Il-1b (5′AACGTCA-
CACACCAGCAGGTTA3′); Iba-1_f (5′GAAGCGAATGCTGGAGAAAC3′);
Iba-1_r (5′CTCATACATCAGAATCATTCTC3′).
Statistical analysis

Behavioral data were subjected to the non-parametric Mann–
Whitney U-test when variables were non-continuous or when a
continuous variable did not present a normal distribution (Kolmo-
gorov–Smirnov test pb0.05). Continuous variables with normal
distributions (K–S test pN0.05) were analyzed with the Student
t-test or ANOVA. All statistical analyses were performed using SPSS
16.0 (SPSS Inc., Chicago, IL). A critical value for significance of pb0.05
was used throughout the study.
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Results and discussion

We have created a novel transgenic mouse model of MJD
expressing an expanded version of the human MJD1-1 cDNA (the 3
UIMs-containing variant of ATXN3, previously used in the mouse
models described by Bichelmeier et al., 2007; Boy et al., 2009a,b),
under the regulation of the CMV promoter. This model displays
some important features that mirror the human disease. Transgenic
CMVMJD94 mice (94 CAGs) showed: i) a motor uncoordination
phenotype that, manifested in hemizygous mice, is in agreement with
the dominantmode of transmission of this spinocerebellar ataxia; ii) a
direct correlation between CAG repeat length and disease manifes-
tation; iii) intergenerational instability of the (CAG)n tract; iv) somatic
mosaicism of the repetitive CAG stretch in neuronal and non-neuronal
tissues; and v) neuropathologic alterations in specific regions such as
the thalamus, the dentate and pontine nuclei, the substantia nigra and
the vestibular nuclei, that parallel the human disorder. Importantly,
the detailed study of this model allowed us to exclude events such as
ATXN3 cleavage and intranuclear aggregation as key factors to the
onset of disease and revealed that neurodegeneration occurs in the
absence of apoptosis or necrosis. Neuroinflammation was also not
evident at the early stages of the disease.

Generation of MJD transgenic mice

In order to generate MJD transgenic mice, we subcloned the mutant
human cDNA ATXN3c variant carrying a (CAG)2CAAAAGCAGCAA
(CAG)77 repeat tract, coding for 83 polyQs, into the pCMV vector,
which is a strong and general expression promoter (Fig. 1A). Two
founders were obtained from two different microinjections: founder
CMVMJD94 and CMVMJD83, carrying 94 and 83 CAGs, respectively
(Fig. 1B). This indicates that the CAG repeat tract from founder
CMVMJD94 suffered an expansion of 11 CAG repeats from the injected
construct, probably occurring during early embryonic mitosis events.
Our analysis of the transmission of the transgene revealed an adequate
fit to Mendelian expectations, with no decrease of the proportion of
homozygotes (Fig. 1B). Although aMendelian segregation distortion for
the expanded CAG allele (with a higher transmission of the mutant
allele) has been described by some authors in human MJD families
(Ikeuchi et al., 1996; Iughetti et al., 1998; Riess et al., 1997; Takiyama
et al., 1997), this is a controversial finding that, according to others, can
be explained by observational bias in families selected for genetic
lineage studies due to a large number of affected individuals (Grewal
et al., 1999). Our analysis of the transmission of the CMVMJD94 and
CMVMJD83 transgenic lineages excluded a “meiotic drive” effect of the
expanded allele in these mice (Fig. 1B).

Expression of expanded human ataxin-3

As expected from the general expression features of the pCMV
promoter, the human ataxin-3 (ATXN3) was detected in the CNS
(Fig. 1C) and peripheral tissues of transgenic mice in both lineages by
anti-ataxin-3 western blot and immunohistochemistry (IHC). This is
comparable to the ubiquitous expression of ATXN3 reported in human
tissues (Kawaguchi et al., 1994; Paulson et al., 1997). The ATXN3
mRNA expression was also confirmed in both lineages by qRT-PCR
(data not shown).

In the immunoblots for both lineages endogenous mouse ataxin-3
protein (Atxn3) was observed at 42 kDa, as previously described
(Costa et al., 2004), while ATXN3 was detected at approximately
70 kDa; due to the CAG tract length difference it was possible
to observe a slight variation in the ATXN3 protein size between
CMVMJD94 and CMVMJD83 transgenic mice (Fig. 1C). No SDS-
resistant species or cleaved products of ATXN3 were observed in the
brains of mice from either transgenic lineage (Fig. 1D). Quantitative
measurement of these immunoblots confirmed that CMVMJD94
ion and neuropathology in a transgenic mouse model of Machado–
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http://dx.doi.org/10.1016/j.nbd.2010.05.021


Fig. 1.Mendelian transmission of the transgene and ubiquitous brain expression of ATXN3 in CMVMJD transgenic mice. (A) Schematic diagram of the plasmid CMVMJD1-1E used for
the generation of cDNAMJD transgenic mice. (B) Descriptive summary of the transgenic mouse lineages generated. (C)Western blot analysis of human ataxin-3 (ATXN3) in different
CNS regions of CMVMJD83 and CMVMJD94 mice with approximately 86 weeks of age. In all lanes, the endogenous mouse ataxin-3 (Atxn3) is detected at about 42 kDa. An
approximately 70-kDa protein (asterisks) corresponding to expanded ATXN3 is detected in transgenic animal lysates from the cerebellum, forebrain and brainstem. Hemi
CMVMJD94 animals and homo CMVMJD83 express approximately equal levels of ATXN3. (D) Western blot using 1H9 antibody for CMVMJD94 mice at advanced ages (84 weeks of
age) did not reveal the presence of ATXN3 fragments or insoluble protein in the stacking gel. wt, wild-type; hemi, hemizygous; homo, homozygous; ns, non-specific bands.
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hemizygotes and CMVMJD83 homozygotes mice expressed approx-
imately equal levels of ATXN3 in total brain (Fig. 1B). As a control
result, we observed that ATXN3 expression in homozygous mice was
double that of hemizygousmice (Fig. 1D). In addition, ATXN3was also
detected in peripheral tissues and organs such as skeletal muscle,
pancreas, heart and testis of both mutant lines (data not shown).

Anti-ataxin-3 IHC revealed increased ATXN3 expression in
transgenic MJD mice brains, both in terms of intensity and number
of stained cells, in comparisonwith non-transgenic littermates (Fig. 2;
Supp. Figure 1). In addition, mutant ATXN3 was detected in several
brain regions including areas involved inMJD, namely, the cerebellum
(cerebellar cortex and deep cerebellar nuclei), the pontine nuclei, the
locus coeruleus and the substantia nigra, among others (Fig. 2).

Parental gender and genetic background-dependent pattern of CAG
intergenerational instability

A common feature of polyQ disorders is the dynamic behavior
of CAG expansions, which are thought to be responsible for the
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anticipation observed in human patients. This phenomenon reflects
the global tendency of expanded repeats to become larger when
transmitted from one generation to the next. CAG repeat length
variation is observed not only throughout generations – intergener-
ational instability – but also among several tissues of individual
patients— somatic mosaicism. To investigate whether MJD transgenic
mice, like human patients, displayed intergenerational instability of
the expanded triplet repeat, we determined the (CAG)n tract length in
maternal and paternal meioses of transgenic CMVMJD94 animals. This
lineage was chosen for the study because amplification of the CAG
repeat produces a single major peak. This finding means that the two
copies of the transgene integrated in these transgenic mice carry the
same CAG repeat number, allowing the analysis of (CAG)n length
variation. When amplified by PCR, the DNA extracted from transgenic
mouse tissues exhibited a pattern of bands very similar to that
observed in heterozygous human patients (Maciel et al., 1997).

These mice were generated by breeding between either hemi
CMVMJD94 males or females with the correspondent non-transgenic
breeder in two different genetic backgrounds, C57Bl/6 and FVB/N,
ion and neuropathology in a transgenic mouse model of Machado–
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Fig. 2. Absence of large intranuclear inclusions in transgenic mice with motor impairment. Anti-ataxin-3 immunohistochemistry (rabbit anti-MJD1.1) of wild-type and transgenic
CMVMJD94 mice at late stages of the disease (49 weeks). Ataxin-3 presents a cytoplasmic localization in special forming small-punctate structures in the perinuclear region.
Examples of scattered dark and shrunken cells positive for ataxin-3 can be observed in dentate nuclei and substantia nigra (arrows). wt, wild-type; hemi, hemizygous. Scale bar:
10 µm.
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which allowed us to identify genetic background effects on repeat
instability. We observed, for both backgrounds, that the CAG repeat
length varied through generations in more than 50% of the transmis-
sions: the expanded allele had the tendency to expand when
transmitted through the male progenitor and to contract when
transmitted from the female progenitor (Figs. 3A,B). This observa-
tion reached statistical significance in the C57Bl/6 background
(pb0.05) (Fig. 3B). The differential distribution of CAG repeat length
variation in the two congenic strains suggests that background-
specific modifier loci might affect the pattern of instability of this CAG
tract.

Our results are in agreement with previous results described in
MJD patients regarding themild instability of the CAG tract length and
the difference in (CAG)n instability between male and female
transmissions (Maciel et al., 1995).

CAG length-dependent motor phenotype

During the behavioral analysis period, some animals with different
genotypes died, without bias. Behavioral studies revealed a number of
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findings in the CMVMJD94 transgenic mice, which differed from non-
transgenic and transgenic hemizygous or homozygous mice from
lineage CMVMJD83. The rotarod test performed either at constant
speeds or using an acceleration protocol revealed that both hemi and
homo CMVMJD94 mice presented a motor coordination impairment
beginning at 16 weeks of age (Fig. 4A). In MJD, a gene-dosage effect
has been proposed in individuals who are homozygous for the
mutation, showing a juvenile onset and more rapid progression of the
disease (Sobue et al., 1996). Interestingly, in our model, homozygous
animals also spent less time on the rod in comparison with hemi-
zygous animals, although this difference did not reach statistical
significance (Fig. 4A).

Additionally, transgenic CMVMJD94 mice presented a trend
towards a decrease of locomotor activity, given by the number of
squares traveled in the arena in the SHIRPA protocol (Fig. 4B). This
reduced locomotor activity only reached significance for homozygous
animals at 48 weeks of age (Fig. 4B). No differenceswere found for the
other parameters evaluated, including the vertical pole test and the
footprinting pattern (Supp. Figure 2). Hemi or homo CMVMJD83mice,
differing from the CMVMJD94 in the CAG tract, which was only 11
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Fig. 3. Intergenerational instability of the expanded CAG repeat in transgenic CMVMJD94 mice. (A) Polyacrylamide gels showing the variation of the CAG repeat tract length of male
and female hemi CMVMJD94 progenitors and their respective descendants in the FVB/N background. (B) Differential pattern of CAG repeat variation in transgenic CMVMJD94 male
and female meioses, in the FVB/N and C57Bl/6 genetic backgrounds.
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units shorter, did not present any behavioral differences in compar-
ison with control littermates (Figs. 4A,B).

Although the expression of normal ATXN3 in mouse could in
theory give rise to some pathological consequences, other transgenic
mice expressing the same protein were indistinguishable from wild-
typemice, even when consideringmouse lines with strong expression
and mice of older ages (between 12 and 22 months) (Bichelmeier
et al., 2007; Cemal et al., 2002; Chou et al., 2008; Goti et al., 2004). In
view of these findings, we used wild-type littermates as controls.
Furthermore, homo CMVMJD83 mice did not present motor pheno-
type or brain pathology (see below) although they expressed levels of
expanded ATXN3 similar to those of hemi CMVMJD94 mice. Since
transgenic CMVMJD83 mice carried a shorter CAG tract than the
CMVMJD94 ones (83 vs. 94 CAGs), these data allowed us to conclude
that at this level of expression of expanded ATXN3, the minimum CAG
tract length to induce an altered phenotype in the transgenic mice is
between 84 and 94 CAG repeats.

Interestingly, the usage of two different study groups, including
hemi CMVMJD94 mice and their non-transgenic littermates for
phenotype assessment, revealed that although, at 16 weeks of age,
the first group of hemizygous animals displayed a significant decrease
in the time spent on the accelerating rod (mean of 4 trials, 4–40 rpm),
the hemizygous mice from the second group did not replicate this
motor deficit at the same age (Fig. 5A). Since transgenic mice
displayed CAG instability across generations, we hypothesized that
CAG repeat length differences could have influenced the manifesta-
tion of the disease at early stages. In fact, we observed that
hemizygous animals from group II carried lower CAG repeat lengths
(mean 95.85±1.73) than animals from group I (mean 97.61±2.00)
(Fig. 5B). Additionally, when analyzing all of the data, we found an
inverse correlation between the CAG tract length and the time spent
on the rod at 16 weeks of age (pb0.05): animals carrying longer CAG
repeats spent less time on the rod (Fig. 5B). This genotype–phenotype
correlation is in agreement with that observed in MJD patients
Please cite this article as: Silva-Fernandes, A., et al., Motor uncoordinat
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(Maciel et al., 1995) and with the anticipation phenomenon, in which
longer repeat lengths in successive generations are associated with a
more severe and earlier onset of symptoms.

Neuronal atrophy and astrogliosis in transgenic CMVMJD94 mice

Histopathological observations of brain sections of transgenic
CMVMJD94 mice revealed the presence of scattered dark, shrunken
cells with basophilic cytoplasm (Fig. 6) (H&E staining) in several
regions, such as the dentate, pontine nuclei and thalamus, in
comparison with normal cells observed in wild-type animals
(Fig. 6). Globally, these findings are consistent with the pathological
findings reported in MJD patients, where the degeneration involves
atrophy and gliosis (Kanda et al., 1989; Rub et al., 2008). To further
investigate the molecular mechanism of neurodegeneration, we
performed a TUNEL assay, as well as caspase-3 IHC and fluoro-jade
staining in brain sections of CMVMJD94 mice with no positive results
(data not shown). These results suggest that the dark neurons
observed in such areas, as the thalamus and pontine and dentate
nuclei could be dying via another cell death process, or, alternatively,
that their morphology could be associated with a dysfunctional but
not a dying cell status. Nevertheless, CMVMJD94 transgenic mice with
49 weeks of age displayed an increase in GFAP immunostaining
(within reactive astrocytes) in specific areas, such as the vestibular
nuclei (Ve) and substantia nigra (SN), indicative of an abnormal
increase in the number of astrocytes in these areas, a phenomenon
normally associated with neuronal demise (Figs. 7A–F; Supp.
Figure 3). The analysis of CMVMJD94 mice brains at early stages of
the disease (16 weeks) revealed the presence of a milder neuronal
atrophy in areas such as the pontine and dentate nuclei (Fig. 6) and
the absence of the astrogliosis observed at late stages. Our results
direct us to a different concept of neurodegeneration, encompassing a
progressive degradation of neuronal function and structure that may
include cellular changes, such as loss of synaptic contacts, disruption
ion and neuropathology in a transgenic mouse model of Machado–
oducts, Neurobiol. Dis. (2010), doi:10.1016/j.nbd.2010.05.021

http://dx.doi.org/10.1016/j.nbd.2010.05.021


Fig. 4.Motor phenotype of CMVMJD transgenic mice. (A) The rotarod test (n=10 for each tested group) demonstrated that hemi and homo CMVMJD94 mice displayed a significant
decrease in the latency to fall at 24 rpm (one-way ANOVA; factor: genotype) and in the accelerating rod (4–40 rpm) (Repeated measures; factor: genotype) in comparison with
wild-type animals. Transgenic CMVMJD83 mice (hemi and homo) did not display a motor coordination deficit in the rotarod paradigm until 84 weeks of age. (B) Spontaneous
locomotor activity decrease in transgenic CMVMJD94 mice. CMVMJD94 mice displayed a tendency to travel less squares during the 30 seconds of observation in the arena. wt, wild-
type; hemi, hemizygous; homo, homozygous. *Statistical significance pb0.05.
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of axonal transport, blockage of autophagy and mitochondrial
dysfunction, among others. Although this process can eventually
lead to cell death through different pathways, it is by itself sufficient to
cause neurological disease.

Although it has been suggested that a cleavage product of mutant
ATXN3 is critical for the induction of MJD pathogenesis (Wellington
et al., 1998), western blot analysis of brains from symptomatic
transgenic CMVMJD94mice, did not reveal the presence of the 36 kDa
cleavage product of ATXN3, described previously in human (end-
stage) patients and in another mouse model (Goti et al., 2004).
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Additionally, anti-ataxin-3 IHC in the brain of these MJD transgenic
mice demonstrated that the proteinwasmainly localized in punctuate
structures in the perinuclear region of neurons (Fig. 2), and no large
intranuclear inclusions were found even at late stages (84 weeks of
age). These results suggest that the disease manifestation in our
transgenic mice is not dependent on the formation of nuclear
inclusions. In fact, although cytoplasmic and/or nuclear inclusions
in neurons of the CNS represent a pathological hallmark of polyQs
diseases (Yamada et al., 2000), several studies have demonstrated a
dissociation between the presence of large protein inclusions and
ion and neuropathology in a transgenic mouse model of Machado–
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Fig. 5. Genotype–phenotype correlation. (A) At 16 weeks, hemi CMVMJD94 mice from group I (n=18) revealed a motor phenotype deficit, whereas hemi CMVMJD94 animals from
group II (n=20) did not manifest significant differences in rotarod performance when compared to wild-type littermates (t-test student; mean of four consecutive trials in the
accelerating rod). Hemi CMVMJD94 mice from group I developed a motor phenotype earlier than group II because the first was enriched with animals carrying higher CAG repeat
lengths. (B) Genotype–phenotype correlation in hemi CMVMJD94 transgenic mice (groups I and II). wt, wild-type; hemi, hemizygous. *Statistical significance pb0.05; Pearson
correlation R2=0.2057; p=0.004.
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toxicity in vivo (Klement et al., 1998; Reiner et al., 2007; Slow et al.,
2005) and in vitro (Arrasate et al., 2004; Saudou et al., 1998).
Furthermore, recent findings using a Spinal and Bulbar Muscular
Atrophy (SBMA) mouse model have implicated the species
corresponding to the earlier stages of polyQ protein aggregate
formation – oligomers – in the disease progression (Li et al., 2007).

Tissue- and age-dependent somatic mosaicism of the CAG repeat

The hypothesis that somatic mosaicism of the CAG repeat may
contribute to the specificity of neurodegeneration (Telenius et al.,
1994) was previously tested by determining the mosaicism index of
the CAG repeat tract in various brain regions of MJD patients (Cancel
et al., 1998; Lopes-Cendes et al., 1996; Tanaka et al., 1999). Our
analysis of the CAG repeat size in several brain regions and different
peripheral tissues of the CMVMJD94 mice showed the existence of
Fig. 6. Neuropathology of CMVMJD94 mice. Comparative sections stained with H&E of wild-t
(I–L) at 16 and 49 weeks of age. Transgenic CMVMJD94 mouse neurons in the thalamus an
pyknotic nuclei and a basophilic cytoplasm (arrows) in comparison with normal cells obse
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somatic mosaicism of the expanded allele — several bands larger and
smaller than the major band were observed (Fig. 8A). The mosaicism
index (MI) of the (CAG)n tract in different brain regions (cerebellar
cortex, deep cerebellar nuclei, motor cortex, hippocampus, amygdala,
hypothalamus, substantia nigra, striatum and pontine nuclei) and
peripheral tissues (heart, skeletal muscle, testis, kidney, liver and tail)
was determined with aging (Fig. 8). An age-dependent increase in the
mosaicism index (ANOVA, factor age, pb0.05) was observed in all
tissues that were analyzed, except for the heart (Fig. 8B). In addition, it
was possible to observe the MI increase during aging in successive tail
DNA samples from the same animal (Fig. 8A). Our results are in
accordance with those obtained in animal models of different polyQ
diseases, in which age has been described as a CAG repeat instability
modifier (Clark et al., 2007; Ishiguro et al., 2001; Sato et al., 1999).
Interestingly, we also observed that different tissues exhibited
different patterns of MI increase with age. The cells from the liver,
ype and hemi CMVMJD94 mice thalami (A–D), dentate nuclei (E–H) and pontine nuclei
d dentate nuclei were observed by H&E staining as scattered dark, shrunken cells with
rved in wild-type animals. wt, wild-type; hemi, hemizygous. Scale bar: 50 µm.
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Fig. 7. Astrogliosis in the brain of CMVMJD94 mice. GFAP immunostaining of the substantia nigra (A–C) and the vestibular nuclei (D–F) at 49 weeks of age. Transgenic hemizygous
and homozygous mice showed increased immunostaining (*, pb0.05) and the presence of reactive astrocytes, relative to wild-type animals. The insets represent a higher
magnification demonstrating both atrophic neurons and reactive astrocytes. wt, wild-type; hemi, hemizygous; homo, homozygous. Scale bar: 50 µm.
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pontine nuclei, substantia nigra and striatum displayed the highest MI
increase, and the cells from the cerebellar cortex and skeletal muscle
showed the lowest MI increase during aging. These results are in
agreement with the behavior of the mutant allele in the human
patients, in which the cerebellar cortex and skeletal muscle exhibited
a lesser degree of CAG instability, while the liver displayed a greater
diversity of bands (Tanaka et al., 1999). Although mitotic turnover
may contribute largely to the tissue-specific pattern of mosaicism in
MJD, the absence of a direct correlation of the MI with the mitotic rate
of the cells of the tissues analyzed (e.g., liver and pontine nuclei)
suggests that other unknown cell-specific factors should be taken into
consideration to understand the mechanism of somatic mosaicism in
CAG repeat diseases.

Among the brain regions analyzed, the pontine nuclei, substantia
nigra and striatumwere the areas with the highest MI increase during
aging; of these, we observed pathological involvement in the pontine
nuclei and substantia nigra (described above) but not in the striatum,
which led us to conclude that, in this mouse model, the specific
increase of somatic mosaicism was not clearly correlated with
neuronal vulnerability. Although a correlation between somatic
mosaicism and the pathology of different brain regions was not
evident, our results concerning the (CAG)n size variation pattern in
CMVMJD94 transgenic mice revealed that this mouse model can be
useful for the study of themolecular basis of the CAG repeat instability
as well as of MJD pathogenesis.
Absence of neuroinflammation in CMVMJD94 mice before the onset of
the disease and at early symptomatic stages

The idea of chronic and detrimental microglial neuroinflammation
as a cause of neurodegeneration has been studied extensively in the
context of neurodegenerative diseases, notably in Alzheimer's disease
(Streit et al., 2004), but nothing is known about the role of
neuroinflammation in MJD pathogenesis. According to this theory,
activated microglia, as the main cellular source of inflammatory
Fig. 8. Age-dependent somatic mosaicism of the expanded CAG repeat in neuronal and non-n
the CAG repeat pattern of neuronal and non-neuronal tissues from CMVMJD94 mice at differ
transgenic CMVMJD94 mice. The average of the MI for at least three mouse samples of eac
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mediators in the CNS, gain neurotoxic properties leading to neuronal
death (McGeer and McGeer, 2001, 2002).

Previous results demonstrated that genes associated with inflam-
mation are upregulated in expanded ataxin-3-expressing cell lines
and in post-mortem MJD brains (Evert et al., 2001). However, the
authors discussed the difficulty associated with deciding whether this
inflammation is an essential step in the pathogenesis, or whether it is
a compensatory response to maintain cellular function and integrity.
Moreover, they suggested that it is unlikely that the reported changes
represent an early event in the pathophysiology of MJD, because
upregulation of pro-inflammatory genes was observed at a timewhen
NIs were already present.

In order to clarify the role of neuroinflammation in the
pathogenesis of MJD, we evaluated microglial cell morphology in
the cerebellum of wild-type and CMVMJD94 transgenic mice prior to
the onset of the diseasemanifestation (10 weeks), at early (25 weeks)
and late stages of disease (109 weeks). We did not find any dif-
ferences in Iba-1 staining at any studied age between transgenic and
control groups (Fig. 9A; Supp. Figure 4A). In agreement, the Iba-1
expression levels as measured by qRT-PCR in the cerebellum of
transgenic animals did not differ from wild-type animals, as expected
if microglia cells were activated (Fig. 9B; Supp. Figure 4B). Addition-
ally, the gene expression levels of TNF, interleukin-1β and interleukin-
6 did not differ between control and transgenic mice (Fig. 9B;
Supp. Figure 4B). Among the additional 84 genes related to the
inflammatory response that we analyzed in the cerebella of
CMVMJD94 and control mice at 8 and 24 weeks of age, only six
were significantly (but very slightly) altered in the transgenic mice: at
8 weeks we observed a downregulation of integrin 1β (0.66 fold
change; p=0.026) and at 24 weeks an upregulation of the chemo-
kines Ccl4 (2.31 fold change; p=0.041) and CxCl10 (2.02 fold change;
p=0.015) and a downregulation of IL13 receptor α1 (0.83 fold
change; p=0.043), Il10 receptorα1 (0.73 fold change; p=0.034) and
Lymphotoxin B (0.60 fold change; p=0.047) (Supplementary table).
The biological relevance of these subtle changes is not clear, but
we conclude that an overall pro-inflammatory pattern is not present
euronal tissues of hemi CMVMJD94mice. (A) Representative Genescan tract diagrams of
ent ages. (B) Differential pattern of the mosaicism index (MI) increase through aging for
h tissue is represented (±SEM). *Statistical significance pb0.05.
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Fig. 9. Inflammatory profile of the cerebellum of CMVMJD94 mice. (A) Iba-1 immunostaining in sections of cerebellum of hemi CMVMJD94 mice and wild-type animals at 10 and
25 weeks of age (A–D). Transgenic mice did not exhibit differences in the morphology of microglial cells in the cerebellum when compared to control littermates at asymptomatic
and symptomatic ages. Scale bar 100 µm. (B) qRT-PCR analysis of mRNA Iba-1, Tnfa, Il1b, Il6 expression levels in the cerebellum of hemi CMVMJD94 and wild-type mice. All values
were normalized for the Hprt1 gene. wt, wild-type; hemi, hemizygous.
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at these early stages in the cerebellum of CMVMJD94 transgenic
mice. Our results thus suggest that microglial cells are not primed
for activation before the onset of the MJD disease, which implies
that the microglial activation observed in post-mortem tissues (Evert
et al., 2001) could be a consequence rather than a cause of the long
neurodegeneration process undergone by human patients.

In summary, this work provides evidence for a dominant CAG
length-dependent neurological phenotype in the novel CMVMJD94
transgenic mouse model, in agreement with that observed in human
patients. Moreover, we show that this mouse model recapitulates key
features of the human disorder: CAG repeat instability, neurological
dysfunction and brain pathology. The neuronal dysfunction occurs in
the absence of ATXN3 cleavage products, intranuclear inclusions, or
any evidence of programmed cell death, necrosis or neuroinflamma-
Please cite this article as: Silva-Fernandes, A., et al., Motor uncoordinat
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tion, which might occur at later stages of the disease. We propose that
this model is useful for dissecting the initial cellular and molecular
events in the pathogenesis of MJD.
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Appendix A. Supplementary data
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