An Interaction Abstraction Toolkit for

Public Display Applications

Jorge Carlos dos Santos Cardoso

UMinho | 2013

! 7\
~N”7
I~ _/

Universidade do Minho
Escola de Engenharia

Jorge Carlos dos Santos Cardoso

An Interaction Abstraction Toolkit for
Public Display Applications

Setembro de 2013

7\
_/

I'\

Universidade do Minho
Escola de Engenharia

Jorge Carlos dos Santos Cardoso

An Interaction Abstraction Toolkit for
Public Display Applications

Tese de Doutoramento
Tecnologias e Sistemas de Informacéao

Trabalho efectuado sob a orientacao de
Professor Doutor Rui Joao Peixoto José

Setembro 2013

Declaracao

Nome: Jorge Carlos dos Santos Cardoso

Telefone: 4351 226196200

Endereco electréonico: jorgecardoso@ieee.org

Numero do Bilhete de Identidade: 11730214

Titulo da tese: An Interaction Abstraction Toolkit for Public Display Applications
Orientador: Professor Doutor Rui Joao Peixoto José

Ano de conclusao: 2013

Ramo de Conhecimento do Doutoramento: Tecnologias e Sistemas de Informagao
E AUTORIZADA A REPRODUCAO INTEGRAL DESTA TESE/TRABALHO
APENAS PARA EFEITOS DE INVESTIGACAO, MEDIANTE DECLARACAO

ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE;

Universidade do Minho, Setembro 2013

o |
(il F] C
SanTos (avdsSo

Taae (=l los, x]“"

Assinatura:

Acknowledgements

Taking a PhD degree is something that is usually described as a lonely activity. All
things considered, although it might feel like a lonely job, it is in fact a journey where
the contributions of many people come together. Many people have contributed to
this work, to whom I would like to thank.

First, I must acknowledge and thank my supervisor, Professor Rui José. His effort
and dedication in guiding, correcting and supporting me during this period makes
the present work as much his as it is mine.

I must also acknowledge all the colleagues of the Mobile and Ubiquitous Systems
(Ubicomp) with whom I have shared very good moments. I would especially like
to thank Bruno, Helder, and Constantin for their support and contribution to my
work.

The team of the PD-NET project also deserves a special mention. I have learned a
lot from my collaboration with them.

I would also like to thank my colleagues at the Research Centre for Science and
Technology in Art (CITAR) and at the School of Arts of the Portuguese Catholic
University for providing an excellent work environment, and for supporting and
participating in various of the studies in this work.

Finally, and most importantly, Sara for putting up with me during all this time.

This research was supported by the Fundacao para a Ciéncia e Tecnologia (FCT)
PhD training grant SFRH/BD/47354/2008. This research has also received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 244011 (PD-Net).

il

Abstract

An Interaction Abstraction Toolkit for Public Display Applications

Public digital displays have become increasingly ubiquitous in our technological
landscape. Considering their flexibility and communication potential, public dis-
plays can become an important communication channel and even reach the atten-
tion, usage, and relevance that smartphones have today. Interaction with public
displays is recognised as a key element in making them more engaging and valuable,
but most public display systems still do not support any interactive feature. A key
reason behind this apparent paradox is the lack of efficient and clear abstractions for
incorporating interactivity into public display applications. While interaction can
be achieved for a specific display system with a particular interaction modality, the
lack of proper interaction abstractions means that there is too much specific work
that needs to be done outside the core application functionality to support even
basic forms of interaction.

In this work, we investigate and develop interaction abstractions for public displays.
We start by analysing public displays from the point of view of the information that
results from the various interactions and that can be used to drive several types of
content adaptation behaviour on public displays. We call this information digital
footprints, and the result is a framework that maps digital footprints to adaptation
strategies and to interaction mechanisms. This framework can be used by display
designers to help them choose the interaction mechanisms that a display should sup-
port in order to be able to collect a given set of footprints, creating more relevant
displays that are able to automatically adapt to their environment. We then iden-
tify and characterise interaction tasks and controls that are appropriate for public
display interaction. This analysis results in a design space that can form the founda-
tion of interaction toolkits, giving system developers with a reference for the types
of high-level tasks and controls that can be incorporated into a toolkit. Finally, we
design, implement, and evaluate a software toolkit of interaction abstractions for
public display applications — the PuReWidgets toolkit. Programmers can use this
toolkit to easily incorporate interactive features into their web-based public display
applications. PuReWidgets provides high-level abstractions that shield program-
mers from the low-level details of the interaction mechanisms. We evaluate this
toolkit along various dimensions. First, we evaluate the system’s performance. We
then evaluate the API’s flexibility and capabilities using our own experience in de-
veloping interactive applications with it. We also evaluate the API’s usability from
the perspective of independent programmers. Finally, we provide an evaluation of

the resulting system’s usability from the perspective of an end-user interacting with
a real-world deployment of a public display. The evaluation results indicate that
PuReWidgets is an efficient, usable, and flexible toolkit for web-based interactive
public display applications.

By making this toolkit publicly available, we hope to promote the development of
more and newer kinds of interactive public display applications inside and, more
importantly, outside the research community.

Keywords: Interactive public displays, Interaction abstractions, Programming toolkit,
Socially situated displays.

Resumo

Um Toolkit de Abstracgoes de Interacgao para Aplicagoes de Ecras Ptublicos

Os ecras publicos digitais estdao cada vez mais presentes na nossa paisagem tec-
nolégica. Considerando a sua flexibilidade e capacidade de ligacao em rede, os ecras
publicos tém o potencial para se tornarem num importante canal de comunicagao
e talvez até atingir a atencao, utilizacao e relevancia que os smartphones tém hoje
em dia. A interactividade dos ecras publicos é reconhecida como um elemento
chave para os tornar mais atractivos e valiosos, mas a maioria dos sistemas de ecras
publicos actuais ainda nao suporta nenhuma forma de interaccao. Uma razao por
detras deste aparente paradoxo é a falta de abstraccoes claras e eficientes para in-
corporar interactividade nas aplicacoes para ecras publicos. Apesar de a interaccao
poder ser conseguida para sistemas especificos, com uma modalidade de interacgao
especifica, a falta de abstracgoes de interaccao apropriadas significa que é necessario
demasiado trabalho especifico fora das funcionalidades nucleares da aplicagao para
suportar até as formas mais béasicas de interaccao.

Neste trabalho, investigamos e desenvolvemos abstraccoes de interaccao para ecras
publicos. Comecamos por analisar os ecras publicos do ponto de vista da informacao
que resulta das interaccoes e de que forma pode ser utilizada em procedimentos de
adaptacao de conteido para ecras publicos. Chamamos a esta informagao digital
footprints, e o resultado é uma estrutura conceptual que mapeia as digital footprints
em estratégias de adaptaccao e em mecanismos de interaccao. Esta estrutura pode
ser utilizada por designers de ecras publicos para ajudar a escolher os mecanismos
de interaccao que um determinado ecra deve suportar de forma a poder recolher
um determinado conjunto de digital footprints, criando assim ecras com conteidos
mais relevantes e que sao capazes de se adaptar ao seu ambiente social. De seguida,
identificamos e caracterizamos tarefas de interaccao e controlos apropriados para in-
teraccao com ecras publicos. Esta andlise resulta num espacgo de desenho que pode
servir de base para toolkits de interacgao, dando uma referéncia aos designers do sis-
tema para os tipos de controlos que podem ser incorporados no toolkit. Finalmente,
projectamos, implementamos e avaliamos um toolkit de abstraccoes de interacgao
para aplicacoes para ecras publicos — o toolkit PuReWidgets. Os programadores
podem utilizar este toolkit para incorporar facilmente funcionalidades interactivas
nas suas aplicagoes, baseadas na web, para ecras ptublicos. O PuReWidgets fornece
abstraccoes de alto nivel que protegem os programadores dos detalhes de baixo nivel
associados aos mecanismos de interaccao. O toolkit é avaliado segundo varias di-
mensoes. Primeiro, avaliamos o desempenho do sistema. De seguida, avaliamos

vil

a flexibilidade e capacidades da API, usando a nossa propria experiéncia no de-
senvolvimento de aplicacoes interactivas. Avaliamos também a usabilidade da API
da perspectiva de programadores independentes. Finalmente, avaliamos o toolkit
da perspectiva dos utilizadores que interagem com um ecra ptblico num ambiente
real. Os resultados da avaliacao indicam que o PuReWidgets é um toolkit eficiente,
flexivel e usavel para aplicacoes interactivas para ecras publicos.

Ao tornar este toolkit disponivel publicamente, esperamos promover o desenvolvi-
mento de mais aplicagoes interactivas para ecras ptublicos dentro e, mais importante,
fora da comunidade de investigacao.

Palavras-chave: Ecras publicos interactivos, Abstraccoes de interaccao, Toolkit de
programagao, Ecras socialmente situados.

Table of Contents

Abstract \%
Resumo vii
List of Figures xiii
List of Tables xvii
List of Acronyms Xix
1 Introduction 1
1.1 Motivationo 3
1.2 Challenges 8
1.3 Objectives and Contributions 11
1.4 Outline of this Document 14
2 Related Work 15
2.1 Imtroduction 17
2.2 Interaction in Public Display Systems 17
2.3 Software Support for Application Development 51
24 Conclusion 66
3 Requirements for Interaction Abstractions for Public Displays 67

X

3.1 Introduction 69

3.2 Assumptions 69
3.3 Design Requirementso 75
3.4 Conclusion 79
Digital Footprints for Socially-Aware Interactive Displays 81
4.1 Introduction 83
4.2 Digital Footprints o 83
4.3 Presence Sensingo 84
4.4 Self-exposureo 87
4.5 User-generated Content 89
4.6 Actionables 90
4.7 Mapping Footprints to Adaptation Models 91
4.8 Conclusion Lo 95

Interaction Tasks and Controls for Public Display Applications 97

5.1 Introduction 99
5.2 Procedure 100
5.3 Interaction Tasks for Public Displays 101
5.4 Design Space for Interaction Controls and Mechanisms 110
5.5 Conclusion 118

The PuReWidgets Toolkit — A Widget-based Interaction Abstrac-

tion for Public Displays 121
6.1 Introduction 123
6.2 Architecture 126

6.3 Widgets and Events. L. 129

6.4 User Interaction with PuReWidgets 133

6.5 Implementation Details 140
6.6 Conclusion 151
7 Evaluating PuReWidgets 153
7.1 Introduction 155
7.2 System Performance 0. 155
7.3 API Flexibility and Capabilities 159
7.4 API Usability 166
7.5 End-user Study 177
7.6 Conclusion 183
8 Conclusions 185
8.1 Contributions 187
8.2 Future Work 190
8.3 Final Remarks.o 195
A List of coded papers 197
B Questionnaires 201
B.1 Programming Study: Screening Questionnaire 201
B.2 Programming Study: Final Questionnaire. 203

References 207

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

List of Figures

The Opinionizer display. 19
The Dynamo display. 19
The IM Here display. 20
The Notification Collage display. 21
The MessyBoard display. 22
The CoCollage display. 23
The BlueBoard display. 24
The OutCast display. 25
The Community Wall display. 25
The Plasma Posters display. 26
The Digifieds display. 28
The WebWall display. 29
The Hermes Photo display. 30
The Bluetooth Instant Places display. 30
An Instant Places application driven by pin badges. 32
The e-Campus display. 32
The JoeBlogg display. 33
LocaModa’s displays. 34

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

3.1

6.1

6.2

The AgentSalon display. 35

The Hello.Wall display. 36
The Jukola display. 37
The ContentCascade mechanism. 38
The Mobilenin display. 39
The Publix display. o 40
The Tacita display. o 40
The Intellibadge display. 41
The Proactive displays. 42
The GroupCast display. 43
The Aware Community Portals display. 44
Interactive public ambient display. 45
The Info-jukebox display. 45
The Proxemic peddler display. 46
X Toolkit: the class tree for a subset of the available widgets. 52
X Toolkit: instance tree for a sample application. 53
Java Abstract Window Toolkit (AWT) toolkit: some components . . 54
Context Toolkit. 56
iStuff devices.o 63
iStuff architecture. o o 63
I/O Modules input platform. L. 65
Changing user roles in public display interaction. 7
General life-cycle of a public display application 125
PuReWidgets’ physical components diagram. 127

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

7.1

7.2

7.3

7.4

PuReWidgets’ general architecture. 127

PuReWidgets’ library components. 130
Default graphical appearance of a button. 130
Default graphical appearance of a list box widget. 131
Default graphical appearance of a text box widget. 131
Default graphical appearance of an upload widget. 131
Default graphical appearance of a download widget. 132
Default graphical appearance of a check-in widget. 132
I/O modules in PureWidgets. 134
Automatically generated web GUL. 135
Web interface for obtaining QR codes for specific widgets. 137
QR code interaction. 137
Touch interaction with a public display application. 138
Input feedback panel for on- and off-screen buttons. 140
Input feedback on the web GUL. 141
Sequence diagram for application loading. 143
Sequence diagram for widget instantiation. 144
Sequence diagram of input event. 145
Possible bucket button graphical representation. 148
Sequence diagram of input event for server-side notification. 151
Quota usage for an increasing number of places. 158
Execution time for an increasing number of places. 158
Average execution time for the various request types. 159

Screens in the Public YouTube Player application. 160

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Screens in the Everybody Votes application. 162

Screens in the Wrod Game application. 163
Sample screenshot of the resulting application from task 2. 169
Sample screenshot of the resulting application from task 3. 169
Sample screenshot of the resulting application from task 4. 170

Results from the questions regarding the understanding of the various

concepts associated with PuReWidgets. 172
Results from the questions regarding the completion of tasks. 172
Results from the questions regarding the programming functions. . . 173
Results from the questions regarding the usage of documentation. . . 173
Results from the questions regarding the quality of documentation. . 174

Results from question regarding participants confidence in using PuReWid-
gets to create their own applications. L. 174

The bar of the School of Arts with the display at the top of the front
wall. . . 178

2.1

2.2

3.1

4.1

4.2

4.3

0.1

5.2

5.3

5.4

2.9

2.6

List of Tables

Influence of interaction on the display’s content: comparative analysis. 47

Interaction mechanisms and features in public displays: comparative
analysis. L 50

Requirements for an interaction abstraction for public display appli-

cations. e 80
Digital footprints from interaction with public displays. 84
Mapping between content adaptation goals and digital footprints. . . 93

Mapping between digital footprints and supporting interaction modal-
Iles. . . . 94

Interaction tasks for public displays: properties, and values. 102

Mapping between interaction tasks and touch-screen based interac-
tion mechanisms. 112

Mapping between interaction tasks and interaction mechanisms based
on personal mobile devices. 113

Mapping between interaction tasks and device-free interaction mech-
ANISINS. e e e 114

Mapping between interaction tasks and desktop-like mechanisms. . . 115

List of possible controls for supporting the various interaction tasks. . 117

xXvii

List of Acronyms

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
AWT Abstract Window Toolkit

CMS Content Management System

CSS Cascading Styles Sheet

DPAA Digital Place-based Advertising Association
DHTML Dynamic HyperText Markup Language (HTML)
DTMF Dual-Tone Multi-Frequency
DOM Document Object Model

GPS Global Positioning System

GUI Graphical User Interface

GWAP Games With A Purpose

GWT Google Web Toolkit

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol

IDE Integrated Development Environment
IM Interaction Manager

ISL Interface Specification Language

LCD Liquid Crystal Display

MAC Media Access Control

MMS Multimedia Message Service

NFC Near Field Communication

OBEX OBject EXchange

XixX

OS Operating System

OTS Opportunity to See

OVAB Out-of-home Video Advertising Bureau
PDA Personal Digital Assistant

PUC Personal Universal Controller
QR code Quick Response code
REST Representational State Transfer
RFID Radio-Frequency Identification
RSS Really Simple Syndication

SDL Service Description Language
SMS Short Message Service

SNS Social Networking Site

SVG Scalable Vector Graphics

UI User Interface

UIID User Interface Implementation Description
URC Universal Remote Console

URL Uniform Resource Locator

USB Universal Serial Bus

WAP Wireless Application Protocol
WLAN Wireless Local-Area Network
XML eXtensible Markup Language
XSL eXtensible Stylesheet Language
YUI Yahoo! User Interface

XX

Chapter 1

Introduction

Contents
1.1 Motivation 0 oo e e 3
1.1.1 The importance of interaction for public displays 4
1.1.2 Difficulties in providing interactivity for public displays . 5
1.1.3 Benefits of an interaction toolkit for public displays . . . 6
1.2 Challenges. v v it ittt e e 8
1.3 Objectives and Contributions 11
1.4 Outline of this Document 14

1 INTRODUCTION

1.1 Motivation

Public digital displays have become an ubiquitous presence in our everyday lives.
We encounter them in the streets while we drive or walk, in shopping centres, gas
stations, subway stations, universities, shops, banks, etc. However, most of them
still do not provide any interactive features, even though interaction is repeatedly
pointed out as a key-enabling element towards more engaging and valuable public
displays. What is currently missing are interaction abstractions that designers and
developers can use to incorporate interactivity into their public display applications
in an easy manner.

Developments in display technology, particularly Liquid Crystal Display (LCD) and
plasma displays, allowed the development of thin and light displays at economically
attractive costs. This, in turn, has originated a wide spread deployment of these
displays with various sizes and with various functions. Increasingly, digital displays
are being used to substitute some older (mostly paper-based) forms of displaying
visual information and to introduce many new ones. These new displays have several
properties that make them attractive when compared to other media:

e They allow the presentation of dynamic information, and faster updating of
the information that is displayed.

e They are usually connected to devices with processing capabilities that can
be coupled with a variety of sensors, allowing the displays to become “smart
displays” that react to various environmental factors, including people.

e They can be networked, taking advantage of communication networks to ac-
cess remote information and to create an interconnected landscape of digital
displays.

This widespread use of digital displays has fostered significant research around the
concept of situated displays. This line of research aims at studying how digital
displays can be integrated into their environment and be designed to support the
activities and information requirements of a particular place. Public situated dis-
plays are a particular class of situated displays, meant to be shared by all visitors,
whether frequent or occasional ones, of a specific public, or semi-public, place.

The overall idea of a public situated display is that it is able to deliver “the right
information at the right time”. This means that the display must be able to show
relevant and interesting content to an audience which will have a particular expec-
tation for content in that particular place, and in a particular moment in time.

1.1 Motivation

The most common approach for public displays still inherits much of the traditional
broadcast model where content is published from a central entity. Display owners
use their knowledge about the type of place, the intended audience, and their own

1 INTRODUCTION

interests, to define what might be relevant content. However, if all the decisions
must be made a priori, they will not take into account the fluidity and heterogeneity
of the social context around the display. This limited approach usually results in
repetitive and unattractive displays that fail at engaging users and at providing
relevant, adapted, content. Sometimes they even fail at being really seen [Huang
et al., 2008].

Most current public display systems do not support any interactive features, even
though interaction is an obvious path for addressing the problems of user engage-
ment and content relevance. A key reason behind this apparent paradox is the lack
of efficient and clear abstractions for incorporating interactivity into public display
applications. While interaction can be achieved for a specific display system with
a particular interaction modality, the lack of proper interaction abstractions means
that there is too much specific work that needs to be done outside the core ap-
plication functionality to support even basic forms of interaction. This leads to
wasted development effort and to inconsistent interaction models and user experi-
ences across different displays.

1.1.1 The importance of interaction for public displays

Displays that offer the possibility to interact can lead to stronger user engagement
and user-generated content. They will also be able to produce traces of user activity
upon which multiple adaptation processes can be implemented.

Interaction can be used to spark and mediate socialisation in public spaces as in the
Opinionizer [Rogers and Brignull, 2002] or GroupCast [McCarthy, 2002] displays; to
let people make public announcements (for example to sell or advertise something)
as in WebWall [Vogl, 2002], or Digifieds [Alt et al., 2011]; to share content of interest
to a group of people as in the Plasma Poster network [Churchill et al., 2003b]; to
leave personal messages to specific people when they are near the display as in the
SynchroBoard [Jansen et al., 2005]; to collaborate and show-off content to others as
in the Dynamo display [Brignull et al., 2004]; to allow users to leave feedback about
what they have seen in the display, as in the CommunityWall display [Grasso et al.,
2003]; or to let users manifest interest in particular topics as a way to provide a
characterisation of a place as in the Bluetooth Instant Places display system [José
et al., 2008]. Although these different interactive features will not make sense in
every place, whatever one is offered will generally contribute to a more interesting
display from the user’s point of view, and consequently to a more valuable display
from the display owner’s point of view.

Interactivity is also important for impact assessment and content adaptation for
public displays. Although there are some audience metering products, such as the
ones from Quividi [2013] and TruMedia [2013], that employ computer vision tech-
niques to infer the number, distance, age group, gender and attention of people near
a public display, these techniques can only provide an outside view of the display’s
use. They are not capable of accurately measuring direct engagement with a public
display and so, have limited applicability as an impact assessment tool. Interaction

4

1.1 Motivation

features on a display, on the other hand, can provide a much more accurate view of
how the display is being used, when, and by what kind of people. When interacting
with a display, people are directly or indirectly communicating their personal needs,
views, likes and dislikes. The digital footprints that result from the various inter-
actions with displays have the potential to provide information that can be used to
assess the overall impact of the display, or of specific content, much like what hap-
pens today on the web where many of our actions are analysed to provide us with
targeted content. These digital footprints can also be used as a way to automatically
characterise the place where the display is installed and its audience, providing a
base for automatic content selection and adaptation.

1.1.2 Difficulties in providing interactivity for public dis-
plays

Despite its recognised importance, current public displays have not yet attained
their full interactive potential. Only a few interactive display systems have left the
research labs and entered the everyday life of real users, but even these have not
gained wide spread dissemination and utilization.

Designing and developing for public displays is very different from designing and
developing for desktop systems. Just as Weiser [1991] points out in his ubiquitous
computing vision, the software that runs on these yard sized displays, or “boards”,
is not the same as that for a desktop computer. The way people interact with these
large(r) screens is necessarily different from the way people interact with a desktop
computer. Not only because the size of the display and usual spatial configuration
are different but also because their intended use is very different. While desktop
interaction is currently a mature paradigm, with a well defined environment (a
single user sits at a desktop and uses a mouse and keyboard to interact with a
computer screen), public display interaction enjoys no such maturity. When it comes
to interaction with public displays, although it can easily be recognised as important,
and even a central feature of a display, the questions of what interactive features to
provide and how to provide them to users are still largely unanswered. There is not
yet a good enough language to think or talk about interactive features in a public
display nor tools to help developers implement them. Although it is currently easy
to implement a single interactive public display with specific features and interaction
mechanisms, it is very difficult to generalise that implementation to include other
features and mechanisms because there are no accepted interaction abstractions.
This is particularly true for non touch-based public displays, where interaction often
occurs at a distance through the use of some personal interaction device. Bellucci
et al. [2010, p. 72] succinctly reinforce this idea:

“At present, there are no accepted standards, paradigms, or design prin-
ciples for remote interaction with large, pervasive displays.”

Because interaction with public displays is very different from interaction with desk-
top computers, developers of applications for public display cannot directly apply

1 INTRODUCTION

their knowledge from developing desktop applications. While interaction can be
achieved for a specific display system with a particular interaction modality, the
lack of proper interaction abstractions means that there is too much specific work
that needs to be done outside the core application functionality to support even basic
forms of interaction. Additionally, this is an effort that must be replicated by each
developer, representing wasted effort and leading to inconsistent interfaces. Users
of these public displays are faced with very different interaction models and incon-
sistent interfaces across and, sometimes, within displays, which inhibits knowledge
transfer about how to interact with different displays.

There is a clear analogy between the current situation with public displays and
the time when desktop computer programmers had to make a similar effort to sup-
port their interaction with users. This was recognised as a problem and addressed
with the emergence of reusable high-level interaction abstractions that provided
consistent interaction experiences to users and shielded application developers from
low-level interaction details. One of first successful developer’s toolkit for Graphical
User Interface (GUI) applications was the XToolkit [Swick and Ackerman, 1988],
which has served as the basis for various other widget toolkits still in use today.
Nowadays, with the wide availability of interaction widgets, developers can benefit
from ready-to-use interaction elements that deal with input and encapsulate be-
haviour and visual appearance. Users have learned to interpret their affordances
in a way that enables them to more easily tackle new interfaces and programs by
building on their previous experience.

1.1.3 Benefits of an interaction toolkit for public displays

The underlying idea in this thesis is that the way to ease the burden of public
display application designers, programmers and users is to follow a similar path to
the one taken by the desktop platform and to develop an interaction toolkit that
incorporates useful interaction abstractions, supporting the specificities of public
display interaction.

“A user-interface toolkit is a library of interaction techniques, where an
interaction technique is a way of using a physical input device (such
as mouse, keyboard, tablet, or rotary knob) to input a value (such as
command, number, percent, location, or name), along with the feedback
that appears on the screen.” [Myers, 1989, p. 16]

A toolkit is thus responsible for drawing the components on the screen, capturing the
user input, giving input feedback (usually graphically) to the user and to inform the
application about input events over the components. Toolkits allow programmers to
create graphical user interfaces by laying out these components, programmatically
or, in some cases, visually. These different responsibilities of a toolkit may not
all have the same importance for public displays, but their essence should still be
present in an interaction toolkit for public displays.

6

1.1 Motivation

It is generally agreed that these libraries of user-interface components — or widgets —
immensely ease the task of programmers. Without the toolkits, programmers would
have to delve into low-level system calls to poll user input and deal with the details
of the graphical appearance of the whole application interface. This is especially
important for public display applications because, as we have argued, there is much
less knowledge about how to build these applications and how to provide interactive
features.

However, toolkits are beneficial not just because they take some of the effort out of
programming graphical user interfaces, but also because:

“toolkits for novel and perhaps unfamiliar application areas enhance the
creativity of these programmers. By removing low-level implementation
burdens and supplying appropriate building blocks, toolkits give people a
‘language’ to think about these new interfaces, which in turn allows them
to concentrate on creative designs.” [Greenberg, 2007, p. 139]

Particularly for public displays, which are still a very young area in many aspects,
including the user interface, toolkits can be an unblocking factor for the rise of more
creative public display applications.

A toolkit for public display interaction would greatly facilitate not only the de-
signer’s and the programmer’s task but also the final user’s experience. For the
designer, responsible for defining the behaviour and interactivity of an application,
it provides a language to think about and decide which interactive features should
be available and what the user’s experience will be like. For the programmer, re-
sponsible for the implementation of the public display application, a toolkit will
obviate the need to think about and implement the low-level details regarding the
variety of input mechanisms, input handling, and input feedback. For the user of
a public display application, the consistency of the interaction model, the types of
controls, their behaviour, visual appearance, and feedback, will allow him to build
up knowledge about how to interact with public displays. When faced with a new
display application, his past experience with other displays will enable him to easily
understand the new one.

By facilitating the development of interactive content, the existence of a user-
interface toolkit will also contribute to the emergence of one or more instances
of the concept of public display application: software entities developed by third-
parties that can run on various public displays owned by different people. The
possibility of anyone developing an application for a public display, much like any-
one does today for desktop computers, would be an important step towards the
development of more and new uses of interactive public displays. It will also con-
tribute to moving public displays away from a world of closed display networks that
are operated as multiple isolated islands, to scenarios in which large-scale networks
of pervasive public displays and associated sensors are open to applications and
content from many sources [Davies et al., 2012]. In these scenarios, displays would
become a communication medium ready to be appropriated by users for their very
diverse communication goals, and interaction would necessarily become an integral

7

1 INTRODUCTION

part of the whole system. Developers should be able to create interactive display
applications that would run across the many and diverse displays of the network.

1.2 Challenges

There are several reasons why it is challenging to develop an interaction toolkit for
public display application development. In order to be successful, the toolkit must
be grounded on an understanding of the particular properties of the interaction that
happens with public displays. To analyse and characterise the challenges posed by
public display systems, we use the same structure that Bellotti et al. [2002] have
used to analyse “sensing systems”. This structure is based on five questions:

How do I address one (or more) of many possible devices?

How do I know the system is ready and attending to my actions?

How do I effect a meaningful action, control its extent and possibly specify a
target or targets for my action?

How do I know the system is doing (has done) the right thing?

How do I avoid mistakes?

Address

The first question a user needs to answer to be able to use any computer system is:
how do I address one (or more) of many possible devices? This question is so basic
that we usually do not even consider it when thinking about desktop computers, in
which the system and the devices used to interface with it are very well defined: the
computer box, monitor, mouse and keyboard. These assumptions, however, do not
hold for public display systems. While we can expect a keyboard and mouse to be
available when we sit at a desktop computer, we cannot expect them to be present
to interact with a public display. In fact, we cannot expect that there will be a single
input mechanism to interact with the display, or even that the same set of mecha-
nisms will be available for all interactive public displays. A variety of different input
mechanisms have been explored to interact with public displays. Camera-phones,
Bluetooth naming, Bluetooth OBject EXchange (OBEX) file exchange, Short Mes-
sage Service (SMS), email, instant messaging, Twitter, Radio-Frequency Identifica-
tion (RFID) tags, gestures, face detection, and many others, have been employed in
research and commercial systems as input mechanisms for public displays.

Faced with a public display, users should be able to understand what interaction
mechanisms are available and how to use them. The challenge is not only in commu-
nicating the available mechanisms to users, but also in integrating and abstracting
these various possible mechanisms in a consistent way for programmers. In order to

8

1.2 Challenges

develop an interaction toolkit for public displays, we must understand the capabili-
ties of each interaction mechanism and determine which interaction features can be
supported by each mechanism in what way.

Attention

How do I know the system is ready and attending to my actions? On desktop
computers, we recognize the affordances of the most basic graphical components
such as buttons, textboxes, etc., and their possible states. We know that they are
usually waiting for our input, unless they are in a disabled state which we are also
usually capable of distinguishing. We know that the fact that the mouse cursor
moves in response to our actions is an indication of readiness to accept input and,
in many cases, the graphical feedback of the components under the mouse cursor
immediately tells us whether they can accept a mouse click or not. These things
are taken for granted when we build desktop computer applications. However, they
essentially rest on an interaction style — direct manipulation — that may not be
possible or desirable to apply on a public display, given the breadth of available
input mechanisms. In addition, public display applications may not always be visible
on-screen, but still be receptive to input. In this situation, how do users know the
application even exists, given that usually users don’t have full control over what is
displayed and when?

Communicating the interactive features of the public display is a significant chal-
lenge. Although related to the previous challenge, the issue here is helping users
determine that a given content is interactive and what features it offers, regardless of
the interaction mechanism that will be used. Ideally, displays should be easily recog-
nizable as interactive and users should have the possibility to discover what features
it offers. The challenge is that there aren’t any accepted graphical representations
that an interaction toolkit for public displays can use.

Action

How do I effect a meaningful action, control its extent and possibly specify a target
or targets for my action? In a desktop computer we have come to identify and learn
to use the common controls such as icons, buttons, menus, windows, text boxes, etc.
We know we can act on a button by positioning the mouse cursor over it and clicking,
we know that dragging a scroll bar will make the associated window’s content scroll
up or down, we know that the action associated with a menu item will be performed
on some previously selected graphical object, and we easily identify form pages to
introduce various types of data. Public displays don’t generally benefit from this
accumulated knowledge, because there are no accepted interaction paradigms and
abstractions.

This is perhaps the major challenge for interactive public displays: creating interac-
tion abstractions that programmers and users learn to identify and use, in a usage

1 INTRODUCTION

context that can be much more limited than the desktop context. An interaction
toolkit for public displays must provide high-level controls, but first we must under-
stand what those controls should be and how we can abstract them from the various
possible interaction mechanisms that can be used to act on them.

Alignment

After a user has issued some input to the system how can he determine that the
system is doing the right thing? The typical answer of desktop computer systems
is to use several feedback mechanisms such as echoing input characters, showing
progress bars, visually changing the state of graphical components on the screen,
or simply showing the immediate result of the action such as when a user scrolls a
document. The desktop computer solution is based on continuous and immediate
feedback to user’s actions. However, because public displays are shared objects and
can be interacted with remotely, the desktop solution cannot be generally applied.

The main challenge for public displays is in directing timely and appropriate feed-
back information to the correct user, on the correct channel, so that users understand
the result of their actions. Given that public displays are shared devices that can
be used simultaneously by multiple users and applications, it is not obvious what
the feedback information should be and how it should be communicated.

Accident

How do I avoid (or recover from) mistakes? The desktop computer answer for
this question relies on various mechanisms to deal with mistakes. Previews allow
users to inspect the final result before starting the actual, usually lengthy, action.
For example, before actually printing a document, a user can ask for a preview to
determine if the printed document will look as desired. Undo allows users to correct
mistakes after they have been made and take the system back to a previous state.
Applications usually provide several levels of undo so that users can correct even
mistakes made several actions before. Cancel can be used for lengthy operations
so that users can abort the operation during its execution if an error is detected.
Cancel can also be used for operations that require users to perform several steps
allowing them to terminate the operation in any step. All these mechanisms also
require continuous feedback so that the user can determine that a mistake has been
made and can then take action to correct it.

The challenge for public displays is finding the right error prevention and correction
mechanisms that work in an interaction environment where there are multiple simul-
taneously interacting users, possibly interacting with different applications, which
may not all be visible on the public display at the same time.

10

1.3 Objectives and Contributions

1.3 Objectives and Contributions

The general objective of this work is to develop high-level interaction abstractions
and tools for public display applications that support public, shared, remote inter-
action, abstracting the low-level details of various input mechanisms. An important
aspect of this research is the focus on applications for public displays. Our goal is
that the developed abstractions contribute to the emergence of open display net-
works. Ideally, applications should be as much as possible agnostic of the concrete
interaction mechanisms available in a particular display. This general goal can be
further refined in the following objectives.

Objective 1: Digital footprints for socially-aware public displays. Our first
objective is to analyse how the information that results from interactions with pub-
lic displays may be used to drive content adaptation behaviour on public displays.
This analysis should result in a framework that maps digital footprints and adap-
tation strategies that can be used to create more relevant displays that are able to
automatically adapt to their environment. This mapping can be used by situated
display designers to help them choose the interaction mechanisms that a display
should support in order to be able to collect a given set of footprints.

Objective 2: Interaction tasks and controls for public displays. Our second
objective is to identify and characterise a new set of interaction tasks and controls
that are appropriate for public display interaction. This should result in a design
space of interaction tasks and controls that can become a tool to structure an in-
teraction system for public display applications. This can also be a valuable tool
for allowing application developers to make more informed decisions on the types
of controls that they would need, considering for example the application’s goal but
also the envisioned interaction mechanisms.

Objective 3: A programming toolkit for public display applications. Our
third objective is to design, implement, and evaluate an interaction toolkit that
programmers can use for incorporating interaction features into public display ap-
plications. This toolkit should be framed by the requirements imposed by public
display interaction and it should abstract the interaction details of multiple interac-
tion mechanisms into high-level events.

Contributions

The main contribution of this work is a toolkit of interaction abstractions for pub-
lic displays that can help designers think about the interactive features of public
display applications, can help programmers to implement those features by reduc-
ing the amount of work they need to accomplish, and can help users by providing
a consistent interaction model for public displays. More specifically, pursuing the
previously outlined objectives resulted in the following contributions:

11

1 INTRODUCTION

1. A framework of digital footprints that designers of public displays can use to

map several sensing and interaction features to content adaptation strategies.

. A design space of interaction tasks and controls that can serve as a basis for

programming toolkits that provide high-level interaction widgets.

. Identification of the fundamental requirements for an interaction abstraction

toolkit for public displays.

. The PuReWidgets software toolkit itself for incorporating interactive features

into public display applications

. An in-breadth evaluation of the PuReWidgets toolkit along several dimensions,

including the system’s performance and scalability, the API usability, and a
real-world deployment.

. This work has also contributed to the research and programming community

with several open-source software projects, allowing anyone to use, modify,
and adapt for further research and development. The following open source
projects were initiated during the course of this work:

e https://code.google.com/p/purewidgets/

— The PuReWidgets toolkit itself.
— Three interactive public display applications (a video player applica-
tion, a polls application, and a word game application).
e https://code.google.com/p/public-display-scheduler/ A Google
Chrome extension that serves as an application scheduler for public dis-
plays.

Related publications

This work has also originated or contributed to two journal papers, one book chapter,
six conference papers, one conference poster, and one conference demo:

Under review

12

1. Cardoso, J. C. S.; & José, R. (2013) Interaction tasks and controls for
public display applications. Submitted to the International Journal on
Human-Computer Interaction. (under review)

2. José, R., Cardoso, J. C. S., Pinto, H., & Hong, J. (2013) Expressing and
interpreting media sharing in a network of public displays. Submitted to
the 12th International Conference on Mobile and Ubiquitous Multimedia
- MUM ’13. (under review)

3. Cardoso, J. C. S., & José, R. (2013) Evaluation of a programming toolkit
for interactive public display applications. Submitted to the 12th Inter-
national Conference on Mobile and Ubiquitous Multimedia - MUM ’13.
(under review)

https://code.google.com/p/purewidgets/
https://code.google.com/p/public-display-scheduler/

1.3 Objectives and Contributions

Published or accepted for publication

10.

11.

. Taivan, C., José, R., Elhart, 1., & Cardoso, J. C. S. (2013). Design

considerations for application selection and control in multi-user public
displays. Journal of Universal Computer Science, (Towards Sustainable
Computing through Ambient Intelligence). (accepted for publication)

José, R., Cardoso, J., Alt, F., Clinch, S., & Davies, N. (2013). Mobile
applications for open display networks: common design considerations.
Proceedings of the 2nd ACM International Symposium on Pervasive Dis-
plays — PerDis 13 (pp. 97-102). ACM. doi:10.1145/2491568.2491590
[José et al., 2013]

. Cardoso, J. C. S., & José, R. (2012). Creating web-based interactive

public display applications with the PuReWidgets toolkit (Demo). Pro-
ceedings of the 11th International Conference on Mobile and Ubiquitous
Multimedia - MUM 12 (p. 1). New York, New York, USA: ACM Press.
doi:10.1145,/2406367.2406434 [Cardoso and José, 2012a

Cardoso, J. C. S., & José, R. (2012). PuReWidgets: a programming
toolkit for interactive public display applications. In S. R. José Creis-
sac Campos, Simone D. J. Barbosa, Philippe Palanque, Rick Kazman,
Michael Harrison (Ed.), Proceedings of the 4th ACM SIGCHI sympo-
sium on Engineering interactive computing systems - EICS "12 (p. 51).
New York, New York, USA: ACM Press. doi:10.1145/2305484.2305496
[Cardoso and José, 2012b]

Cardoso, J. C. S., & José, R. (2012). The PuReWidgets Toolkit for In-
teractive Public Display Applications (Poster). Proceedings of the Inter-
national Symposium on Pervasive Displays (PerDis’12). Porto. [Cardoso
and José, 2012c]|

Cardoso, J. C. S., & José, R. (2011). Assessing Feedback for Indirect
Shared Interaction with Public Displays. In R. Meersman, T. Dillon, &
P. Herrero (Eds.), On the Move to Meaningful Internet Systems: OTM
2011 Workshops (Vol. 7046, pp. 553-561). Springer Berlin / Heidelberg.
[Cardoso and José, 2011]

José, R., & Cardoso, J. C. S. (2011). Opportunities and Challenges of
Interactive Public Displays as an Advertising Medium. In J. Mueller,
F. Alt, & D. E. Michelis (Eds.), Pervasive Advertising (pp. 139-157).
Springer-Verlag London Limited. [Jose and Cardoso, 2011]

Cardoso, J. C. S., & José, R. (2009). A Framework for Context-Aware
Adaptation in Public Displays. In R. Meersman, P. Herrero, & T. Dillon
(Eds.), On the Move to Meaningful Internet Systems: OTM 2009 Work-
shops (Vol. 5872/2009, pp. 118-127). Vilamoura, Portugal: Springer
Berlin / Heidelberg. [Cardoso and Jose, 2009]

13

1 INTRODUCTION

1.4 Outline of this Document

The rest of this document is structured in the following way:

Chapter 2 — Related Work — presents work related to public displays and interac-
tion abstractions. We describe several existing public display systems and analyse
how interaction has been implemented in each of them. We also describe several
approaches for software support for interactive application development and analyse
how they can contribute to an interaction abstraction solution for public displays.

Chapter 3 — Requirements for Interaction Abstractions for Public Displays — char-
acterises the interaction environment around public displays, and defines a set of
requirements for an interaction abstraction for public display applications.

Chapter 4 — Digital Footprints for Socially-Aware Interactive Displays — presents
a framework for designing interactive displays that are able to gather interaction
footprints that can be used for automatic and dynamic content adaptation.

Chapter 5 — Interaction Tasks and Controls for Public Display Applications — iden-
tifies a new set of interaction tasks focused on the specificities of public display
interaction, and proposes concrete interaction controls that may enable those inter-
action tasks to be integrated into applications for public displays.

Chapter 6 — The PuReWidgets Toolkit — A Widget-based Interaction Abstraction
for Public Displays — proposes a concrete interaction programming toolkit for public
display applications, describing its main concepts, architecture and usage.

Chapter 7 — Evaluating PuReWidgets — evaluates the proposed toolkit on several di-
mensions: system performance, API flexibility and usability, and resulting system’s

usability from the end-user perspective.

Chapter 8 — Conclusions — presents some concluding remarks and points to further
research opportunities.

14

Chapter 2

Related Work

Contents
2.1 Imtroduction 00 .. 17
2.2 Interaction in Public Display Systems 17
2.2.1 Desktop-like. 18
2.2.2 Touch-screen 23
2.2.3 Mobiledevice oo 28
224 Idbadge. o 41
2.2.5 Device-free interaction 43
2.2.6 Analysis 46
2.3 Software Support for Application Development 51
2.3.1 Widget based oL 52
2.3.2 Dynamic user interface generation 58
2.3.3 Data-driven abstractions L. 62
2.4 Conclusion e 66

15

2 RELATED WORK

16

2.1 Introduction

2.1 Introduction

This chapter’s objective is to describe and analyse previous work in relevant ar-
eas for this thesis and to position our work in the current state of the art. The
analysis is structured around two main directions: interaction in existing public dis-
play systems, and solutions for providing software support for developing interactive
applications.

First, we describe various existing interactive public display systems, and analyse the
interaction mechanisms and features they support, along with how interaction affects
the display’s content adaptation. Second, we describe various types of software
support for the development of interactive applications for interactive systems, and
analyse how they could contribute to an interaction abstraction solution for public
display applications.

2.2 Interaction in Public Display Systems

Interactive public displays have been around for some time now, and many different
displays with different purposes and interaction capabilities have been developed and
tested. In this section, we analyse various display systems, focusing on the aspects
related to the interaction. Each display system is analysed according to three related
perspectives: interaction mechanisms, interaction features, and interaction influence
on content. The analysis of the interaction mechanisms considers what physical
devices are necessary and how they are used to interact with the public display.
The analysis of the interaction features considers what actions are available to users
and how they are performed using the interaction mechanisms. The analysis of the
interaction influence on content considers how the display system takes advantage
of the information that results from the various interactions to adapt the displayed
content.

At the end of this section, we compare and synthesize the systems according to the
interaction aspects we defined previously. To organize the presentation of public
display systems considered in this section, we classified them according to the main
interaction mechanism used to interact with the display, and grouped them in the
following categories:

Desktop-like Display systems that use a mouse and keyboard as the main inter-
action device to interact with the public display. We include in this category
display systems in which users use a mouse and keyboard to interact directly
with the public display, or indirectly through desktop applications (including
web interfaces).

Touch-screen Interaction is accomplished by directly touching the public display.
In this category, we don’t distinguish among the various touch or multi-touch
technologies.

17

2 RELATED WORK

Mobile device The standard communication features of a mobile device, or a cus-
tom mobile application are used to interact with the public display.

Id badge Users wear a personal id badge that the display system uses to detect
and identify users.

Device-free Interaction with the display is accomplished by simply passing-by the
display or standing in front of it and gesturing, without having to wear or use
any device.

These categories are not mutually exclusive, as their frontiers are not clear-cut, and
some display systems use more than one interaction mechanism. In the following
description however, we have classified each system with a single category.

2.2.1 Desktop-like

In this section we analyse display systems in which interaction follows a Graphical
User Interface (GUI) style: a mouse and keyboard are used to interact directly with
the interface on a public display, or indirectly through desktop applications or web
interfaces.

Opinionizer

The Opinionizer [Rogers and Brignull, 2002] is display system meant to work as an
ice-breaking mechanism in social settings such as parties:

“The aim was to provide a milling audience with a forum to post their
opinions and comments about a particular topic. The intention was that
it be lighthearted and lightweight, allowing people to easily ‘step in and
out’ of the limelight when interacting with the system and for others to
be able to comment to each other or the ‘interactor’ with relative ease
and, importantly, not to feel embarrassed when doing so.” [Rogers and
Brignull, 2002, p. 2]

The Opinionizer is a wall-projected display where people interact by using a standard
keyboard and mouse attached to the same computer that drives the projection.
The system displays a topic in the form of a question and displays the submitted
comments and opinions as speech bubbles coming out of avatars placed in one of
the four colour quadrants of the display (see Figure 2.1).

Interaction with the Opinionizer system consists in selecting a cartoon avatar (the
available avatars depend on the type of social gathering), selecting a speech bubble
type (speaking, shouting or thinking), entering a nickname, writing an opinion, and
dragging the avatar to one of the quadrants of the display.

18

2.2 Interaction in Public Display Systems

Are you missing Bill Gates this year?

CD'

Figure 2.1: The Opinionizer display [Rogers and Brignull, 2002].

Dynamo

The Dynamo display system [Brignull et al., 2004], is a large multi-user interactive
display for sharing, exchanging, showing and interacting with multimedia content
in a communal room of a high school (see Figure 2.2).

(a) Dynamo surface detail: two carved regions (indi-
cated by the icon of a key).

(b) Display in use in the communal room.

Figure 2.2: The Dynamo display [Brignull et al., 2004].

19

2 RELATED WORK

Dynamo provides a desktop-like GUI accessible from various interaction points
(wireless mice and keyboards) that can be placed freely around the space. Each
interaction point is represented on the display by a colour-coded mouse cursor. Dy-
namo allows two levels of user interaction: anonymous and identified interaction.
In the first level, anyone can use the display to access public content areas or to
access a personal Universal Serial Bus (USB) device and view or place media on the
public areas of the display. In the second level, registered users can perform more
advanced interactions such as carving a region of the screen for private use of a group
of chosen users (see Figure 2.2a). Registered users can also share items with other
users and leave notes on media items. Sharing is done using parcels — a bundle of
media items that can only be opened by their intended target users. Asynchronous
discussions are also possible in Dynamo by using notes — textual information that
can be associated with media items on the screen. Content is fully created, managed
and presented by the Dynamo users.

IM Here

IM Here [Huang et al., 2004] is a groupware display system that tries to bring the
value of instant messaging to other places were people work, beyond the personal
desktop:

“We developed the IM Here system as an awareness and communication
tool that takes advantage of IM for lightweight interactions and large-
scale displays for their walk-up-and-use nature. The system uses the
large, highly visible form factor to promote group awareness of upcoming
events. The large display also emphasizes the fact that its IM capabilities
are a shared resource for the workgroup.” [Huang et al., 2004, p. 279|

Figure 2.3: The IM Here display [Huang et al., 2004].
The IM Here display system is composed of two components: the IM Here Messaging

Client, and the IM Here Event Display. The messaging client provides awareness
about workgroup members’ presence and availability by displaying their instant

20

2.2 Interaction in Public Display Systems

messaging status on the public display, and allows workgroup members to broadcast
messages directly from the public display to all workgroup members. Interaction
with the IM Here messaging client is done with a standard mouse and keyboard (see
Figure 2.3). The IM Here Event Display shows upcoming events and announcements
that are created using a web interface accessed on a personal machine. The web
interface provides a form that allows users to enter information about the event such
as the title, description, date, location, and expiration date. The public display
automatically schedules the display of these events based on their expiry dates (it
cycles through the current events showing each one for 25 seconds).

Notification Collage

The “Notification Collage (NC) is a groupware system where distributed and co-
located colleagues . . . post media elements onto a real-time collaborative surface
that all members can see” [Greenberg and Rounding, 2001, p. 515]. NC’s goal
was to provide a platform for supporting interpersonal awareness and interaction
in small communities of people and to see how, and what, social practices would
emerge around it. The system was designed so that work colleagues could share
their work, or topics of interest, increasing awareness of co-workers’ activities. It
was designed in a bulletin board style that accepts elements such as live video feeds
from desktop cameras, sticky notes, activity indicators, slide shows with photos,
desktop snapshots and web page thumbnails (see Figure 2.4a).

(a) Public display interface. (b) Personal display.

Figure 2.4: The Notification Collage display [Greenberg and Rounding, 2001].

All interaction with NC is done via a desktop application (see Figure 2.4b) that is
mirrored in the public display. The desktop application allows users to post elements
and interact with the existing ones: users can respond to the author of the item (by
email or instant messaging), visit the homepage of the poster or web thumbnail.

Items are graphically arranged automatically on the public display: new items are
posted in the top of the display and gradually move down as they age. However,
NC only arranges the left hand side of the display, the positioning of items on the
right hand side is manually controlled by its users, using the desktop application.

21

2 RELATED WORK

MessyBoard

MessyBoard [Fass et al., 2002] is similar in functionality to the Notification Collage
system. It’s a display system meant to provide a shared communication space for a
workgroup:

“MessyBoard is a large, projected, shared 2D bulletin board that allows
users to share pictures and text over the internet” [Fass et al., 2002, p.
303].

UNireinia JE=

Carnegie

Mellon

(a) MessyBoard’s screen. (b) MessyBoard’s projection in context.

Figure 2.5: The MessyBoard display (adapted from [Fass et al., 2002]).

MessyBoard evolved from a Windows desktop replacement application called Messy-
Desk that allowed Windows users to decorate their desktop with images or text from
any application by dragging or pasting from the clipboard (see Figure 2.5a). While
MessyDesk was a personal tool, MessyBoard transferred that functionality to a
shared tool. MessyBoard runs as a regular application composed of a window that
is shared among several users and projected into a wall in a workspace (see Fig-
ure 2.5b). Unlike Notification Collage, in MessyBoard the placement of the various
items on the screen is completely defined and controlled by its users.

CoCollage

CoCollage by McCarthy et al. [2009] is a situated public display designed to increase
the sense of community and place attachment:

“The Community Collage is a new place-based social networking applica-
tion designed to bridge the gaps between people in coffechouses by bridging
the gaps between the richness of their online interests and activities and
their physical presence in a potentially ‘great, good place’ . . . Co-
Collage links online profiles, machine-readable loyalty cards and a large
computer display that shows elements from those profiles when people use
their loyalty cards in the café.” [McCarthy et al., 2009, p. 225].

22

2.2 Interaction in Public Display Systems

. COTHIGH

=1 Reflective and Comple®®

20

Figure 2.6: The CoCollage display welcoming a user [McCarthy et al., 2009].

Interaction with the CoCollage display is mainly performed through a web page
where users can define an online profile with some basic information such as user-
name, email address, birthday, avatar, and a collection of social media content.
Social media content can be specified explicitly by uploading a file, or implicitly
by Really Simple Syndication (RSS) feeds of other web services such as Flickr,! in
which case the user needs to specify a username and a set of optional tags to filter
the imported media. Users can also use the online web page to vote (thumbs up or
down) on any item on the display’s stream; to send messages directly to the display
(these messages show up as balloons above the user’s avatar); or to check in the café
(i.e., to indicate that they are present). Check-ins can also be performed through
the use of their magnetic loyalty card at the café. The CoCollage display shows
a stream of content by periodically selecting an item from the users’ profiles. The
selection of the next item to show is based on several factors that include when the
item was added, the last time it was shown, how many votes it has, how many com-
ments, when it was last commented on or voted, and when the author last checked
in. CoCollage also displays the avatar list of the currently present users in the bot-
tom of the screen. Whenever a user checks in, the display shows a welcome message
and the user’s avatar and username (see Figure 2.6).

2.2.2 Touch-screen

In this section we analyse display systems in which interaction is accomplished by
directly touching the public display. We consider only the cases where the public dis-
play itself is touch-enabled; we don’t consider interactions that happen on personal
touch devices.

http://flickr.com

23

http://flickr.com

2 RELATED WORK

BlueBoard

The BlueBoard display system by Russell and Gossweiler [2001] (see Figure 2.7) was
designed as a personal information tool and also as a collaboration and sharing tool
for small groups. Blueboard was designed as a kiosk-style, large display, which allows
access to personal information (instead of just a pre-defined set of information, as
usually happens with public kiosks). It was also meant for simple collaboration
tasks such as sharing content between small groups of users. BlueBoard uses a
display with a touch-sensitive overlay for interaction and a badge reader for user
authentication.

(a) A user’s personal calendar. (b) P-Cons.

Figure 2.7: The BlueBoard display [Russell and Gossweiler, 2001].

Once a user authenticates by swiping a personal badge, he has access to his pre-
viously configured personal information. This information must be set by the user
himself, using BlueBoard’s authoring system, which allows users to link web content
(calendars, email, files, etc.) to their BlueBoard profile. When a user authenticates,
BlueBoard simply loads the Uniform Resource Locator (URL) of his personal area.

Several users can authenticate at the same time and access their personal data. Each
user is represented by a p-con — an icon on the right side of the display. The p-con
provides a target for content sharing by dragging the content into the other user’s
p-con.

OutCast

OutCast [McCarthy et al., 2001] is an office door display that shows information
about the owner (see Figure 2.8). Visitors to the office can access the following
information about the owner: biography, calendar, location information, project
information, demonstrations, favourites, and a user-defined text message. OutCast
works in a passive mode and in an interactive mode. In the passive mode, it cycles
through its content; in interactive mode, it allows users to navigate through the
display’s content, and even leave a message to the owner, using the touch-screen
interface of the display.

24

2.2 Interaction in Public Display Systems

Figure 2.8: The OutCast display [McCarthy et al., 2001].

Community Wall

The Community Wall (CWall), by Grasso et al. [2003], is a semi-public, interactive
large screen that was installed at Xerox Research Centre Europe. The purpose of
CWall was to support communication within a community of practice — a kind of
spontaneous and informal workgroup that is driven by the common work-related
interests and practices — and to “create an environment that fosters social encoun-
ters (conversations) using documents or news and peoples’ opinions on them as
triggers” [Grasso et al., 2003, p. 266].

—
Lowercase music IBM unifies Eclipse tools

XRCE Competitive Cinens
Awareness Email archive

2 Tinkerers Say They've You're typing, but there's
found a cheap way to no keyboard

KMWorld ‘Best Practices’ PalmSource Ships Faster,
White Papers Series More Powerful Palm OS 6

(a) No user looking at the display. (b) With user looking, the display shows in-
teraction possibilities.

Figure 2.9: The Community Wall display [Grasso et al., 2003].

The display was designed as a bulletin board (see Figure 2.9b) that people can post
to. Posting can be done using several methods such as email, web bookmarklets,?
paper (using Xerox’s Flowport(tm) software to scan the document) or a Personal
Digital Assistant (PDA) application. Although users are completely responsible for
the content database, CWall is responsible for choosing what to display from that
database. A number of rules exist to define the priority of each item based on its

2A bookmarklet is a Javascript program that can be stored as a bookmark in a web browser and
that can be used to automatically process the current page. In Community Wall the bookmarklet
is used to send the current web page to the display system.

25

2 RELATED WORK

type, age, rating, number of comments, time, etc. After applying the rules, the
system will present the highest priority items.

CWall employs a presence detection mechanism to change the way items appear on
the screen. Presence detection is accomplished with a grid of infrared movement
sensors and computer vision techniques for face detection. These techniques are
used to: show bigger titles when people are in the room but far away from the
display, to attract attention (see Figure 2.9a); show more detailed item information
and freeze the content of the display when someone is detected reading so that it
doesn’t change contents while people are reading (see Figure 2.9b). CWall also
provides touchscreen interaction and allows users to read an item in more detail,
to rate, email, comment or print it. Rating and emailing requires users to identify
themselves, or the target user (in case the item is being emailed), by selecting their
image in a list of users presented by the display (users must have been previously
registered in the display system).

Plasma Posters

The Plasma Posters [Churchill et al., 2004] is a network of interactive community
boards developed for a community of a lab at FXPAL — a software research company,
based in Palo Alto, California, USA — to informally share information. It is also a
means to foster awareness about the interests of each of the community’s members
and to provide a visible expression to the lab’s identity.

7 e o / e - 0 p
" et e A P e pas o s o & = /
(PAL Plasma Poster = — (PAL Plasma Poster < N (PAL Prasma Poster
b T
——

Tokyo Streets. PARC Forum: March 13, 2003, Thursday 4:00 AOL Developing

1.Sandeep sends email to publish a
URL as a posting o= .

2.Elizabeth sees Sandeep’s posting . __u‘i
and selects “Send Me a Note” to
send email to Sandeep about his
posting

3.Sandeep receives email about his
posting from Elizabeth, asking to
chat about it

(a) Photo slideshow with (b) Formatted text item. (c) Sending a note to the author of the
author’s comment in the post.
text balloon.

Figure 2.10: The Plasma Posters display [Churchill et al., 2004].

A Plasma Posters display consists of a large plasma display with a touch-sensitive
overlay that allows people to interact with the items currently displayed. The con-
tent presented by the Plasma Posters displays is mostly the result of user submissions
but it also automatically collects items from the intranet such as calendars of meet-
ings and announcements of new technical reports. Posted content can be images
(see Figure 2.10a), movies, formatted text (see Figure 2.10b) or web pages. The

26

2.2 Interaction in Public Display Systems

authors of the posts can also submit an associated comment or highlight passages of
text (in the case of web pages). Content can be posted by email or using a dedicated
web interface.

A Plasma Posters display cycles through all the available content periodically, pro-
viding a peripheral or ambient display (items are removed after two weeks by default,
but the duration of an item can be set manually). However, users can interact with
it directly, with touch interaction, to browse the available content, read it (by paus-
ing the automatic cycling), scroll and even print it. Users can also send notes to the
author of the post (see Figure 2.10c) or forward the posted item to themselves or to
another Plasma Poster user. To forward an item to someone, a user needs to select
the appropriate button and then select the target user from a list of users registered
in the Plasma Posters network.

Digifieds

“Digifieds is a digital and networked public notice area designed to support passers-by
when creating, sharing, and retrieving classified ads on public displays.” [Alt et al.,
2013].

Digifieds allows users to create, publish, and retrieve classified ads using the touch-
screen of the display itself, using a mobile application, or using a web application
(see Figure 2.11). Classifieds can be created in three ways. Using the touch-screen,
a classified can be created by typing on the on-screen keyboard to write the text and
then augmented with pictures or videos transferred from a USB memory stick. A
mobile application can also be used to create a classified that can later be published
on a Digifieds public display. Finally, classifieds can also be created using a web
interface. After a classified is created, it has to be published on a public display.
Classifieds created using the touch-screen are immediately published and available
on the same display. Classifieds created on the mobile or web interface can be
published by manually entering an alphanumeric code associated with the classified
on the public display, using the on-screen keyboard. A QR code can also be used to
publish a classified created on the mobile phone: the phone generates a QR code that
a camera in the public display can read to activate the classified. Finally, classifieds
created on the phone can also be published using an interaction technique similar to
PhoneTouch [Schmidt et al., 2010] where the user touches the public display with
the phone at the location he wants the classified to appear. Classifieds can be taken
from a public display using one of five alternatives: touch with the phone on the
public display (similar to publishing), using a mobile phone to scan the QR code
that is displayed next to each classified, writing down the alphanumeric code that is
also displayed next to the classified, forwarding the item to an email address using
the on-screen keyboard, printing the classified on a printer that is attached to the
public display.

27

2 RELATED WORK

Figure 2.11: Digifieds public display [Alt et al., 2013].

2.2.3 Mobile device

This section considers public display systems in which the interaction is accom-
plished via a mobile device. We consider the cases where the standard communica-
tions features of a mobile device are used for the interaction, e.g. SMS, Bluetooth,
and the cases where a custom mobile application is required to interact with the
public display.

Web Wall

WebWall [Ferscha et al., 2002] is an example of a display designed as a kind of digital
bulletin board. The motivation for its development was to address the potential of
ad-hoc communication in public spaces using a wall metaphor. WebWall is an
infrastructure that can be used to create large displays that allow users to post
various media elements and interact with existing ones.

WebWall supports several types of media elements, called service classes, which
differ in visual appearance and functionality (see Figure 2.12a). An instance of a
service class can be created or interacted with using a number of input mechanisms
such as email, Short Message Service (SMS), Wireless Application Protocol (WAP)
or using a web interface. To address a particular WebWall, users use the wall id
(which is also the phone number for SMS interaction and the user part of the email
address for email interaction). When created, an instance is assigned an instance id
that uniquely identifies that element in that particular display (see Figure 2.12b).
Interaction with WebWall is made using a command language that allows users to
specify the service class (when creating a new item) and the properties of the item.
For example, to create a note with a blue colour and the text “Hello WebWall!”,
a user could send the command “Inote.blue Hello WebWalll” to the WebWall’s
assigned phone number (the Wall ID). To reply to an existing note, one would issue
a command such as “!1347 r Ok”, where “347” is the instance id of the note and “r”
indicates the reply command.

28

2.2 Interaction in Public Display Systems

Service Class: Banner
Commercial Ad Service Class:

Auction

|
WeBIIl 0653 T 010 < WebWall 0688 1111 1010
heute ins Kino? Buy and Sell |

Service Class: Gallery
Live Image
| ———
Service Class: Note -
Personal Ad
— 1
Service Class: Note =
Personal Ad - T
S~ == 1
- - T
Service Class: WWW Service Class: Gallery
Live Stock Chart Side Show

(a) Service classes.

Service Class: Video Service Class: Poll
Streaming Media Public Opinion Poll
[

Service Class:
WwWww
L Personal
- Web Page

i

Wall ID
Note | Instance 1D

+43 668 11111010 [EVT URRIINNNIRNRNN
Sellticket 1o New Yark.
Depanure today a1 16:30

Since 187 1523 End 1838

Since Message End

(b) Instance components.

Figure 2.12: The WebWall display [Ferscha et al., 2002].

Hermes Photo Display

The Hermes Photo display [Cheverst et al., 2005] is an extension to the Hermes
office doorplate system [Cheverst et al., 2003] that enables users to send, receive
and browse photos on the photo display. It consists of several small digital displays
deployed near the office doors (see Figure 2.13a) of the Computing Department
at Lancaster University, UK. This system was deployed with the objective of un-
derstanding the technical feasibility of the idea of interacting via Bluetooth with
a photo display and to get insight about user acceptability and potential of such
displays for supporting and fostering a sense of community.

The displays are touch-sensitive, so users can browse the current set of photos by
simply touching the next or previous page buttons (see Figure 2.13b). Sending and
receiving is done through Bluetooth communication. To send a photo, users need to
select the photo from their Bluetooth enabled personal mobile device and select the
“send via Bluetooth” option; the mobile device will then search for nearby Bluetooth
devices; users need to select the one that corresponds to the intended display (for
example “PubDisplay(C)”, where C stands for the floor level); the photo will then
be received by the display. To receive a photo on their personal device, users must
select the intended photo on the Hermes display (touching the picture selects it);
the display will then begin searching for nearby Bluetooth devices and display a list
when finished; users must then select their own device from the list and accept the
photo on their personal device.

29

2 RELATED WORK

Please refer [o the poster
on your mght for instructions.

Hermes Picture Display)

(a) Installation in the building. (b) Browsing photos.

Figure 2.13: The Hermes Photo display [Cheverst et al., 2005].

Bluetooth Instant Places

The Bluetooth Instant Places display system [José et al., 2008] was designed for
shared and communal use in public and semi-public settings, using Bluetooth pres-
ence and Bluetooth naming as interaction techniques. The system was initially
developed to study the suitability of those interaction techniques and the type of
social practices that would emerge from their use in a real setting.

Add tags to your bluetooth nam

(a) Visualisation A. (b) Visualisation B.

Figure 2.14: The Instant Places display [José et al., 2008].

The system uses periodic Bluetooth scanning to generate a flow of presence informa-
tion (based on the Bluetooth Media Access Control (MAC) address) and introduces
a simple Bluetooth naming mechanism that can be used for explicit interaction with
the display. The system is able to recognize specific words in the Bluetooth device
name that trigger specific behaviour from the display. Users can define a Flickr user-
name by including the string “flk:” followed by the Flickr username, for example:
“my device flk:JohnDoe”. Users can also associate keywords with their identity by
using the “tag:” command, for example: “my device tag:football,fcporto”.

30

2.2 Interaction in Public Display Systems

Two visualisations where implemented. The first (see Figure 2.14a), displays infor-
mation about currently present Bluetooth identities. Each identity is displayed as
a coloured icon (the colour is generated when the identity is first seen by the sys-
tem and re-used in subsequent sightings of that identity). When identities remain
present for some time, a glow effect is applied to the icon, providing a sense of which
identities have just arrived and which ones have been there for a while. For identities
with commands in the Bluetooth name, the icon also shows a photo obtained from
Flickr, using the command as a seed. The second visualisation (see Figure 2.14b)
maintains the identity visualisation of the first, but introduces tag clouds. Identities
are represented in the same manner, but occupying only the left-hand side of the
display. The rest of the display is used to represent the current tag cloud. Tags
are extracted from all words seen in the Bluetooth names, but the system gives a
greater emphasis to the words found in the “tag:” command. In order to achieve a
balance between an historic view of the place and a more dynamic and responsive
system, tags have a popularity property. New tags are given a high popularity but
it is decreased in every scanning. The system displays the 25 most popular tags
and also uses them to seed periodic searches on Flickr to obtain a photo that is also
shown in the centre of the display.

Instant Places

In a more recent version, Instant Places became a “screen media system that enables
people to manage the projection of their identity in public displays. With Instant
Places, people can have an identity representation that allows them to explicitly and
systematically manage their presence in public displays” [José et al., 2012].

In Instant Places, people can publish two types of content: pin badges and posters.
A pin badge refers to a particular institution, cause, campaign, sports teams, artist
or brand that people may identify with. A pin badge is composed by a name, a set
of tags, and a set of content sources from which it should be possible to generate
screen content, e.g. a YouTube channel, a Flickr photo collection or a blog feed.
On the Instant Places web page, users can associate pin badges with their profile.
When they later check-in to a place, the information associated with the pin badge
can be used to characterise the place and also as a source of content. Applications
can query an Instant Places service about which pins are associated with the present
users to generate situated content. Figure 2.15 shows an example of an application
that shows content related to football club badges. Posters are media items that can
be created by individual users, and distributed at specific locations. With posters
people can create and publish content they consider relevant for the places they visit
(for example, promoting an event, a cause, or an art creation). Posters are authored
at the Instant Places web page by uploading an image, a short description, and a
schedule for its availability for display.

Using the Instant Places mobile application, people can check-in and distribute
posters to local screens when visiting a place. Additionally, the mobile application
allows users to see the list of nearby places, and consume content associated with a
place such as the list of presences and an activity stream.

31

2 RELATED WORK

=1 0 _
wnn ANARL=Resk o a 5

Sporting x Leiria

Figure 2.15: An Instant Places application driven by pin badges [José et al., 2012].
e-Campus Bluetooth

“The e-Campus system is a network of public displays on the campus of Lancaster
Unwversity in the UK designed to serve a dual role: as an infrastructure and testbed
for local researchers and artists, and as a device for improving the experience of
students, visitors and staff on campus” [Davies et al., 2009, p. 153]. e-Campus is
based on a software infrastructure that provides services for scheduling content on
the existing public displays using a constraints based scheduling mechanism that
allows content providers to specify when and on what displays their content should
be shown.

e-Campus

F You are here F Destination

1 QUEUE

Command Time received

it can fit on the screen, the display will transition between cach 'page’ roughly
all results

Figure 2.16: The e-Campus display, showing the map service [Davies et al., 2009].

In one particular project, Bluetooth device names were used as the interaction mech-
anism with the public displays. Bluetooth scanners on each display continually dis-
cover Bluetooth devices in the vicinity and send those sightings information to the
content scheduler. The scheduler parses the Bluetooth names for valid commands
and schedules services to display content, based on the commands detected. The
commands to interact with the system take the form ec <service name> <params>.
The word “ec” is just a way to indicate that the Bluetooth name is an e-Campus

32

2.2 Interaction in Public Display Systems

command, “service name” is one of the various services that were implemented (map
— to show a map of the campus; flickr — to show Flickr photos; youtube — to show
Youtube videos; google — to show search results; tiny — for generic web access; and
juke — to play songs), and “params” are parameters that each service interprets in
its own way (most are keywords used for searching photos, videos, or web pages).
The system keeps a list of commands received and processes them in order, giving a
limited display time to each one. Figure 2.16 shows the display interface that gives
instructions to users and shows the selected service.

JoeBlogg

JoeBlogg is a “socially situated public display for receiving MMS and SMS mes-
sages” [Martin et al., 2006, p. 1079]. JoeBlogg is essentially an artistic project
designed to give participants freedom to direct the use of the content of the system.
The designers of the display were interested to see if a collective sense of narrative
would emerge of the individual contributions to the display. The display was in-
stalled in the reception area of the Bartlett School of Architecture of the University
College London, UK.

Figure 2.17: JoeBlogg display [Martin et al., 2006].

Essentially, the display receives photos and text sent through Multimedia Message
Service (MMS) and displays and mixes them with portions of other pictures already
on the display (see Figure 2.17). The display is divided in two rectangular regions
that correspond to the left and right-hand sides of the screen. When a picture is
received it is displayed in the left-hand side of the screen. If there was already a
picture in that side, the older picture is moved to the right-hand side. Fragments
of the displayed pictures are displayed in the smaller rectangular regions. These
fragments are changed every 30 seconds to ensure that the display remains dynamic
even if there are no interactions. If text is sent along with the MMS message it is
also shown on two areas of the display (with a darker background).

33

2 RELATED WORK

LocaModa’s displays

LocaModa® is a company that provides several, place-based social media display
applications. Their applications use a variety of interaction mechanisms ranging
from SMS to Twitter® messages. Figure 2.18 shows three of LocaModa’s current
applications.

OTICES

} LI Foliow

By P
eK: Great tempo run today. ;
6 miles at marath .

-

Yoga Night
This Tuesday 29th
8.00 pm
To Register: o

and send to 40411
-

+ message to

[]
Sarah L

T \ 3 : CHECKINS HERE

L ® SnowCapuchin2 (18 points!) A S| [s
_}F@ b ® .; u #Patriots working out
@ . 3 #Missouri DE/OLB

Aldon Smith -

how fast can you text?
find a word and text it quick!

Standard text mesaaging rates spply

(b) Jumbli. (c) Witfiti.

Figure 2.18: LocaModa’s displays [LocaModa, 2010].

CommunityBoard, for example, “allows venue managers, their customers and com-
munity members to post events, info, offers, and timely messages to venue screens
via SMS Text, RSS, Twitter, and Facebook” [LocaModa, 2010]. CommunityBoard
allows users to place and reply to ads on the board via SMS. For example, the
bottom left ad in Figure 2.18a, allows users to register for the yoga night by sending
the SMS text “YOGAQHEALTH123” to the number 40411.

Jumbli is a word puzzle game that allows users to form words with the letters
presented on the public display. The game is essentially a means to reduce the
perceived waiting time for customers by engaging them in a game that also provides
a reward program. In order to submit a word users can simply send an SMS message
with the word to a pre-defined number (see Figure 2.18b). The same game is also a
Facebook and iPhone application.

Wiffiti is an application that combines functionalities from several other applications,
allowing users to send text via SMS, upload photos by email, and share Twitter

3http://locamoda.com
‘http://twitter.com

34

http://locamoda.com
http://twitter.com

2.2 Interaction in Public Display Systems

messages on the public display (see Figure 2.18c).

AgentSalon

AgentSalon is an agent-based public display system which is aimed at facilitating
“face-to-face knowledge exchange and discussion by people having shared interests,
in museums, schools, offices, academic conferences, etc.” [Sumi and Mase, 2001,
p. 393]. AgentSalon facilitates conversation between people by displaying their
personal agents, using computer-animated characters, on the public display and
having those characters interact with one another. The agents are able to carry
a conversation using and sharing information from the respective user’s personal
profile, which includes personal information but also historic information about the
exhibitions the user has attended and his comments and ratings for those exhibitions.
Figure 2.19 shows two characters (and users) interacting through AgentSalon.

‘halnﬁﬁdi

A

Figure 2.19: Users interacting through the AgentSalon display [Sumi and Mase,
2001].

Agents migrate to the display from the users’ personal Palm OS devices when users
connect the devices to the public display via infrared communication. The personal
profile stored at the device migrates to the display with the agents. By exchanging
profiles and searching for shared or (different) interests, agents are able to start
a conversation, which is shown on the public display, allowing users to become
aware of each other’s interests. The display also shows a semantic map with the
currently connected users’ information about visited exhibits. The map is composed
of text and icons that users can touch to display more detailed information about
the exhibit.

Hello.Wall

The Hello.Wall [Streitz et al., 2003] is a public interactive ambient display for organ-
isational information. It displays information in a very abstract way, using a matrix
of 124 light cells that can be turned on or off, functioning also as informative art

35

2 RELATED WORK

(see Figure 2.20a). It’s purpose it not only to display public ambient information,
but also to support informal communication within the organization. It does this
by combining a private information device — the ViewPort — with the public display.
The ViewPort is used to interact with the display, by directly turning cells on or off,
leaving messages to others, or to access private information stored in the display.

I
-3

(a) Hello.Wall. (b) Interaction zones. (¢) ViewPort device.

Figure 2.20: The Hello.Wall display [Streitz et al., 2003].

Hello.Wall has three interaction levels that correspond to the distance of people to
the display (see Figure 2.20b): ambient zone — the farthest zone, where the display
functions simply as an ambient display showing information that is independent of
the presence of any particular person (for example, the number of people in the
building, the level of activity, etc.); notification zone — an intermediate zone, where
the display is capable of identifying the person (through the ViewPort) and dis-
play information targeted at that particular person in the public display or in the
ViewPort; and cell interaction zone — where people can interact with the individual
light cells of the public display, reading or writing information in a particular cell
with the ViewPort. These different levels of interactivity are accomplished using
long-range Radio-Frequency Identification (RFID) antennas to detect users in the
notification zone and short-range RFID transponders in each light cell. The View-
Port is equipped with long range RFID transponder so that it can be identified and
short range RFID reader in order to be able to read the id of the light cells. This
way the Hello.Wall can detect users carrying the ViewPort in the notification zone
and the ViewPort is able to identify each individual light cell in the cell interaction
zone. The ViewPort is also equipped with a Wireless Local-Area Network (WLAN)
adapter so that it can communicate with the Hello.Wall. The ViewPort is based
on a Compaq Ipaq Pocket PC device physically modified to have a more appealing
look (Figure 2.20c).

Jukola

Jukola [O’Hara et al., 2004] is an interactive MP3 jukebox system that allows a group
of people to democratically choose the music that plays in a given place by voting.
There are two interaction points in Jukola: a public display used to nominate songs,
and a handheld device to vote for the next song. Jukola was deployed in the café
bar of the Watershed - a local arts and digital media centre in Bristol, UK.

36

2.2 Interaction in Public Display Systems

JUKOLA

o }&k"’ ’\i*"

(a) The public display for nominating songs.

(¢) The handheld device.

Figure 2.21: The Jukola display [O’Hara et al., 2004].

The public display (see Figure 2.21a) is a touch-screen display, located in a public
part of the bar, that allows costumers to browse the music collection and nominate
songs to be played in the bar (see Figure 2.21b). The handheld (iPAQ PDAs)
devices are distributed to groups of customers so they can use them while sitting
at a table (see Figure 2.21c). In each voting round (while the previous song is still
playing) Jukola selects four candidate songs to be played next and displays them as
voting choices in the handheld device. These four songs are drawn from the list of
nominated songs as well as at random from the music collection. Using the handheld
device, customers can register their vote. The device allows one vote for each voting
round (but allows the vote to be changed). While the music collection is mainly
defined by the owner of the bar, customers can also contribute to it by uploading
MP3 files using a web interface. These files are, however, subject to vetting by the
staff.

ContentCascade

ContentCascade, by Raj et al. [2004] is a mechanism to interact with public displays
to download content from the display to a personal device. One intended scenario
for this application is to allow users to download movie trailers from digital movie
posters in theatres (see Figure 2.22).

ContentCascade uses a mobile application that communicates with the display via

37

2 RELATED WORK

Public Display

Figure 2.22: The ContentCascade mechanism for content download [Raj et al., 2004].

Bluetooth and allows users to interact with the display’s content both implicitly
and explicit. In the implicit mode, ContentCascade detects that a user is standing
near the display for some time and automatically starts downloading small pieces
of meta-information about the content on the display. In the explicit mode users
can browse the available content on the mobile application and select which content
they wish to download.

In order to detect the presence of a nearby user and start transferring items auto-
matically, ContentCascade takes advantage of the Bluetooth discovery mechanism,
defining a minimum user hover time before starting the download: the system only
starts downloading content if a user stands near the display for at least a pre-
configured amount of time. To make an efficient use of bandwidth and storage space,
ContentCascade’s content items are described in various levels of meta-information.
Depending on the user’s interest and time near the display, ContentCascade may
download different levels of information. For example, level 1 may consist simply of
an URL and text description, level 2 may include a thumbnail image, and level 3
may include an additional video.

MobiLenin

MobiLenin [Scheible and Ojala, 2005] is a publicly controlled display that allows
users to vote for the next music video to be displayed. MobiLenin was developed
with an artistic perspective of giving the audience a new way to engage with the
live show of a music artist by interacting with a multimedia piece.

The main idea was that each user could use his personal mobile phone to interact
with a multi-track music video shown on a public display (Figure 2.23a). Interaction
was a matter of voting for the next music video to be shown. To do this, a user
would install and launch a mobile application developed for Mobilenin, and select
the next video on a menu (Figure 2.23b). The mobile application connects to a
server that counts the votes and also controls the public display that shows the
voting statistics and then plays the most voted video (Figure 2.23c). To entice users

38

2.2 Interaction in Public Display Systems

1 Winner! ‘

(b) Voting menu. (c¢) Voting results.

Figure 2.23: The Mobilenin display [Scheible and Ojala, 2005].

to install and use the application, the system used a lottery mechanism that, with a
certain probability, gives a prize (a beer or pizza) to the randomly selected “winner”
of the current voting round.

Publix

Publix [Ventura et al., 2008] is a interactive advertisement billboard display system
composed of a network of billboards and a mobile application. The purpose is to
increase the advertisement’s efficiency, hence driving more users to the billboards to
capture their attention, by providing interactive advertisements.

User interaction with the billboards takes place through the use of a mobile applica-
tion that communicates with the display via Bluetooth (see Figure 2.24). Through
this application, users can download ringtones and images, see current promotions,
and play games. The billboards also perform proximity marketing by detecting
nearby Bluetooth devices and pushing digital flyers (the system is able to recognize
if someone already received or rejected the flyer in order not to send it again).

39

2 RELATED WORK

(a) User playing with the display. (b) PublixMobile appli- (c¢) PublixMobile game
cation. menu.

Figure 2.24: The Publix display system [Ventura et al., 2008].

Tacita

Tacita is a system to allow mobile users to express personalisation preferences to
nearby public displays [Kubitza et al., 2013]. In contrast to other personalisation
systems, Tacita avoids sharing user’s location and personalisation data with the
display infrastructure, instead using trusted application servers to make the per-
sonalisation requests. Using an Android mobile client, a user can discover nearby
displays, determine the set of applications available, and trigger personalisation by
filling in a set of key-value pairs that each application can define (see Figure 2.25a).

@—netmnbile [L

(b) Public display. |
Figure 2.25: The Tacita public display system [Kubitza et al., 2013].
Using the client’s knowledge of display locations and capabilities allows the user to

see personalised content when within the proximity of a display without revealing
their location (see Figure 2.25b). Sending the personalisation parameters directly

40

2.2 Interaction in Public Display Systems

to the application to be shown prevents the display from building up a profile about
any individual.

2.2.4 1d badge

In this section, we describe public display systems where users wear a personal badge
that enables the display system to identify and react to their presence.

Intellibadge

The IntelliBadge [Cox et al., 2003] is an example of the use of displays to enhance
the awareness of activities in a conference setting. This project was developed by
the organising committee of the IEEE Supercomputing 2002 (SC2002) conference,
with the objective of tracking the conference participants and display awareness
information about the conference such as most active places and sessions. Conference
attendees were initially asked to fill in personal and professional information in a
web profile that included name, institution and professional interest categories (from
a pre-defined set of categories). At the conference, participants were given RFID
badges that were tracked throughout the conference site.

ineiodge ffy | Welcome to itlibadgo at SC 2002 IntelliBodge b

==

IntelliBadge b

EXHIBITION FLOOR

EXHIBITION FLOOR il 315

(a) Conference at a glance. (b) How does your conference (c) Responsive map.
grow.

Figure 2.26: The Intellibadge display [Cox et al., 2003].

Three visualisations (see Figure 2.26) were created to show the flow of participants
through the different conference areas and to show the most active conference ses-
sions. The visualisations were pre-defined at design-time by the authors of the
project and the main data that the displays used was simply the location data reg-
istered by the RFID readers deployed throughout the conference spaces. Users had
no control over what was displayed.

The “conference at a glance” visualisation (see Figure 2.26a) displayed statistical
information about the relative number of people from each interest category at each
current event. The “how does your conference grow” (see Figure 2.26b) visualisation
showed a more poetic view of the statistical data by using a virtual garden metaphor
that used flowers as locations in the conference, coloured petals as interest categories
and walking ants as rate of people walking through the tracked conference areas.

41

2 RELATED WORK

The “responsive map” visualisation (see Figure 2.26¢) reacted more directly to users
standing near the display by showing their place of origin on a map along with the
name of their institution. This visualisation responded to people near each one of
the three displays by sequentially displaying information about each person in a
map. A live video feed from each display was also displayed and the video window
borders were colour-coded in the same colour used in the map to show the association
between the live video and the information on the map.

Proactive displays

In the Proactive Displays project [McDonald et al., 2008], the authors developed
and evaluated a set of public display applications designed to augment and extend
the social interactions that usually occur in an academic conference and are usually
designated by “social networking”. The authors developed a set of proactive displays
capable of sensing and responding to the physical proximity of the participants. The
conference participants were asked to fill in a personal profile on a web form, before
attending the conference and these profiles were associated with RFID augmented
conference badges. Throughout the conference venue, displays detected participants
and showed content from their profiles.

David Nguyen | L)

ington m Intel Research Seattle ﬂ nnnnn es
75/ Joe McCarthy e | g
“=/Intel Research Seattle B e

cccccc

mmmmmmmmmmmmmmmm

nnnnnn

(a) Autospeaker ID screen- (b) Ticket to talk screen- (c¢) Neighbourhood window screen-
shot. shot. shot.

Figure 2.27: The Proactive displays [McDonald et al., 2008].

Three different applications were developed and deployed in three different locations
in the conference:

AutoSpeakerID — deployed in the session space of the conference, this application
displays the name, affiliation and photo of the person asking a question during
the question and answer period following a paper or panel presentation (see Figure
2.27a). In this case the display senses the presence of the participant that is in the
microphone stand, not near the display itself.

Ticket2Talk — deployed behind the coffee tables, shows a theme (an image and
a caption) that participants specified as being willing to talk about during the
conference, thus providing a conversation starter for people during the coffee breaks.
Content is shown only if the participant is near the display (see Figure 2.27b) and
only for five seconds at a time. The bottom of the screen shows a list of thumbnails
representing a queue of people that have been detected by the display and whose
ticket to talk will be presented soon.

42

2.2 Interaction in Public Display Systems

NeighborhoodWindow — deployed in the lounge area, shows keywords taken from
the participants web pages and creates a network of connections between people and
their interests. The result is that both shared and unique interests are naturally
highlighted by the visual representation (see Figure 2.27c¢).

GroupCast

GroupCast [McCarthy et al., 2001] intended to be a semi-public peripheral display
(see Figure 2.28) for fostering interactions and informal conversations between peo-
ple in a workplace by displaying content that is of interest to at least one of the
persons that were detected near the display (using an existing infrared badge infras-
tructure in the office environment). GroupCast builds on the user profiles created
for another display system called UniCast but uses them differently: information
is displayed only when the user to whom it refers to is detected near the display.
This way it guarantees that what is displayed is relevant at least to one person and
potentially creates an opportunity for person—person interaction about the displayed
information.

Figure 2.28: The GroupCast display [McCarthy et al., 2001].

2.2.5 Device-free interaction

This section presents display systems in which interaction is accomplished by simply
passing-by the display or standing in front of it and gesturing, without having to
wear or use any device.

Aware Community Portals

MIT Media Lab’s Aware Community Portals by Sawhney et al. [2001] is an example
of a semi-public display intended to be used in a transitional area of a workplace
as a shared peripheral information device. Because the community’s interests were
well known, the display was designed to use a popular technology-related news site

43

2 RELATED WORK

— Slashdot® — as the main content source, although it used several other types of
content such as the current time, weather, cartoons and even MP3 audio files. The
Aware Community Portals used movement, proximity and glance as interaction
mechanisms (see Figure 2.29a):

“A phased approach first displays an ‘“information glance’ when new in-
formation arrives. When a person is seen walking-by the space, a series
of images are shown cycling through, depicting the recent stories in mem-
ory. If the person stops to glance at the display, a preview of the current
story (news headlines or weather map) is shown for a short duration. If
the person then continues to glance, the system assumes she wishes to
browse the article in more detail, hence a sequence of related information
is shown” [Sawhney et al., 2001, p. 68].

el

Unix: Hhich One to Choose?

Posted by HelUnique on Friday March
I just found this stq
Reseller which talks
Unix (or Linux
suggesting to use
uses (web, applicatio
Its a very long arti
talke also about 1
2000. Worth a read IMH

’ -
W
y |
-
L
“ A
-
W
.
'l
al

(a) Glancing. (b) Faces timeline.

Figure 2.29: The Aware Community Portals [Sawhney et al., 2001].

The system is also able to detect faces and show them next to the articles, in a
timeline view (see Figure 2.29b). This gives users an historic perspective over who
read the article, raising their awareness about other people’s interests and also giving
an indication of which articles attracted more attention. The system used a web-
camera and computer vision techniques to detect movement and faces. Movement
is used to infer the proximity of people and face detection is used to infer a person’s
interest in the displayed content. The image that is being captured by the web-
camera is shown back to users, and before faces are recorded, a rectangle around
the face begins to grow, giving users the possibility to step back if they don’t want
their faces to be recorded.

Interactive public ambient displays

[Vogel and Balakrishnan, 2004] created a prototype public display system that uses
physical proximity and explicit gestures for interaction. Although they prototyped
it using a motion capture system that requires users to wear special markers, the
concept was about implement free interaction with a public display.

Shttp://slashdot.org

44

http://slashdot.org

2.2 Interaction in Public Display Systems

Figure 2.30: Interactive public ambient display [Vogel and Balakrishnan, 2004].

The display uses a four-phase interaction model based on proximity and attention.
Ambient display phase: the ambient display phase is a neutral state where the dis-
play shows only overall public information. Implicit interaction phase: this phase
is triggered when a user passes by the display and appears “to be open to commu-
nication” [Vogel and Balakrishnan, 2004, p. 3|. In this phase the display shows an
abstract representation of the user and notifies the user if there is an urgent infor-
mation item that needs attention. Subtle interaction phase: in this phase the user
gives a clear indication that he is interested in the display, by pausing and looking
at it, for example. In this phase the display can show more detailed information.
Personal interaction: the user interacts directly, touching the display to see more
details about personal information.

Info-Jukebox

“The Info-Jukebox is an information kiosk for browsing and searching multimedia
archives in public spaces” [Li et al., 2004, p. 384], that uses a electromagnetic
field sensor to determine the coordinates on the screen at which a user is pointing.
Objects on the display can be selected by pointing at them during a brief period.
The display presents a list of images arranged in a matrix layout, which users can
select to play the corresponding video (see Figure 2.31).

Figure 2.31: Info-jukebox public display [Li et al., 2004].

45

2 RELATED WORK

Proxemic Peddler

The Proxemic Peddler [Wang et al., 2012] is a prototype public display system
that proposes a continuous proxemics interaction framework that takes into account
users’ identity, distance, and orientation relative to the public display. The Peddler
Interaction Framework (see Figure 2.32) “extends the Audience Funnel Framework
[Michelis and Miiller, 2011] to incorporate continuous proxemics measures including
distance and orientation, additional states including digression and loss of inter-
est, and the passer-by’s interaction history, all with the goal of pursuing the AIDA
[attract Attention, maintain Interest, create Desire, and lead customers to Action]
strateqy effectively” [Wang et al., 2012, p. 3]

Figure 2.32: Proxemic peddler public display [Wang et al., 2012].

In the prototype, the authors used a Vicon® motion capture system that requires
users to wear special detection markers, and the content was extracted from the
Amazon website. The system uses various techniques to attract and maintain user’s
interest. A rapid animation of a flow of products is used to attract passers-by. If a
user looks at the display, the animation slows down to allow better visibility. If the
user moves closer, the display switches to show personalised content, which users
can buy by touching the product on the display. If the display detects a possible loss
of attention, it shakes the currently shown product to re-gain the user’s attention.
If the user moves away slowly, the display again tries to capture his attention by
showing different products at a large size.

2.2.6 Analysis

How interaction influences content

Interactions with public display systems can affect the content displayed in essen-
tially two ways: directly and indirectly. Directly means that the display system
provides explicit interaction features so that users can control various aspects of the

Shttp://wuw.vicon.com

46

http://www.vicon.com

2.2 Interaction in Public Display Systems

content presented by the display system. Interaction features such as submitting,
browsing, removing, playing, graphically positioning, or showing detailed informa-
tion about content, give users direct control over the content that the public display
shows at a given moment. Most of the display systems surveyed provide users with
various degrees of direct control over the content. For example, all display systems in
the desktop-like and the touch-screen interaction categories, and many of the mobile
device category allow users to submit content for the display to show; in fact, in most
display systems in these categories, user-submitted content is the only source of infor-
mation used by the display with the exception of Plasma Posters, Jukola, Hello Wall,
and Locamoda’s display systems, which also include other sources of information.
Some display systems allow users to graphically control the positioning of a content
item on the screen (Dynamo, Notification Collage, MessyBoard), browse content
items (Plasma Posters, Outcast, Hermes Photo Display, Info-Jukebox, Interactive
Public Ambient Displays), show detailed information about an item (AgentSalon),
vote on content to appear (Jukola, MobiLenin), search (e-Campus Bluetooth), and
play content (e-Campus Bluetooth, Dynamo).

Interactions can also indirectly affect the content selection or scheduling algorithms.
The primary function of some features is to control the display’s content, but the
system gives them a secondary function, often unknown to users, of influencing the
content. In CoCollage and Community Wall, the voting/rating, commenting, and
check-in (in CoCollage only) features were used by the scheduling algorithm to decide
which content items should be displayed next. In Hello Wall, Aware Community
Portals, IntelliBadge, Proactive Displays, GroupCast, Interactive Public Ambient
Displays, Proxemic Peddler, and Tacita, the user proximity to the display is used to
trigger content (personal content in some cases where the display is able to identify
the user). In Instant Places, user presence and expressed preferences are used to
create a place profile in the form of a tag cloud which drives the content searches
and consequently the displayed content items. These indirect uses of the interactions
represent strategies that some display systems have used to autonomously adapt the
content to their situation.

Table 2.1 shows the comparative analysis of the influence of interactions on the
displayed content. It is apparent that very few display systems try to leverage o
users’ interactions to adapt the display’s content. The most common approach is
still to give users full control (and burden) over what is displayed, instead of using
the information that indirectly results from interactions to learn about the display’s
social environment. For this to happen, we need a better understanding of how the
various types of interactions can contribute to these content adaptation strategies.
Our work addresses this issue by creating a framework of digital footprints that result
from various types of interactions, and by mapping those footprints to various types
of content adaptation processes.

Table 2.1: Influence of interaction on the display’s content: comparative analysis.

Category Display system Interaction influence on content
Desktop-like Opinionizer Direct (submit)
Dynamo Direct (submit, position, play)
IM Here Direct (submit, define content lifespan)

47

2 RELATED WORK

...continued.

Interaction
category

Display system

Interaction influence on content

Notification Collage

Direct (submit, position content)

MessyBoard

Direct (submit, remove, position content)

CoCollage

Direct (submit); Indirect (votes, comments, check-
ins influence scheduling)

Touch-screen

Community Wall

Direct (submit); Indirect (ratings and comments
influence scheduling, presence freezes and displays
more detailed content)

BlueBoard

Direct (submit, remove, display)

Plasma Posters

Direct (submit, browse)

OutCast Direct (browse)

Digifieds Direct (create, browse, display)
Mobile device Web Wall

Jukola Direct (submit, nominate, vote)

Hermes Photo Display

Direct (submit, browse)

(
(
(
Direct (submit)
(
(
(

AgentSalon Direct (submit, show detailed information)
Hello.Wall Direct (submit); Implicit (presence triggers content)
ContentCascade No control over content.

MobiLenin Direct (vote on content to appear next)

Publix Direct (play)

Locamoda’s

Direct (submit)

JoeBlogg

Direct (submit)

Instant Places

Indirect (presence and expressed preferences deter-
mine what and when content is displayed)

Id badge

e-Campus Direct (content searches/requests)

Tacita Indirect (presence and expressed preferences deter-
mine what and when content is displayed)

IntelliBadge Indirect (proximity triggers personal content)

Proactive displays

Indirect (proximity triggers personal content)

GroupCast

Indirect (proximity triggers personal content)

Device-free

Aware Community Portals

Indirect (movement triggers generic content, contin-
ued presence triggers detailed information)

Interactive public ambient

displays

Direct (browse); Indirect (presence triggers notifica-
tions)

Info Jukebox

Direct (browse)

Proxemic Peddler

Indirect (presence triggers content)

48

2.2 Interaction in Public Display Systems

Interaction mechanisms and features

The comparative analysis of the various display systems reveals a plethora of interac-
tion mechanisms. The reviewed display systems used mechanisms such as keyboard-
/mouse, custom desktop, web, and mobile applications, touch-screens, SMS/MMS;,
WAP, Bluetooth naming, Bluetooth OBEX, email, active badges, RFID badges,
movement detection, face detection, gestures. Table 2.2 summarises the interaction
mechanisms used in the surveyed public displays and the features they offer to users.

Most display systems are tightly coupled with very specific interaction mechanisms
and have graphical interfaces built around these mechanisms. For example, the
Aware Community Portals [Sawhney et al., 2001] relied on face detection for ex-
pressing and communicating interest in an article, showing the faces of readers in a
timeline next to the article. Publix [Ventura et al., 2008] relies on a mobile device
with Bluetooth capabilities, not only for proximity marketing, but also for commu-
nicating with the display for interaction. Hermes Photo Display [Cheverst et al.,
2005] relies on Bluetooth OBEX for file transfers and even includes a printed poster
near the display, instructing users on how to accomplish the Bluetooth OBEX file
transfer process to send and receive photos; the e-Campus Bluetooth system [Davies
et al., 2009] included written instructions on the public display graphical interface
on how to interact by changing the Bluetooth name of the personal device; Joe-
Blogg’ [Martin et al., 2006] also included written instructions about sending MMS
or SMS messages to display photos and messages on the public display.

Most display systems that employ more than one interaction mechanism, assign
different mechanisms to different interactive features. Interaction mechanisms are
usually tightly coupled with the interactive features that the display system sup-
ports. For example, on BlueBoard [Russell and Gossweiler, 2001] the touch-screen
is used to share content with other users, the web interface is used to submit content
to the display, and the id card is used to login. In Jukola [O’Hara et al., 2004] the
web interface is used to submit content, the touch-screen to nominate songs, and
the mobile application to vote on the next song.

The comparative analysis also reveals that the various interaction mechanisms have
been used to support very different sets of interaction features and different inter-
action models. For example, the web interface in CoCollage McCarthy et al. [2009]
was designed as an online mechanism to be used near the display itself: users would
sit in a café with their laptops and see (some of) the actions made on the web
interface immediately reflected on the public display. In Blueboard [Russell and
Gossweiler, 2001], Plasma Posters [Churchill et al., 2004], Web Wall [Ferscha et al.,
2002], and Jukola [O’Hara et al., 2004] the web interface was used more as an offline
mechanism where users would submit content to view it later on the display. The
Bluetooth naming mechanism used in e-Campus Bluetooth [Davies et al., 2009] was
meant to be actively used to issue commands that would be immediately carried on
by the display system. In Bluetooth Instant Places [José et al., 2008], the Bluetooth
naming mechanism was meant to be used in a more passive way where users would
define their preferences once and have the display system react to their presence in
subsequent visits.

49

2 RELATED WORK

This analysis of the interaction mechanisms and features shows that the surveyed
display systems have not taken advantage of abstractions for incorporating their in-
teractive features. These display systems have been developed with specific interac-
tion mechanisms in mind, which makes them hard to adapt to situations where other
interaction mechanisms have to be used. Our work tries to address this by analysing
and abstracting the interactions that can occur with public displays and proposing
high-level controls that are independent of specific interaction mechanisms. These
controls should provide public display applications with an abstraction layer that
shields them from the low-level details of any interaction mechanism.

Table 2.2: Interaction mechanisms and features in public displays: comparative
analysis.

Interaction mechanism Display system Interactive features
Keyboard/ Mouse Opinionizer Submit content
Dynamo Submit content; browse; control presentation;

share content; communicate;

IM Here Communication;

Desktop application Notification Collage Submit content;

MessyBoard Submit content;
Web interface IM Here Submit content;
CoCollage Submit content; check-in; vote; comment; mes-
sage;
Community Wall Submit content
BlueBoard Submit content
Plasma Posters Submit content;
Web Wall Submit content;
Jukola Submit content
Digifieds Submit content
Touch-screen Jukola Nominate;
BlueBoard Share content;
OutCast Browse content; communicate
Community Wall Rate; comment; forward content;
Plasma Posters Browse; comment; forward content;

Hermes Photo Display Browse

AgentSalon Show detailed information

Interactive public ambi- Browse;
ent displays

Digifieds Browse; submit; forward content
Mobile app Community Wall Submit content
AgentSalon Submit content
Hello.Wall Submit content; receive content; detect users;
Jukola Vote;
ContentCascade Receive content;
MobiLenin Vote;

50

...continued.

2.3 Software Support for Application Development

Interaction mechanism

Display system

Interactive features

Publix Receive content; play;

Digifieds Submit; receive

Tacita Express preferences;
WAP Web Wall Comment; submit content; vote;
SMS Web Wall Comment; submit content; vote;

Locamoda’s Submit content; receive content;
MMS/SMS JoeBlogg Submit content;

Bluetooth OBEX

Hermes Photo Display

Submit content; receive content;

Bluetooth naming

Instant Places

Express preferences;

e-Campus Search/request content;
Email Community Wall Submit content
Plasma Posters Submit content;
Web Wall Comment; submit content; vote;
Locamoda’s Submit content; receive content;
Id card CoCollage Check-in;
BlueBoard Login

Computer vision

Community Wall

Pause content

Aware Community Por-
tals

Trigger content;

Motion capture

Interactive public ambi-
ent displays

Trigger content; browse

Proxemic Peddler

Trigger personalised content;

Electromagnetic field

Info Jukebox

Browse content;

Xerox scan

Community Wall

Submit content

Id badge

IntelliBadge

Trigger personal content; Be detected;

Proactive displays

Trigger personal content;

GroupCast

Trigger personal content;

2.3 Software Support for Application Development

This section describes several existing types of software that support the develop-
ment of interactive applications, focusing on the abstractions they provide. We
describe software support for different platforms and paradigms — desktop, web,
context-awareness, and ubiquitous computing, which may all serve as inspiration
for a solution for public display applications.

In order to facilitate the description, we have grouped the existing solutions into

ol

2 RELATED WORK

three categories: widget based, dynamic user interface generation, and data-driven
interaction. These categories were chosen because they reflect different approaches
for abstracting user input and they result in different programming models and
concerns.

2.3.1 Widget based

The widget based development model is perhaps the most used currently, not only for
desktop development but also for web and mobile applications. Typically, this model
emphasises the graphical look of an application and focuses on giving application
developers, and users, a set of self-contained interaction objects that can be used to
build an application through composition of individual interactive elements.

The X Toolkit (Xtk) [Swick and Ackerman, 1988; McCormack and Asente, 1988] was
one of the first graphical user interface toolkits. Most modern user-interface toolkits
follow its concepts’ and structure so it is instructive to consider these concepts
briefly.

A widget is the fundamental entity for the construction of graphical user interfaces.
Xtk and all modern toolkits use object-oriented programming techniques to struc-
ture the available widgets and provide ways for programmers to develop new widgets
based on existing ones. A widget is, thus, represented by a class and the toolkit
provides a class hierarchy of widgets in the form of a tree (there is usually a root
widget class that provides general bookkeeping functions needed by all widgets).
Figure 2.33 shows the set of basic widgets for the creation of user interfaces in Xtk.

Core
\
\ \ \ |
Label Scrollbar Text Composite
[
\ \ | |
Command Shell Box Constraint Menu
Boolean Form Pane

Figure 2.33: X Toolkit: the class tree for a subset of the available widgets.

Generally, widgets “define input semantics and visual appearance” [Swick and Ack-
erman, 1988, p. 222], and they are expected to be self-contained and be able to
draw themselves when needed and handle all the input directed at them. Some
widgets are just used as containers for other widgets to help lay them out in the
graphical user interface. In the Xtk, these are called composite widgets (they are
all subclasses of the Composite class).

"Swick and Ackerman [1988] were also the first to apply the term widget to user interface
elements.

52

2.3 Software Support for Application Development

The user interface of an application can also be represented by a tree, but in this case,
a tree of widget instances. The internal nodes of the user interface are composite
widgets that serve only to contain other widgets and help manage their size and
position. The leaf nodes are widgets meant to display information and accept and
respond to user input. Figure 2.34 shows a sample application and the corresponding
widget instance tree. The application has three leaf widgets: a Label with the text
“Hello, World” in the left side of the window, another label with the text “Goodbye,
World” in the right top side of the window and a button with the text “Click and
die” in the right bottom side. To help create this layout, the application uses two
forms: one that delimits the left side of the window and another that delimits the
right side. To contain these two forms, another form is needed which is contained
in the shell widget. (In Xtk, all applications need a special top-level widget, which
is called Shell and can contain only a single widget.)

Shell
Form
Hello, World Goodbye, World Form Form
Click and die ‘ ‘
‘ Label ‘ Label Command
(a) Sample application with two labels (top) (b) Widget instance tree.

and one button (bottom).

Figure 2.34: X Toolkit: instance tree for a sample application.

Applications communicate with widgets by querying its state or invoking the wid-
get’s methods (to change the widget’s state, set the data to be displayed, etc.). In
the inverse direction, the main mechanism for widgets to communicate with the
application is via callback methods. If an application is interested in receiving in-
put notifications from a widget it registers a callback method that the widget will
call when the corresponding input event is triggered. A widget may define several
different events and applications are free to register callbacks to only a subset.

Applications may need a widget that is not provided by the toolkit and, so, program-
mers may need to develop their own widgets. Toolkits are designed with extensibility
in mind so that programmers can easily extend an existing widget and create a new
widget with new functionality. If the programmer only needs to constrain the func-
tionality of an existing widget or modify it slightly, he can simply create a subclass
of the existing widget’s class and add new functionality or constrain the existing one.
If a completely new widget is necessary, the programmer can always subclass the
root widget (in many toolkits, a specific class is provided for this extension purpose).
In other cases, the new widget can be built by composing existing, simpler, ones
into a single widget. For this specific case, a “composite” or container widget can
be used (or subclassed) to join together several widgets (some toolkits also provide
specific composite widget classes for this purpose). Composition is suitable when

53

2 RELATED WORK

the widget has distinct visual components with specific input semantics and when
components also make sense as individual widgets per se.

Whatever the means to create a new widget, from the application’s point of view,
the new widget can be used in the same way as the existing ones. Although toolkits
usually provide a small set of basic widgets, there is really no limit to the complexity
of a widget in terms of its visual appearance and input capabilities. As long as it
provides a reusable component for the application and perhaps also useful for other
applications, it can be encapsulated in a widget.

Other desktop and web toolkits

We can list various other toolkits that follow the same structure as the X Toolkit,
for desktop, mobile, and web application development.

On the desktop, for example, the Java Abstract Window Toolkit (AWT) and Swing
are very common toolkits for Java based applications. AWT is actually not just a
widget toolkit but a combination of graphics, windowing and widgets toolkits. AWT
provides just a thin layer of abstraction over the Operating System (OS) native user
interface and the widget components are actually drawn by the OS, which makes
Java applications look like native applications. Figure 2.35% shows some elements
of the AWT toolkit. The Swing toolkit changes this by introducing its own widgets
and drawing them independently of the OS (in reality, Swing provides an option to
use the native look and feel), so that a Java application looks the same, regardless
of the OS it’s running on.

& AWT-Elemente HE=] []

|TextField

Label

: Button |

" Checkbox

TextArea ;]
A ¥ /Z

Figure 2.35: Java AWT toolkit: some components.

More recently, there have also appeared several libraries and toolkits for web ap-
plication development. Although programming for the web is very different from
programming for native desktop computer applications, the existing web toolkits
have a very similar structure to those for desktop. jQuery [JQuery, 2013], Ya-
hoo! User Interface (YUI) [Miraglia, 2006; Yahoo!, 2013], and Google Web Toolkit
(GWT) [Google, 2011b] are widely used web toolkits for building rich, interactive,
web applications taking advantage of techniques such Asynchronous JavaScript and

8Picture taken from http://en.wikipedia.org/wiki/File:Easy_Java_AWT_example.jpg.

o4

http://en.wikipedia.org/wiki/File:Easy_Java_AWT_example.jpg

2.3 Software Support for Application Development

XML (AJAX), and Dynamic HyperText Markup Language (HTML) (DHTML).
They provide utilities for abstracting some differences in Javascript implementa-
tions between different browsers, easier manipulation to the HTML’s Document
Object Model (DOM) structure, custom events and graphical user interface wid-
gets. jQuery and YUI are very similar in the way they are used for web application
development: the programmer manually includes one or more Javascript file in the
web page via the < script > HTML element and can then take advantage of the
respective toolkit’s functions in the Javascript of the application, including instanti-
ating widgets and adding them to the HTTML DOM. GWT works in a very different
manner: applications are written mostly in Java, not Javascript. GWT’s libraries
are based on the Java language, reusing a part of the core Java’s libraries and in-
troducing new ones specific to web development. Applications are written in Java
but are then compiled into Javascript by the GWT compiler, which creates opti-
mised versions of code for different browsers automatically. Another difference is
that GWT is also prepared to work with Google’s Appengine [Google, 2011a] — a
server based application framework — which allow developers to more easily create
full (server and client) web applications using the same language on both the server
and client.

Widgets for context-aware applications

The widget abstraction concept has also been applied in application areas such as
context-aware computing, which demonstrates their usefulness beyond the GUI in-
teraction paradigm. In this section we describe how widgets are used in the Context
Toolkit [Salber et al., 1999; Dey, 2000].

The Context Toolkit results from the recognised difficulties in developing context-
aware applications, specifically in creating applications that are easy to develop and
evolve and that can take advantage of a great variety of sensors and types of context.
The design of the Context Toolkit was informed by the lessons learned from graph-
ical user interfaces toolkits, namely the concept of widget. In the Context Toolkit,
the main building block for applications is the context widget which collects informa-
tion from the environment (through hardware or software-based sensors). Context
widgets, just like traditional GUI ones, abstract low-level details of sensor input and
processing, providing applications with ready-to-use high-level abstractions.

One example of a context widget is the IdentityPresence widget, which reports
the arrival and departure of people at the location to which it is associated. An
application can query the widget for the location where it is installed and the identity
of the last person sensed. Applications can also request to be notified whenever a
user arrives or leaves the location. Applications need not be concerned about the
implementation details of this widget or the type of sensors it uses, only what kind of
information it provides. Context widgets also provide reusable building blocks and
can also be composed of simpler widgets. For example, a Meeting widget could be
built on top of the IdentityPresence widget and determine that a meeting was taking
place in a given location whenever two or more users where detected simultaneously.

95

2 RELATED WORK

Context widgets differ from GUI widgets because they must operate in a completely
different architecture. Whereas GUI widgets run on a single, local computer, con-
text widgets must run on a distributed system because sensors need to be physically
distributed. Another major difference is that, contrary to GUI widgets, which ex-
ecute only when the application that uses it is executing, context widgets need to
collect environmental information continuously and, so, they are independent from
applications.

Aggregator Interpreter
Widget Widget
@ @ Context
Architecture

(a) Component class hierarchy. (b) Component interaction.

BaseObject

Interpreter

Interpreter

Widget

Discoverer

Aggregator

Figure 2.36: Context Toolkit conponents (adapted from [Dey, 2000]).

Besides context widgets, the Context Toolkit includes other components that appli-
cations can use (see Figure 2.36a). These components may be physically distributed
and they can run on different computers. The toolkit provides peer-to-peer com-
munication between components and facilities to discover components of interest to
an application. Figure 2.36b shows a typical interaction between components and
applications in the Context Toolkit. The main components of the toolkit are:

e BaseObject: provides the communication infrastructure needed by all compo-
nents. This component is the root of the class hierarchy, so all other compo-
nents inherit its functionality directly or indirectly. Components communicate
using the HyperText Transfer Protocol (HTTP) protocol and data is encoded
using an eXtensible Markup Language (XML) format. Applications instanti-
ate this class to be able to communicate with the context infrastructure.

e Discoverer: provides resource discovery services. The Discoverer component
allows applications to dynamically discover the existence and location (on the
network) of other components. Applications specify what components they are
interested in by specifying which attributes they require (location, username,
in/out status, timestamp, etc.) and possibly defining some attributes’ values
(for example location=*“building X", if the application is interested in context
information about building X only). The Discoverer knows about other com-
ponents because they register themselves with a known Discoverer when they
start, and they unregister when stopping. Applications may request notifica-
tions from a Discoverer to be notified, for example, when a specific component
becomes online.

e Widget: acquires context information directly from sensors and provide ap-
plications with a uniform interface to access this information. Applications

56

2.3 Software Support for Application Development

can request to be notified about changes in the widget’s context information
or can simply query its current state to get the context information. Widgets
also store the context information they acquire so applications can use histor-
ical context information. Widgets will typically run on the same computers to
which the widgets’ sensors are connected. Widgets can also provide services
to applications, enabling them to actuate on the environment.

e Interpreter: performs inferences on context information or maps between dif-
ferent representations. For example, an Interpreter can translate Global Po-
sitioning System (GPS) data into addresses or combine context available in a
conference room to determine if a meeting is occurring. Interpreters may be
used to generate context information at a higher level than context widgets,
although, in some cases, the two may be interchangeable.

o Aggregator: aggregates context about a particular entity. Aggregators collect
context information about a particular person, place or object, from different
widgets. An Aggregator can be seen as the union of a set of widgets, for a
particular entity.

Analysis

Widget toolkits, such as the X Toolkit and derived ones for desktop, web, and
mobile applications are very oriented towards graphical tasks — moving graphical
objects, drawing, clicking on buttons and menus, dragging windows, etc. They
abstract low-level mouse pointer and keyboard actions into higher-level actions such
as button presses and text-entry. Also, they rely on very specific input devices: a
pointing device and a keyboard for desktop and web toolkits, and a touch-enabled
screen for mobile toolkits. In addition, they are targeted at single-user and local
interaction environments where both the application and input devices are on the
same computer system. Although some public display systems have successfully
used these toolkits in their implementation, they did so for a very specific usage
scenario. As a general-purpose interaction abstraction for public displays, these
toolkits are not directly applicable but they still provide a source of abstraction and
inspiration.

The Context-Aware Toolkit is obviously not suited for interaction with public dis-
play applications because it is targeted at context acquisition, not at interaction.
However, it demonstrates that the concept of widget, widely familiar to most pro-
grammers, can also be applied to a completely different platform, maintaining its
fundamental properties of abstraction.

Our work also leveraged on the familiarity of the widget concept as an abstraction
for programming the user interface of an application. We took advantage of all the
concepts and features we could from these toolkits, but public display applications
have specificities that require a different approach. The toolkit developed in this
thesis uses the concept of widget to represent high-level controls that abstract input
from several sources and provide interaction events to public display applications.
Unlike widgets for desktop programming, our widgets for public displays are not

57

2 RELATED WORK

dependent on local input devices such as mice and keyboards but can receive input
from both local and remote devices. Additionally, they support multiple simultane-
ous users interacting with the same widget.

2.3.2 Dynamic user interface generation

The dynamic user interface generation approach is another possibility for providing
interaction abstraction for applications and so it is important to analyse its main
properties and variants. This approach works on a different level than widgets and
both can even be used together.

The dynamic user interface generation approach is more inclined towards ubiquitous
computing environments and smart spaces where there are services associated with
places, which can be accessed through many different devices. Developers focus
more on how to describe the service interface in an abstract manner than to create
a specific graphical interface for a specific device. This approach favours multi-
modality because the user interface can be dynamically generated or fetched by a
user’s device, which may render it using different modalities.

In this approach, the application logic and user interface are distributed: the user
interface runs in a controller device that connects remotely to the application logic
through some kind of remote method invocation mechanism. Service developers
focus on the implementation of the internal logic and on what functions the service
should provide to the outside world. These functions represent the programmatic
interface that the service exposes to other system components. The actual user
interface runs on a controller device, which translates user input into remote method
calls according to the service’s interface. There are usually four main components
in this distributed architecture:

Services services can be devices or applications that provide useful functions to
end-users.

Controller devices controllers are the (usually mobile) devices that users will use
to interact with the existing services.

Communication network controllers communicate with the service to invoke the
necessary functions in response to user actions, through some communication
network.

Service discovery controllers need to be able to discover the existing services in
a given environment, so there is usually some kind of service discovery facility
where services are registered and controllers can ask for existing services.

There are several ways to make the user interface appear in the controller device
and allow a user to control the service. Whatever the concrete means, the end goal
is always to facilitate the use of multiple, heterogeneous mobile devices, to interact
with several services available in a given environment.

58

2.3 Software Support for Application Development

Downloadable user interface code

One approach for creating the user interface is to have the controller download the
User Interface (UI) code from the service itself and then execute it locally. To sup-
port controllers with different capabilities and interaction modalities, services may
have different user interface implementations and descriptions associated. Con-
trollers wishing to access the service can inspect the associated user interfaces and
choose the best fitting one.

This is the approach followed by the Jini Service UI [Venners, 2005, which is based
on Jini’s service architecture. In Jini, services announce themselves by registering in
a lookup service available in the network. This registration involves placing a service
proxy object for the service in the lookup service. This service proxy is a runnable
Java object that clients use to interact with the service. Clients use the lookup
service to find a service of interest and download the associated service proxy. To
invoke a function on the service, clients call a local method on the proxy. The proxy
object takes care of communicating over the network to the corresponding service,
using whatever protocol the service developer chose. Jini Service Ul extends the
base Jini architecture and defines how services can attach different user interfaces to
the service proxy and how clients can select and run an appropriate user interface for
the device. This is accomplished by using Ul descriptors, which include a set of fields
(attributes — i.e., generic attributes to help search for suitable Uls; toolkit — e.g.,
AWT or Swing; and role — e.g. MainUi, AdminUI) that describe each user interface,
and that clients can use to select the most appropriate one. The Jini Service Ul
architecture is centred on the Java programming language, but the same approach
could be used for supporting other programming languages, even simultaneously.

Abstract user interface description

A different approach for showing the user interface in the controller device is to
have a service interface description that controllers can read to dynamically gener-
ate a suitable user interface. The same service interface description may result in
completely different user interfaces in different controller devices because controllers
can generate the most appropriate user interface according to their own interaction
modalities (graphical, speech, gesture, command line, etc.) and capabilities. The
service interface description is usually done in an abstract form to guarantee device
independence and interaction modality independence so that devices are able to gen-
erate a suitable user interface whatever the concrete type of device and interaction
modality.

This approach has been realised in many systems before, with slight variations
among them. For example, Roman et al. [2000] developed a device independent,
XML based, language for representation of services and the respective dynamic
interface generation for mobile devices. The service description language allows the
definition of a list of methods with parameters, which can be invoked by the client.
The service description also includes a description of GUI elements that should
be used in the user interface to represent the parameters and actions that trigger

59

2 RELATED WORK

the invocation of methods. Clients obtain the service description and employ a
eXtensible Stylesheet Language (XSL) transformation particular to the device to
generate the HTML user interface, which is then presented in a native browser (the
client includes a custom HTTP proxy that intercepts HT' TP requests and transforms
them to service calls and responses when necessary).

XWeb [Olsen et al., 2000] is another system that uses dynamic user interface gen-
eration based on an abstract service description but, in this case, with a much
higher focus on data. XWeb provides an architecture similar to the World Wide
Web (composed of XWeb servers and clients that communicate through the XWeb
Transport Protocol — XTP), but with specific mechanisms for interaction. XWeb
data is represented in XML and servers view it as a tree of objects (tags) with at-
tributes. Clients can access and edit parts of the data tree with XWeb URLs. A
service exposes its data through a Data URL so that clients can manipulate it but,
in order to provide a user interface, services also specify a View URL that points
to an XView. The XView specifies the interaction that can be accomplished with
the data. Basically, an XView defines the possible data types and transformations
from internal representations to user-friendly representations. In XWeb these are
called interactors and there are atomic interactors (numbers, dates, times, enumer-
ations, text and links) and aggregate interactors (groups and lists). Interactors can
be decorated with informational resources such as icons and text descriptions. An
XWeb client uses the XView to generate a user interface appropriate to the inter-
action modality of the device. Because XViews are independent of any concrete
interaction modality, devices are able to generate user interfaces for graphical and
speech-based interaction.

Another system that resorts to dynamic user interface generation is the Personal
Universal Controller (PUC) [Nichols et al., 2002]. PUC uses a peer-to-peer com-
munication architecture between client devices and services. PUC uses a service
specification language, based on XML, which models data (state variables) and ac-
tions (commands). A service is modelled as a group tree of elements (variables and
commands); this structure allows service developers to group similar elements to-
gether providing cues for the interface generators. The specification language also
allows the definition of dependencies between elements. For example, it is possi-
ble to specify that a command or state will be disabled, depending on the values
of other state variables. The specification language also allows the inclusion of la-
bel information in the form of dictionaries; a label dictionary may have different
types of labels that can be used by different devices (text labels of different sizes
for graphical devices with different screen sizes, speech labels for speech devices).
The combination of the group tree and dependencies is used by the graphical user
interface generator to organize the interface components into logical groupings or
by a speech interface generator to allow a user to navigate through the groups and
activate commands or change state variables.

60

2.3 Software Support for Application Development

Hybrid approaches

One of the problems of downloadable user interfaces is that it still requires develop-
ers to fully design the user interface to their services. The problem is aggravated by
the existence of various heterogeneous devices, with different interaction modalities,
which must be explicitly considered by the developers. With abstract user interface
descriptions there is no development effort for the user interface, but the resulting
user interface can be unappealing. To address the shortcomings of these two ap-
proaches some systems adopt a hybrid solution: custom-designed user interfaces can
be associated with services for some types of devices but if a suitable user interface
for a particular device does not exist, the device can dynamically generate a user
interface from the service description.

[Hodes and Katz, 1999], for example, propose an XML based Interface Specification
Language (ISL) that allows the specification of methods that can be invoked on the
service and also of user interfaces for that service, available to be downloaded and
executed in the device. ISL includes a <ui> tag to specify a user interface for the
service, which can be the name of a component that the device somehow knows
about or a network address where the component can be found; the user interface
specification also includes a language parameter that indicates in what programming
language the component is written. If no user interface is specified for a service, or
if no suitable one for that particular device is found, the device can use the ISL to
dynamically create a user interface that allows users to interact with the exposed
methods of the service.

iCrafter [Ponnekanti et al., 2001] also uses a hybrid approach but introduces one
main difference to previous systems: the interface generation is done in the infras-
tructure, not in the controller device. In iCrafter, services register in an Interface
Manager and send it a service description in an XML-based language called Service
Description Language (SDL) — which lists the operations supported by the service,
in a similar way to ISL. Clients obtain a list of available services from the Interface
Manager and can ask for the user interface of a specific service (or a combination of
services). When asked for a user interface, the Interface Manager will search for a
suitable interface generator: it first searches for a generator for that specific service,
then for a generator for that service interface, and finally for the service-independent
generator. This allows the creation of custom user interfaces for a service, if the
developer chooses to, but guarantees that a suitable user interface can always be
presented to the user. The interface generator uses a template to generate code
in a user interface language supported by the controller device (iCrafter supports
HTML, VoiceXML [VoiceXML, n.a.], SUIML [Montiel-Hernandez and Cuayahuitl,
2004] and MoDAL [MoDAL, 2011]), so controller devices are assumed to be capa-
ble of running a user interface interpreter that can then render the received user
interface code.

There has also been some industry effort in the development of standards for uni-
versal remote consoles that follow a hybrid approach. The Universal Remote Con-
sole (URC) [Vanderheiden and Zimmermann, 2005] is such an example and it con-
sists of a family of industry standards aimed primarily at the remote control of

61

2 RELATED WORK

home appliances. The URC defines a way for appliances to describe their functions
through a user interface socket and to provide an User Interface Implementation De-
scription (UIID). A UIID can be an abstract or a very concrete description of the
user interface. Concrete UIIDs can assume particular controller devices and provide
a very customized user interface; generic UIIDs don’t make any assumptions about
the controllers. The URC standards assume that controllers are URC enabled (able
to communicate to appliances and interpret their interface socket description and
UIIDs), but a middleware system called Universal Control HUB (UCH) exists to pro-
vide URC connection points for non-URC devices, translating between the devices’
specific protocols, such as Scalable Vector Graphics (SVG)/HTTP, DHTML/HTTP,
Flash, VoiceXML, etc., and URC.

Analysis

The dynamic user interface generation approach targets smart mobile devices that
have the capability of running or generating user interfaces on-the-fly. It does not
consider interactions that occur through other interaction mechanisms such SMS;,
MMS, email, touch-screens, QR codes, and many others, which have been used in
public display systems. However, considering the number of public display systems
that use mobile applications and the foreseeable usage that these applications will
have in the future, this approach may provide an important part of the solution to
the problem of public display interaction. In particular, the abstract user interface
description and the hybrid approaches could allow developers to focus on the public
display interface, while automatically providing mobile device graphical interfaces.
For developers without the resources to develop custom mobile applications, a so-
lution in which the display system automatically generates a mobile interface for a
display application would be valuable.

The toolkit presented in this thesis draws inspiration in the dynamic user interface
generation approach and provides web-based user interface generation for public
display applications. Unlike the approaches presented in this section, our approach
does not require programmers to use an interface description language to explicitly
define the user interface of the application. Instead, our toolkit continually gathers
information about which widgets the application has created in order to be able to
replicate them in the dynamically generated interface.

2.3.3 Data-driven abstractions

The data-driven approach is also geared towards ubiquitous computing environ-
ments, but its focus is more on the case where a variety of dumb input devices can
be used to interact with a given application. This approach focuses more on the data
types generated by input devices and the data types that the application supports
rather than on the graphical user interface.

62

2.3 Software Support for Application Development

iStuff

The iStuff toolkit [Ballagas et al., 2003] is a toolkit of wireless input/output devices
with software proxies and a dynamic routing software component that re-targets
input events to applications, in run-time. iStuff was created to allow the use of
different physical input and output devices (see Figure 2.37) to interact with room-
sized environments consisting of displays of different sizes, and to facilitate the
development of applications that support input from different physical devices:

“Our domain s explicit interaction with a room-sized environment
consisting of displays of many sizes, plus support for wireless technology
of various types, integrated using a common middleware. Our goal is to
allow multiple, colocated users to fluidly interact with any of the displays
and applications in augmented environments such as the Stanford iRoom,

using for input and output any devices conveniently at hand.” [Ballagas
et al., 2003, p. 537].

(a) Input. (b) Output.

Figure 2.37: iStuff devices [Ballagas et al., 2003].

iStuff architecture is composed of four main components: iStuff components, the
PatchPanel, the EventHeap [Johanson and Fox, 2002], and applications (see Fig-
ure 2.38):

iStuff h
Device
|

Wireless connection |

\
iStuff Component

Transceiver
‘Application ‘PatchPaneI Proxy ’
: ; -
1 Event Heap

Figure 2.38: iStuff architecture (adapted from [Ballagas et al., 2003]).

63

2 RELATED WORK

iStuff component An iStuff component includes the physical input device (iStuff
device), the appropriate transceiver that receives the wireless signals from the
device, and the software proxy that translates the input signals into input
events.

EventHeap An event-based communication infrastructure. Events are messages
or tuples that contain a type and an optional number of fields in the form of
key-value pairs. Producers post events and consumers register their interest
in being notified when certain events are posted (by specifying the event type
or other matching criteria based on the content of the event’s fields).

PatchPanel A software component that translates events from iStuff components
into application events. The PatchPanel listens for events that it has been
instructed to translate and, whenever a matching event is posted, it generates
a new translated event (leaving the original event untouched).

Application A workspace application that needs input from physical devices. Ap-
plications define their own high-level events.

The PatchPanel is the most important component, from the input handling per-
spective, because it introduces an abstraction layer between the physical devices
and the environment’s applications. Both input devices and applications define
their own static, non-compatible, event types, but the PatchPanel connects these
two separate components allowing them to communicate. It also provides a flexible
way to connect any input device to any application (provided their event types can
be translated). An example from Ballagas et al. [2003] illustrates this. An appli-
cation called iPong (modeled after the classic Pong game) defines an event named
“MovePaddle”. To control this application with an iSlider device (a physical slider
device) the PatchPanel can be instructed to map “iSlider” events into “MovePad-
dle” events. If one wishes to use a different device to control the iPong, for example
a wand device, the PatchPanel could be instructed to now map the “Wand” events
into “MovePaddle” events. No modification would be necessary in the iPong appli-
cation. This, of course, also allows a single physical device to be used to control
different applications.

The PatchPanel itself is made of two software components: a PatchPanel interme-
diary and a PatchPanel GUI. The intermediary is an EventHeap client that does
the event translation based on its current configuration. The intermediary’s config-
uration itself is updated by sending events to the EventHeap which means that any
program can dynamically change the current mappings. Event translations can be as
simple as changing the event type or as complex as creating new fields and changing
field values by applying arithmetic expressions to the values of the received event.
The PatchPanel GUI is a graphical tool for manually creating event translations.
This tool sends standard PatchPanel configuration events so it is independent from
the intermediary.

64

2.3 Software Support for Application Development

I/0 Modules

[Paek et al., 2004] proposed a platform for supporting input from multiple devices.
The platform follows a modular architecture composed of input devices that send
data to I/O modules, each of which is specifically designed to understand data from a
single mode of communication. Examples of modes of communication include email,
SMS, instant messaging, keyboard, and mouse/joystick. The I/O module parses the
received data into discrete message units that are passed to the translation module.
The translation modules converts the message units into commands that share a
common syntax that are passed to an application module, that decides how to use
and react to the input data. Figure 2.39 shows the I/O modules architecture.

I/0 Module I/0O Module 1/0 Module I/0 Module
Type 1 Type 2 Type 3 Type N

Translation
Module

... + ...

Logic
Module

v

Layout L
Application :
Module Module

e S

Display
Module

Display Device

Figure 2.39: I/O Modules input platform (adapted from [Paek et al., 2004]).

Analysis

The data-driven abstractions represent an intermediate abstraction level between
low-level device input and high-level application controls. They don’t aim at provid-
ing high-level controls as, for example, the widget toolkits for desktop environments
do. However, a solution such as the I/O Modules by Paek et al. [2004] could be used
to support command-style interaction from disparate input mechanisms such SMS,
email, Bluetooth naming, instant messaging, in an uniform way.

Our solution for an interaction toolkit takes advantage of an architecture similar to

65

2 RELATED WORK

I/O Modules, building higher-level abstractions on top of it. Our toolkit provides a
command language for text-based input devices that allows users to address specific
widgets in the public display application.

2.4 Conclusion

The examples of concrete public display systems described in section 2.2 — Interac-
tion in Public Display Systems — attest the diversity of interactive public displays.
We have described public displays with different application areas such as enter-
tainment, advertising, collaborative work, and social interaction; with support for
very different interaction mechanisms such as SMS, Bluetooth, touch, gestures; and
with different usage settings, such as schools, conferences, museums, cafés, streets.
These examples also demonstrate the heterogeneity of interaction mechanisms and
models. A user accustomed to interacting with one display system would have diffi-
culty in knowing how to interact with the next one. Implicitly, these examples show
that these are ad-hoc systems where the developers had to build their own solution
to provide interaction, and think about and implement all low-level aspects of the
interaction. Table 2.1 also shows that the most common approach to content is still
to give users full control over what is displayed.

It is also clear from the examples presented in section 2.3 — Software Support for
Application Development — that there are currently many solutions to provide high-
level abstractions for desktop systems, but also abstractions for other less standard
computing platforms. In this work, we have looked at these existing solutions, their
focus, and their programming models, and used them as a starting point to create
a solution that answers the requirements of interactive public display applications.

Our work contributes to both these lines of action: it helps designers of situated
public displays understand the kind of information that can explicitly or implicitly
be gathered from interactions and how that information can drive content adaptation
models; and it provides developers with software interaction abstractions that allow
them to focus on high-level interactive features, while supporting various kinds of
interaction mechanisms.

66

Chapter 3

Requirements for Interaction
Abstractions for Public Displays

Contents
3.1 Introduction 0000 69
3.2 Assumptions 0000 e e e e 69
3.2.1 Interaction environment 69
3.2.2 Open display network 71
3.2.3 Interaction abstractions 72
3.3 Design Requirements 75
3.3.1 Public display interaction controls 75
3.3.2 Standard graphical representations 76
3.3.3 Concurrent and shared interaction 77
3.3.4 Multiple interaction mechanisms 78
3.3.5 Ubiquitous interaction 79
3.4 Conclusion i i e, 79

67

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

68

3.1 Introduction

3.1 Introduction

Public display interaction occurs in a setting that is very different from desktop
interaction — the one most people are familiar with. It is thus necessary to charac-
terise the main aspects of the interaction environment for public displays, and the
requirements they impose on a possible interaction abstraction system. This chapter
starts by analysing some fundamental assumptions and concepts about the inter-
action environment for public displays. It then looks into the implications of these
assumptions and how they can represent requirements for interaction abstractions
for public displays.

3.2 Assumptions

3.2.1 Interaction environment

Terrenghi et al. [2009] have used the concept of “ecosystem of displays” to refer to
“the complete system of displays, people and the space in which they are placed” [p.
583] and characterised these ecosystems in terms of their scale and nature of the so-
cial interaction. The scale of the ecosystem depends on, and is usually greater than,
the size of the largest display and can be an inch, foot, yard, perch, or chain size
ecosystem.! The nature of the social interaction can be one-one, one-few, few-few,
one/few-many, or many-many. One-one interaction is the simplest case where, for
example, two people exchange files; one-few interaction is when there is one presen-
ter using a personal computer to show slides on a large display or projection, for
example; few-few interaction happens when groups of people collaborate; one/few-
many happens with public performances where one person or a very small group
controls what a large audience is seeing on the display; and many-many interaction
when there is not a single person controlling the display but instead many people
can participate simultaneously.

Our focus is on yard or bigger size multi-person-display ecosystems for many-many
interaction, composed of displays of various sizes. Additionally, our focus is on
coupled or loosely coupled display ecosystems, where the various displays are used
together to accomplish some interaction task. The perch/yard size public displays
can function as the main information outlets, visible to everybody (as in Dynamo —
page 19); smaller, yard/foot size public displays can be dedicated to particular uses
such as being used solely for input (as in the touch display on the wall in the Jukola
jukebox system); and small foot/inch size displays are most likely personal devices
used for input and output (as in Hermes for downloading and uploading pictures,
MobiLenin for voting, Instant Places for checking-in and publishing posters, etc.)

I Terrenghi et al. [2009] extend Weiser’s classification of inch (2.54 centimetres), foot (about
30 centimetres), and yard (a bit more than 91 centimetres) displays with two other imperial
measurements: the perch, which is 5.5 yards (a bit more than 5 meters); and the chain, which is
22 yards (a bit more than 20 meters).

69

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

Such an environment can be found in small spaces likes cafés and waiting rooms but
also on larger spaces such as university departments or even an entire campus. Al-
though there can be many kinds of social interaction in these spaces, we are focusing
essentially on many-many interactions where there is not a single person or small
group that “owns” the information of a display. Public displays may be privately
owned, but the owner chooses to share the display, even if with some restrictions,
with the aim of creating a shared information space where everyone can have the
same opportunities to interact and where the different displays offer different views
to the information or different possibilities to interact with it. Although the different
sized displays afford different types of interaction, they can function in an integrated
way in the ecosystem. To further describe the interaction environment we envision,
consider the following scenarios:

Train station John has just arrived at the train station and bought a
ticket to his hometown — he’s been away on military service. His train
is due in 25 minutes so he sits down in the waiting room. A display
is showing useful information such as train and bus timetables and also
advertisements. One advertisement seems to have been made on purpose
for him: it’s from a flower shop offering a digital discount coupon to
a Red Passion Bouquet — the perfect gift to offer his girlfriend. To get
the coupon he needs to download it to his phone. The instructions on
Multiple interaction the display describe various alternatives to download the coupon. One
mechanisms. of the alternatives is to simply access a website, but his mobile phone is
old and does not have internet access necessary for this. He also does
not have credit on his mobile carrier account to send an SMS to receive
the coupon. Fortunately, as the display informs, there are alternative
touch displays spread around the station where he can get the coupon via
Displays are used Bluetooth. John locates the nearest one and approaches it. The display
together to accomplish shows a list of items and he scans it until he sees an “Adverts” item. He
a task navigates to the flower shop name, and the screen says he can download
the coupon, and alternatives to do it. He chooses the Bluetooth option,
and follows the on-screen instructions. Searching the phone settings he
is finally able to make it discoverable and receive the coupon. He still has
15 minutes before his train arrives — plenty of time to buy his gift!

University news Sophia is waiting for her friends at the university’s
main hall. Looking at the large display across the hall, one of the entries
of the school-related news catches her eye - it’s about Adam, a friend
on the robotics class, which has won the national robot-dancing contest.
Recognizable There is a button next to the news entry’s header that Sophia recognizes:
affordances. is a “like” button with three letters underneath. The instructions on
the top of the display tell her how to interact so she fetches her mobile
phone and sends a text message to the number on the instructions. A
few seconds later, a popup near the button appears with a phone number.
Recognizable feedback. Some digits do not show, but she recognizes it as her own. She knows her
“like” will increase the news visibility on the school’s website and on the
display. Adam deserves it!

70

3.2 Assumptions

Coffee shop Sarah and George took a break from work to grab a snack

at the coffee shop across the street. They sit down and order an en-

try from the menu that is on their table — the latte+muffin menu. While

they’re snacking and talking, Sarah notices a familiar symbol next to each

entry in the menu: a QR code. The description says that they can post

a comment. George is not sure how that works, but he pulls his smart-

phone, launches the default application for visual codes, and scans the

code. A webpage opens with a textbox. He enters: “Best blueberry muf-

fin, ever!” and presses Send. A confirmation message pops up on his

smartphone thanking and telling him that he can check the result in a

nearby display. A few moments later they notice that the display in the Asynchronous
coffee shop is showing photos of the various menu entries and comments interactions.
from customers: George’s comment appears next to the latte+muffin en-

try!

Waiting time George is at the waiting room of the dental clinic for

his 5 o’clock appointment. There’s a large display in the room showing

the waiting times for the various doctors. It is also displaying a word

game that shows random letters and asks users to form words with them.

George notices that someone is playing with it because from time to time Awareness of other
it shows a pop-up screen congratulating a player. George decides to play people’s interactions.
a bit to pass the time. The instructions say he can SMS words to a

phone number or use a mobile web page to play: he decides to use the

web version in his smartphone. After he logs in the web page using his

Google account, he sees there are other applications he can use, but he is

focused on the word game so he chooses it and begins thinking of words

to form with the current letters on the big display. “verox” is the first

word he gets correctly! He gets extra points for the 'z’ letter and his name

appears at the bottom of the high-scores table. He still doesn’t know who Shared, concurrent
else in the room is playing but they are getting some healthy competition! interactions.

3.2.2 Open display network

Davies et al. [2012] have described their vision for an open display network, which
points further possibilities and characteristics for this interaction environment. Gen-
erally, the vision of open display networks “includes large-scale networks of pervasive
public displays and associated sensors that are open to applications and content from
many sources” [Davies et al., 2012, p. 58].

In their analysis, Davies et al. ground their observations in five building blocks:

e open architectures that support application development and allow program-
mers to define application scheduling, adaptation to display geometries, display
coordination, application distribution, and security.

71

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

e situated information and applications that users can actively influence, in-
creasing participation and resulting in more interesting, relevant, and adapted
content for the current situation of each display.

e privacy-compliant personalisation and control that allows users to remain in
control of their personal data, and in control of what information they disclose
in each display.

e engaging and efficient user interaction models that are simple and understand-
able to users.

e viable business models that make displays economically attractive to display
owners and content producers.

An open display network will thus be open to many independent entities so that:
display owners can easily join and add public displays, sensors and interaction mech-
anisms; display owners and users can find and use available applications (or, more
generally, content) in their displays; application developers can create and distribute
content and applications for display owners to use; and users can easily interact with
the available displays and applications. A network like this will become an impor-
tant target for developers that will want to develop interactive applications for public
displays, and distribute them globally to run on any display.

On an open network of public displays, one will expect that each display will most
likely be used as a general information appliance, showing content from various in-
dependent applications. This raises various questions about what applications are
and how they might behave, which have implications for and interaction abstraction
for this new platform. For example, on the web and desktop platforms and in some
closed display networks, users are expected to be registered in the application or
system before being able to use it. On an open display network, with hundreds
of displays, and where users may constantly encounter new applications, interac-
tion must be very lightweight and easy to accomplish without lengthy registration
forms. An open display network demands support for heterogeneous interaction
mechanisms so that each display owner may choose the interaction infrastructure
that best serves the needs of a place within his cost limits. An interaction abstrac-
tion must cope with this heterogeneous environment ideally shielding application
developers from it.

3.2.3 Interaction abstractions

In section 2.3 — Software Support for Application Development — we described several
approaches to providing interaction abstractions, including widgets. In this section,
we start by revisiting the widget concept as an example of what might be a successful
abstraction for public displays. We then highlight the particular aspects of public
displays that make it difficult to directly apply the abstraction concepts from the
desktop platform.

72

3.2 Assumptions

Revisiting desktop abstractions

In the early days of graphical user interfaces applications developers faced a similar
problem to the one faced today by public display application developers: there was
no consistent way to integrate interactive features into applications. This problem
was addressed with the emergence of various conceptual frameworks for interaction.

Mackinlay et al. [1990] proposed a design space of input devices, using a human-
machine communication approach. In their design space, they consider the human,
the input device, and the application: the human action is mapped into parameters
of an application via mappings inherent in the device. “Simple input devices are
described in terms of semantic mappings from the transducers of physical properties
into the parameters of the applications” [Mackinlay et al., 1990, p. 145 |. A device
is described as a six-tuple composed of: a manipulation operator, input domain of
possible values, a current state, an output domain, and additional device properties.
This six-tuple can be represented diagrammatically, and this graphical represen-
tation of the design space has been used extensively to characterise and compare
different input devices.

Foley et al. [1980] produced a taxonomy which organises interaction techniques
around the interaction tasks they are capable of performing. The interaction tasks
represent high-level abstractions that essentially define the kind of information that
applications receive in result of a user performing the task. They form the building
blocks from which more complex interactions, and in turn complete interaction
dialogues, can be assembled. They are user-oriented, in that they are the primitive
action units performed by a user. Foley’s tasks were based on the work by Deecker
and Penny [1977] which identified six common input information types for desktop
graphical user interfaces: position, orient, select, path, quantify, and text entry.
Foley also identified various interaction techniques that can be used for a given task
and discussed the merit of each technique in relation to the interaction task.

Myers [1990] proposed interactor objects as a model for handling input from the
mouse and keyboard. An interactor can be thought of as an intermediary abstrac-
tion between Foley’s taxonomy and concrete Graphical User Interface (GUI) widgets.
Interactors support the graphical subtasks, but abstract the concrete graphics sys-
tem, hide the input handling details of the window manager, and provide multiple
behaviors, such as different types of graphical feedback, that can be attached to
user interface objects. Myers defined six interactors: menu-interactor, move-grow-
interactor, new-point-interactor, angle-interactor, text-interactor, trace-interactor.
The same interactor can be used to implement various concrete GUI widgets.

This type of research led to the now widely used concept of user interface widget
(also known as “interaction object” or “control”): an abstraction that hides the low-
level details of the interaction with the operator, transforming the low-level events
performed by the operator into higher level events [Bass and Coutaz, 1991]. Wid-
gets provide support for the three main stages of the human action cycle [Norman,
2002]: goal formation, execution, and evaluation. Their graphical representations
and feedback support mainly the goal formation and evaluation stages. Widgets

73

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

have a graphical representation that application developers use to compose the GUI
of the application, supporting users in the goal formation stage by allowing them
to see the available features of an application. Widgets also support the evaluation
stage by providing immediate graphical feedback about their state. For example, a
textbox widget echoes the typed characters to show what users have already written
and shows a blinking text cursor to indicate that it can accept more input. The
internal behavior of a widget supports the execution stage and insulates application
from low-level input events transforming them into high-level events. For example,
an application that needs users to input a text string does not need to handle in-
dividual key presses; it can use a textbox widget that does this low-level handling
and passes back to the application the complete text string.

The kind of information carried by the interaction event defines what interaction
task is being accomplished [Deecker and Penny, 1977; Foley et al., 1980; Ohlson,
1978]. From an informational perspective, multiple types of widgets could be used
to accomplish a desired task: for example, an application that requires users to
input a number could use a number type-in widget, a slider, or a spinner.

Interaction in public displays

While it seems reasonable to apply successful lessons from the desktop world, there
are significant differences that need to be accounted for when considering the adapta-
tion of those principles to the specifics of the interaction environment around public
displays.

The different sized displays afford different types of interaction but they can function
in an integrated way in the ecosystem, offering different synergies and opportuni-
ties. For example, Dix and Sas [2010] examined several synergies and opportunities
between personal mobile devices and public displays, addressing issues such as the
physical size of the situated display, the use and purpose of the mobile devices, the
level of integration of the public and personal devices, the movement and physical
contact within the interaction, the spatial context of the situated display, and the
social context. They analyse two main types of conflict that occur between the
interacting users of the public display audience: conflicts of content, and conflicts
of pace. Conflicts of content, i.e., what is seen, can occur for various reasons: “(1)
conflict between the use of the screen for displaying content and for displaying inter-
active feedback (menus, etc.); (2) conflict between different users wanting different
specific content (3) conflict between the particular requirements of an individual
and maintaining a content stream that is intelligible, useful and engaging for by-
standers”. Conflicts of pace, i.e., when it is seen, includes two types: “(1) users
cannot always have things when they want due to other users requests (c.f. content
conflict), the playing of media, etc. (2) users cannot speed-up, slow-down, stop or
replay the flow of information because of the audience.” Resolving these conflicts is a
challenge for public displays, particularly for multi-user, multi-application systems.
In the “dual display” approach, Kaviani et al. [2009] explore interaction concepts
that take advantage of both input and output capabilities of interactive public dis-
plays and personal mobile devices. Similarly to Dix and Sas [2010], they consider

74

3.3 Design Requirements

two types of conflicts when multiple users attempt to interact and manipulate the
same content simultaneously: conflicts in space and conflicts of pace/flow. Conflicts
in space mainly originate from the limited screen space to provide visual feedback
when executing a sequence of actions or providing information about a new system
state. Conflicts of pace/flow usually occur when users do not have any feedback on
the system behaviour. In order to reduce these conflicts the authors defined four
design strategies: localized interactions, distributed system state, providing display
focus, and cause summary, which differ on the type of feedback presented in each
display. This integration of different kinds of displays creates a very different setting
for applications, which desktop interaction abstractions were not meant to address.

Unlike desktop systems, which usually rely on a very small set of input mechanisms
— most often just a keyboard and mouse — public display interaction can take ad-
vantage of very different input mechanisms, as we have seen in previous chapters.
This variety of mechanisms creates an additional challenge for public display inter-
action abstractions. Often, public display systems use mobile devices as interaction
mechanisms. The breadth of mobile interaction mechanisms has already motivated
research that tries to systematise the cumulative knowledge around mobile tech-
niques for interaction. Building on Foley’s graphical interaction tasks, Ballagas
et al. [2008] developed a design space for comparing how different mobile device
based input techniques could a support a given interaction task. The techniques
can be compared along various dimensions such as the number of physical dimen-
sions (1d, 2d, 3d), the interaction style supported, the type of feedback provided,
and whether the technique provides absolute or relative values. As stated by the
authors, their design space is “an important tool for helping designers . . . select
the most appropriate input technique for their interaction scenarios” [Ballagas et al.,
2008, p. 387|. The work by Ballagas et al. [2008] provides a valuable design space
for reasoning about the multiple types of interaction with public displays using mo-
bile devices, but it does not provide a directly applicable solution for application
programiers.

3.3 Design Requirements

In this section, we describe the requirements that an interaction abstraction toolkit
for public displays should support. These requirements stem from the assumptions
and characteristics of the interaction environment, the vision of open display net-
works, and the prior knowledge about desktop abstractions. We now describe these
requirements.

3.3.1 Public display interaction controls

An interaction abstraction for public displays must provide support for interaction
tasks and controls suitable for public display interaction.

75

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

The controls that programmers have available from desktop computers are gener-
ally not suitable or not at the right level of abstraction for creating public display
applications. In the train station scenario, for example, how would a programmer
implement the download coupon feature using the desktop controls, without having
to worry about the concrete mechanism (Short Message Service (SMS), Bluetooth,
mobile application) the user would choose to carry out the action? The interaction
environment around public displays is very different from other platforms, making
users’ interaction goals when interacting with a public display very different from
their goals when interacting with a desktop computer. This can easily be attested
by looking at the various uses of the display systems described in section 2.2. Ap-
plication developers should be able to choose from a variety of interaction controls
that support the kind of data their applications need to exchange with users. This
certainly requires support for a different set of interaction controls from the ones
supported in desktop computers. These controls should provide to public display
application a similar abstraction level that current desktop widgets provide to desk-
top applications, allowing developers to focus on the kind of data the application
needs to receive.

3.3.2 Standard graphical representations

An interaction abstraction for public displays must provide consistent graphical rep-
resentations for actions available on the display, and for the presentation of feedback
about users’ actions.

A recurring challenge in public displays is how to communicate their interactivity
so that people who see a display know that it is interactive and may decide to
interact with it. Dix and Sas [2010] divide the audience of a public display into five
categories:

participant actively engaged with the system doing some form of input/interac-
tion;

unwitting participant triggers sensors to have some effect, but does not know it;
witting bystander sees the screen and realises interaction is occurring;
unwitting bystander sees the screen but does not realise interaction is occurring;

passer-by may know screen is there, but does not watch or interact with it;

Individuals move from one role to another, if given enough information and under-
standing (see Figure 3.1). In order for an individual to move from the unwitting
bystander to a witting bystander it is necessary first that he realises that the display
is interactive (comprehension). To move from a witting bystander to a participant,
it is necessary that he understands how to interact and that he finds the display
compelling enough in order to become an active participant (involvement). (This
this is similar to crossing the thresholds from peripheral to focal awareness, and then

76

3.3 Design Requirements

to participation, in the public interaction flow framework by Brignull and Rogers
[2003]).

Participant

« actively engaged with the display

Involvement

(Witting bystander

« knows that interaction is happening
* knows who is doing it

) Comprehension
Unwitting bystander

» watches screen
 but not aware of interaction

Awareness

(Passer-by
 not watching the display

Figure 3.1: Changing user roles in public display interaction. Adapted from Dix
and Sas [2010].

Public displays typically employ a number of strategies to let users know that they
are interactive. Miiller et al. [2012] identified six strategies for communicating in-
teractivity in public displays: call-to-action, attract sequences, nearby analogue
signage, the honey-pot, inviting passers-by, and prior knowledge. Prior knowledge
refers to the fact that users already know that a device is interactive (because they
have used it, seen people use it, or any other reason). In the university news sce-
nario, Sophia realized she could interact with the display because there was a familiar
graphical cue — the like button — that she recognised from a different environment.
Only after recognising this button, she decided to interact. In the waiting time
scenario, the congratulations popup confirmed George that someone was interacting
with the display, and so he could too. An interaction abstraction can help in estab-
lishing prior knowledge by providing consistent graphical representations for actions
available on the display, and for the presentation of feedback about users’ actions.

3.3.3 Concurrent and shared interaction

An interaction abstraction for public displays must support concurrent, shared in-
teraction by multiple users.

The many-many nature of the social interaction with public displays means that
they must support multiple, concurrently interacting users. Also, most applications
will need, at least, to be able to distinguish between different users in order to
provide a shared environment where users know who’s affecting what. For example,
Dynamo [Brignull et al., 2004] allowed users to divide the screen space into areas
with restricted access to different groups of users. Jumbli [LocaModa, 2010] allows
various users to submit words at the same time, and keeps, and displays, users’ high-

7

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

scores. In Proactive Displays [McDonald et al., 2008] users’ personal information
was used in various ways throughout the conference. All these are examples of
systems that support concurrent interaction where various users can interact with
the same application at the same time.

Additionally, the interaction abstraction should support shared interaction, allowing
several users to interact with the same interaction feature simultaneously. Some sys-
tems support concurrent interactions but, either by design or physical constraints,
only allow one user at a time to interact with a given part, or feature, of an appli-
cation. For example, in multi-touch tables or walls, interactive features are bound
to a specific spatial region and users cannot physically press or gesture at the same
region simultaneously. Consequently, interaction toolkits for multi-touch platforms
usually don’t address the issue of having simultaneous input on a button, for exam-
ple. Other systems, such as some web Content Management Systems (CMSs) require
administrators to get exclusive access to a specific content item before editing it,
preventing other administrators from editing the same item. Our target interaction
environment demands a shared interaction model, where these constraints don’t ex-
ist (at least in general, if a particular display only provides touch-based interaction,
the physical constraints will naturally be present). For example, in the waiting time
scenario, George and other users were simultaneously interacting with the same
feature of the same application.

3.3.4 Multiple interaction mechanisms

An interaction abstraction for public displays must support and abstract various
interaction mechanisms.

The public display systems surveyed in section 2.2 reveal a plethora of interactions
mechanisms ranging from SMS [Ferscha et al., 2002], email and IM [Pack et al., 2004],
Bluetooth naming [José et al., 2008], Twitter [LocaModa, 2010], Radio-Frequency
Identification (RFID) [McDonald et al., 2008], body movement [Sawhney et al.,
2001], gestures [Vogel and Balakrishnan, 2004], face detection [Grasso et al., 2003,
mobile applications [Scheible and Ojala, 2005], and more.

An interaction abstraction for public displays must support various interaction mech-
anisms in order to support the various types of existing display systems, and work in
an open, flexible environment where each display owner can choose which resources
will be available. An important aspect of this support, however, is abstracting
the concrete input mechanism so that application developers don’t need to worry
about which mechanism is available at a given place. For example, in the train
station scenario John had several options for downloading the coupon, but in order
to implement the coupon application one should not need to know which concrete
mechanisms would be available. The coupon application should work seamlessly in
a place where there was only email as the download alternative. An application
developed for a public display should work transparently in places with support for
different sets of interaction mechanisms.

78

3.4 Conclusion

3.3.5 Ubiquitous interaction

An interaction abstraction for public displays must support a ubiquitous interaction
environment where applications are always available for interaction.

On desktop computers users decide when the application should run, when it should
be in the foreground receiving input, and when it should be terminated. In an open
public display ecosystem, there may be different levels of control over which appli-
cation shows content on the display at a particular moment. For some displays, the
display owner may have full control over the scheduling of the various applications;
in other displays, users may have some degree of control and ask for a specific appli-
cation to be displayed at a given moment. Whichever model is used, public display
applications should generally be available for interaction independently of whether
they are currently on-screen, or not. For example, in the coffee shop scenario the
public display may not have been displaying the menu comments application at the
time that Sarah and George came in, but that did not prevent them from being able
to scan the QR code and enter their comment about their snack.

Contrary to what happens on the desktop, where applications need to be on the
foreground of the display to receive input, an interaction abstraction for public
displays should support interactions independently of the on-screen state of the
application. This kind of ubiquitous interaction environment can help mitigate the
“conflict of pace” mentioned by Dix and Sas [2008], which happens because users
are not in full control of the public display. A ubiquitous interaction environment
guarantees that, at least, the display’s scheduling does not impose the pace for the
interaction with an application.

3.4 Conclusion

The public display environment in which we are focused on for the purposes of
the current work consists of an ecosystem of open public displays, sensors, and
input mechanisms that support a many-many social interaction. In this kind of
environment for public displays, an ideal interaction abstraction must support a
number of requirements, which we summarise in Table 3.1.

79

3 REQUIREMENTS FOR INTERACTION ABSTRACTIONS

Table 3.1: Requirements for an interaction abstraction for public display applica-

tions.

Requirement

Description

Public display interaction
controls

The interaction abstraction should provide develop-
ers with various types of controls specifically designed
for public display interaction.

Standard graphical
representations

The interaction abstraction should provide graphical
cues so that users easily understand that a public
display is interactive and what features it has.

Concurrent and shared
Interaction

The interaction abstraction should support multiple,
concurrent, shared interactions from different users.

Multiple interaction
mechanisms

The interaction abstraction should support and ab-
stract several interaction mechanisms.

Ubiquitous interaction

The interaction abstraction should allow users to in-
teract with an application at any time, regardless of
whether the application is currently showing content
on the public display.

80

Chapter 4

Digital Footprints for
Socially-Aware Interactive
Displays

Contents
4.1 Introduction00, 83
4.2 Digital Footprints 83
4.3 Presence Sensingo 84
4.3.1 Presence detection L. 84
4.3.2 Presence characterisation 85
4.3.3 Presence identification L. 86
4.4 Self-exposure 0 et e e e e e e e e 87
4.5 User-generated Content 89
4.6 Actionables 0 oo 90
4.6.1 Interactive actionables 91
4.6.2 External actionables, 91
4.7 Mapping Footprints to Adaptation Models 91
4.8 Conclusion i e e 95

81

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

82

4.1 Introduction

4.1 Introduction

An important aspect of public displays is their situatedness — the capability of
presenting content that is relevant and interesting to the audience in a particular
location. To do this, they must continually adapt to their location and to the
social environment that surrounds them. The data that results from the various
user interactions with the public display may provide a relevant source of data on
which to build adaptation strategies. However, we need a better understanding of
what that data might mean and how to use it. Abstracting the multiple types of
interactions that may occur with public displays into high-level information is an
important step towards the emergence of generic situated display applications that
are able to adapt to a particular display location.

In this first approximation to understanding interaction abstractions, we analyse
multiple interaction alternatives from the perspective of the information they gener-
ate. Rather than considering the specific affordances or semantics of the interactive
features offered by the display, we focused on the type of digital trace they generate
about the audience, or user. We use the concept of digital footprint to refer to the
digital traces generated as a side effect of implicit or explicit interactions with the
display. We propose a framework for designing socially-aware interactive public dis-
plays. Our goal is to create a tool for informing designers of situated displays about
the relation between the supported interaction types, the type of digital footprints
they can generate, and the type of adaptation processes they may support.

4.2 Digital Footprints

Making sense of the myriad of sensing and interaction events that can occur across
a display network requires higher-level abstractions that are independent from the
specific affordances or the semantics of the interaction offered by particular display
applications. We propose a framework created around the concept of digital foot-
print as an abstraction for representing the traces left behind when people implicitly
or explicitly interact with public displays. A digital footprint focuses on the nature
of the information generated about the interaction itself and abstracts away from the
particular interaction modality being used or the particular application semantics in
which the interaction occurred. They aim to represent preferences, characteristics
and behaviour of the audience and users of the public display, regardless of how they
are expressed.

These footprints were created from the analysis of various existing public display
systems, described in the research literature. Based on their key properties, we
aggregated those digital footprints according to four main categories: presence sens-
ing, self-exposure, user-generated content, and actionables, as described in Table 4.1,
providing a mapping between multiple interaction alternatives and their contribu-
tion to the generation of local digital footprints. These categories represent not only
different types of interaction, but also increasingly higher levels of engagement with

83

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

the display system. We then analyse the types of adaptation processes that can be
associated with each of those digital footprints, thus providing a mapping from foot-
prints into context-aware adaptation processes. Overall, these mappings provide the
framework for reflecting on context-aware behaviours without being caught up by
the specificities of any particular interaction or sensing mechanism, thus providing
a path for generic context-aware mechanisms.

We will now describe these footprints in more detail, analysing how they can be
generated and how they can contribute to the adaptation process.

Table 4.1: Digital footprints from interaction with public displays.

Digital footprint Description

Presence sensing Being physically there

(Detection, Characterisation, Identification)

Self-exposure Explicitly managing exposed identity
User-generated content Pushing content to the system
Actionables Responding to the system

(Interactive, External)

4.3 Presence Sensing

The ability to implicitly collect information about the presence of nearby people is
an important element for characterising situations. Despite its stronger potential for
generating rich information about usage, explicit interaction events are necessarily
sparser than presence events, as there will normally be many more people present
than those actively engaged with the display at any given moment. Presence sens-
ing is thus critical to enable content adaptation to occur even when there is no one
interacting explicitly. Presence sensing may involve increasingly complex levels of
presence information, more specifically: the ability to simply detect presences (de-
tection), the ability to characterise those presences (characterisation) and the ability
to associate presences with unique entities across multiple sessions (identification).

4.3.1 Presence detection

Presence detection is the most basic level of presence information in which the system
is simply able to detect whether or not there is someone nearby, and possibly at what
distance. Multiple off-the-shelf sensors can be used for this purpose. Distance to
the display can be determined by combining presence sensors with different sensing
ranges or using distance sensors that report distance. Computer vision techniques,

84

4.3 Presence Sensing

such as frame differencing, can also be used to sense movement, which can be used
as an indication of presence.

Information about the presence of someone near a display, even without knowing
who or how many, can be used as a trigger for presenting specific content, and
particularly as part of an attraction loop designed to entice people to interact when
passing-by, or to prevent content from changing while someone is near the display.
Grasso et al. [2003], in their Community Wall display system, used frame differencing
as part of the presence detection system to prevent the display from changing content
while someone was reading from it. Sawhney et al. [2001], in the Community Aware
Portals system, used presence detection for attracting people to look at the display:

“When a person is seen walking-by the space, a series of images are
shown cycling through, depicting the recent stories in memory. If the
person stops to glance at the display, a preview of the current story (news
headlines or weather map) is shown for a short duration. If the person
then continues to glance, the system assumes she wishes to browse the
article in more detail” [Sawhney et al., 2001, p. 68].

Knowing at what distance someone is from the display can be important for the
display system because there is normally a strong correlation between distance and
the awareness level that people may have about the display. If people are close, it
is much more likely that the display is currently the focus of their attention. In
the Range whiteboard [Ju et al., 2008], for example, an infrared distance sensor was
used to determine the distance of a user from a whiteboard, to distinguish between
several interaction zones (intimate, personal, social, and public zones). This allowed
the whiteboard application to behave differently according to the proximity of its
users.

The digital footprint generated by a presence detection mechanism is essentially
a presence/absence or distance pattern. Analysed over time, however, this may
provide more a complex characterisation of the place in terms of people flow.

4.3.2 Presence characterisation

Presence characterisation is the ability to count and possible determine particular
characteristics about the presences detected near the display, which broadly cor-
responds to the concept of audience measurement. In an attempt to set industry
standards for audience measurement, the Digital Place-based Advertising Associa-
tion (DPAA) (formerly Out-of-home Video Advertising Bureau (OVAB)) has pro-
duced a guidelines document that describes the Average Unit Audience as “the
number and type of people exposed to the media vehicle with an opportunity to see
a unit of time equal to the typical advertising unit” [Spaeth et al., 2008, p. 4].
These guidelines have a clear focus on what is normally called the Opportunity to
See (OTS) and on three qualifying characteristics associated with that opportunity:

85

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

presence, notice, and dwell time, but they also include recommended demographics
such as age and gender. A vast range of audience measurement technologies have
emerged to estimate, not only the number of people in front of a display, but also to
determine their attention span or inferring some type of characteristic about them,
such as age or gender [Quividi, 2013; TruMedia, 2013]. These tools usually use
computer vision techniques that are able to detect people’s faces and estimate their
gender [Verschae et al., 2007] and age [Kwon, 1999], and normally involves placing
a video camera on the display, typically on the top and facing the audience, and
processing the images to generate reports about the number, attention span, and
characteristics of viewers.

The most typical example of content adaptation using presence characterisation
is targeting adverts according to the characteristics of the current audience as, for
example, in the case of the Eye Flavour that selects adverts based on age and gender
[INEC, 2009]. Presence characterisation can, however, be used in general content
adaptation processes outside advertising. It is easy to imagine public displays that
select news content, for example, according to some characteristic of the majority
of the audience, or that adapt how fast content changes according to the attention
level of the audience.

The digital footprint that results from presence characterisation is an aggregated
presence pattern that can include, among other factors, the number of people, age,
gender, and attention span.

4.3.3 Presence identification

Presence identification is the ability to detect unique identities within presences and
recognise different visits by the same person. Determining who is present, in the
sense that the display system is able to determine that the same person is present in
different occasions, gives the display system not only the possibility to determine how
many people are present, but also to establish a correlation between different people
or groups of people. This may be achieved through face recognition techniques, but
the most common approach is by far the use of some personal device (with Bluetooth
or Radio-Frequency Identification (RFID) capabilities, for example) as a proxy for
the person.

Bluetooth has been used extensively as presence detection mechanism as it is widely
available and enables many mobile phones to be discovered and uniquely identi-
fied through their Bluetooth address. The BluScreen system [Sharifi et al., 2006,
for example, uses Bluetooth detection to maximise the exposure of people to new
adverts. The Cityware project [Kostakos and O’Neill, 2008a] studied online social
networks alongside their real-world counterparts by merging users’ online social data
from Facebook with mobility traces captured via Bluetooth scanning. Cityware also
included a set of in situ visualisations about Bluetooth presences [Kostakos and
O’Neill, 2008b] that provided people with information about current or recent Blue-
tooth encounters.

86

4.4 Self-exposure

RFID tags can also be used for presence identification. They are small and can easily
be incorporated into many existing artefacts as in the IntelliBadge project [Cox
et al., 2003], where users participating in a conference were given RFID augmented
badges that were used to track them through the conference rooms. A display at
the conference cycled through several visualizations of the resulting data. A similar
approach was used by McDonald et al. [2008] in the Proactive Displays to display
personal information about the conference participants in public displays placed at
different locations in the conference venue.

Presence identification raises considerable privacy issues. It should only occur as
part of a process in which people are informed and value the extra functionality
that the existence of this information may be providing. The ability to enable
or disable presence identification according to the circumstances would be equally
important. This is a point in which Bluetooth, which allows discovery to be easily
disabled, takes considerable advantage over RFID tags.

The digital footprints resulting from presence identification correspond to individual
presence information and open many new opportunities for the content adaptation
process. They may serve to build individual profiles that characterise people ac-
cording to their presence patterns, e.g. regular visitors vs first-time visitors. They
can be used to optimise content exposure by selecting content that has not yet been
shown to the people that are currently present. If a network of displays is involved,
presence identification may also serve to show some variant of the same content to
the same person at different locations, thus reinforcing the message, or to select
content based on where the person has been before. The existence of multiple sens-
ing points would also enable new forms of impact assessment. For example, it may
be possible to measure how many people who have been shown an advert about
a nearby store will then go to that store, or simply how the number of first-time
visitors has increased as the result of a campaign.

4.4 Self-exposure

Self-exposure is the ability of the display system to collect information that people
have explicitly created to represent their characteristics or preferences. This personal
information can take many forms, such as a list of personal tags, a reference to
a user’s personal web page, the user id in a Social Networking Site (SNS) or a
purposely created profile. Self-exposure should also be seen as a way for people to
take control over how their identity is projected in the public display. It should
be part of a process whereby people expose something about themselves because
they understand and value the implicit response of the display to that self-exposure.
Moreover, the intended level of self-exposure may be strongly influenced by a broad
range of circumstances. Therefore, a key feature for self-exposure mechanisms is
some type of control on how that exposure should occur at any given moment.
This means not just the ability to enable or disable presence detection, but also the
ability to dynamically manage self-exposure in a way that is easily controlled and
understandable. Self-exposure differs from presence in the sense that it is an explicit

87

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

act of identity management, while with presence we assume that all the information
was implicitly generated. It differs from other forms of interaction in the sense that
there is no pre-established connection between self-exposure and a specific type of
reactive behaviour by the display system. Potentially, different display systems may
react very differently to the same form of self-exposure, or even the same system
may also react differently under different circumstances.

Self-exposure may be achieved by combining presence identification with an a priori
definition of a user profile that is associated with the identity. In Proactive Displays
[McDonald et al., 2008], users attending a conference registered their affiliation,
interests and personal web page before the conference day and were given RFID
augmented conference badges at the conference site. Throughout the conference,
several displays reacted to the nearby participants showing and creating associations
between their profiles and creating opportunities to socialise. A limitation of this
approach is that people could not easily change their profile, and had no control
over what information to expose at any given moment. Another alternative is the
use of a personal information device running a custom application to manage and
expose a profile. This application can connect automatically, or on demand, to the
display system and communicate users’ preferences. This can be exemplified by the
Hello.Wall [Prante et al., 2003], a system in which people would carry a ViewPort
device — a modified Personal Digital Assistant (PDA) — to communicate with an
ambient display. Similarly, in the Mobile Service Explorer system [Toye et al., 2004],
a custom mobile application could be configured with personal information that is
made automatically available to the display system when a user interacts with it.
One advantage of these approaches is that the information is always available to
be updated by its owner and it may be possible to have greater control on how
to manage self-exposure, but they have the disadvantage of requiring a dedicated
mobile application. The use of Bluetooth names to express self-exposure, as explored
by José et al. [2008] and Davies et al. [2009], is an opportunistic alternative that is
easily available on almost any device. It allows people to enter predefined commands
in the Bluetooth name of their mobile phone. When that person approaches a
display, these commands can be obtained and interpreted as part of the person’s
preferences. For example, Ribeiro and José [2010] have shown how tags exposed this
way by multiple people could be used to select content feeds from the Internet for
presentation on a local display. The downside is that many users may have difficulty
finding the Bluetooth settings, and some more recent mobile phones automatically
turn off Bluetooth discoverability after a few seconds.

In all the previous examples, there was the assumption that information would
be specifically created for the purpose of influencing a display system. However,
a very promising alternative is to explore connections with the many SNS where
people already have extensive descriptions about themselves and their preferences.
WhozThat [Beach et al., 2008] uses the SNS profiles of people nearby to create
context information that can then be used to support spontaneous interactions or
drive the music selection. People are expected to use a mobile phone running an
identity sharing protocol that will advertise their online identities to the other nearby
devices. This system does not consider the use of public displays or any explicit
selection of which information to share, but it is an example of using SNS profiles as a
sort of personal data aura that can be used to mediate digital self-exposure. Bohmer

88

4.5 User-generated Content

and Muller [2010] conducted a study on the exhibition of SNS profiles in public
settings. Using mock-up images they asked people about their willingness to expose
profile information in two types of what they called social signs. The first was a
personal social sign projected around the person and showing parts of the respective
profile. The second was an interpersonal sign, projected in such a way to link two
people and representing some type of connection between them, such as having a
mutual friend or sharing an interest. The study provides an interesting example of
the type of identity projections that can be generated by these connections with

SNS.

The information associated with self-exposure footprints can be very varied. In its
simplest form, the result may be just a list of keywords generated from multiple
forms of preferences expression. However, with access to profiles, much more struc-
tured information can be obtained. The potential of self-exposure in the content
adaptation process may be particularly relevant for targeted content adaptation, in-
cluding advertising. Depending on the type of information collected, it may support
multiple forms of targeting, such as demographic, contextual or behavioural.

4.5 User-generated Content

User-generated content is the ability of the system to accept content originating
from the users of the display. This is achieved by allowing people to post their own
content for publishing at the display, either directly or indirectly through a reference
to the content (an Uniform Resource Locator (URL), for example).

Many displays have been created that support some variant of this feature. Web-
Wall [Vogl, 2002], for example, allows people to submit content (ads, polls, pictures,
videos) using Short Message Service (SMS), email or a web interface. The Plasma
Poster [Churchill et al., 2003a] system supports content (photos, text, web pages)
submission through two interfaces: email and a web form. Multimedia Message
Service (MMS) has also been used as an input interface for display systems. For
example, the Joe Blogg project [Martin et al., 2006] includes a display designed in
the form of an interactive artwork where people can send pictures and text messages
through MMS or SMS. Bluetooth can also be used to push content to a display sys-
tem using either standard OBject EXchange (OBEX) exchanges or custom mobile
applications. Both Hermes [Cheverst et al., 2005] and Snap and Grab [Maunder
et al., 2007] use the OBEX feature to enable users to send pictures and other media
to a display. In both cases, the user just selects the content on his mobile phone,
chooses the “send via Bluetooth” command and selects the Bluetooth device name
associated with the target display. An example of a custom Bluetooth application
for sending content is Touch & Interact [Hardy and Rukzio, 2008|, which allows
users to choose a picture in their mobile phone and touch the display in the posi-
tion they want to place that picture. The main advantage of a custom application
is that it can be built to interact specifically with a given display, thus allowing a
richer and more convenient interaction. For example, the application may be able
to automatically determine the Bluetooth address of the display system, alleviating

89

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

the user from the task of manually searching for nearby devices and selecting the
correct device name. The application may also be able to determine beforehand
what type of content is acceptable by the display system, preventing the user from
sending content that will be rejected. OBEX on the other hand, has the obvious
advantage of not requiring the installation of any additional software in the mobile
device, and thus enable more opportunistic interactions. Also, from a developer’s
perspective, OBEX is more attractive because, given the multitude of different de-
vices, it is often the case that multiple versions of the application have to be created
to deal with the hardware and software variants in devices. Also, these applications
must be somehow distributed to users which may be yet another barrier to usage.

When generating content to a display, users are implicitly associating that content
with that particular place. The nature of the digital footprints generated by such
process depends on the type of content. However, the analysis of the content and
its meta-data should produce a relevant characterisation of that place and its local
practices. This is already common on the web, where a vast and sophisticated range
of techniques has been emerging to analyse user-generated content. For example,
tags in Flickr images have been used to extract place semantics [Rattenbury and
Naaman, 2009], and tweets have been used to determine mood and emotions [Bollen
et al., 2009]. If displays were able to generate enough content from users, similar
techniques could also be applied to generate footprints that would be very relevant
for content adaptation processes.

4.6 Actionables

Content on a public display is often some type of actionable: a message or an
interactive feature intended to cause people to act [Miiller et al., 2007]. Actionables
provide a specific demand for action, such as downloading a content item, selecting
one of several available options or reading a 2D code from the display. An actionable
footprint represents a reaction to one of those actionables.

Generating this type of footprint requires some mechanism for tracking the actions
taken and also some type of system-wide reference for the actionables, e.g. an URL
or some other unique id. The existence of a unique reference that can be tracked
system-wide separates actionables from the myriad interactive features that may
exist in a display system and which in many cases will not be meaningful outside
the specific application in which they are available.

Actionables may provide one of the most promising paths for content adaptation in
public displays because they enable several forms of automated impact assessment
and advert valuation, ultimately leading to something similar to the pay-per-click
concept. When considering how to generate actionable footprints, we need to take
into account two major types of actionable: interactive actionables in which the
reaction occurs within the system and can thus be automatically detected by the
system; and external actionables in which the action occurs outside the context of
the display system and cannot be tracked automatically by the system itself.

90

4.7 Mapping Footprints to Adaptation Models

4.6.1 Interactive actionables

Interactive actionables are invitations to interaction that can be interpreted by the
system. They involve giving users some type of control and being able to track
their options. Allowing people to pull content from the display system is a common
example of an interactive actionable. Knowing who has downloaded which items
enables the system to infer interest on the content items that are being offered.
Giving people some type of control over the system behaviour may also be used to
generate interactive actionables. For example, Jukola [O’Hara et al., 2004, which
allows people in a bar to vote on the next music to be played by selecting music
from a list, is an example of a system that could generate this type of footprint.
Rating content items allows people to explicitly say they like or dislike an item and
gives the display system information about the popularity of content items. It is
also possible to conceive a Games With A Purpose (GWAP) approach [von Ahn
and Dabbish, 2008] in which all sorts of polls, quizzes, questionnaires, or games
are designed to provide engaging experiences, while allowing the display to collect
users’ preferences and interests. These actionable footprints may be anonymous or
identifiable depending on the interaction mechanism provided, but the key point
is that the meaning of the reactions can be interpreted system-wide and not just
within the scope of a particular application.

4.6.2 External actionables

With external actionables, the intended action is to occur outside the scope of the
display system, and therefore, the system is unable to automatically assess their
efficiency. At best, their efficiency can be assessed through some type of off-line
mechanisms, such as the collection of redeemed coupons.

MobiDiC [Miiller and Kriiger, 2009] is an example of the use of digital coupons in
public display advertisement. The public display shows adverts with coupons that
people can photograph with their mobile phone and redeem at the associated shop
to receive the announced item. The time and location where the ad was displayed
is encoded in the coupon. When the coupon is redeemed and the shop owner enters
the code back to the system, the specific advert and display are identified and the
aggregated results can tell how successful the advert was.

4.7 Mapping Footprints to Adaptation Models

Our goal with this framework was to inform the process of mapping multiple types
of sensing or interactive features in public displays into specific content adaptation
models. The digital footprints that have been presented support the first part of that
mapping. By focusing on the essence of the information generated from sensing and
interaction features, they provide a framework for reflecting on the meanings of the
interaction without being caught up by the specificities of any particular interaction

91

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

mechanisms. In this final analysis, we discuss the second part of that mapping,
which is to describe what types of digital footprints may be needed to support specific
content adaptation goals. We hope that, by making the relationship between content
adaptation goals and footprints more explicit, this framework may contribute to
focus the design of public displays on the data generation objectives, while avoiding
the pitfalls of focusing too much on a particular application or interaction technique.

Overall, the entire set of digital footprints constitutes a collection of data which
can be used to characterise a place profile, enabling the display system to adapt its
behaviour to that particular social setting. Regardless of their generic contribution
to this broad adaptation, specific types of footprints can support specific types of
adaptive behaviour.

Based on this framework, context-aware public display solutions may start by setting
their specific goals, consider the digital footprints that the display systems may need
to generate, and finally conceive sensing or interaction features that are capable of
generating the appropriate information while providing an adequate user experience.
This last step should also consider that these different digital footprints are not
completely independent from each other. They are more like a stack of increasingly
richer information about the audience of a public display. For example, availability of
presence characterisation also generates presence detection. Presence identification
is implicit in self-exposure and identifiable interactive actionables. The correct choice
of the interactive features may optimise the generation of the most appropriate set
of digital footprints.

Table 4.2 presents a summary of how to map multiple content adaptation goals
to the available digital footprints. Several types of content adaptation goals are
listed and associated with the specific types of digital footprint that could support
them. Finally, given the myriad of sensor technologies and interaction modalities
that can be used with public displays, it is important to have a mapping between the
digital footprint and the possible sensor or interaction modalities that can be used
to generate that footprint. This mapping can be used by situated display designers
to help them choose the interaction mechanisms that a display should support in
order to be able to collect a given set of footprints. Table 4.3 shows this mapping
and, although it is not meant to be exhaustive, it lists the most common interaction
modalities for public display interaction, making it a valuable tool for designing part
of the interaction with a public display.

92

4.7 Mapping Footprints to Adaptation Models

Table 4.2: Mapping between content adaptation goals and digital footprints.

Adaptation goals

Digital footprints

Attraction loops

Presence detection can trigger specific content to get people’s
attention.

Audience
measurement

Presence characterisation may provide sophisticated reports
about viewers (e.g., gender, age) and their attention.

Demographic
Targeting

Presence characterisation may infer basic demographic infor-
mation from presences, but self-exposure and specific action-
ables may generate even richer information, given that they
involve people explicitly saying something about themselves.

Contextual
Targeting

Self-exposure and specific actionables may generate keyword
sets and other types of aggregate descriptions that will help
to dynamically characterise the context of a public display in
ways that are relevant for contextual targeting, such as hot
keywords, social situations or ongoing local activities.

Behavioural
Targeting

Presence identification and identifiable actionables generate
rich information about people’s behaviour and enable multi-
ple types of behavioural targeting. Presence identification will
mainly revolve around presence patterns, possibly at multiple
locations, whereas actionables will revolve around expressed
preferences inferred from actions.

Optimise individual
exposure

Presence identification supports several types of optimisations
related with specific individuals, from avoiding repetitions to
purposely generating periodic repetitions for reinforcement.

Impact Assessment

Actionable footprints provide the most appropriate measure
for engagement and therefore for really understanding the
reaction of people to the message.

93

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

Table 4.3: Mapping between digital footprints and supporting interaction modalities.

Footprint

Interaction Mechanism

Presence detection

- Movement sensor
- Distance sensor
- Computer-vision techniques

Presence - People counter

characterisation - Audience measurement tools
- Computer-vision techniques for age, gender or attention
classification

Presence - Bluetooth

identification - RFID

Self-exposure

- Any presence identification mechanism (plus custom profile
or SNS profile)

- Custom mobile application with integrated profile

- Bluetooth naming

User-generated
content

- Email/IM

- SMS/MMS

- Bluetooth OBEX
- Bluetooth naming

Actionables

- Touch screen (Standard GUI controls)

- Email /IM (Text commands)

- SMS/MMS (Text commands)

- Bluetooth (Text commands, e.g. BT naming; Standard GUI
mobile application)

- RFID (Proximity activation, e.g. Touch & Interact)

94

4.8 Conclusion

4.8 Conclusion

Situated displays cannot rely solely on a static pre-characterisation of the place
they were designed to. They must adapt themselves to their changing environment
by collecting digital footprints that will help in characterising the social context in
which the display is embedded. In order to be efficient, digital displays need to
target their audience’s needs, expectations and tastes. By collecting digital foot-
prints of people’s interactions, displays can take a step in this direction. Interaction
abstractions should also consider how implicit and explicit interactions might con-
tribute towards a generic characterisation of a place and its situated displays. We
have presented a framework that defines a mapping between interaction mechanisms
and their contribution to the generation of digital footprints with relevance for the
characterisation of a place. Each footprint may be used in isolation or in conjunction
with other footprints by digital displays to target specific aspects of their audience.
These digital footprints can be viewed as very high-level interaction abstractions
that designers of public display applications can use to frame the general behaviour
of an application.

95

4 DIGITAL FOOTPRINTS FOR SOCIALLY-AWARE INTERACTIVE DISPLAYS

96

Chapter 5

Interaction Tasks and Controls for
Public Display Applications

Contents
5.1 Introduction 000000 99
5.2 Proceduret e e e 100
5.3 Interaction Tasks for Public Displays 101
5.3.1 Select 102
5.3.2 Dataentry L 103
5.3.3 Upload media 104
5.3.4 Download media L. 106
5.3.5 Signal presence oL 107
5.3.6 Dynamic manipulation 109
5.4 Design Space for Interaction Controls and Mechanisms 110
5.4.1 Mapping between interaction tasks and mechanisms . . . 111
5.4.2 Interaction Controls, 116
55 Conclusion00 0o e 118

97

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

98

5.1 Introduction

5.1 Introduction

The interaction footprints presented in the previous chapter must be implemented in
applications as interaction features. An interaction feature such as commenting on
a specific content item can be supported by many different interaction mechanisms
(emailing a given address, sending an Short Message Service (SMS) message to
a given number, using an on-screen keyboard, etc.), depending on the resources
of a specific place. Ideally an interaction feature should be implemented using
standard, abstract, high-level interaction controls so that application developers
don’t need to consider all the possible interaction mechanisms. The commenting
feature, for example, could be implemented by a text entry control that provides
applications with text data, regardless of how the text is sent to the display system.
Currently, however, high-level controls for public display applications do not exist
and developers have to delve into low-level details, and create their own approach for
dealing with a particular interaction feature using a particular interaction modality,
leading to extra development effort outside of the core application functionality.
In addition, this effort is replicated by each developer, potentially leading to poor
designs and representing wasted effort.

Desktop computer programmers had to make a similar effort to support their inter-
action with users in the early days of graphical user interfaces. The problem was
addressed with the emergence of reusable high-level interaction abstractions that
shielded application developers from low-level interaction details, and provided con-
sistent interaction experiences to users. Currently, desktop application developers
can focus on the high-level interactive features of their applications, and abstract
away from low-level issues, such as receiving mouse pointer events, recognising a
click on a specific button or changing the visual state of a button that has just been
clicked. These low-level input events are encapsulated by user interface widgets
that provide developers with high-level abstractions, thus facilitating the task of
creating an application. From the usability perspective, widgets also enforce consis-
tency of the interface, allowing users to learn to interpret their affordances in a way
that enables them to tackle new interfaces and programs by building on previous
experience.

This type of abstractions may now also provide an important inspiration for ad-
dressing the similar problem being faced by public displays, where the transition
to a new era of generalised interaction support will also require a step up in the
abstraction scale. As described by Mackinlay et al. [1990, p. 147]: “to achieve a
systematic framework for input devices, toolkits need to be supported by technical
abstractions about the nature of the task a input device is performing”. The prolif-
eration of input devices and techniques for public displays reached a point at which
it is both possible and fundamental to systematise the knowledge that may support
the design of interaction toolkits for public display systems and ultimately enable
interaction to become a common element of any display application in open display
networks.

In this chapter, our objective is to take a first step in that direction by uncovering
interaction tasks that may lead to the emergence of interaction controls for appli-

99

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

cations in public displays. Interaction tasks [Foley et al., 1980] represent high-level
abstractions that essentially define the kind of information that applications receive
in result of a user performing an interaction. By focusing on the interaction tasks we
focus on the essence of the interaction that differentiates public display interaction
from interaction with other computer systems.

5.2 Procedure

To uncover interactive tasks for public displays, we have made a comprehensive
study of 52 publications about interactive public display systems, and coded the
description of their interaction features. This approach aimed to go beyond spe-
cific interaction techniques and allow common interaction patterns to emerge from
the assumptions and approaches applied across a broad range of interactive display
systems. Our research followed an approach based on the grounded theory method-
ology [Glaser and Strauss, 1967], borrowing many of its phases: open, selective, and
theoretical coding; memoing; and sorting.

We started with an initial set of 12 papers and did a first phase of open coding,
in which we produced our first set of codes corresponding to specific attributes of
the respective interactions. We then analysed these codes to aggregate some of
them and remove others that were deemed not relevant from the interaction point
of view. This much smaller set of relevant codes was used as the starting point
in a second coding phase, where we coded 40 additional papers. Simultaneously,
we started a third theoretical coding phase, identifying relationships between the
existing codes, and producing new codes to reflect these relationships. In this phase,
we started organising the existing codes into categories of interactions, along with
their properties and concrete values associated with those properties. We adopt the
definitions of categories and properties from Glaser and Strauss [1967, p. 36]: “A
category stands by itself as a conceptual element of a theory. A property, in turn, is
a conceptual aspect or element of a category”.

To identify and distinguish categories, we analysed the interaction features that
were being described, based on the underlying types of information that had to
be exchanged between the user and the display system. These second and third
phases were highly iterative and intermixed: we recoded previously coded papers
more than once to make sure their coding was up-to-date with the latest categories
and properties. For example, if we identified a new property while coding a paper,
we would go back to previous publications and make sure we coded that property,
in case we had missed it originally. The complete process originated a total of 87
codes that referenced 448 text segments in the 55 papers (the complete list of coded
papers is available in appendix A).

Memoing, i.e., writing ideas associated with codes, was also an important part of the
methodology and this went in parallel with all the coding phases. We used memos
to start relating our codes together and forming a structured view (of categories,
properties, and values) of all the interaction tasks that were emerging. We also

100

5.3 Interaction Tasks for Public Displays

used memos to note possible missing properties and values that we needed to search
in additional publications to make sure our categories were saturated. The memos
associated with the categories became the first raw descriptions of our interaction
tasks in the final description and analysis, after we sorted them to chain the ideas
that emerged during the coding phases and turn them into a more logical narrative.

The categories that resulted from the coding process correspond to the interaction
tasks that define the general information that the application needs to specify and
the information that the application receives in the interaction events. The inter-
action tasks have properties that can take different concrete values and restrict the
information or the behaviour associated with the task. These properties and values
of the interaction tasks are mapped directly from the properties and values that
resulted from the coding process. For example, the passage “CoCollage users who
are connected to the web site in the café may also send messages directly to Co-
Collage via a textbox near the upper right of any page” is describing an interaction
feature that allows users to send a text message to the display. In the third coding
phase, this feature was coded with “data entry” (category), “bounds” (property),
and “text” (value).

We then matched these interaction tasks against the concrete interaction mecha-
nisms identified in the literature. We plotted the various implementations found on
the literature in a spatial layout of a design space that extends previous work by
Ballagas et al. [2008], which provides a valuable design space for reasoning about
the multiple types of interaction with public displays using mobile devices. We thus
used this as a starting point for our own work and extended it in two ways: by
considering not just the smart-phone, but also other interaction mechanisms; and
by considering the existence of new interaction tasks, beyond the ones defined by
Foley, which may give a broader and more specific view of the interaction space with
public displays.

Finally, we explored different combination of properties and values associated with
the interaction tasks, and outlined a set of concrete interaction controls that can
provide a starting point for the development of interaction toolkits for interactive
public display applications.

5.3 Interaction Tasks for Public Displays

A key result of this work is a list of interaction tasks, properties, and values that
overall characterise the major types of interactions with public displays. For each
interaction task, we characterise it in terms of the information exchanged, the respec-
tive properties and the possible values for those properties, using examples from the
surveyed display systems to illustrate the different properties. Table 5.1 summarises
the tasks identified in this process.

101

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

Table 5.1: Interaction tasks for public displays: properties, and values.

Media location type Display system, Public location]

Task Property Values

Select Type of selection [Action, Option]

Data entry Bounds [Unbounded, Bounded]

Upload Media type [Text, Image, Video, Audio, etc.]

Media location type [Personal device, Public location]

Download Media type [Text, Image, Video, Audio, etc.]
[
[

Smartphone, Email, USB stick,
Print]

Self, Other]

Target device

Target person

Automatic, Manual]

Verified, Unverified]

Signal presence Location disclosure

Location verification

[
[
[
[Cursor, Joystick, Keyboard,
Skeleton/silhouette]

Dynamic manipu-

lation Type of manipulation

5.3.1 Select

The select task is equivalent to the select task of Foley et al. [1980], allowing users to
trigger actions or select options in an application. It requires applications to specify
the complete set of options or actions they wish to provide to users. The interaction
event triggered by the display system will include the action or option identification,
so that the application can determine which one was selected.

Type of selection

The type of selection property refers to what users are selecting: an action to be
triggered immediately by the application, or an object from a list of possible objects.
Using the terminology of Cooper et al. [2007], in action selection users input a verb
(what action the application should perform), and the noun (the object on which
to act) is usually implicit. In object selection, users input a noun, and later a verb
(or the verb is implicit). These two types of selection are traditionally represented
on Graphical User Interfaces (GUIs) in a variety of different forms; for example, on
desktop systems programmers usually have at their disposal different sets of widgets
for triggering actions (menus, toolbars, buttons), and for selecting objects (listboxes,
dropdowns).

In regard to triggering actions, Vogel and Balakrishnan [2004, p. 142] in the In-

teractive Public Ambient Displays system provide an example using hand gestures:
“Two complimentary hand postures are used to hide and show the display of a user’s

102

5.3 Interaction Tasks for Public Displays

own proxy bar. The hide action is performed with a palm away posture consisting of
an open hand pointing up with palm facing the display . . ., analogous to the com-
monly seen ‘stop’ gesture used for traffic signaling in real life.” QR codes are also
a common alternative to provide users with a visual representation for an action,
whether in a live public display, or printed on paper. In the Mobile Service Toolk-
it/Mobile Service Explorer (MST/MSE) by Toye et al. [2005, p. 64] for example,
users could scan a visual code to have access to various actions: ‘‘Sally, can click
on the tag using her MSE-enabled phone to establish a Bluetooth connection with
the service. As soon as the phone connects with the service, her phone displays a
message containing the current queuing time and asks whether she’d like to join the
queue.” Another example is the Bluetone system [Dearman and Truong, 2009, p.
99], where users can use their phone’s keypad to issue commands: “a user is able
to watch a particular YouTube video, but also has the added ability of controlling
audio/video playback. The user presses ‘5’ on their mobile phone to pause the video

2

Selecting an object or item from a set of related items is also a frequently used
feature, as the following examples show. The e-Campus system Davies et al. [2009,
p. 155] provided a Bluetooth naming based interaction mechanism for selecting a
song to play: “By subsequently changing their device name to ‘ec juke <song id>"’
the selected music track will be added to the queue of songs to be played.” In this
case users explicitly enter the action to be performed (i.e., ‘juke’) and the item on
which the action should take place (i.e., the song id). More often, the action is
implicit and users just need to select the item to be acted on from a list presented
by the public display, as in this Plasma Poster Churchill et al. [2004, p. 9] example,
which used a touch-screen interface: “... this was the last item posted to the Plasma
Poster Network, and the display cycle is about to begin again. Readers can select
any thumbnail to be displayed by pressing it.” SMS is also frequently used for this
purpose, as in Locamoda’s Polls [LocaModa, 2010] application: “Submit votes via
text message for a poll of two (or more) ‘choices.” Results are tallied in real-time
and displayed on the screen both as a percentage and a bar graph.”

5.3.2 Data entry

The data entry task allows users to input simple data (text, numeric data, or other
formatted values) into a public display. Applications need to specify which type
of data they wish to receive (text, numeric, dates, etc.), and possible bounds, or
patterns, on the values they can accept. The interaction event that the application
receives carries the user-submitted data. The data entry task is equivalent to the
combination of the “quantify” and “text entry” tasks defined by Foley et al. [1980].
We chose to combine them because, when we abstract the interaction paradigm
(instead of focusing on graphical manipulation interfaces), and consider the infor-
mation exchange between user and application quantifying and entering text are
essentially the same: users input values to the application. Cooper et al. [2007]
also group quantify and text entry into data entry controls in their classification of
desktop application controls.

103

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

Bounds

The bounds property of the data entry task refers to whether the application accepts
free text from the user, or whether it imposes some pre-defined format to the data.
For example, an integer number within a limit, or text that corresponds to a valid
email address.

Unbounded text entry corresponds to Foley’s text entry task, in which users are
allowed to submit a string of text that does not need to conform to any specific rule.
Text entry can be used to send messages, comments, and keywords, to the public
display. In CoCollage, for example, users could send messages to the display by
entering text in a web page: “CoCollage users who are connected to the web site in
the café may also send messages directly to CoCollage via a textbox near the upper
right of any page. These messages become part of the history — and may thus be
commented or voted on” [McCarthy et al., 2009, p. 227]|. Entering search terms is
also a common use of text entry feature in public displays. The e-Campus system,
for example, provided a Flickr search application: “Users can access photos on Flickr
by changing their [Bluetooth] device name to ‘ec flickr <search term>". For example
‘ec flickr oranges’ would cause photos retrieved using the search term ‘oranges’ to be
displayed” [Davies et al., 2009, p. 155]. SMS is also frequently used to allow user
input. Locamoda’s Jumbli application [LocaModa, 2010], for example, allows users
to play a word game by texting their words. Touch interfaces can also be used for
these interactions, supporting the traditional desktop entry controls such as sliders
and dials, but also text-entry via onscreen keyboards as in the Digifieds system:
“Finally, if displays are touch-enabled the client provides an on-screen keyboard that
allows users to create and send posts without using additional devices” [Alt et al.,
2011, p. 168|.

Bounded data entry restricts the type, pattern, and range of the values that are
entered. For example, in Visual Code Widgets, Rohs [2005, p. 511] described
how visual widgets could be used with a camera phone: “Unlike free-form input
widgets, which provide ‘unbounded’ input, sliders are ‘bounded’ data entry widgets.
The slider can be moved across a certain range, the selected value being proportional
to the current slider position. . . . there are horizontal and vertical sliders. Input
can either be continuous or discrete.” Rating is another example of a bounded entry
control, which usually allows users to enter a 1-5 value for an item. In CWall users
could rate the content items presented by the public display: “users can . . . touch
the balance item to record a numeric rating” [Grasso et al., 2003, p. 271]. Bluetone
also allowed users to input bounded numeric values, in this case, using the mobile
phone’s keyboard: “For example, the user will press ‘3’ to increase the volume”
[Dearman and Truong, 2009, p. 99] .

5.3.3 Upload media

The upload task allows applications to receive media files sent by users. Applica-
tions should be able to specify the type of media they are interested in, but other

104

5.3 Interaction Tasks for Public Displays

parameters such as the maximum file size, or maximum media duration (for video
and audio) could also be of interest. The interaction event received just needs to
specify the URL of the uploaded file.

Media type

The media type property of the upload task indicates the type of media file being
uploaded: image, video, audio, html, and many other types of office documents. In
JoeBlogg [Martin et al., 2006] for example, images were used to create an artistic
composition on the public display. In other cases, images were used as free-hand
comments to existing content, creating a discussion thread, as in the Digital Graffiti
project [Carter et al., 2004, p. 1207]: “we are experimenting with a system that
allows individuals to attach digital graffiti annotations to publicly posted content.”
Audio and video are also often used media types. In the Dynamo for example,
students could upload a variety of media files into the surface, including video and
music files: “During the two-week deployment, the use of Dynamo varied consid-
erably: students displayed and exchanged photos, video and music, which they had
created themselves or brought in from home” [Brignull et al., 2004, p. 52].

Media location type

The media location type property of the upload task refers to the original location of
the media. In many cases, the public display system accepts content that is stored
in a personal device such as a mobile phone or even an USB pen drive. In these
cases content is sent directly to the public display by attaching the pen drive or
by transferring the file via Bluetooth OBEX or via a custom mobile application.
In the Hermes Photo Display, for example users could transfer photos from their
mobile phones to the display using OBject EXchange (OBEX): “This version of
the Hermes Photo Display also enables a user to . . . wuse her mobile phone’s
bwilt-in ‘picture’ application in order to send a picture to the photo display over
Bluetooth” [Cheverst et al., 2005, p. 48]. In JoeBlogg, users would send personal
pictures stored in their mobile phones via MMS. In Dynamo, users would simply
attach their USB pen drives to the display to copy the media files into a shared
space. Email has also been explored for uploading in the Plasma Posters display
system: “we discovered that providing an email interface for sending content to the
posters resulted in a significant increase in postings. Posted content can be images
and movies (sent in email as attachments), formatted text and URLs” [Churchill
et al., 2004, p. 8]. In other cases, however, users don’t actually have a copy of the
content in a personal device, but know the respective address. In these cases, the
display receives a reference to the content, instead of the content itself. WebWall,
for example, accepted Uniform Resource Locators (URLs) of media files to play in
the public display: “there are other service classes that are better defined first over
the Web-client: Video and picture galleries (service class Gallery) can be used to
display multimedia content by composing URLs of the media to display” [Ferscha
et al., 2002, p. 3.

105

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

5.3.4 Download media

The download task allows users to receive a content item from the display and store
it in a personal device or account for later viewing or reference. The interaction
event received by the application can simply be an acknowledgement that the file
was, or is about to be, downloaded.

Media type

The media type property is analogous to the media type property of the upload
task. Just as in upload task, various media types may be provided by a display
system and made available for users to download. The Hermes Photo Display, for
example, allows users to “use the interface on the Photo Display to select a picture
and then receive this picture onto her phone via Bluetooth” [Cheverst et al., 2005,
p. 48]. Videos are also a common media type that users may want to download. In
ContentCascade, for example: “The display is playing trailers of upcoming movies.
Bob sees the Shrek movie and decides ‘I like that!” and wants to download the movie
clip. He pulls out his Bluetooth enabled cell phone” [Raj et al., 2004, p. 375].

Media location type

The media location type property is analogous to its counterpart in the upload task:
content to be downloaded can either be already publicly available and the display
system just provides the address on the web, or it can be content stored internally at
the display system that is transferred to the user. For example, in ContentCascade
users could also receive URLs in their mobile device: “Howewver, since he had accepted
to receive small meta-information about the upcoming mouvies, the ContentCascade
mechanism downloaded a URL from where he can later get more information about
Antz” [Raj et al., 2004, p. 375]. In Hermes Photo Display, however, the photos
were stored internally in the display system and downloading involved establishing
a Bluetooth connection between the display and user’s mobile device to transfer the
photo.

Target device

The target device property refers to where the downloaded content is transferred
as a result of the interaction. Downloaded media can be received in a variety of
destination devices or personal accounts, using various communication protocols.
Content can be downloaded to a personal mobile device, for example, using SMS as
in Locamoda’s Community Board application [LocaModa, 2010]. OBEX is another
protocol that can be used for receiving media files as in the Hermes Photo Display.
There are also examples of display systems that use custom mobile applications and
communication protocols for receiving files on the mobile device. Touch & Interact

106

5.3 Interaction Tasks for Public Displays

for example consists of a public display and a mobile application in which “the user
interacts with a picture board by touching the picture with the phone and in response,
the picture moves from the dynamic display to the phone” [Hardy and Rukzio, 2008,
p. 246]. Users can also receive files in a USB pen drive, as in the Dynamo system
[Brignull et al., 2004], or download to their mobile device by scanning a QR code
as in Digifieds: “Digifieds can also be taken . . . by scanning a QR-code with
the phone” [Alt et al., 2011, p. 168]. Mobile devices, however, are not the only
possibility for receiving media files. A popular approach is to allow users to receive
the content in their email. In the Digital Graffiti project [Carter et al., 2004, p.
1209] for Plasma Posters for example: “Later, Jane is passing by the Plasma Poster
and sees all the annotations that have been posted over her original content. She is
amused to discover her post has caused so much response and debate and forwards
the recommended URL to her home email so she can read it later.” Finally, a less
common but also possible solution for specific media types it to allow users to print
the content. Also in the Plasma Posters project, users could print a displayed item
directly from the public display: “along the bottom of the new interface there are
three buttons: ‘Show All’ button to show a list of items in the presentation sequence,
‘Print’ to print the currently displayed posting” [Churchill et al., 2004, p. 10].

Target person

The target person property refers to whether the content is transferred to the in-
teracting user, or to another person. Often, users want to download content for
themselves, in order to get an offline copy of the content or as a reference to view
later. However, there are also cases where a user wants to download a content item
and forward it to another person. Plasma Posters, for example, allows content to
be forwarded to others: “Items can be forwarded to others, or to oneself for reading
later at a personal computer” [Churchill et al., 2004, p. 9] The same could be done
with Digifieds, which allowed users to send content via email: “Digifieds can also be
taken away . . . by sending them to an email address” [Alt et al., 2011, p. 168].

5.3.5 Signal presence

The signal presence task allows the application to be notified about events regarding
the presence of users in the vicinity. Although all interactions with a display system
can be used to determine the presence of users (if a button was pressed in a touch
screen, it means that there was someone there), in this section, we are considering
only those interactions specifically designed for determining the presence of users.

Location disclosure

The location disclosure property refers to whether the user manually sets his pres-
ence, or whether it is sensed automatically by the display system. The manual form

107

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

corresponds to a check-in interaction where users decide when they would like to an-
nounce their presence to the public display. A check-in can be accomplished through
a number of different ways, for example using hardware that reads a personal iden-
tity card, or a personal mobile device. Magnetic card readers, Radio-Frequency
Identification (RFID) readers, or even Bluetooth detection can be used to accom-
plish this type of check-in. Russell and Gossweiler [2001] for example, used personal
cards that users could swipe on a card reader in the BlueBoard display to access
their personal data (in this case, the feature worked as a login because it allowed
access to personal information, but it could also be used for check-in): “The net
effect is that a user can ‘log in’ by simply swiping their badge at the display, getting
rapid access to their content” [p. 357]. Check-in can also be accomplished solely
through software, for example through a mobile application or web page. CoCollage
provides a web check-in to its users: “The presence of users is established via an
explicit ‘check-in’ through the use of . . . a button on a web page that is enabled
only when the user’s computer is connected to the wireless Internet router in the
café” [McCarthy et al., 2009, p. 226]. The automatic sensing of users around the
display can itself be subdivided into three forms according to the level of information
sensed, as we have defined in the previous chapter: presence detection, character-
isation, and identification. Presence detection corresponds to an on/off detection
where the display either detects someone (but not who, or how many) in its vicinity,
or detects no one. This can be used to trigger a change in the display’s mode from
an ambient mode to a more interactive mode, as in the Aware Community Portals:
“a weather map triggered by the user walking by vs. a news article shown when the
user lingers to browse” [Sawhney et al., 2001, p. 68]. Presence characterisation
corresponds to a more rich detection, where the display is able to sense more infor-
mation about the people in the vicinity, such as how many, their position, where
they are gazing, the estimated age, etc. The CWall display system used computer
vision techniques to infer if people were standing in front of the display, and looking
at it: “In the case of the CWall we decided to see if we could improve the utility of
the display by differentiating between people passing by and people standing in front
of the display actively reading the content” [Grasso et al., 2003, p. 274]. In presence
identification, the display is able to identify users and, possibly, associating personal
information. This can be used to provide personalised content on a public display
as in the Proactive Displays: “When attendees are near a proactive display, content
from their profiles can be shown” [McDonald et al., 2008, p. 3].

Location verification

The location verification property indicates whether the system can verify that the
user is really where he says he is. In the automatic presence sensing, the system can
have stronger guarantees that users, or at least their devices, are in the vicinity of
the display. Sensors are assumed to be located near the display, and they usually
have a limited detection range. The same happens in the manual presence sensing
that makes use of personal cards or other physical items that are detected by a card
reader or other sensor near the display system. Even if the check-in is accomplished
via software, the user’s location can still be verified. CoCollage, for example, uses
the local Wi-Fi network to verify the user’s location: “The presence of users is

108

5.3 Interaction Tasks for Public Displays

established via an explicit ‘check-in’ through the use of . . . a web page that is
enabled only when the user’s computer is connected to the wireless Internet router
in the café” [McCarthy et al., 2009, p. 226].

In many cases however, the user’s location is not verified by the system. Most lo-
cation based social networks such as Foursquare, Google Latitude, and Facebook
Places provide mobile applications that allow to check-in in any place, without any
system verification about the real location of the user. This is something that is
normally accepted by people as part of the semantics of presence through these
check-in procedures. Some public display systems take advantage of these exist-
ing location based networks. Locamoda’s Check-in application [LocaModa, 2010],
for example, “leverages widely adopted location based applications such as Facebook
Places and Foursquare to display relevant venue Check-In activity on venue digital
displays.” The Instant Places display network provides its own mobile client with
similar check-in semantics: “Fxplicit session activation can be accomplished through
a check-in mechanism available in our instant place mobile app” [José et al., 2012,

p. 3.

5.3.6 Dynamic manipulation

The dynamic manipulation task corresponds to continuous interactions were users
manipulate graphical objects in the application’s interface. Dynamic manipulation
represents tasks in which it is fundamental to provide a direct-manipulation style,
particularly “rapid, incremental, reversible operations whose impact on the object
of interest is immediately visible” [Shneiderman, 1983, p. 64]. In this task, the
application receives a continuous, timely, flow of information, which it can then
map to various graphical objects.

Type of manipulation

The type of manipulation property refers to the type of action performed by the
user and the information received by the application. We defined four values for
this property: cursor, joystick, keyboard, and skeleton/silhouette input. Although
their names may suggest physical devices, these types of input may be generated
by highly diverse mechanisms (for example, joystick input can be generated by a
physical joystick button, but also by specially arranged keyboard keys, or even by
a virtual multi-touch joystick).

Cursor events carry information about the position and velocity of multiple cursors
on a 2D or 3D environment, and can be used for mouse, multi-touch, or even 3D
interactions. For example, Dynamo, allows users to “carve” rectangular regions on
the display to appropriate them for individual use. This is done by simply “drawing”
a rectangle using the mouse: “Carves can be created by a mouse drag gesture to create
privately owned areas in which only the user and their chosen members can interact”
[Brignull et al., 2004, p. 50]. In CityWall, users use multi-touch gestures to move,

109

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

scale, and rotate photos: “Mowving, scaling and rotation of content . . . follows
direct manipulation principles: a user can grab an image by putting a hand on it.
The photo follows the hand movements when the user shifts her hand. Rotation and
scaling are possible by grabbing the photo at more than two points (e.g. by two hands
or two fingers of the same hand) and then either rotating the two points around each
other or altering their distance” [Peltonen et al., 2008, p. 1287].

Joystick events carry information about the angle and state of joystick/gamepad
buttons. In Point & Shoot users could use their camera phone as a mouse or joystick
and select, rotate and move jigsaw puzzle pieces: “The phone display is used to aim
at a puzzle piece on a large display. . . . Pressing the joystick indicates selection
and a visual code grid flashes on the large display to compute the target coordinates”
[Ballagas et al., 2005, p. 1202]. In the Vodafone Cube [Ydreams, 2003], users could
dial a phone number and control various games, including a car racing game, using
the phone’s keyboard as a joystick.

Keyboard events carry information about a succession of key presses in a physical
or emulated keyboard. In MST/MSE for example, the mobile client supported
keyboard input: “transmits all keypress events from the phone’s keypad back to the
MST server in real time” [Toye et al., 2005, p. 63]. Remote Commander is another
example were keyboard input was important: “This allows . . . the PalmPilot . . .
wput to emulate the PC’s keyboard input. The important point is that this works with
all existing PC applications, without requiring any modifications to the applications
themselves” [Myers et al., 1998, p. 287|. It should be noted that keyboard events
do not necessarily mean that the application is interested in receiving text data (a
keyboard could be used to play music, for example).

Skeleton/silhouette events carry information about the position of the user’s body
joints and /or about the user’s silhouette. This type of input has recently gained wide
exposure due to the Kinect depth camera controller, but it can also be accomplished
with other sensor technologies such as body suits, stereo cameras, or motion capture
systems. This kind of input has been mostly explored in artistic interactive projects,
but it has also been applied successfully in public display systems. Miiller et al. [2012]
in project Looking Glass, used a Kinect to extract user’s silhouettes and provide a
gaming experience in a public display of a shop window, by allowing users to wave
their arms to push balls on the display.

5.4 Design Space for Interaction Controls and Mech-
anisms

Based on the interaction tasks described in the previous section it is possible to
frame a new design space for interaction with public displays around those tasks. In
this section, we analyse how the interaction tasks could be mapped to interaction
mechanisms and what interaction controls can be derived from them.

110

5.4 Design Space for Interaction Controls and Mechanisms

5.4.1 Mapping between interaction tasks and mechanisms

The first step in our analysis is to explore the relationship between interaction
mechanisms and the set of interaction tasks. This mapping provides a comprehensive
view of how different mechanisms can be used to support a given interaction task
and also of how the various interaction tasks are represented in the various concrete
system implementations from the research literature.

To facilitate the mapping, we have created a spatial layout that shows how the
different interaction tasks can be implemented with various interaction mechanisms.
This mapping is inspired by the spatial layout from Ballagas et al. [2008], but
we omitted the attributes dimensionality and relative vs. absolute, which were
not relevant for our analysis, and we added a new interaction distance attribute.
The resulting layout, depicted in Tables 5.2, 5.3, 5.4, and 5.5, represents how the
interactive displays from the literature are distributed between the interaction tasks
and the mechanisms that support those tasks. We have plotted each interaction
mechanism that appeared in the surveyed interaction public display systems.

The reference to each interactive display system is complemented with a classifica-
tion of the interaction along three secondary dimensions: interaction style, feedback,
and interaction distance. The interaction style can be direct, or indirect: “in direct
interactions, the input actions are physically coupled with the user-perceivable entity
being manipulated, appearing as if there was no mediation, translation, or adapta-
tion between input and output. In indirect interactions, user activity and feedback
occur in disjoint spaces (e.g., using a mouse to control an on-screen cursor)” [Balla-
gas et al., 2008]. Feedback can be continuous, or discrete: “continuous interactions
describe a closed-loop feedback, where the user continuously gets informed of the in-
teraction progress as the subtask is being performed. Discrete interactions describe
an open-loop feedback, where the user is only informed of the interaction progress
after the subtask is complete” [Ballagas et al., 2008]. For the purpose of this anal-
ysis, we are only considering shared feedback shown on the public display itself,
and not the individual feedback that may be generated on the mobile device for
example, which may be considerably more flexible. In the interaction distance we
distinguish between close-up and remote interaction. Close-up interaction requires
users to touch the display with their body (often fingers and hands) or with a hand-
held device, whereas in remote interaction users can interact at a distance. This
dimension has implications on the physical placement of the public display (close-
up interaction require displays that are at arms reach), or on which interaction
mechanisms are suitable for an already deployed public display. Each entry in the
table is labelled with an ordered set of letters corresponding to the possible values
for the three dimensions: Direct/Indirect, Continuous/Discrete, Close-up/Remote.

We now use Tables 5.2 through 5.5 to analyse how four common categories of in-
teraction mechanisms — touch-screen based public displays, interaction via mobile
devices, device-free interaction, and desktop-like interaction — can be used to sup-
port the various interaction tasks, using concrete examples from the design space.
The references for the various display systems can be found in appendix A.

111

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS
Interaction based on touch-screens

Table 5.2: Mapping between interaction tasks and touch-screen based interaction
mechanisms.

Interaction Interaction task

mechanism
Select Entry Upload Download Presence Dyn. Manip.

Touch screen DDC:Plasma Posters; DCC: DDC: DDC: DCC: Plasma
Hermes Photo Display; Plasma Plasma UBI-hotspot Posters;
OutCast; Blueboard; Posters; Posters; Blueboard;
Jukola; AgentSalon; Digifieds; iSchool; FizzyVis;
Digifieds; Spalendar; Spalendar; Cwall CityWall;
iSchool; FizzyVis; Cwall Semi-public
Semi-public displays; displays
Cwall; UBI-hotspot;
Vista

Touch screen IDC: IDC: Hermes

+ Bluetooth Hermes Photo

OBEX Photo Display

Display

Touch screen IDC: IDC:

+ Mobile Digifieds Digifieds

application

Touch screen DDC:

+ printer Plasma

Posters

Touch-screens can be used without the need for any other device so they are a good
solution for walk-up-and-use, close-up interaction displays, provided that they can
be placed in a location that allows users to directly touch it. Touch-screens can
be used to support most of the interaction tasks for public displays. Select, entry,
and dynamic manipulation tasks are obviously well supported. Download media
can be accomplished in a limited way by forwarding the content to a personal email
address entered using a virtual keyboard, or by selecting a username from a list in
case the display system has registered users. Signalling presence can be supported
in a manual way as in the Ubi-hotspot system were users would touch the display
to cause a transition to an interactive mode. None of the public display systems
we surveyed used a touch-screen (without any other device) for uploading media,
although one could conceive that it could be used for uploading by entering the
public address of a file using a virtual keyboard.

However, touch-screens in conjunction with other devices can provide richer inter-
active experiences and better support for the full range of interaction tasks. The
download and upload tasks in particular can take advantage of personal mobile de-
vices for an easier transfer of media files by using an approach similar to the one
used by the Hermes Photo Display with Bluetooth OBEX transfers, or the Digifieds
approach with visual and textual codes. Signalling presence can also be made more
flexible by incorporating personal card readers into the display as in the BlueBoard
or Ubi-hotspot display systems.

112

Interaction based on personal mobile devices

5.4 Design Space for Interaction Controls and Mechanisms

Table 5.3: Mapping between interaction tasks and interaction mechanisms based on
personal mobile devices.

Interaction Interaction task
mechanism
Select Entry Upload Download Presence Dyn. Manip.
Bluetooth IDR: BluScreen
detection
Bluetooth IDR: e-Campus IDR: IDR: Instant
naming e-Campus; Places
Instant
Places;
Bluemusic
Custom IDR: Pendle ICR: IDR: Pendle; ICR:VisionWand
mobile ICR: VisionWand VisionWand AgentSalon
personal
device
DTMF ICR: Vodafone
Cube
DTMF + IDR: Bluetone ICR: ICR: Bluetone
Bluetooth Bluetone
mobile phone
MMS IDR:
JoeBlogg
Mobile DDR: Jukola IDR: Digital DDR: DDR: IDR: Hello.Wall; ICR:Digital
application DCR:C-Blink graffitti; C-Blink C-Blink Mobile Service graffitti;
IDR: Mobilenin Hello.Wall; IDR: IDR: Toolkit Remote
Cwall; Digital Hello.Wall; Commander;
Mobile graffitti; Mobile Mobile Service
Service Cwall Service Toolkit
Toolkit Toolkit
Mobile IDR: IDR: Con- IDR: Publix ICR:Publix
application + Publix tentCascade;
Bluetooth Publix
mobile phone
Mobile ICR: Sweep DCR: Sweep
application + ICR:Jeon et
Camera phone al.
Mobile DDR: Point & Shoot IDR: Visual DDR: ICR:Jeon et
application + code widgets Digifieds al.
Camera phone IDR: Visual code
+ visual codes widgets; Mobile Service
Toolkit
Mobile DDC:Touch & Interact; DDC: DDC: Touch IDC: Touch & DCC: Touch
application + Hello.Wall Touch & & Interact Interact & Interact
NFC phone + DDR: Hello.Wall Interact
NFC display
Personal id DDC: Blueboard;
card UBI-hotspot
IDR: CoCollage;
Proactive
displays;
GroupCast
SMS IDR: Locamoda IDR: IDR:
Webwall; Locamoda
Locamoda

113

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

Remote interaction can be accomplished through many interaction mechanisms. A
popular approach is to provide a custom mobile application (usually for smart-
phones) for interacting with the display. Some mobile applications require specific
mobile hardware to function properly, such as having a camera, Bluetooth, Infrared,
Near Field Communication (NFC); other mobile applications require the display to
be able to generate visual codes. Most of these mobile applications provide an indi-
rect interaction style with the public display where the user’s focus is on the mobile
device interface. Some however, turn the mobile device into a tracked object as in
C-Blink and Point & Shoot, or into a viewport into the public display interface,
as in the Visual Code Widgets, which provides a direct interaction style but also
requires users to stand closer to the display and hold the device in front of it. These
solutions cover the complete set of interaction tasks for public displays, allowing
users to have a rich interaction experience with a public display, remotely.

Another frequent alternative is to use the standard processing and communication
features of mobile devices, without the need to install additional applications. Blue-
tooth detection, Bluetooth naming, SMS, Multimedia Message Service (MMS), and
Dual-Tone Multi-Frequency (DTMF), have been used to support different interactive
features. Although these interaction mechanisms do not support all the interaction
tasks, they may still be a viable solution for specific interactions. Bluetooth has the
advantage of being widely supported by mobile devices and cost-free for the user.
Bluetooth detection, i.e., scanning the area near the public display for Bluetooth
enabled devices and reading their ids, can be used to estimate the number of people
that are present and to determine which devices have been near the display and
when, as in the BluScreen system. SMS and Bluetooth naming, i.e., interpreting
the Bluetooth name of the device as commands to the display system, can be used
for selection and data entry, even if in a simple way, as in the e-Campus, and Instant
Places systems. MMS can be used to upload or download pictures and other media
files. The downside of both SMS and MMS is that require users or display system
to incur in costs (which can be considerable for MMS) when sending the messages.
Finally, DTMF can be used to support selection and data entry tasks as in the
Bluetone system, and dynamic manipulation as in the Vodafone Cube. DTMF also
has costs for users, unless it is done over Bluetooth as in Bluetone.

Device-free interaction

Table 5.4: Mapping between interaction tasks and device-free interaction mecha-
nisms.

Interaction Interaction task
mechanism
Select Entry Upload Download Presence Dyn. Manip.

Camera IDR: Aware ICR: Beye & IDR: Aware
Community Portals Meier Community
Portals;
ReflectiveSigns;
Cwall; Cwall;
UBI-hotspot;
SmartKiosk

114

5.4 Design Space for Interaction Controls and Mechanisms

...continued.
Interaction Interaction task
mechanism
Select Entry Upload Download Presence Dyn. Manip.
Camera DCR:MAID IDR: Code Space DCR: Looking
(Kinect) Glass; Code
Space; MAID
Camera IDR: Interactive Public ICR: IDR: Interactive DCR:
(MoCap Ambient Displays; Spalendar; Public Ambient Spalendar
system) Spalendar Spalendar Displays; ICR:
Spalendar Interactive
Public
Ambient
Displays;
Spalendar
Electro- ICR: Gesture Frame ICR:Gesture
magnetic Frame

sensor

Sound (finger IDR: Gesture Frame
click)

Device-free interaction with public displays can be accomplished with cameras (stan-
dard web cameras, or depth sensing cameras such as the Kinect) and computer vision
techniques. Device-free interaction has the advantage of providing a walk-up-and-
use interaction and not requiring users to directly touch the display, allowing it to
be positioned in a way that allows multiple users to see and interact with it simul-
taneously. With devices such as the Kinect, it can be a viable solution in scenarios
such as shop windows where it can also be used to detect and attract passers-by. Se-
lection, data entry, presence, and dynamic manipulation tasks can be accomplished
with these interaction mechanisms. Although device-free interaction by itself does
not support download and upload tasks, it is possible to use additional devices for
this purpose as in Bragdon et al. [2011].

Desktop-like interaction

Table 5.5: Mapping between interaction tasks and desktop-like mechanisms.

Interaction Interaction task
mechanism
Select Entry Upload Download Presence Dyn. Manip.

Desktop ICR: Notification ICR: ICR: ICR:
application Collage Notification Notification Notification

Collage Collage Collage
Email IDR: WebGlance IDR: IDR: IDR:

Locamoda; Plasma Digifieds

WebGlance Posters;

Cwall

Instant IDR: WebGlance IDR:
messaging WebGlance
Mouse & ICR: Dynamo; ICR: ICR:Dynamo
Keyboard Opinionizer Dynamo;

Opinionizer

115

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

...continued.
Interaction Interaction task
mechanism
Select Entry Upload Download Presence Dyn. Manip.
Mouse & ICR: ICR:
Keyboard + Dynamo Dynamo
USB stick
‘Web ICR: CoCollage IDR: IDR: Co- IDR: IDR: CoCollage
application CoCollage Collage; Digifieds
Webwall;
Digifieds

It is also possible to support all the interaction tasks through desktop-like interfaces.
One possibility is to provide a custom native or web application that enables users to
interact with the public display. All the interaction tasks can easily be supported in
this manner. For example, Notification Collage, CoCollage, and Digifieds, provide
applications that mediate the interaction with the public display itself. It is also
possible to provide a desktop-like interaction where the public display application
itself behaves in a similar manner to a desktop application as in the Dynamo display
where users simply pick up a mouse and keyboard to interact with the display. As
in the case of mobile devices, it is also possible to use standard desktop applica-
tions such as email or instant messaging to interact with a public display system
as in Plasma Posters, CWall, WebGlance, and other systems. Although it is not
possible to support all the interaction tasks (for example, dynamic manipulation is
not possible with email or instant messaging), it can still be a plausible solution in
some cases, as it leverages on existing applications thus obviating the need to install
additional software.

5.4.2 Interaction Controls

Interaction controls provide the next element that is needed to enable applications
to benefit from the interaction tasks that we have identified. The high level of
abstraction that is associated with the interaction tasks needs to be instantiated
into specific controls that can be integrated into applications to support interaction.
A control can still maintain independence from the concrete interaction mechanism,
but it refines the specific information being exchanged, defines additional optional
and mandatory parameters, and can manage input in a specific way before triggering
the interaction event. Just as we have several types of data entry controls for desktop
applications, public display applications also need different controls for the same
interaction task. These controls will form the main components that applications
will use to provide their interaction features.

As part of our analysis of the interaction tasks, we sought to identify a representative
set of controls that could illustrate how the various tasks could be instantiated. To
define the set of controls we have considered the need to include all the interaction
tasks, the key variations within each task and also what seemed to be the most

116

5.4 Design Space for Interaction Controls and Mechanisms

common forms of interaction in the research literature. Still, this is not meant to
be an exhaustive listing (as Foley et al. [1980, p. 20] put it “their number is limited
only by one’s imagination”), but it provides a good overview and comparison of the
possibilities for implementing the various tasks for public display interaction and it
should provide a relevant starting point for designing interaction systems for public
display applications. The relevance of these specific controls will ultimately depend
on their real world usage, which may lead to the emergence of totally new controls,
changes to existing ones and the disappearance of others.

In this description, we focus on the interaction events and information processing
associated with the controls. We leave out the graphical representation and feed-
back aspects usually associated with widgets in desktop systems, as these would be
very dependent on the specific implementation of the interaction system. Table 5.6
provides a list of possible controls for the various tasks.

Table 5.6: List of possible controls for supporting the various interaction tasks.

Task Control Description

Select Action A generic action control, which causes the application to execute an action;
similar to a desktop button. Triggers an event that identifies the action.

Option A generic list control, which presents several options and allows users to
List select one (or more). Triggers an event with the selected option when a user
makes a selection.

Vote Time based action control with a list of alternatives that waits for interac-
tions during a pre-defined period of time. Triggers an event with the most
voted alternative, when the time expires.

Data Unbounded Allows users to input any string of text. Triggers an event with the input
entry text string.

Bounded Supports various text patterns (such email addresses, phone numbers, dates,

text etc.). Triggers events with input string that conform to the specified pattern.
Numeric Generic numeric entry control allows users to input numbers, possibly with
entry lower and upper limits, integer or floating point. Triggers event with the

input number.

Rate Allows users to rate content. May support various formats such as different
scales, discrete/continuous rating scale. Triggers event with the input rating.

Upload Generic An upload control that accepts any media file, possibly with a parameter to

media upload limit the total file size. Triggers an event with the location of the uploaded
file.

Video Accepts only video files. Allows applications to specify the maximum du-

upload ration of the video, and supported video formats. Automatically converts

between unsupported video formats to supported ones, for example, or sim-
ply does not allow unsupported formats.

Image Accepts only images. Allows applications to specify the maximum/minimum
upload image size, and supported image formats. Automatically converts images
that do not conform to the specified size and format restrictions.

Audio Accepts audio files. Allows applications to specify the supported formats
upload and maximum audio duration.

Downl. Download Allows application to specify the media type and location of a content item
media that users can download. Triggers an event that identifies the downloaded
file.

117

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

...continued.
Task Control Description
Share Allows users to share a content item with other people. Triggers an event

that identifies the shared file.

Signal Check-in Allows users to explicitly signal their presence near a display. Optionally,

Pres. the interaction event can carry the location verification status, allowing the
display system to give more weight to check-ins with verified locations, for
example.

Presence Signals the presence of users obtained implicitly from sensors. The informa-
tion carried on the interaction event may vary, depending on the concrete
types of sensors available, but we can generally categorize it according to the
levels of information that are sensed: presence detection, characterization,
and identification.

Dyn. Cursor Allows users to dynamically interact via (multiple) cursor positions. The
Manip. interaction event is a continuous flow of cursor positions.
Joystick Provides joystick information (direction, gamepad button states), for gaming
purposes. The interaction event is a continuous flow of direction and button
states.

Keyboard Provides keystroke events. The interaction event is a continuous flow of key
presses.

Skeleton Provides positioning of body joints, and/or user’s silhouette information
(full or partial body parts). The interaction event is a continuous flow of
skeleton/silhouette data.

Together, the mapping between the interaction mechanisms and interaction tasks,
and the characterisation of the controls that support those tasks, forms a design
space for interaction abstractions for public displays that can be used in several
ways. A designer of an interaction toolkit for public display applications can use the
design space to understand the kinds of high-level controls that the toolkit should
provide to application developers and which interaction mechanisms can support
those controls. For someone deploying a public display system, the design space
can be used help make informed choices regarding the interaction mechanisms that
should be deployed in order to support a specific set of interaction tasks. It can
also be used to determine the interaction characteristics those interaction mecha-
nisms impose. Application developers can use the design space to understand which
controls can be supported by public display systems and decide how the interaction
features of their applications can be implemented using those controls. Addition-
ally, the various concrete examples of display systems listed in the design space can
also be used as reference, or design patterns, for the implementation of the various
controls in the interaction toolkit.

5.5 Conclusion

We have presented a study about interaction tasks and controls for public display
applications, grounded on the existing descriptions of concrete interactive display

118

5.5 Conclusion

systems available in scholarly publications. We have characterised six high-level
interaction tasks focused on the specificities of public display interaction, more
specifically select, data entry, upload, download, signal presence, and dynamic ma-
nipulation. These tasks represent a classification of the major types of interaction
between users and public displays; we have also identified various types of concrete
interaction controls that may enable those interaction tasks to be integrated into
applications for public displays. These controls constitute a first step towards a
list of controls that may compose future interaction toolkits for public displays; we
have also organised the various interaction mechanism for public displays in a design
space adapted from Ballagas et al. [2008] that sketches a mapping between the high-
level abstractions provided by the interaction tasks that have been identified and
the concrete interaction mechanisms that can be implemented by those displays.

With the interaction tasks, the mapping between tasks and mechanisms, and the
interaction controls, we have a tool to structure an interaction system for public
display applications. This is a valuable tool for allowing application developers
to make more informed decisions on the types of controls that they would need,
considering for example the applications goal but also the envisioned interaction
modalities.

119

5 INTERACTION TASKS AND CONTROLS FOR PUBLIC DISPLAY APPLICATIONS

120

Chapter 6

The PuReWidgets Toolkit — A

Widget-based Interaction

Abstraction for Public Displays

Contents
6.1 Introduction 123
6.1.1 Main featureso 123
6.1.2 Design decisions and assumptions 124
6.2 Architecture 000000 126
6.2.1 Interaction manager 126
6.2.2 PuReWidgets library 129
6.3 Widgetsand Events 129
6.4 User Interaction with PuReWidgets 133
6.4.1 Text-based input 133
6.4.2 Dynamic graphical interface generation 134
6.4.3 QR code interaction 136
6.4.4 Touch-screens 138
6.4.5 Input feedback 138
6.5 Implementation Details 140
6.5.1 Application loading 142
6.5.2 Widget instantiation oL 142
6.5.3 Inputevents 144
6.5.4 Extending widgets 144
6.5.5 Server-side PuReWidgets library 150
6.6 Conclusion 151

121

6 THE PUREWIDGETS TOOLKIT

122

6.1 Introduction

6.1 Introduction

In this chapter we present our solution for an interaction abstraction toolkit for
public display applications, presenting the main concepts, architecture, and imple-
mentation. Our solution is primarily inspired on the widget concept: a programming
object that provides high-level interaction events to applications, hides the low-level
actions needed to interact with the application, has a graphical representation, pro-
vides input feedback, and can be extended by programmers to create other widgets.

6.1.1 Main features

The PuReWidgets toolkit provides a number of important features for interactive
public display applications:

Multiple, extensible, widgets The toolkit incorporates various types of interac-
tion widgets, supporting the previously identified interaction tasks®: select,
data entry, upload, download, and check-in. Existing widgets can be cus-
tomised and composed into new widgets, and completely new widgets can be
created by application programmers.

Dynamically generated graphical interfaces The toolkit automatically gener-
ates graphical user interfaces for desktop and mobile interaction with public
displays. It also generates Quick Response codes (QR codes) for user interac-
tion through camera equipped mobile devices.

Independence from specific input mechanisms and modalities The toolkit
supports several interaction mechanisms such as Short Message Service (SMS),
Bluetooth naming, OBject EXchange (OBEX), email, touch-displays, in addi-
tion to the already mentioned desktop, mobile, and QR code interfaces.

Asynchronous interaction The toolkit supports asynchronous interaction, allow-
ing applications to receive input events that were generated when the appli-
cation was not executing on the public display.

Concurrent, multi-user interaction The toolkit supports concurrent interactions
from multiple users, and provides applications with user identification infor-
mation that allows them to differentiate user input.

Graphical affordances The toolkit provides default graphical representations for
its widgets. Widgets also provide graphical input feedback on the public dis-
play when an input event occurs.

'We left out the dynamic manipulation task at the moment, because it imposes greater restric-
tions on the supported interaction mechanisms, and requires very application-specific solutions for
handling multiple user interaction.

123

6 THE PUREWIDGETS TOOLKIT

6.1.2 Design decisions and assumptions

While designing the PuReWidgets toolkit, we targeted it at web-based public dis-
play applications, even though the central concepts could be applied to “native”
applications running over standard desktop Operating Systems (OSs). Targeting
the web platform has a number of advantages:

e Applications can easily take advantage of the extensive web content and con-
tent access Application Programming Interfaces (APIs) that already exist.

e Applications are easier to distribute, update and maintain. Updates are im-
mediate and display owners? will not have to reinstall the application.

e Applications are naturally multi-platform and independent of the OS running
on the public display.

e Because there is no need to copy files to install the application, configuring the
same application on various public display can also be made easier by using a
single web interface.

Web applications also have some limitations, namely regarding the restrictions on
the availability of various types of machine resources, such as graphical processing,
file system access, and local input resources. However, given the recent advances
in browser technologies and the current trend towards wider use of the web as an
execution environment, we can expect that the limitations faced by web applications
will continually decrease.

Application life-cycle

Although PuReWidgets is not tied to a particular application life-cycle, to facilitate
the description of the architecture, we assume that the usual life-cycle of a public
display application is the one depicted in Figure 6.1, and described next.

An application is initially developed and deployed by an application developer. De-
ploying an application means that it will be hosted on a third-party web server and
publicly accessible from that point forward, via a Uniform Resource Locator (URL).

Once an application is deployed, display owners are able to use it in their displays. In
the PuReWidgets context, it is not important how display owners find applications.
In order to use an application in a display, the display owner will have to associate it
with a particular display. This step may entail several things such as configuring the
display scheduler software with the address of the new application, specifying the
amount of display time and screen area the application should have, and possibly

2We use the term display owner to refer to the person that is responsible for maintaining the
public displays in a specific location, setting up and configuring their content.

124

6.1 Introduction

/ Associated \

?

Application is >
deployed Application
is associated
with display

7

Off-screen

Scheduler unloads
application

Scheduler loads
application

Application
is de-associated
with display

On-screen

_ /

Figure 6.1: General life-cycle of a public display application

configuring the application so that it displays content that is appropriate for the
particular place where the display is located.

Once an application is associated with a display, the display scheduler can decide to
give the application display time by putting it on-screen.® Putting an application
on-screen means loading the web page of the respective application in a browser
component. Putting an application off-screen means removing it from the display,
probably shutting it down by closing the web page, unloading it from the browser
component. (Although PuReWidgets also works with applications that are simply
taken to a background state, hidden from view.) We make no assumption as to
the type of scheduler that a particular display will use. Scheduling could use a
simple time-based algorithm, based on a pre-defined timetable of display time for
each application, or a more complex event-based algorithm, which dynamically gives
applications display time based on external events such as user interactions.

API design

While designing the API of the programming library, we had a number of design
goals in mind.

Low learning threshold. We wanted an easy to program system, integrated into the
regular application development cycle. We did not want to introduce additional
steps in the typical development process, nor change too much the existing ones.

Dynamic interfaces. We wanted to allow applications to have dynamic interfaces
where widgets can be created, changed, and removed at any time. We did not want
to introduce compile time mechanisms that would, for example, force programmers

3We borrow the terms on-screen and off-screen from the cinema terminology which refer to
characters that are present on a scene, but are not seen by the audience. We apply the terms to
both applications and widgets.

125

6 THE PUREWIDGETS TOOLKIT

to produce separate interface descriptions with the only purpose of being used for
generating the web Graphical User Interface (GUI).

Flexible. We wanted an easy to program system, where developers focus on the high
level aspects of the interaction, but also have control over fine details of the interface
such as the graphical appearance of the widgets.

6.2 Architecture

The PuReWidgets system was designed to support displays in various independent
administrative places, running various applications developed by third-party devel-
opers. Figure 6.2 depicts the main physical components of a network of public
displays. From the perspective of a public display, a PuReWidgets based public dis-
play application is a standard web application that is downloaded from a third-party
web server and runs in a standard web browser component in the public display.
Interaction with a public display application is accomplished through an Interaction
Manager (IM) server that is part of the PuReWidgets toolkit. A single IM supports
various independent applications and displays.

The PuReWidgets toolkit is composed of a widget library that programmers include
in their application’s code, and a web service that handles interaction events (see Fig-
ure 6.3). When the application is on-screen, the PuReWidgets library receives input
events from the PuReWidgets service, and triggers the appropriate high-level events
on the application. The development process of a public display application that
uses PuReWidgets is similar to the development of a regular web application: devel-
opers include the PuReWidgets (object-oriented) library in their projects and use
the available functions of the library to code the application, instantiating widgets
and registering callback functions for interaction events. These callbacks correspond
to high-level interaction events and are triggered by the widget instances after an
interaction event is detected and processed by the widget. Developers then deploy
the set of HyperText Markup Language (HTML), Cascading Styles Sheet (CSS),
and Javascript files that compose their application to a web server.

6.2.1 Interaction manager

The IM server mediates all user interaction with the public display applications. The
IM keeps a database of every widget created and in use by applications and is capable
of routing the various interactions to the correct application. It is also capable of
dynamically generating web-based graphical user interfaces for desktop and mobile
platforms (GUI generator), QR codes for individual widget interaction (QR code
generator), and accepting input from various text-based mechanisms such as SMS,
email, etc. (I/O module). The IM exposes an HyperText Transfer Protocol (HTTP)
Representational State Transfer (REST) service for submitting and receiving widget
information and input events that is used by the PuReWidgets library. The IM is

126

6.2 Architecture

PuReWidgets' Public Public Public

Interaction display display display
Manager application application application
Server 1 2 n

web server web server web server

o

Place Place Place
1 2 n

Public display Public display Public display Public display

@ ‘Web browser @ Web browser @ Web browser @ Web browser

Display device D Display device Display device

Figure 6.2: PuReWidgets’ physical components diagram.

Public display application

Application code

“ PuReWidgets toolkit Widget
: instantiation
Interaction Manager server High-level
Widget evpnt
PuReWidgets service description| |
HTTP PuReWidgets library
GUI | QR code I/0
generator| generator| module I Input
event

Figure 6.3: PuReWidgets’ general architecture.

127

6 THE PUREWIDGETS TOOLKIT

structured around the following set of concepts:

Place A place is an administrative area defined by the display owner. A place can
have different levels of granularity: it can be something small like a specific cafeteria,
with a single public display, or a wider place like a university campus, with various
public displays. A single IM server can handle multiple independent places. Each
place is identified by a unique place id, within the IM.

Application An application is a web application that uses the PuReWidgets li-
brary, which display owners will typically identify by its URL. Display owners may
associate several applications with a single place. Each association is an application
instance in the IM, identified by an instance id. The same application can be as-
sociated multiple times and given different instance ids in the IM (for example, the
display owner may want to display the same application with different configurations
in the same or in different displays).

Widget A widget represents an interaction feature of an application. Applications
instantiate widgets at runtime, and give them unique widget ids (unique in the scope
of the application). When widgets are instantiated by an application they must be
registered, i.e., their description sent to the IM. The registration process itself is
hidden from the application and is done by the PuReWidgets library.

Widget Option Widget options are independently actionable items within a wid-
get. Most widgets have a single option, but some, for example list boxes, may have
various options that users can independently select. Each widget option must have
a unique widget option id in the scope of a widget. Widgets have at least one widget
option.

Reference code The IM assigns a unique (within the scope of a place) textual
reference code to each widget option. These reference codes are human-readable
identifiers to be used in text-based interactions (such as SMS or email interactions),
allowing users to address individual options within a widget. Additionally, places
also have reference codes assigned by the display owner that, together with the
reference code of the widget option, uniquely identifies an interaction feature across
all places and applications of the IM.

Web GUI The web GUI is a web-based interface that the IM dynamically gener-
ates for all applications in a given place, allowing users to interact with any widget
of any application.

128

6.3 Widgets and Events

6.2.2 PuReWidgets library

The PuReWidgets library is the toolkits’ interface with programmers. It is a web
client library?* that offers programmers various widgets that abstract user interaction
into high-level interaction events to applications. The PuReWidgets library trans-
parently handles communication with the PuReWidgets service for various book-
keeping operations, including registering the widgets in the IM, receiving user input,
forwarding input to the correct widget, and providing system-level input feedback
on the public display. The library has various components (see Figure 6.4):

Widgets Applications mainly use the functions of the PuReWidgets library through
its various widgets, instantiating, configuring, receiving interaction events, and delet-
ing them.

Communications manager The communications manager component imple-
ments the various REST services provided by the PuReWidgets service of the IM,
providing an interface for the rest of the library components.

Local storage The local storage component provides access to the local stor-
age browser functions. This component providers higher-level functions than the
ones directly available through Javascript and also abstracts the local storage into
application- and widget-specific local storages so that applications and widgets do
not have to deal with possibly conflicting names for their key-value objects.

Input feedback manager The input feedback manager component provides graph-
ical popup panels for displaying input feedback and schedules and coordinates their
visibility on the public display.

Widget manager The widget manager component is responsible for keeping a
consistent state between the application’s widgets and the IM database. It manages
all the widgets instantiated by an application, guaranteeing that they are registered
in the IM. It also receives and routes input events from the IM to the correct widget
instance.

6.3 Widgets and Events

PuReWidgets provides support for the various interaction tasks defined in chapter 5,
in the form of widgets.

4In reality, PuReWidgets offers also a library for server-side code, but for simplicity’s sake, at
this point we focus on the web client library.

129

6 THE PUREWIDGETS TOOLKIT

Application
J |

) (
. J

[Widgets]

PuReWidgets [Communications Localstorage Input feedback
service manager manager
J
‘ Widget manager
Interaction
Manager
server PuReWidgets library

Figure 6.4: PuReWidgets’ library components.

When users interact, widgets trigger an interaction event by invoking the callback
function that the application registered when the widget was instantiated. The data
associated with the event will be different for each widget, but most data is common
to all widgets:

user id An user id assigned by the IM, that uniquely identifies the user.

user nickname A human-readable name for the user that can be publicly dis-
played.

widget object reference A reference to the internal program object that repre-
sents the widget.

widget option id The widget option id that was targeted by the user input.

widget specific data Generic object with widget specific event data.

Currently, PuReWidgets provides the following set of widgets.

Button A button widget allows users to trigger actions in the public display ap-
plication. The interaction event generated by a button is a simple triggered event,
with no widget specific data. The default graphical representation of a button (see
Figure 6.5) displays a button label and the reference code.

Like (p10)

Figure 6.5: Default graphical appearance of a button.

130

6.3 Widgets and Events

List box The list box widget allows users to select among a set of related items.
The high-level event generated by a list box identifies the selected item through the
widget option id. Graphically, a list box has the appearance of a box with a title
and a set of vertically arranged item names and corresponding reference codes (see
Figure 6.6).

How frequently
do you eat pizza?

Everyday (f20)
Once a week (g20)
Once a month (h20)
| don't (i20)

Figure 6.6: Default graphical appearance of a list box widget.
Text box A text box widget allow users to input free text. The interaction event
generated by a text box contains a text string corresponding to the user’s input, in
the widget specific data. Graphically, a text box is depicted as a standard single

line input field, with a label and reference code inside. It has also a flashing cursor
at the leftmost side (see Figure 6.7).

| Suggest your own poll! (u10)

Figure 6.7: Default graphical appearance of a text box widget.

Upload An upload widget allows users to submit media files to the public display
application. The high-level event generated by these controls includes an URL to
the uploaded file® so that the application can then download and use the content.

Upload (3e5)

Figure 6.8: Default graphical appearance of an upload widget.

SPuReWidgets handles different forms of file uploading. If the upload includes the file contents
(for example as an email attachment), PuReWidgets will store the file contents and provide ap-
plications with a temporary URL for the file. If the upload consists already of an URL for a file,
PuReWidgets simply passes it to the application.

131

6 THE PUREWIDGETS TOOLKIT

Download The Download widget allow the application to provide files that users
can download to their personal devices, forward to their email, etc. This type
of control generates a high-level event that simply signals that a user wants to
download the item. The process of actually sending the file to the user is handled
transparently by the toolkit. Applications are required only to, when instantiating
the widget, specify the location (an URL) of the associated media file.

Download (3e6)

Figure 6.9: Default graphical appearance of a download widget.

Check-in Check-in controls allow users to signal the application that they are
present. In this case, the high-level event is just the identification of the user that
has just checked-in. Check-in widgets are different from the other widgets in that
their input is not directed specifically at a single application, but instead to a place:
when users check-in in a place, every application that instantiated a check-in widget
will be notified.

Check-in
® at UCP!

(checkin)

Figure 6.10: Default graphical appearance of a check-in widget.

Widget registration

In order for the IM to be able to route user input to the correct application and to
be able to generate the web GUI, widgets must be registered in the IM. The regis-
tration process itself is hidden from the application and is done automatically by the
PuReWidgets library, when a widget is instantiated or changed by the application.
To register a widget, the following information is sent to the IM:

ids The place id, instance id, widget id, and option ids, are all sent to the IM.

widget type The type of widget corresponds to the interaction tasks defined in
chapter 5: select, entry, download, upload, or check-in, or user-defined type.
This is used by the IM to adapt its behaviour in response to a user input and
to provide different graphical representations in the web GUI.

short description A short description (e.g., one to three words) of the widget’s
meaning in the context of the application.

132

6.4 User Interaction with PuReWidgets

long description A longer description (several words) of the widget. The short
and long descriptions (and the control type) are used by PuReWidgets to
render an application’s widgets in the web GUI. These descriptions are meant
to provide context to the widgets, since, in these cases, the user does not have
the context of the other elements of the application.

list of option short descriptions A short description of the various options.

list of option long descriptions A longer description of the various options. As
with the widget’s short and long descriptions, the options’ short and long
descriptions are used mainly to provide context to alternative renderings of
the application’s widgets.

list of suggested reference codes (Optional) Each option will be assigned a unique
reference code by the IM. This field allows applications to suggest which ref-
erence codes they would like to have. PuReWidgets will try to honour these
requests but it may not be able to do so if the suggested reference code is
already in use.

icons Widgets can have an icon for each widget option. Icons are specified as a
URL where the icon can be found.

6.4 User Interaction with PuReWidgets

In its current version, PuReWidgets supports four different kinds of input that
allow users to interact with applications: text-based input mechanisms, a web GUI,
QR codes, and touch-screen/mouse/keyboard interaction.

6.4.1 Text-based input

Text-based interaction includes various different input mechanisms such as SMS,
instant messaging, email, Bluetooth naming, and other mechanisms where the com-
munication is made mainly via text messages. These mechanisms require users to
explicitly say which widget they wish to address by entering the reference code of
the widget in the text message. The IM server provides a set of I/O modules that
can receive raw text input from different sources and interpret the interaction com-
mands that are present. Figure 6.11 provides a more detailed view of the IM server
and the I/O modules for text-based interaction.

Generically, text-based interactions require users to follow a simple command struc-
ture in their text messages, in order to identify the widget option they wish to
address. The full command syntax is

<place_reference_code>.<widget _reference_code> <additional_parameters>

133

6 THE PUREWIDGETS TOOLKIT

Interaction Manager server Public display application

PuReWidgets service

Inp}t event

Web [

channel
service

Interactions
database

GUI QR code I/0 module
generator | generator
sms | Bluetooth |g g ’
naming

Figure 6.11: I/O modules in PureWidgets.

The additional parameters are widget-specific and not all widgets require them.
For example, to activate the ‘like’ button in a public display located at the UCP
university (see Figure 6.5), users would simply send a “ucp.pl0” message. To send
a poll suggestion to a text box (see Figure 6.7) however, they would enter “ucp.ul0
How often do you read books?”.

When using a text-based interaction mechanism, users are identified by the address
of the respective mechanism. For example, for SMS messages the address is the
user’s phone number, for email messages the address is the user’s email address,
and for Bluetooth naming the address is the user device’s Media Access Control
(MAC) address. Although not currently implemented, these addresses could be
associated with a user’s profile in the IM allowing the public display to get richer
information about its users (see section 8.2 — Future Work — for a discussion about
this possibility).

6.4.2 Dynamic graphical interface generation

PuReWidgets provides a dynamically generated web-based GUI for desktop and
mobile devices, which allow users to interact with the available applications in a
particular place.

For each place, the IM server provides a web GUI which allows users to see the
available applications in that place (see Figures 6.12a and 6.12b), and interact with
any widget currently in use by any application (see Figures 6.12¢ and 6.12d).

When rendering the application widgets, PuReWidgets uses the information that
was registered when the application created the widget. For example, the widget

134

6.4 User Interaction with PuReWidgets

L3 Place Interaction Webpage %

Applications in ucp:

EveryBody 6) ublic

« Youl TR
ofes Player

Everybody Votes Public Youtube Player

€« C ff [} pw-systemapps-test.appspot.com/placeinteraction/index.html#ucp el = pw-systemapps-test.appspot.c C' 'E
Sign-In to change

Applications in ucp:

EversBody Eyerybody

btes Votes
é:::ﬁ Public Youtube
Player Player

(a) Deskop view of application list.

L5, Place Interaction Webpage %

<« C ff [pw-systemapps-test.appspot.com/placeinteraction/index.html#ucp¥%25-%25PublicY... 7| =

Sign-n to change
Public
page PublicYoutubePlayer Application

Play Like Play locally Reportas innapropriate

(b) Mobile view view of
application list.

pw-systemapps-test.appspot.c C' @

PublicYoutubePlayer
Application

02 Inside Line: Season 3 & Dragon Nest - CN - Kali
f Episode 5 - 6 Nations ‘5! Level 60 [Typhoon Kim Nest
preview g 4 - Single Player Mode] - -
Play (p00) Play (e00) 02 Inside Line: Season 3
« Episode 5 - 6 Nations
Road To NBA 2K13 - % NBA review
i 2K12 My Player | 1st Game 3 NBA 2k12: PG My Player - p
as a Starter | Friday Night "X NBA All Defensive New York
Knicks : Knicks PGS 1:EP 13] Play (p00)
Play (s00) Play (d00)
{ P FIFA 13 Career Mode - My Dragon Nest - CN - Kali
Y%, Player- Episode 62- Level 60 [Typhoon Kim

(c) Deskop view of widget list.

(d) Mobile view of wid-
get list.

Figure 6.12: Automatically generated web GUI.

135

6 THE PUREWIDGETS TOOLKIT

control type is used to determine what type of web controls are needed to provide
the interaction (a textbox, a listbox, a button, an upload form, etc.), and the long
descriptions are used to provide descriptions for the individual widgets (see for
example Figure 6.12¢).

The web GUI allows users to interact anonymously, while making sure that the sys-
tem is able to distinguish different users. For this, the web GUI randomly generates
a user id and nickname (in the form of “Anonymous####”), the first time a user
accesses the webpage. If users choose to identify themselves, they can do this by
logging in with one of several authentication providers (the web GUI currently uses
the Janrain service [Janrain, 2013], which provides a unified authentication mech-
anism across several providers such as Google, Facebook, Twitter, LinkedIn, etc.).
In this case, the user’s id and nickname are extracted from the provider’s account
profile.

In order to provide some visual structure to the web GUI, particularly for applica-
tions that have several widgets, the short description is used to group widgets in the
web layout: widgets with the same short description are grouped together under the
same panel.

It should be noted, however, that this automatic interface generation for public
display applications does not preclude application developers from creating a custom
web or mobile interface to their applications. Both could even be integrated in
the display system: the web GUI could load by a default the custom application
interface, but fall back to the dynamically generated web GUI one if the former did
not exist.

6.4.3 QR code interaction

PuReWidgets also creates QR codes for individual widget options, allowing imme-
diate interaction with specific application features simply by scanning a visual code.

Applications can use the PuReWidgets library to create and show on the public
display QR codes for any widget they have created. For example, applications may
choose to display QR codes for some or all of their widgets in the public display
graphical interface, allowing users to scan the code directly from the public display
screen. Applications can request QR code images of various sizes, allowing them to
adapt to the display’s positioning and average user’s distance to the screen.

Display owners also have access to the QR codes for every widget of every application
they have configured in a given place. For example, display owners may want to
draw attention to a specific feature of an application, or to a new application, by
printing and distributing the QR codes associated with those features. Imagine a
polls application in which one of the polls asks users to tell which sports team they
think will win the next championship. At the day of an important match for the
local team, the display owner may choose to print flyers and leave them at the
coffee tables to engage its customers in that event. To generate QR codes, display

136

6.4 User Interaction with PuReWidgets

owner access a web interface (see Figure 6.13) where they can see all the available
applications in a specific place, and select one to list the available QR codes. Display
owners can then take the QR code images from the web page and use them to create
custom flyers, posters, etc. (see Figure 6.14a). Alternatively, applications can use
the QR code service available through the PuReWidgets library, and provide ready
to print web pages with custom layouts that display owners can simply print.

EveryBady

QR code generator for EveryBodyVotes

fotes

Vote Suggest your own poll!

Which team will win the
Do you read books often? championship?

Benfica

Braga

Figure 6.13: Web interface for obtaining QR codes for specific widgets.

Q9 7 .l W 19:00

EveryBody appspot.c 5
r VOTE HERE o
es Sign-In to change

Which team will win the EveryBodyVotes Application
championship? Which team wil i te

Benfica (i00)

Vote

<

a Sample ﬂyer with QR codes for a speciﬁc pOH b Sample interface for
()
QR code interaction.

Figure 6.14: QR code interaction.

QR codes embed the place id, application id, widget id, and option id in an URL
that points to the IM server. When accessed, the IM generates an interface for inter-
action with the specified widget. This interface is similar to the web GUI interfaces
described in the previous section. For example, scanning the QR code associated
with the “Benfica” answer for the “Which team will win the championship?” poll
of Figure 6.14a, would result in the interface depicted in Figure 6.14b with the cor-
rect option already selected. Users can also login in the QR code webpage, allowing
inputs to be identified instead of anonymous.

137

6 THE PUREWIDGETS TOOLKIT

6.4.4 Touch-screens

Widgets in PuReWidgets are also touch-enabled. In this case, interaction is always
anonymous and the widgets must be on-screen (visible in the display) in order to
be interacted with (see Figure 6.15).

Currently, PuReWidgets supports touch interaction with buttons, list boxes, and
text boxes. Download and upload widgets can also be easily supported but they
would require additional hardware setup on the public display. For example, users
could upload and download files from a personal Universal Serial Bus (USB) stick,
but this would require access to a USB port connected to the public display’s com-
puter. Check-in interactions are harder to support through touch-based interaction
as it would require users to authenticate, which not only poses privacy and security
concerns, but also raises the interaction barrier too much to make it an attractive
option (however, Near Field Communication (NFC) or other personal cards could
be used for this).

old memories of
university of ...

Figure 6.15: Touch interaction with a public display application.

6.4.5 Input feedback

An important aspect of desktop widgets is the system-level feedback they provide
and that helps users understand the response of the system, independently of how
the application will react. Public displays applications may choose one of two de-
sign strategies regarding the exposure of user interactions [Dix and Sas, 2010]: some
applications may wish to hide interactions, while other may wish to expose inter-
actions. PuReWidgets supports both strategies, by providing a default graphical
input feedback but letting programmers disable this behaviour.

For the first design strategy, it means simply that there should be no visible system-
level input feedback on the public display: the PuReWidgets library should simply
trigger the high-level event and let applications decide what to do regarding the
input feedback, including nothing at all. Applications may choose this for several
reasons such as to maintain user privacy, to maintain a cleaner graphical interface,

138

6.4 User Interaction with PuReWidgets

or simply because system feedback is not considered important for that particular
application. Whatever the reason, the PuReWidgets library provides a mechanism
that allows applications to disable the graphical input feedback that is shown by
default.

For the second design strategy, the toolkit provides some assistance by generating
graphical input feedback on the public display, at the same time that a high-level
event is generated. This is the default behaviour of the PuReWidgets library and
it can be an important feature for several reasons: it helps to create awareness
about the interactive features of an application; it helps creating a more dynamic
application by showing user activity; it can help enticing more user interactions
[Brignull and Rogers, 2003].

Our approach is to provide a base mechanism for presenting feedback on the public
display, which consists of a panel that pops up on top of the corresponding widget.
This feedback allows not only the active users to get a confirmation of their actions,
but also bystander users to get a better understanding of what is going on the
public display. The information displayed in the panel is defined by each widget and
is configurable by the programmer but, generally, it identifies the user (a masked
version of the user id if the identification is considered sensible information, such as
the phone number for SMS interactions) and the action that the user performed.

The toolkit provides slightly different feedback information on the public display, de-
pending on whether the widget that is receiving the input is currently on-screen, or
off-screen. For on-screen widgets, the widget itself provides context to the feedback
information, so the feedback panel contains, generally, less information. For exam-
ple, feedback for a button can be simply the nickname of the user that acted on the
button (see Figure 6.16a). For off-screen widgets, the feedback panel must provide
information that helps users identify the widget itself. By default, PuReWidgets
displays a panel at the bottom of the screen with the user’s nickname and the short
description (label) of the button that was acted on. However, applications can com-
plement this with application-specific information. For example, in Figure 6.16b,
the application displays the user’s nickname, the button’s short description and the
title of the video.

The feedback also helps users understand the asynchronous nature of the interaction
by providing time information when the input that is causing the feedback on the
display is older than a configurable amount of time (1 minute by default). This can
happen when users send input to an off-screen application (or the application is taken
off-screen just after the user sent the input). In these situations, the application will
only receive the input event, and generate graphical feedback, when it is put on-
screen. For input that is older than 1 minute, by default, the feedback includes the
age of the input, e.g., “3 minutes ago...” (see Figure 6.16c¢).

The feedback information is mostly a confirmation of the reception of the user’s
input, but it can also serve to indicate errors. Particularly with input mechanisms
such as SMS, Bluetooth naming, email, etc., where users have to abide by the
command syntax, there is a chance that users will make mistakes when entering
their input. In these cases, the input feedback panel can serve to indicate that the

139

6 THE PUREWIDGETS TOOLKIT

Public YWll® Player .
Recently played | e —

-
. "V
extreme traction-)

| .
NP e e
)

'l »JorgeCardoso
fifth gear [20x01]
. - ford focu...
msaluste Like (hp1) s r
JorgeCardoso
7Like: Extreme Tr...
(a) On-screen button feedback panel. (b) Off-screen button feedback panel.

Public Ywil® Player

Recently played

fifa 13 career mode -
my plave
»JorgeCardoso (3 minutes ago)|
e

vour

P % road to nba 2k13
g.’ * - nba 2K1...

acchioo Like (q00)

S——naruto shippuden
Eas ¥l ultimate ninj...

Leani)

(¢) On-screen button feedback
panel with age information.

Figure 6.16: Input feedback panel for on- and off-screen buttons.

input was received but it was not correctly understood due to a syntax error, and
possibly an indication of what the error was.

Input feedback on the web GUI

The input feedback that is displayed on the public display itself is applicable to all
interactions, regardless of the input mechanism that was used. However, when users
interact through the web GUI, or QR code interfaces there is a possibility of also
providing some feedback directly on the personal device, confirming that the user
input was actually received by the display system (see Figure 6.17).

6.5 Implementation Details

PuReWidgets is currently implemented using Google’s Appengine® server platform,
for the IM, and Google Web Toolkit (GWT),” for the library. This means that it
currently supports web-based public display applications built with GWT — a de-
velopment toolkit for web application development where applications are mostly
written in the Java language (but in combination with HTML, and CSS) and sub-
sequently translated to Javascript.

Shttps://developers.google.com/appengine/
"https://developers.google.com/web-toolkit/

140

https://developers.google.com/appengine/
https://developers.google.com/web-toolkit/

0O Ui Wi

O W WWWNNNNNDNDDNDNNDLN = === = =
WP O OOk WNDRFE O OO0 Utk WD~ OO

6.5 Implementation Details

QT .l B14:31 2T .l W 1431

appspot.c C' @ appspot.c C'
(' Tube (' Tube
Input sent to Input sent to
PublicYoutubePlayer PublicYoutubePlayer
at at
ucpP ucp
(Check the display to see the (Application is not on screen.
result.) You may have to wait a bit...)
UL ISIUT LIS, OSUsUIl U UL NISIUT LIS, OSUSUIT U
|Ev\i Ada B L Natiane |En; An B L Natinne

(a) Application is cur- (b) Application is cur-
rently on-screen. rently off-screen.

Figure 6.17: Input feedback on the web GUI.

The following HelloWorld application will be used to explain the various parts of a
public display application that uses the PuReWidgets library and to explain some
of its functions in more detail.
VAL

* The HelloWorld class is a simple PuReWidgets application that

¥ provides an action button to toggle the background colour of
* the screen.

*/

public class HelloWorld implements PDApplicationLifeCycle, EntryPoint {

// toggles the colour
private boolean on;

VA

* This is the GWT entry point method.

*/

public void onModuleLoad () {
this.on = false;
// Give a default id to the application instance and
// initialize PuReWidgets’ background processes.
PDApplication.load (this, ”"MyHelloWorld”);

}

Jxx

¥ This is the PuReWidgets application entry point

*

/

public void onPDApplicationLoaded (PDApplication pdApplication) {

// Create a PD button and set it to 200 pizels width.
PdButton button = new PdButton(” myPdButtonId” , ” Click .me”);
button.setWidth (7 200px”);

// Add the button to the HIML’s DOM so that it is wvisible

// on the public display interface.
RootPanel. get (?buttonDiv”).add (button);

141

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

29

6 THE PUREWIDGETS TOOLKIT

// Register the callback to react to button presses
button.addActionListener (new ActionListener () {

@Override
public void onAction (ActionEvent<?> e) {

// toggle the state
HelloWorld . this.on = !HelloWorld. this.on;

Style style = RootPanel.getBodyElement (). getStyle ();

//turn the background on or off (white or black)
if (HelloWorld.this.on) {

//turn off
style .setBackgroundColor (” #000000”);

} else {

//turn on
style.setBackgroundColor ("#ffffff”);

}

// add the wuser’s nickname to the bottom of the screen
Label newUser = new Label(e.getNickname ());
RootPanel. get (" messagesDiv”).add (newUser);

}

6.5.1 Application loading

Since a PuReWidgets application is also a GW'T application, it’s entry point is
GWT’s onModuleLoad () method. In GWT’s entry point, we simply load our ap-
plication, giving it a default instance id. Loading an application will make the
PuReWidgets library instantiate its internal datastructures and make an initial call
to the IM server for getting the application’s data and initialising the persistent
communication channel for input notifications. The loading process triggers an
onPDApplicationLoaded() callback,® which is where programmers can start mak-
ing use of the PuReWidgets library (see Figure 6.18).

6.5.2 Widget instantiation

In this HelloWorld example, we create a single action button widget:
PdButton button = new PdButton(”myPdButtonId” , ” Click _me”);

8Just like in the GWT toolkit, many functions in PuReWidgets are asynchronous.

142

34

6.5 Implementation Details

 on the scheduler (browser component)

Application PuReWidgets PuReWidgets
: library : service (IM)

e Y [N

|
\ T \
onModuleLoad) }
PDApplication.load() |
|
|
initialize local storage ‘
—
initialize persistent channel
request input
- -
input
request application instance dat,
€ —— —— ——— — = ——— = —
application instance data
‘—— onPDApplicationLoaded() “~—— —

Figure 6.18: Sequence diagram for application loading.

When instantiating a widget, programmers need to specify the widget’s id (“myPdBut-
tonld”) — a unique name for the widget within the application. This id allows the
IM to correlate the newly created widget with previously existing widgets and de-
termine if a given widget is already stored and if any of its properties have changed.
In the PdButton widget case, it is also necessary to specify the button’s label —
the text string that will appear on top of the graphical representation in the public
display graphical interface.

In order for the graphical representation of the button to appear on the public
display, it is necessary to add the widget to the Document Object Model (DOM) of
the webpage. This is done just like with a standard GWT widget (a PuReWidgets
widget is also a GWT widget):

RootPanel. get (”buttonDiv”).add (button);

When a widget is instantiated, the PuReWidgets library needs to send the widget’s
description to the IM server. (In fact, the widget’s description is sent to the IM
every time the application makes changes to the widget.) In order to reduce com-
munication with the IM, the PuReWidgets library uses a delayed synchronisation
technique that consists of waiting for several widget instantiations (or changes) be-
fore propagating them to the IM server (see Figure 6.19). When the synchronisation
timer expires, all new or modified widgets will be registered on the IM. Registration
consists of sending the widget’s information to the IM (see section 6.3 for details
on the information that is sent). For widgets that are being registered for the first
time, the IM will assign a unique reference code, which the PuReWidgets library
will receive and possibly update on the graphical view of the widget.

143

37
38
39
40

6 THE PUREWIDGETS TOOLKIT

Application PuReWidgets PuReWidgets
library service (IM)

R .
Instantiate widget add widget

to local database
and reset delayed sync

Widget object timer

timer expires
I Register widget |
»
- — - ——
Reference codes

Figure 6.19: Sequence diagram for widget instantiation.

6.5.3 Input events

In PuReWidgets, all widgets trigger an ActionEvent that describes the high-level
event generated by the widget in response to user input (see section 6.3 for a descrip-
tion of the main input event data). Applications must register a callback function
that will handle these high-level events. In the case of the HelloWorld application,
we simply toggle a variable to set the background colour, and append the nickname
of the user that has interacted to the end of the screen:

button.addActionListener (new ActionListener () {

@Override
public void onAction(ActionEvent<?> e) {

Figure 6.20 shows the sequence diagram of the input processing through the main
PuReWidgets components. When users interact using any of the supported inter-
action mechanisms, their input is received by the IM server, which will analyse the
input to determine the target application. If the target application is on-screen, the
input is forwarded immediately via the persistent connection that the communica-
tions manager component of the PuReWidgets library keeps with the IM. The input
is then passed to the widget manager component, which forwards it to the correct
widget. The target widget then processes the input and triggers a high-level event
in the application. If the target application is off-screen, the input is simply stored,
until the application is loaded again by the public display scheduler and asks for the
input received while it was off-screen.

6.5.4 Extending widgets

In PuReWidgets, widgets can be extended in several ways. The most common is
to extend a widget’s graphical appearance on the public display in order to match
the application’s visual style, but it’s also possible to create new widgets which
extend another widget’s behaviour, or that combine several existing widgets into a
composite one.

144

0O Ui Wi

I I I N I N R N e R e il S S S S G S e
DU WD O OO Uk W~ OO

6.5 Implementation Details

PuReWidgets library

Communications Widget . soati
manager l { manager Widget % Application

PN

PuReWidgets l

User service (IM) :
i [O I T : T
I I | I
i | | !
Alternativa ‘ ‘ } ‘
| | | |
[Application on-screen| ‘ ‘ ‘
Input
High-level
input event
_J ActionEvent

:] Store input

sl

Figure 6.20: Sequence diagram of input event.

Extending behaviour

Although it is possible to create a completely new widget from scratch, the easiest
way it to reuse the code from an existing widget, extending it’s class definition and
overriding some of its methods.

The following code example creates a new button widget that triggers an event
only when a pre-determined number of different users have interacted with it. This
example extends the existing PdButton implementation overriding the method that
handles user input:

public class PdBucketButton extends PdButton {

Jx

* The number of different users that mneed to interact
* with this BucketButton to trigger an event.
*/

private int threshold;

Jxx

* The list of ids of the wusers that have interacted so far.
*/

private ArrayList<String> userlds;

/%%

* Creates a new BucketButton with the given id, caption
* and threshold.

*/
public PdBucketButton(String widgetld ,
String caption, int threshold) {
super (widgetId , caption);
this.threshold = threshold;

// load the list of wsers that interacted from localstorage

145

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

6 THE PUREWIDGETS TOOLKIT

userlds = this.getLocalStorage ().loadList (” users”);
}
Jx %
* Handles input from the wuser, creating the ActionEvent that will
* be sent to the application, and the InputFeedback that will be
* displayed on the public display.
*
* The PdBucketButton triggers an application event only when
* "threshold” different wusers have activated the button.
*/
@Override
public InputFeedback<PdButton> handleInput(WidgetInputEvent ie) {
// reuse the superclass’s implementation
InputFeedback<PdButton> feedback = super.handlelnput(ie);
// Add new users to a local list of users
if (!this.userIds.contains(ie.getUserld())) {
this. userlds.add(ie.getUserId ());
// save to localstorage , in case our app gets unloaded
this.getLocalStorage ().saveList ("users”, this.userlds);
}
// By default the ActionEvent is null, i.e., no event will
// be triggered
ActionEvent<PdButton> ae = null;
// If we crossed the threshold, trigger an ActionEvent
if (this.userIds.size() >= this.threshold) {
ae = new ActionEvent<PdButton>(ie, this, null);
// clear for next round...
this. userlds. clear ();
// save to localstorage ...
this.getLocalStorage ().saveList ("users”, this.userlds);
}
// Set the correct ActionEvent to trigger on the application
feedback .setActionEvent (ae);
return feedback;
}
}

The main logic of this PdBucketButton is implemented in the handleInput()
method. This method is called by the widget manager component of the library
(see Figure 6.4, on page 130) whenever a new input is detected for the widget.
PdBucketButton keeps a list of users ids that have already interacted with the but-
ton, adding a new entry to the list whenever a new user interacts. If the size of
the list reaches the pre-determined number (threshold), the widget creates a new
ActionEvent object and returns it inside an InputFeedback object. If the threshold
hasn’t been reached, a null ActionEvent is passed. The widget manager will then

146

26

6.5 Implementation Details

use the InputFeedback objecto to display graphical input feedback on the public
display, and trigger the event in the application (if not null).

This example also illustrates another feature of the PuReWidgets library that al-
lows widgets to store data locally in a persistent manner, by using the browser’s
local storage facilities. PuReWidgets provides all widgets with an individual local
storage area, allowing them to store and retrieve data across applications’ loading
and unloading:

userlds = this.getLocalStorage ().loadList (” users”);

In this particular case, the PdBucketButton keeps the current list of user ids that
have already interacted in the local storage, guaranteeing that it will be in the
correct state if the application is unloaded and then loaded again.

Extending graphical representation

It’s also possible to change an existing widget’s graphical representation on the pub-
lic display by using standard CSS style rules. For example, to change the previous
PdBucketButton style into something like Figure 6.21, we could add the following
lines to it’s constructor (the style could also be changed by the program using the
widget, instead of by the widget itself):

Resources .INSTANCE. css (). ensurelnjected ();
this.setStyleName (Resources .INSTANCE. css (). bucketbutton ());

and define the style using the following files (this is a standard GWT approach to
styling the application):

/% File: bucketbutton.css */

.bucketbutton {
padding: 0;
font —family: Verdana, Geneva, sans—serif;
font—size: 2em;
width: 100%;
height: 75px;
display: inline—table;
border: Opx solid white;
border—bottom: 5px solid black;
border—left: 5px solid black;
border—right: 5px solid black;

}

/+*File Resources.java #*/
public interface Resources extends ClientBundle {
public static final Resources INSTANCE =
GWT. create (Resources. class);

@Source(” css/bucketbutton. css”)
public BucketButtonCss css ();

147

0O Ui Wi+

DR R R N N DD = = = s e e s e
DU WD O OO0 Uk W~ OO

6 THE PUREWIDGETS TOOLKIT

/+ File: BucketButtonCss.java */

public interface BucketButtonCss extends CssResource {
String bucketbutton ();

}

The same can be done to every other widget in PuReWidgets.

Bucket

button (z10)

Figure 6.21: Possible bucket button graphical representation.

Extending by composition

Another possibility for creating new widgets is to use the existing ones as building
blocks for composing more complex widgets. Composite widgets can listen to events
from several widgets and integrate them into higher-level events. In the next exam-
ple, a text box widget and an upload widget are combined in a tag receiver widget
that allows users to send tags explicitly via the text box, or implicitly by sending
an MP3 file (the widget extracts the tags contained in the file). The PdTagReceiver
widget provides applications with an interaction event only when new tags are re-
ceived from a user. The strategy here is for the composite widget to register and
listen to its child widget’s events, process them according to its own logic, and only
trigger a high-level if specific conditions are met (in this case, the condition is that
new tags have been received).

public class PdTagReceiver extends PdWidget implements ActionListener {

VA
¥ This widget’s Ul is described in an XML file wusing GWI’s UiBinder
*/
private static PdTagReceiverUiBinder uiBinder =
GWT. create (PdTagReceiverUiBinder. class);
interface PdTagReceiverUiBinder extends
UiBinder<Widget , PdTagReceiver> {}

Jxx

x* A PdTagReceiver is composed of a text boxr and an upload widgets.

*/
@QUiField
PdTextBox pdTextBox;

@QUiField
PdUpload pdUpload;

Jx %

* The current list of tags.

*/

private ArrayList<String> tags;

148

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

6.5 Implementation Details

public PdTagReceiver (String widgetId) {
// Bookkeeping operations for all PdWidgets
super (widgetId);

// Initialize the wi based on the zml description file
initWidget (uiBinder . createAndBindUi (this));

// This composite widget will listen
// to its child widgets’ events
pdTextBox.addActionListener (this);
pdUpload.addActionListener (this);

// Load the set of tags from local storage.
tags = this.getLocalStorage ().loadList (”tags”);

Jx
* Listen to events from the widgets that compose this one and
* generate a higher—level event only when new tags arrive.

*/

@Override

public void onAction(ActionEvent<?> e) {
Object source = e.getSource ();

ArrayList<String> newTags = new ArrayList<String >();

// tag arrived from the textboz
if (source =— pdTextBox) {

// extract the tag from the textbox ActionEvent
String tag = (String)(e.getParam());

// if its a new tag, add it to the list
if (!this.tags.contains(tag)) {
newTags.add (tag);
this.tags.add(tag);
this.getLocalStorage ().saveList (”tags”, this.tags);
}
// tag arrived from the file upload
} else if (source = pdUpload) {

// extract the tags from the mp3 file
ArrayList<String> tags =
AudioService.getMp3Tags ((String) (e.getParam ()));

// add new tags to the list
for (String tag : tags) {
if (!this.tags.contains(tag)) {
newTags.add (tag);
this.tags.add(tag);

this. getLocalStorage ().saveList (”tags”, this.tags);

}

// trigger an event if we received new tags
if (newTags.size() > 0) {

149

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

6 THE PUREWIDGETS TOOLKIT

// the action event will contain information about the user
// that contributed the new tags, and the list of new tags
ActionEvent<PdTagReceiver> ae =
new ActionEvent<PdTagReceiver>(e.getUserld (),
e.getNickname (), this, null, newTags);
this . fireActionEvent (ae);
}
}
Jx*
¥ Used by UiBinder
*/
@UiFactory
public PdTextBox createTextBox () {
PdTextBox pdTextBox = new PdTextBox(this.widgetld+’—textbox”
”Send _some_tags”, null);
return pdTextBox;
}
Jxx
* Used by UiBinder
*/
@UiFactory
public PdUpload createUpload () {
PdUpload pdUpload = new PdUpload(this.widgetId+’—upload” ,
”Upload _an.mp3”);
return pdUpload;
}
}

6.5.5 Server-side PuReWidgets library

PuReWidgets also provides a server-side library for Appengine applications that
provides functions for creating, updating, and deleting of widgets and for input
notification.

By using the server-side library, applications can be immediately notified of any
input, regardless of the current screen state of the application in the public display.
For applications that use this server-side library, PuReWidgets immediately notifies
them when an input arrives (see Figure 6.22). For this, PuReWidgets needs to know
the notification URL of the application in order to send it the input event description
(currently, the URL is manually configured in the IM). If there is no notification
URL, PuReWidgets follows the standard process depicted in Figure 6.20, on page
145.

150

6.6 Conclusion

/E ‘ PuReWidgets

‘ Application

User service (IM) (server-side)
i i '
}
AlternativeJ |
|
[Application has server notificaltion URL
|
|
Input
[Else]
Go through
standard process

Figure 6.22: Sequence diagram of input event for server-side notification.

6.6 Conclusion

We have presented an interaction abstraction toolkit for web-based public display
applications that is in line with the requirements set out in the beginning of this
work.

The PuReWidgets toolkit provides multiple, extensible, widgets that support the
various interaction tasks for public displays we identified in chapter 5; provides a dy-
namically generated graphical web GUI for rich desktop and mobile interaction with
public displays; is independent of specific input mechanisms and modalities, sup-
porting a wide range of input mechanisms without burdening developers with their
details; provides asynchronous interaction for always available interaction; supports
concurrent, multi-user interaction; and provides customisable graphical representa-
tions for widgets, and system feedback on the public display.

PuReWidgets integrates into a regular application development process by using the
same programming constructs as regular web applications, providing flexible (client-
and server-side) libraries that allow developers to have fine control over the details
of the application’s interface.

151

6 THE PUREWIDGETS TOOLKIT

152

Chapter 7

Evaluating PuReWidgets

Contents
7.1 Introduction 0 ... 155
7.2 System Performance. 155
7.2.1 Procedure 156
7.2.2 Results and discussion L 157
7.3 API Flexibility and Capabilities 159
7.3.1 Public YouTube Player 160
7.3.2 Everybody Votes 162
733 Wrod Gameo 163
7.34 Discussion 164
74 APIUsability v ittt i e 166
7.4.1 Participants Lo 167
7.4.2 Procedure 167
7.4.3 Programming tasks 168
744 Results 170
7.4.5 Discussion 176
75 End-user Study oo 177
7.5.1 Display configuration. 177
7.5.2 Participantso oo 179
7.5.3 Procedure 179
7.54 Results 180
7.5.5 Discussion 181
7.6 Conclusion i i i, 183

153

7 EVALUATING PUREWIDGETS

154

7.1 Introduction

7.1 Introduction

Evaluating a programming toolkit is a difficult task because there are many possible
dimensions that can be evaluated. The system’s performance, scalability, API, var-
ious code metrics for the resulting applications, usability of resulting applications,
are examples of possible aspects that can be evaluated. The API of the toolkit’s pro-
gramming library alone can be evaluated against various desirable characteristics,
such as being easy to learn and memorize, leading to readable code, being hard to
misuse, being easy to extend, and being complete [Blanchette, 2008]. Evaluating a
toolkit for interactive public display applications is particularly difficult also because
there are no direct alternatives that we can use as a baseline for comparing.

We considered that an evaluation of the toolkit would have to address various di-
mensions. Doing an in depth evaluation focused on a single dimension would mean
taking the risk of missing a critical aspect of the system on one of the left out di-
mensions. Given the novelty of the application area, our rationale is that it is more
important at this time to evaluate and validate a wider range of dimensions, making
sure we have a generally viable system.

This choice was also inspired in the approach taken by others when evaluating pro-
gramming toolkits and libraries [Amador and Gomes, 2011; Hardy and Alexander,
2012; Heer et al., 2005; Klemmer et al., 2004]. We evaluated PuReWidgets from
four different perspectives. First we evaluate the system’s performance, focusing on
the Interaction Manager (IM) server. We then evaluate the API’s flexibility and
capabilities using our own experience in developing interactive applications with it.
We also evaluate the API’s usability from the perspective of independent program-
mers. Finally, we provide an evaluation of the resulting system’s usability from
the perspective of an end-user interacting with a real-world deployment of a public
display.

7.2 System Performance

The IM is a central component of the PuReWidgets toolkit because it handles all
the interactions that happen with a public display application. It is, therefore,
important to determine its limitations and understand how well it performs when
handling various simultaneous places and applications.

Given that the IM is implemented over Google’s Appengine cloud service, our tests
were also performed over this platform. However, the results would be applicable
to other similar platforms, as they reflect the general architecture of the toolkit and
not its specific implementation in Appengine.

Google’s Appengine provides a scalable infrastructure, with distributed data storage

and dynamic application instances. Google charges Appengine applications based
on the amount of resources used — CPU, API calls, bandwidth, and storage are

155

7 EVALUATING PUREWIDGETS

the general resource types charged by Google.! Some of these resources are tied to
specific services, which may not be used by every application. Appengine provides
a daily free quota for each resource; below the free quota usage, applications are not
billed.?

For the IM, the resources that are most relevant are the frontend instance hours,
datastore operations, and channels. Frontend instance hours refers to the sum of the
running time of the various application instances. Instances are computing units,
similar to virtual machines, used by Appengine to scale an application. By default,
instances are automatically allocated by Appengine to serve incoming requests. If
an instance’s incoming requests queue grows too large, Appengine allocates a new
instance to handle the load. When the load decreases, so do the number of instances.
Because creating instances is a costly operation, they are not killed immediately
when there are no more requests to serve, instead Appengine waits 15 minutes
before killing the instance. Datastore write and read operations are the number
of low-level operations over the application’s datastore — an object database that
replicates data across multiple data centres. The datastore holds data objects known
as entities and a single high-level operation over an entity may require several read
and write operations, depending on the entity’s structure. Channels are persistent
connections between a Javascript client and an Appengine application. Channels
have a channel id that can have a lifespan of at most 24 hours.

In this evaluation we wanted to answer the following questions:

1. How does the IM scale with an increasing load (with the number of places,
applications, and interactions)?

2. What are the execution times of the various types of requests that the IM
handles?

To answer these questions, we measured the resource usage and the execution time
of the various requests to the IM for an increasing number of applications configured
to run in several places.

7.2.1 Procedure

The PuReWidgets implementation (both the server and client sides) uses various
caching mechanisms to reduce the communication bandwidth and CPU processing
needed. On the Appengine side, for example, caching takes advantage of the Mem-
cache service provided by Google — a distributed memory cache service. PuReWid-
gets uses Memcache to temporarily store datastore results in order to reduce the
number of datastore accesses. Memcache may evict stored values due to lack of

!The complete list of resources, at the time of writing, can be found at https://developers.
google.com/appengine/docs/quotas.

2Billing must be explicitly activated, if not activated, applications that go over the free quota
are simply denied further resources until the daily quotas are reset.

156

https://developers.google.com/appengine/docs/quotas
https://developers.google.com/appengine/docs/quotas

7.2 System Performance

available memory (the exact cache size is not known to developers), or due to a
server failure (Memcache is a distributed service, but it is not guaranteed to sur-
vive a server failure). Because of these mechanisms, it is not possible to have a
deterministic model of how many resources the IM will need to serve an application.

In order to have an estimate of the resource needs of the IM, we ran a simulation
of an increasing load, and measured the resource usage and server execution times.
For this, we developed a test application that executes the following steps:

1. Creates five button widgets (immediately after startup);

2. Sends/receives one input to one randomly chosen widget (30 seconds after
startup);

3. Optionally, deletes one of its own widgets (60 seconds after startup);

The base load consisted in one place running 10 application instances, scheduled to
run consecutively, giving each application 3 minutes of display time, during a period
of 10 hours. Five of those applications were configured to not delete any widget
in step 3. This simulates a fairly loaded display with 10 interactive applications
that, during the 10-hour period, are loaded /unloaded 20 times each (200 in total),
receiving a total of 200 inputs, creating a total of 145 different widgets, and deleting
100 of those widgets. Creating, and deleting widgets, and receiving input has impact
on the performance of the IM because the PuReWidgets library needs to make
requests to the IM to carry out these operations.

We simulated an increasing number of places, up to 24, with the same application
configuration. At the beginning of each simulation, we reset all the data in the IM
server. In addition to the resource usage, we also measured the time it took for each
request to the IM to execute.

After each running session, we manually accessed and recorded the information from
Appengine’s administration console, which shows the currently percentage of free
daily quota resources consumed. We also manually accessed and recorded the pro-
filing information of Appstats console,® — the profiling tool of Appengine — which
records the last (approximately) 1000 requests,* reporting the execution time and
cost of each HyperText Transfer Protocol (HTTP) request made to the server ap-
plication.

7.2.2 Results and discussion

The results for the quota usage for the various resources and the request execution
time, during the 10-hour simulation period, are shown in Figures 7.1, 7.2, and 7.3.

3https://developers.google.com/appengine/docs/java/tools/appstats
4The actual number of requests that are recorded by Appstats depends on the available memory
resources.

157

https://developers.google.com/appengine/docs/java/tools/appstats

7 EVALUATING PUREWIDGETS

Quota usage results are indicated as a percentage of the daily free resource quota
provided by Appengine.

_..4 Datastore
o 300 : ¢ Writes
o i A !
© i »
@ ! !
> i _A" _+ Channels
% ‘, /,*’/.: Datastore
3200 : A _4+""_.--7 : Reads
[: w7 :
2 : & BT o
= L AT e
® AT et
2100 - AT 4 e
£ g :
2 j__ - Instance
o . * * T
e | Hours
0+ I I
I I I I I
1 7 10 20 24

Number of places

Figure 7.1: Quota usage for an increasing number of places.

1500

1000

Request time

500 - ‘ ‘

T
I
2 3 4 5 6

\ B
TQ%%%%"'%

I I I I I
8 16 18 20 24
Number of places

Figure 7.2: Execution time for an increasing number of places.

The plot of Figure 7.1 shows a linear increase in the datastore write and read op-
erations and on the number of channels, with the increase of the number of places.
The instance-hours resource usage remained fairly constant and near the real time
percentage of the simulation time relative to the number of hours in the free quota
(10 hours equals 36% of the 28 hours of the free quota). This means that the server
was below its CPU capacity and was able to handle most of the requests with a
single application instance. Figure 7.2 shows the box plots of the execution time of
the various requests. Visual inspection of the box plots shows that the execution
time did not vary much with the number of places. This is congruent with the
instance-hour usage and indicates that CPU was not greatly affected by the number
of places. These are expected results given that, in the current implementation of
the IM, there is a linear increase of the number datastore entities that need to be
stored as the number of applications increases. Our tests were unable to push the
limits of the instance hours, which just barely crossed the 50% threshold. Despite
the linear increase in most resources, the execution time of the various requests

158

7.3 API Flexibility and Capabilities

handled by the IM remained fairly constant, as shown in Figure 7.2. This indicates
that the IM is able to scale well with an increasing number of applications, and
interactions, being able to maintain its response time constant. This is an expected
result since Google’s Appengine is itself a highly scalable infrastructure.

»
°
c
9]
o
. 1000
g
[0
£ 500 -
7]
)
=]
g]]
0 -
o I I I I I I I
ConnectChannel CreateWidget DeleteWidget DisconnectChannel GetApplinfo Getlnput SendInput

Figure 7.3: Average execution time for the various request types.

Figure 7.3 shows the average execution times and cost of the various requests types
handled by the IM. The most lengthy and expensive requests are creating, delet-
ing, and sending input to widgets. Each application creates and deletes widgets in
batches, so the values in the chart show the average time and cost for creating and
deleting an average number of widgets. These are the operations that need more
datastore operations and CPU time. Creating a widget requires the IM to check if
it exists already, assign reference codes, and save all widget’s parameters and wid-
get options to the datastore. Deleting a widget is also an expensive operation (in
terms of time and cost) because it means not only deleting the widget and its widget
options from the datastore, but also all related input. However, although these op-
erations are comparatively lengthier to execute than the other operations on the IM,
from an application’s perspective this is not a problem. All communication between
the PuReWidgets library and the IM is made with asynchronous calls meaning that
applications don’t have to wait for the completion of a call to continue their execu-
tion. When a widget is created, applications can immediately display it graphically
even before the IM has received the widget’s information (the only information that
cannot be rendered at that time are the reference codes). These execution times
can serve as a reference for programmers to understand the cost of each operation
in the IM.

Although these were limited tests, unable push the IM to its limits, we can conclude

that there are no evident problems with the implementation of the server and that
it is capable of scaling well.

7.3 API Flexibility and Capabilities

The development of the PuReWidgets toolkit followed an iterative approach that
alternated between implementation of the toolkit and implementation of three appli-
cations that used the toolkit. This allowed us to better fit the library’s Application

159

7 EVALUATING PUREWIDGETS

Programming Interface (API) to real world needs. We developed three interactive
public display applications during this phase: the Public YouTube Player, Every-
body Votes, and Wrod Game. While developing these applications, we iterated
through several versions of the toolkit in order to provide better support for the
features we wanted to include in the application. These applications also allow us
to evaluate the flexibility and the limits of the functionality of the current version
of the toolkit.

7.3.1 Public YouTube Player

Public wid Player Public @D Player
What to play next What to play next —
Samsung Galaxy S2 Chilla Frilla - T-Mobile —nissan juke-r vs gt-r = demo of the initial
Mobile Phone Review myTouch 3G Unboxing and track te... comeroe version of...
Play (ci0) Play (bi0) —
iy —_— autoexpress Play Videos in queue Play (ty1)
Battlefield 3 - Invincibl GALAXY Note 10.1 N Nissan Juke-R vs ... P
abiTeleSpawn :‘2:“: TE m | {nlmducingos:msun]g PROFICIENCY B demo of the initial
d 0 & S proficiency t(MW3 KICK Weapon P...| version of...
Play _(ai0) - Play _ (9i0) \ = SixLayers

tmartn Pla

Play (ty1)

PERETTY Classic Game Room - R imian Mobile Disco -
:h'"ln"ﬂ“ GRAND THEFT AUTO Ill erulean FEEE Six|ayers ~ P mm mmm mmm
Play__ (8i0) M Py (7i0) = B 7't ¢
mmmmmmmmmmm prrm » Anonymous -
jorg3cardoso ay——op crashtestaummi Play. (gp1)

(b) Videos in queue.

Public wild Player

Recently played

Chilla Frilla - T-Mobile
myTouch 3G Unboxing and
Like (i0)

chillfrill

Samsung Galaxy 52
Mobile Phone Review
Like

(c) Video playing. (d) Recently played videos.

Public Wl Player

Tag cloud

39 disco galaxy
mObile multimedia
mytouch

(e) Tag cloud.

Figure 7.4: Screens in the Public YouTube Player application.

The public video player is an application that searches for, and plays YouTube
videos. This application allows display owners to specify a list of keywords to be
used to search for videos. It also allows display owners to specify a list of featured
YouTube users from which the application will display videos, in addition to the
ones that result from searches. The general logic of the application is as follows:

160

7.3 API Flexibility and Capabilities

1. The application selects one keyword from the current set of keywords (initially
this set of keywords is equal to the set specified by the display owner) and
searches for videos containing that keyword. The keyword set has weights
associated with each keyword, so that some keywords are more likely to be
chosen.

2. The application displays six videos on the public display (see Figure 7.4a),
combining videos from the search result, and videos selected from the featured
users (the percentage of videos from these two sources can be configured by
the display owner). For each video, the application shows a thumbnail of the
video, its title, and the YouTube username that uploaded it. It also shows a
button that allows users to select the associated video for playback. If users
select a video for playback, the video is put on a queue (see Figure 7.4b).
Videos that are selected for playback, are removed from the set of possible
videos to play, causing the application to select another video to replace the
removed one.

3. After a pre-configured (by the display owner) amount of time, the application
retrieves the first video from the queue and plays it (see Figure 7.4c). If the
queue is empty, it chooses one at random from the list of six videos.

4. When the video finishes playing, the application displays a list of recently
played videos (see Figure 7.4d). This list shows a button next to each video
that allows users to “like” the corresponding video. Liking a video increases
the weight of its keywords in the keyword set of the application.

5. After another pre-configured amount of time, the application shows the current
keyword set using a tag cloud style (see Figure 7.4e).

6. After another pre-configured amount of time, the screen with the search results
is displayed again.

Although the application’s interface on the public display only shows two differ-
ent kinds of buttons, users have other interaction possibilities from the web GUI
that is generated by PuReWidgets. The complete set of interactive features in this
application is the following:

e Users can “like” one of the last six videos that have already been played;
although the public display interface displays only the last three played videos,
the web interface allows users to select up to the sixth video. This feature uses
a button widget.

e Users can get the URL of a recently played video (the last six videos are
available); In this application, when users select this feature they are redirected
to the corresponding YouTube video web page. This feature uses a download
widget.

e Users can select a video to be played from the list of search results; in this
case, the public display interface and the mobile interface show the exact same
number of videos that can be selected. This feature uses a button widget.

161

7 EVALUATING PUREWIDGETS

e Users can report an inappropriate video. If users found one of the last six
played videos offensive, they can report it. This feature uses a button widget.

In the Public YouTube Player application, the interactive widgets are associated
with specific YouTube videos. For example, when a video is removed from the list
of videos that can be played next, the “play” button associated with that video is
removed from the interface and deleted. This means that the application’s interface
is highly dynamic, with widgets being continually added and removed from the
graphical public display interface, and from the IM.

The display owner can customise this application using a web interface that allows

various parameters to be edited and saved. These values are associated with a
application instance running in a specific place.

7.3.2 Everybody Votes

The Everybody Votes application allows users to vote on polls that display owners
create.

EveryBody %I‘es

Everyday (In0)
How frequently
. Once a week (mn0)
do you eat pizza?
Once a month (nn0)
| don't (on0)
CLOSING IN

(a) Open poll.

EveryBody %fes EveryBody %"ES

Which do you

| Suggest your own poll! (u10)
prefer?
: 7 N
/)
N4
M Android [l iPhone
(b) Closed poll. (c) Suggestion box.

Figure 7.5: Screens in the Everybody Votes application.

The Everybody Votes application is a polls application composed of three screens,
depicted in Figure 7.5: an open polls screen (7.5a) which iterates through the open
polls, showing the poll question, possible answers, and time left before the poll
closes; a closed polls screen (7.5b) which iterates through the closed polls and shows
their voting results; a suggest box screen (7.5¢) enticing users to suggest their own
polls (which will go through a moderation process by the display owner).

162

7.3 API Flexibility and Capabilities

Display owners can use an application administrator interface to create the various
polls for the application. When creating a poll, they can specify a title, the various
options, the open date, the close date, and the end date. The open date specifies the
day on which the application will open the poll, starting to display it and accepting
votes; the close date specifies the day on which the application will not accept any
more votes, and will start showing the results of the voting for that poll; the end
date specifies the day on which the application will no longer display the poll. Users
can interact with this application at any time to vote on the various open polls.
Each poll has a listbox widget associated, which lists the various alternative votes.
The listbox widget is deleted when the poll is closed.

Users can also suggest a poll to the display owner by sending text to a textbox
widget. This widget is permanent on the application. Display owners receive the
poll suggestions in an email address configured in the application’s administration
interface. This application uses the server-side library of the PuReWidgets toolkit
to receive and process poll suggestions. When a user sends a suggestion, the ap-
plication’s server side code is notified and processes the input immediately, sending
the display owner an email with the suggestion.

7.3.3 Wrod Game

The Wrod Game application displays anagrams of Portuguese words (see Figure 7.6a)
and allows users to guess what the word is. For each correct word, players get as
many points as the number of letters in the word. When players guess the correct
word, the application displays the definition of the word (see Figure 7.6b).

Wrod Game Wrod Game

HighScores
Anonyraous s Correcto!
jargedisbln 4
a I Parabéns Anonymous!
u ar alegar: Citar; apresentar, como prova.

u Adivinha a palavra pp1)

(a) Main screen. (b) Results screen.

Figure 7.6: Screens in the Wrod Game application.

This application uses only two widgets: one textbox that is used for receiving the
guessed words, and a button widget that allows users to skip the current word
and ask for a new one. These widgets are permanent in the application, i.e., the
application only creates these two widgets, and they are never deleted. However,
the textbox widget is updated whenever the current word on the screen changes:
the long description of the widget is set to “What word is this:” followed by the
anagram of the current word.

163

7 EVALUATING PUREWIDGETS

7.3.4 Discussion

Developing these applications highlighted the benefits of our API design goals,
particularly the goal of trying to achieve a low learning threshold for program-
mers. The programming model of PuReWidgets is well integrated with Google Web
Toolkit (GWT), allowing programmers to directly apply the standard GWT struc-
tures and techniques for creating, styling, and managing the graphical user interface
of the application. This integration evolved significantly with the development of
the three test applications. In this section, we discuss some of the aspects that were
improved in the toolkit as a consequence of the development of these applications,
and also some shortcomings we have detected.

Delayed synchronisation technique

In an initial version of the PuReWidgets library, programmers were required to
explicitly send widgets to the IM, after they created or changed a widget. While
programming the first versions of the Public YouTube Player, this soon proved to
be a source of errors as it was easy to forget to send the widget to the IM. A better
solution would simply be to automatically send a widget to the IM whenever any of
its properties were changed (the base class for all widgets — PDWidget — could easily
be altered to detect these changes). However, in many situations, configuring a wid-
get means changing various properties, which would mean sending several sequential
updates to the IM, using unnecessary network and server resources. To get the best
of both worlds, we changed the Widget Manager component of the PuReWidgets
library, introducing a delayed synchronization technique, where updates to a widget
are only propagated to the IM a few seconds after the last change to the widget. In
this technique, changing a property of a widget marks that widget as “dirty” in the
Widget Manager and resets a delay timer. When the timer expires, all dirty widgets
are sent to the IM. This allowed us to change the API of the library, removing
the need to explicitly send a widget to the IM and, at the same time, minimise the
network and server overhead.

Application parameters

While developing the Public YouTube Player application, it became obvious that
there were application parameters that display owners should be able to config-
ure. Although this is not directly related to the interaction or specific to public
display applications, it makes sense to support application parameters in PuReWid-
gets because these parameters are related to a specific instance of an application.
PuReWidgets provides functions to read and write parameters in the form of name-
value pairs that are stored on the application’s server. Applications can provide an
administration web interface that display owners can use to configure the various
parameters for a specific application instance (PuReWidgets provides a template for
this administration web page). Using these functions alleviates programmers from
explicitly having to deal with different places and application instances. Addition-

164

7.3 API Flexibility and Capabilities

ally, application parameters can be overridden by URL parameters, providing more
flexibility in the way that applications can be configured.

Order of widgets in the dynamically generated web interface

The development of the Public YouTube Player application also pointed out the
need to be able to have control over the order in which widgets are presented in the
dynamically generated web interface. An initial version of the web GUI rendered
widgets in an alphabetical order. However, when comparing the public display in-
terface of the Public YouTube Player application and its web GUI, it was apparent
that the different ordering of the widgets in the two interfaces could generate con-
fusion. As a consequence, we introduced a widget parameter that programmers can
use to explicitly define the ordering of the widgets in the web interface. Although
this still does not provide full control over the layout, it allows for a more natural
mapping between the public display interface and the web interface, which is of par-
ticular importance for applications with many widgets, as in the case of the Public
YouTube Player application.

Input state

The Everybody Votes application evidenced a shortcoming in our current imple-
mentation of the web GUI that is not yet resolved: the inexistence of input state.
When users vote on a specific poll using the web interface, their answer is recorded
by the public display application but not reflected on the web GUI itself. If, a few
days later, users don’t remember their votes, they currently have no way of finding
out (although in this particular application, users can always vote again in the same
or in a different option: the application records only the last vote by a given user).
This problem also occurs with other interaction mechanisms, such as SMS, email,
Bluetooth naming etc., and in these cases there is no obvious solution (users can
always check their SMS or email message history, but this is not a practical solu-
tion). The web interface, however, has the possibility of offering a solution to this
particular problem by recording the input data of some of the widgets, much like
what happens in some web forms that are partially filled with our previously entered
data. To be a flexible solution, applications should be able to define which widgets
should keep their input state in the web interface. This feature is not yet imple-
mented in PuReWidgets, but it is planned for a future version. Providing users with
their interaction history in the web GUI is also a feature that may mitigate some
of the problems associated with the lack of input state (this feature is described in
section 8.2.3 — Interaction history in the web GUI).

Different widgets for authenticated users

The Everybody Votes application evidenced another possible enhancement: the
possibility of accepting input from authenticated users only. Currently, applications

165

7 EVALUATING PUREWIDGETS

have no way of specifying that they wish to receive input only from authenticated
users. In the EveryBody Votes application this means that interactions from a touch-
screen for example, will all be considered to be from the same “Anonymous” user,
making it impossible to correctly count the votes. Input from the web GUI, if not
authenticated, will still be distinguished (the web GUI generates anonymous ids for
each device) but they still represent anonymous users. For some applications, it may
be useful to prevent anonymous input. This would disable un-authenticated input
mechanisms such as touch-screens and prevent anonymous interactions through the
web GUI for that particular application, or application widget.

Rapidly changing widgets

While developing the Wrod Game application we realised another limitation of the
current implementation of the web GUI: its inability to cope with rapidly changing
widgets. In the current version of PuReWidgets, the web interface uses a polling ap-
proach to periodically ask the IM server for updates about the application’s widgets.
This polling approach was used mainly to limit the number of used channels (persis-
tent connections with the server) due to Appengine free quota limitations. However,
for applications that change their interface frequently, by adding or removing wid-
gets, or by changing the description of existing ones, this polling approach results in
temporarily out-of-sync interfaces. We noticed this particularly in the Wrod Game
application, which changes the long description of the text box widget to reflect
the current anagram. Frequently, the anagram displayed in the web interface was
not the same as the one displayed in the public display, leading to users submitting
wrong guesses. This is not a major problem, as the text box on the web GUI does
not necessarily need to display the anagram: users would most likely look at the
public display to see the letters. Still, this problem may be addressed with persistent
connections, making sure the web interface is updated at a fast enough pace. This
solution, however, may drastically increase the number of channels used, as they
will depend on the number of different users that interact with the display system.

7.4 API Usability

We conducted a usability evaluation of the PuReWidgets toolkit by asking a group
of programmers to use it during a programming session. We were interested in
receiving feedback about the toolkit’s concepts (places, applications, widgets, input
feedback, IM server, on-screen and off-screen widgets), the APT of the library, and
its documentation, in order to further improve it.

Regarding the API usage, we were interested in assessing if programmers under-
stood the application life-cycle and associated callback methods, the various widget
related tasks (creating, deleting, extending, and styling widgets), and the various
input feedback tasks (changing the default behaviour, and styling the feedback pan-
els). We also wanted to find out possible problems with the online documentation

166

7.4 API Usability

(programmer’s guide®, and API javadocs®) and how to improve it.

We asked a group of programmers to use our toolkit through a series of pre-defined
programming tasks in a lab environment. To select participants, we sent out an
email inviting students from a computer engineering course to participate in our
study (participation had a monetary reward of 20 euros). We specifically asked
for participants with programming experience with the Java programming language
and with the Eclipse Integrated Development Environment (IDE). We further asked
participants to fill in a questionnaire for assessing their programming experience and
demographic information (see appendix B.1).

7.4.1 Participants

Six programmers participated in our study, all male, aged between 21 and 24 years.
All participants were experienced programmers with at least four years of program-
ming experience and an average of six years of experience. They all stated to be ex-
perienced with the Java programming language and additionally, all had experience
with C+4. Four participants also said they had web development experience with
Javascript, and all had experience with HTML, CSS, and JSON formats. They all
had already used external APIs to get data into web applications (Facebook, Twit-
ter, Google Maps, Reddit, were some of the APIs participants had experience with).
They all had experience with the Eclipse development tool. None of the participants
was familiar with the Google Web Toolkit framework for web development, however
they all had experience with some other web development framework (jQuery, Ruby
on Rails, Asp.Net, PHP, and Bootstrap, were the frameworks participants listed).

7.4.2 Procedure

The study had three main phases: an initial presentation by the researcher, a set
of programming tasks, and a final questionnaire. In total, the study lasted approx-
imately 4 hours.

In the initial presentation, we presented the study and its purpose, and we intro-
duced participants to the PuReWidgets toolkit. This presentation followed roughly
the sequence of topics of the Getting Started section of the wiki documentation
on the toolkit’s Google code web page, which explains the main concepts around
PuReWidgets, explains how to setup the development environment, presents a Hel-
loWorld application, and explains how to test and deploy a PuReWidgets applica-
tion. Participants were not required to set up their development environment, as
this was done previously for them in the laboratory computers, but they were asked
to import, run and test a HelloWorld application during this presentation. In total,
this phase of the study took less than 40 minutes.

Shttps://code.google.com/p/purewidgets/wiki/TableOfContents
Shttp://purewidgets.googlecode.com/git/doc-public/index.html

167

https://code.google.com/p/purewidgets/wiki/TableOfContents
http://purewidgets.googlecode.com/git/doc-public/index.html

7 EVALUATING PUREWIDGETS

In the next phase, we gave participants written instructions about a series of pro-
gramming tasks. We asked participants to complete those tasks, and use the wiki
and javadoc documentation whenever needed, but also to freely ask the researcher
for help when they had any doubts (the researcher would direct the participants to
the wiki or javadoc documentation, if their question was answered there; otherwise
he would give specific instructions). This step was video-recorded for later analysis
of the main difficulties and comments made during the programming tasks.

In the last phase of the study, we asked participants to fill in a questionnaire about
the PuReWidgets toolkit and the tasks they had just completed. This questionnaire
(see appendix B.2) was meant to assess if participants felt they understood the
various concepts, their opinion regarding the documentation, and general ideas on
how to improve the toolkit.

7.4.3 Programming tasks

We asked participants to perform four programming tasks with PuReWidgets. These
tasks were designed so that participants would have to use particular features of
the toolkit such as creating and removing widgets, using the web GUI to test the
interaction with their application, deal with input from different users, deal with
on-screen and off-screen widgets, and customise the input feedback messages of the
toolkit. Additionally, to implement these tasks participants had to deal with issues
such as assigning ids to widgets based on external objects ids (pictures, in this case).

Task 1 — HelloWorld

The first task was a warm up task that consisted in changing the existing HelloWorld
application that was described in the initial presentation. The HelloWorld applica-
tion consists of a single button placed in the centre of the screen. Activating the
button toggles the background colour between white and black. The task consisted
in adding a listbox widget with several colour options so that users could first select
the background colour from the listbox and then activate the button to effectively
change the background colour of the application.

Task 2 — SlideShow

The second and subsequent tasks consisted of creating a picture slide show applica-
tion. In order to allow participants to focus on the interaction aspects, and to allow
enough time for them to complete the various tasks, a skeleton source code project
— Slideshow — was provided. This project included functions to fetch pictures from
a picture service, and functions to display a set of thumbnail images on the screen,
but no user interaction code. In this second task, participants were asked to open
the SlideShow project and make the following changes (Figure 7.7 shows an example
of the intended application):

168

7.4 API Usability

e Add a button to each thumbnail that, when activated, displays the corre-
sponding photo in a large view. Only three thumbnails should be visible but
there should be additional three hidden thumbnails in the list. The hidden
ones should also be available to be selected by users.

e When an image is displayed in the large view, the corresponding thumbnail
should be removed from the thumbnail list, and another thumbnail, corre-
sponding to a new photo from the photo service, added at the end. (When a
thumbnail is removed, it should no longer be available to be selected).

PO RBrRAL =

ey | mesd tater [uce @m0 G Ardoe G personal

(p10) Show (q10) _ Show

Figure 7.7: Sample screenshot of the resulting application from task 2.

Task 3 — Multi-user

In task three participants should change the previous application in order to only
display the large view image after two different users had selected the same thumb-
nail (Figure 7.8 shows an example of the intended application).

le0o - - G gl
€ o C | [127001 o0 0 m#® aL =
T Minbox 3§ & 3 3 Read Later (Juce (om0 [Android (] persomal »

JormMCHCKEdm n

==]
nonymous has(rclﬂfﬁlgeA e | (r10) _Show (s10)

Figure 7.8: Sample screenshot of the resulting application from task 3.

Task 4 — Enhanced feedback

In the fourth and last task, participants were asked to change their previous im-
plementations so that the slide show application would show the following feedback

169

7 EVALUATING PUREWIDGETS

messages: “User <username> selected this photo”, for on-screen widgets; and “User
<username> selected photo <phototitle>", for off-screen widgets (Figure 7.9 shows
an example of the intended application).

21| 800 Pruncmas nasmeges x

-
o0 Dw §ae=|¢CM Db =

o0 QO w %24

v e (Gucr mo [aedms [memons | wograpner Govg

ad

: JorgeCardoso
(¥ JsspJargetarcoso selocted | Stiow..* UserdprasGardoso selectediphata Rain 1

(g10) , Show

Figure 7.9: Sample screenshot of the resulting application from task 4.

7.4.4 Results

We collected three main sources of data regarding this study: the participants’
source code, the results from the final questionnaire, and comments from the video
recording of the session.

Source code

Inspection of the source code produced by the various participants revealed that in
general all participants were able to accomplish the tasks, except for task 4, which
was successfully completed by only three participants.

Task 1 was completed by all participants, even though participants interpreted the
task differently. The objective of the task was to make a two-step interaction for
setting the background colour of the application: first select a colour from the list
box, and then activate the button to effectively change the colour of the background.
The task was designed this way simply to make it more complicated to implement,
as the more direct way would be to use a single list box widget that immediately
changed the colour when selected. Most participants gave this last interpretation
to the task, keeping the button in its original function of toggling between white
and black colours, and adding a list box for selecting other colours (red, green, and
blue). One participant removed the button altogether, and only two followed the
intended meaning of the task.

Task 2 was also generally successfully completed. All participants were able to add a
button to each thumbnail and make it display the corresponding image in the large
slide show view. All were able to correctly assign dynamic ids to the button, using
the id of the corresponding photo as part of the button’s id. All participants except

170

7.4 API Usability

one were also able to correctly delete the widget from the graphical interface and
from the IM server when the button was pressed.

Task 3 required participants to count the number of different interacting users for
each button, and make the application react only after two different users had ac-
tivated the button of a given thumbnail. Four participants mistakenly used the
getNickname () method instead of the getUserId() method from the input event
object to get the id of the user. The nickname is not guaranteed to be unique, so
using that method would cause the application to behave incorrectly in some cases,
although this was hard to detect during the short coding session. Ignoring this
mistake, only one participant was unable to complete the task. This participant
correctly used the getUserId() method, but did not complete the logic to count
the number of users that had activated a given button.

In task 4, three of the participants called the feedback configuration methods (set-
OnScreenFeedbackInfo() and setOffScreenFeedbackInfo()) inside the button
event callback, causing the first feedback to be displayed with default messages (for
the subsequent inputs, the feedback messages would have been set correctly). The
correct point to call these methods would be right after instantiating the button
widgets.

Questionnaire

The final questionnaire was divided into 4 parts: concepts, tasks, documentation,
and a final question about whether participants felt they could develop a public
display application using PuReWidgets on their own. All parts except the first had
a comments/suggestions box at the end, but those results are presented together
with the comments recorded in the video of the session in the next section.

The first part of the questionnaire asked participants if they understood the main
concepts around the PuReWidgets toolkit. Participants were asked to score on a
1 to 5 scale how much they agreed with a set of questions regarding the various
concepts (see Figure 7.10). In general, participants scored each statement highly,
indicating that they felt they understood the concepts. The widget concept was the
one that scored worst (three participants gave a score of 5, one participant gave a
score of 4, another gave a score of 3, and another gave a score of 2).

The second part of the questionnaire addressed the programming tasks, asking if
participants considered that they had successfully completed the tasks and if they
understood the relevant programming functions. Participants were asked to state
“true” or “false” regarding the questions about whether they successfully completed
the tasks, and to score on a 1 to 5 scale how much they agreed with a set of questions
about the various programming functions (see Figure 7.11 and Figure 7.12).

The third part of the questionnaire addressed the toolkit documentation, asking if

participants used the documentation and how clear it was. Participants were asked
to answer yes/no to whether they used the wiki and the javadoc documentation,

171

7 EVALUATING PUREWIDGETS

Questions
I understood the concept of place as used in PuReWidgets.
I understood the concept of application as used in PuReWidgets.
I understood the concept of widget as used in PuReWidgets.
I understood the concept of input feedback as used in PuReWidgets.

I I I I
Place Application Widget Feedback

Concept

Figure 7.10: Results from the questions regarding the understanding of the various
concepts associated with PuReWidgets.

Questions
I was able to complete satisfactorily the first task (modifying HelloWorld).
I was able to complete satisfactorily the second task (SlideShow).
I was able to complete satisfactorily the third task (Multi-user).
I was able to complete satisfactorily the fourth task (Enhanced feedback).

Task 1 Task 2 Task 3 Task 4

.]

T T T T T T T T
False True False True False True False True

Answer

Figure 7.11: Results from the questions regarding the completion of tasks.

172

7.4 API Usability

Questions
I understood how to create widgets.
I understood how to delete widgets.
I understood how to modify the input feedback shown on the public display.

N L

o
831 !
n
2= °
1 -
T T T
Create Delete Modify
widgets widgets input feedback

Participant understood how to...

Figure 7.12: Results from the questions regarding the programming functions.

and to score on a 1 to 5 scale how much they agreed with a set of questions about
the clearness of the documentation (see Figure 7.13 and Figure 7.14).

Questions
During the tasks I used the wiki documentation available at the project’s site.
During the tasks I used the javadoc documentation available at the project’s site.
Used javadoc Used wiki
documentation? documentation?
6 -
€4
>
o)
O 2-
0- I I I I
Yes No Yes No
Answer

Figure 7.13: Results from the questions regarding the usage of documentation.

The last part of the questionnaire consisted of a single question to assess how con-
fident participants were about using the PuReWidgets toolkit on their own (see
Figure 7.15).

Comments and observations

The third source of data from the API usability study was the various comments
made by the participants during the programming session, and the comments for the
various parts of the questionnaire. We transcribed the comments that participants
made from the video recording of the session and then analysed the complete set of
comments from the video recording and questionnaires together. We classified the
comments into 3 categories: documentation improvement, new toolkit features, and
confusing aspects of the toolkit.

173

7 EVALUATING PUREWIDGETS

Questions
I think the wiki documentation was clear.
I think the javadoc documentation was clear.
I think the wiki and javadoc documentation was sufficient to complete the tasks.

I I I
Documentation Javadoc Wiki
was sufficient was clear was clear

Participant considered that...

Figure 7.14: Results from the questions regarding the quality of documentation.

Question
I believe I could create a public display application using PuReWidgets by myself.

Figure 7.15: Results from question regarding participants confidence in using
PuReWidgets to create their own applications.

174

7.4 API Usability

Regarding the documentation improvement, some comments focused on very specific
aspects such as

“there should be a reference that the ’delete’ operation needs to be ex-
plicit”

“the input feedback on/off screen is automatic, and there should be a
reference to that”

“the documentation should indicate which characters are valid for the
widget 1ds”

Other comments were more general, requesting more examples and tutorials:

“The ’getting started’ section of the wiki should have one more example
besides the hello world (a more complex example) . . .”

“Regarding the general documentation, the wiki could me more enlight-
ening. . . . it would be useful to have one tutorial that covered these
more common operations (creating widgets, removing them, inspect the
input and produce output) . . .”

Regarding the toolkit features, participants wished the toolkit offered things such as
automatic or manual widget deletion from the Widget Manager, automatic widget
id sanitization, and a loading indicator on the dynamically generated web GUI:

“In the Widget Manager there should be something like a garbage collec-
tor or a manual widget removal.”

“It would be also interesting that, when an tnvalid id was entered, that id
was ’cleaned’ internally (for example, ‘http://www’ would be converted
to ‘httpwww’) to avoid problems during development.”

“show a loading status . . . just to let users know that it’s refreshing
[the list of widgets]”

Participants also expressed their confusion with some aspects of the toolkit. Essen-
tially participants expressed confusion about two related aspects: the configuration
of the feedback messages and the concept of on-screen and off-screen widgets:

“About task 4 I was a bit confused about how to call the setOnScreen-
Feedback or the setOffScreenFeedback [methods| because I thought it was
necessary to detect if the widget was on screen or off. However, after I
found out you just call the two and that the toolkit does the rest I thought
it was interesting.”

175

7 EVALUATING PUREWIDGETS

7.4.5 Discussion

Even after only a very short contact with the toolkit, participants answered in
a generally positive and confident way about PuReWidgets. The study showed
that participants were able to understand the toolkit and use its documentation to
complete the various tasks. Participants were generally confident that they could
create an interactive public display application by themselves using PuReWidgets.
The study did not uncover any major flaws in the toolkit’s API or documentation,
so we are reasonably confident that the PuReWidgets toolkit is already usable as is.
However, the purpose of this study was to uncover aspects that could be improved
so in this discussion we focus on these aspects.

Perhaps the most salient problem that the study identified was the confusion about
configuring the feedback for on-screen and off-screen widgets. This confusion was
explicitly mentioned by one participant and is also apparent in the analysis of the
source code for task 4 — only one participant stated he did not complete the task, but
in fact three participants failed to correctly configure the feedback messages. There
are several issues related to this that need to be addressed in a future version of the
toolkit, particularly its documentation. The first issue is clearly communicating the
concept of on-screen and off-screen widget. We did not include in the questionnaire
an explicit question about the concepts of on-screen vs off-screen widget, but we be-
lieve participants factored these concepts together with the concept of widget, which
accounts for the lower score of the statement about the concept of widget. Tradi-
tionally, widgets are associated with graphical objects on a display, so participants
may have had difficulty understanding that invisible widgets can still be interacted
with and generate interaction events. The PuReWidgets documentation must draw
special attention to these differences in order to facilitate developer’s adaptation to
the concept of widget as used by PuReWidgets. This can be achieved not only by
expanding the textual explanation of what a widget is, but also by including dia-
grams or videos representing the different graphical states of a widget. Another issue
is conveying more precisely why the two graphical states of a widget (may) require
different input feedback information and how that information can be configured.
Currently, the documentation (wiki and javadoc) does not provide a clear listing of
all input parameters that can be used in the feedback information, which may ac-
count for some of the participants’ difficulty with task 4. Finally, a third issue that
is currently missing in the documentation is a clear explanation of the life-cycle of
an input event. In task 4, three participants used the correct methods to configure
the feedback, but they failed to successfully complete the task because they invoked
those methods in the wrong place. This mistake may be accounted for by the lack of
documentation regarding at which point the input feedback is triggered. Currently,
input feedback is displayed immediately before the application received the event so
configuring the feedback message inside the callback method has no effect on the
first feedback for that widget. A flowchart diagram in the documentation may help
developers better understand the sequence of events that happens when an input
arrives at the application, minimising the confusion about the configuration of the
feedback messages.

Another problem that this study highlighted, particularly from the participants’

176

7.5 End-user Study

comments, is the need for a more flexible control of the IM during development.
During the study, participants often changed how widget ids were generated, re-
sulting in various unused widgets registered in the IM server, which makes testing
the application more difficult, particularly if developers wish to use the dynamically
generated web GUI for interaction. Participants suggested providing a development
console on the IM that would allow for manual removal of the unused widgets.
Another suggestion was to provide automatic removal feature similar to a garbage
collector. This last suggestion is not directly applicable: it is generally not possible
to determine if a widget that is currently not in use will never be used again by the
application. In order to implement such a feature, the toolkit would need to impose
harder restrictions on the way that widgets are managed, for example requiring that
all widgets were created at the start of an application. However, this would limit the
flexibility of the applications and go against our design principles. A possible solu-
tion would be to include this feature as a development mode feature, easily turned
on or off by developers.

The study also pointed out a few aspects that can be improved regarding how
widget ids are handled. The first aspect is to complete the documentation about
the restrictions on the length and on the characters that can be used on a widget id.
The second is to consider the suggestion of one of the participants and implement
validation and sanitization of the widget id in order to make sure that invalid ids
are detected as early as possible and not passed on to the IM server.

7.5 End-user Study

In order to evaluate the interaction with applications developed with PuReWidgets
we deployed an interactive public display and analysed users’ interactions with it.

The goal of this study was to find out what problems would arise during a real world
deployment of interactive applications developed with PuReWidgets and if/how
the toolkit could be improved in a future version to mitigate those problems. We
were particularly interested in finding out any issues related to the user interaction
process: finding out that an application was interactive, determining how to interact,
and determining the result of the interaction.

7.5.1 Display configuration

For this study, we used a public display that was already in use at the School
of Arts of the Portuguese Catholic University. The display was installed at the
school’s bar (see Figure 7.16) and had been used to show non-interactive content
such as institutional videos.

For this study, we created a content schedule that included non-interactive applica-
tions and the three interactive applications developed with PuReWidgets described

177

7 EVALUATING PUREWIDGETS

in section 7.3. The complete set of applications that were configured in the public
display was:

e Interaction applications

— Public Youtube Player
— Everybody Votes
— Wrod Game

e Non-interactive applications

— RSS news feed - displays news feeds from a local newspaper website.
— Weather application - displays the weather for the local city.
— Local videos - displays institutional videos.

— Interaction instructions - displays instructions for interacting with the
applications on the display. The application displays the system addresses
and examples of how to interact via SMS, email, Web, and QR codes.

Figure 7.16: The bar of the School of Arts with the display at the top of the front
wall.

For driving the content of the public display, we created a simple time-based sched-
uler that looped through a list of content items, where a content item consists of
the web address of the item and the duration on the public display. The scheduler
displayed one item at a time, in fullscreen mode. The scheduler software consists
of a Google Chrome extension and it is available at https://code.google.com/p/
public-display-scheduler/. Although the schedule varied for different day time
periods (morning, lunch, afternoon), the general content schedule for the display
was:

178

7.5 End-user Study

e Interaction instructions - 40 seconds.

e Public Youtube Player - 6 minutes.

e Interaction instructions - 40 seconds.

e Everybody Votes - 3 minutes.

e Interaction instructions - 40 seconds.

e Wrod Game - 3 minutes.

e RSS news feed - 2 minutes.

e Weather application - 30 seconds.

e Local videos - variable time (depends on current video).

e Interaction instructions - 40 seconds.

The display was configured to run from 9am to 6.30pm.

7.5.2 Participants

In order to have a group of users interacting periodically with the display for long
enough, we asked a group of people from the School of Arts to interact with the
display whenever they went to the bar, during a two week period.

To select participants, we sent out an email to the staff’s and PhD students’ mailing
lists of the school, asking for volunteers for the study. Four people answered the
request, and participated in the study (two teachers, and two PhD students). None
of the participants had used the interactive public display system before.

7.5.3 Procedure

We had an initial meeting with each participant where we explained the purpose
of the study and the procedure. We told participants that the display had three
interactive applications and asked them to interact with those applications as much
as possible during their normal visits to the bar. We asked participants to try to
use at least two interaction mechanisms (SMS, Web page, Email, or QR codes). We
also asked them to take notes of problems they found during their interactions with
the display, suggestions of things to improve, or just general comments.

We did not explain to participants how to interact with the display system. During
the study, we distributed printed flyers with interaction instructions at the bar. We
also distributed two QR code flyers for two specific polls of the EveryBody Votes
application: one about the best city to live in Portugal, and another about which

179

7 EVALUATING PUREWIDGETS

team would win the championship that year. These flyers were distributed regularly
— usually every other day — at the bar. These flyers, in addition to the public display
application that displays interaction instructions directly on public display, were the
only source of instructions for the participants of the study.

At the end of the two-week period, we met again with participants and interviewed
them. The interview was unstructured but we had a set of prepared questions (did
you understand how to interact with the display?, with which applications did you
interact?, which mechanisms did you use to interact with the display?, which one
did you prefer?, which problems did you encounter?) to get participants to elaborate
on the difficulties they encountered and on possible solutions. The interviews were
audio-recorded and later analysed.

7.5.4 Results

Altogether, participants used all the available interaction mechanisms to interact
with the display, and they were generally able to understand and use the display
system. Participants successfully interacted with the existing applications via SMS,
email, web and QR codes to activate buttons, to send text to textboxes, and choose
options from list boxes. However, they faced a few initial difficulties. We present
the main issues pointed out by participants and also some of their suggestions for
improving the system.

There were three main issues identified by participants during the interaction. The
first was about how to interact. Two participants reported some difficulty because
the display system addresses (web address, SMS, email) were not always visible. The
Interaction Instructions application was only shown for brief periods of time, and
printed flyers were not always available. Since participants did not memorise the
display system address, on some occasions they were unable to interact. However,
after seeing the instructions, participants said they had no difficulty in sending input
to the display system, as the instructions were clear and the steps easy to follow.

Another issue was related to the asynchronous interaction model supported by
PuReWidgets. Although users did not express any difficulty in understanding the
reaction of the system in the cases were they were interacting with an on-screen ap-
plication, one participant pointed out his confusion when interacting with off-screen
applications:

“some times it [the display] was slow to react. Sometimes it reacted
immediately, other times it took a lot of time.”

This participant’s mental model of the system was that interacting with a particular
application would cause the application to immediately appear on the public display
to react to his input. This caused him to understand the lack of immediate feedback
on the public display as a system error, and try to send input again.

180

7.5 End-user Study

Another issue was the interaction with public display applications when away from
the public display. Although we did not encourage participants to interact with
the public display applications from the desktop computers in their offices in the
school, some participants did so. One participant expressed his confusion about his
interactions with the Wrod Game application:

“for one word, I tried ever combination I could think of, but it didn’t
change in the application [web GUI]. I was in doubt about whether it
[the input] really got there”.

Participants also had some suggestions to make the system easier to use. A common
suggestion to all participants was a poster with printed instructions permanently
next to the public display so that they would be always accessible, instead of having
to rely on the printed flyers, which were not always available. Omne participant
suggested that the applications should have a longer display time in order to allow
users more time to read the information. A final suggestion by one participant was
to have simpler reference codes for SMS interaction, in some situations:

“for example, on the football championship poll, instead of having arbi-
trary references codes, why not simply use the football team names?”

7.5.5 Discussion

The fact that participants expressed no particular difficulty in using the various
interaction mechanisms, and different mechanisms to interact with the same appli-
cation feature, is a positive result that supports one of the main functions of the
PuReWidgets toolkit: abstracting input.

The issues encountered and described by participants when they interacted with
the display system point to possible enhancements to PuReWidgets. The first issue
was about knowing the system’s interaction mechanism addresses. Participants sug-
gested having a permanent poster with the instructions near the display. This may
be a solution in some situations, but display owners may not have this possibility for
various reasons. PuReWidgets can provide some support for this issue. We already
had at the time of the study an Interaction Instructions application that showed
the same information that was printed on the flyers. Participants did not find this
application very useful because of its limited display time. However, this limitation
was imposed by the display scheduler software that was used for that study, which
only supported displaying one application at a time. For displays without this re-
striction, the Interaction Instructions application could be configured to be always
visible, for example as a ticker tape at the bottom of the screen, showing the various
interaction possibilities in sequence. To provide more flexibility, as a result of this
study, we have also created an Interaction Instructions widget for in-app instruc-
tions, that applications can choose to display at any time. This widget follows the
ticker tape model, and allows applications to display, resize, and place it anywhere

181

7 EVALUATING PUREWIDGETS

on the screen. Using the application’s screen space to display instructions can be
an alternative for schedulers that do not support multiple applications at a time.
If applications provide display owners with configuration options for enabling and
disabling the display of instructions, the solution can be used for any kind of sched-
uler: display owners can choose to display the Interaction Instructions application
and disable the in-app instructions, or the other way around. (We are currently
considering providing this in-app instructions as a feature on any PuReWidgets
application, so that application developers don’t even need to worry about it.)

The second issue was about the difficulty of understanding the interaction with
off-screen applications. Some participants expected applications to immediately
appear on the display if they interacted with it. This is a problem created by the
asynchronous interaction, which introduces an application model with which most
users are not familiar. One way to mitigate this problem is to provide better feedback
to the user about what is going to happen with his input. In the version used during
the study, the web GUI showed only a standard “input sent” message as feedback to
the user’s interaction. As a result of this study, we have enhanced the feedback to
provide more information. The current version detects if the target application is on-
screen or off-screen and provides different messages to the user. If the application
is on-screen, it instructs the user to look at the display to see the result of his
interaction. If the application is off-screen it informs the user that it may take a
while for him to be able to see the reaction of the application (currently, it’s not
possible to predict how long it will take). We have also planned a new version of the
dynamically generated web GUI that allows applications to customise the feedback
message (see section 8.2.3 — Application-specific feedback on the web GUI). However
this applies only to this particular interaction mechanism. A more general solution
would be to display feedback for interaction with off-screen applications directly
on the public display itself (this topic is elaborated in section 8.2.3 — Feedback for
off-screen application on the public display — in the next chapter).

The third issue was about interaction when away from the public display. We believe
this to be a minor issue, as most users will probably not even try to interact with
the display system if they are not near any display. Our intention is that interaction
occurs near the public displays with which users are interacting, even if we did not
take any active step to prevent otherwise. Some display systems actively prevent
users from interacting if they are not near the display — automatically by detecting
the user’s position, or manually by requiring users to enter a code that is shown on
the display. By not taking this approach, we have allowed the confusion expressed by
one of the participants in this study. A possible way to mitigate this confusion is to
better communicate in the dynamically generated web interface, that the interface
is for interacting with a public display system and encourage users to be near the
display.

One participant suggested that reference codes could be made simpler to memorise.
This feature is already implemented in PuReWidgets: applications can suggest their
own reference codes to be used in each widget. If there is no conflict with other
already in use reference codes, the IM will honour the application’s request. This was
already implemented during the study, however the applications we have developed
do not take advantage of this feature.

182

7.6 Conclusion

7.6 Conclusion

We have presented an evaluation of the PuReWidgets toolkit on a broad set of
dimensions. By doing a broad evaluation, we aimed at obtaining a general view of
the toolkit, making sure we covered all relevant aspects of its use and didn’t miss
any critical issue.

The system’s performance showed that the toolkit’s implementation can handle a
large number of applications. Testing found no bottlenecks in the implementation,
supporting the claim that it scales well with the number of applications.

The toolkit has already suffered various iterations in response to the simultaneous
development of three real-world interactive applications. In addition, testing the
PuReWidgets library API with real programmers revealed that programmers will
be able to easily grasp and explore its concepts. Even only after a short exposure,
first time programmers were able to use it to create a simple application without
major problems. Based on our experience developing public display applications
with PuReWidgets and on the testing with programmers, we are confident that the
toolkit’s features are appropriate for the kinds of public display applications we were
aiming at, and that it will give appropriate support for novel interactive applications
for public displays. Improvements suggestions (mostly documentation) found during
this study will be integrated into a future version.

Tests with end users and a real world deployment found additional interaction issues
that a toolkit may help to solve, even though many of those issues are not directly
related to the toolkit itself. One example of this is providing in-app interaction
instructions so that applications and display owners have more flexibility in choosing
how instructions are presented to users. This is a feature already present in the latest
version of the toolkit.

183

7 EVALUATING PUREWIDGETS

184

Chapter 8

o
Conclusions
Contents

8.1 Contributions 00000 187

8.1.1 Digital footprints for socially-aware public displays 188

8.1.2 Interaction tasks and controls for public displays 188

8.1.3 A programming toolkit for public displays 189

8.1.4 Open-source software projects 190

82 Future Work 190

8.2.1 More flexible content scheduling 190

8.2.2 Public display application framework 191

8.2.3 Improvements to PuReWidgets 193

83 FinalRemarks 195

185

8 CONCLUSIONS

186

8.1 Contributions

Public digital displays have become increasingly ubiquitous in our technological
landscape, but they are still under-explored, considering their flexibility and com-
munication potential. Public displays can become an important communication
channel in the future and even reach the attention and usage that smartphones have
today. For that to happen, however, there are several aspects that need to be im-
proved and interactivity is one of the most important. Only by thinking about and
designing new, engaging, and relevant interactions with public displays can we raise
their value for society. Up until now, interactive public displays have been mainly
the business of the research community, exploring the potential of this new medium
with various ad-hoc interactive systems.

The general goal of this work was to develop high-level interaction abstractions and
tools for public display applications that support public, shared, remote interac-
tion, abstracting the low-level details of various input mechanisms. By providing
high-level abstractions and tools, designers and developers can focus on the user
experience of the interaction with a public display application without being caught
up by the low-level details and specificities of a particular interaction mechanism.
This general goal was divided in three objectives.

The first objective was to analyse public display interaction from the point of view
of the information that is generated as a side effect of the interaction — digital
footprints — and that may be used as the basis for content adaptation behaviour
on public displays. This analysis resulted in a framework of digital footprints for
socially-aware public display systems that helps designers to create public display
systems that continually adapt to their social environment.

The second objective was to identify and characterise a set of interaction tasks and
controls that are appropriate for public display interaction. This should provide
developers with a conceptual tool that enable them to think about the interaction
features of an application without worrying about low-level input mechanism details.
It should also provide the basis for the development of software toolkits for the
development of interactive public display applications.

The third objective was to design, implement, and evaluate a software toolkit that
provides interaction abstractions that programmers can use for incorporating in-
teractive features into their public display applications. Just like we have various
toolkits for creating graphical user interfaces for desktop applications, this toolkit
should be an initial effort at an equivalent toolkit for public display applications.

8.1 Contributions

While pursuing our objectives, we have developed a toolkit of abstractions, which
includes several contributions to the research community that we now summarise.

187

8 CONCLUSIONS

8.1.1 Digital footprints for socially-aware public displays

The first contribution was the analysis of public display interaction from the point
of view of the digital footprints they leave behind and that may feed several types
of content adaptation behaviour on public displays. The digital footprints focus
on the high-level information about the user or audience that can be extracted
from the interaction, abstracting the concrete interaction features that generate
that information.

We have developed a framework of digital footprints for socially-aware public dis-
plays that consists of four digital footprints: presence sensing, self-exposure, user-
generated content, and actionables. We have analysed how these digital footprints
can be generated by various types of interaction features in public displays, using
various interaction mechanisms.

Several strategies can be used to take advantage of these footprints with the ulti-
mate goal of creating more relevant displays that are able to automatically adapt to
their environment. We have mapped the digital footprints to various types of con-
tent adaptation and audience characterisation strategies such as attraction loops,
audience measurement, demographic targeting, contextual targeting, behavioural
targeting, optimisation of individual content exposure, and impact assessment.

8.1.2 Interaction tasks and controls for public displays

The second contribution was the characterisation of the interaction tasks and con-
trols that are appropriate for public display interaction. We made a comprehensive
survey of public display systems and analysed the interaction features they pro-
vide from the perspective of the information that is exchanged between the user
and the system. Using the concept of interaction task as defined by [Foley et al.,
1980], we characterised six interaction tasks for public displays: select, data entry,
upload, download, signal presence, and dynamic manipulation. We characterised
each interaction task with properties and possible values for those properties. We
developed an initial set of interaction controls for public displays that correspond
to specialised forms of the interaction tasks. These controls abstract the concrete
interaction mechanisms used to interact and provide high-level interaction events
to public display applications. We also developed a design space that maps several
interaction mechanisms, the interaction tasks they support, and examples of con-
crete implementations from existing systems. Together, the list of interaction tasks,
controls, and the mapping between interaction tasks and interaction mechanisms
can be used by system designers to decide what controls to provide, what interac-
tion mechanisms to support, and how to implement those controls using a specific
interaction mechanism. This design space formed the basis for our toolkit, and can
form the basis for other interaction toolkits in the future.

188

8.1 Contributions

8.1.3 A programming toolkit for public displays

A third contribution was the identification of the fundamental requirements for an
interaction abstraction toolkit for public displays. We have analysed the interaction
environment surrounding public displays and used it to frame a number of require-
ments that should be met by interaction toolkits. We then used these requirements
as the basis for the development of our solution.

A fourth contribution was the programming toolkit itself. We have designed and
implemented a toolkit that provides to any programmer the ability to easily create
and deploy interactive applications for public displays. We have built PuReWidgets
around the interaction controls and interaction requirements identified previously in
this work. PuReWidgets has the following main features:

Multiple, extensible, widgets The toolkit incorporates various types of inter-
action widgets, supporting the previously identified interaction tasks: select,
data entry, upload, download, and check-in. Existing widgets can be cus-
tomized and composed into new widgets, and completely new widgets can be
created by application programmers.

Dynamically generated graphical interfaces The toolkit automatically gener-
ates graphical user interfaces for desktop and mobile interaction with public
displays. It also generates Quick Response codes (QR codes) for user interac-
tion through camera equipped mobile devices.

Independence from specific input mechanisms and modalities The toolkit
supports several interaction mechanisms such as Short Message Service (SMS),
Bluetooth naming, OBject EXchange (OBEX), email, touch-displays, in addi-
tion to the already mentioned desktop, mobile, and QR code interfaces.

Asynchronous interaction The toolkit supports asynchronous interaction, allow-
ing applications to receive input events that were generated when the appli-
cation was not executing.

Concurrent, multi-user interaction The toolkit supports concurrent interactions
from multiple users, and provides applications with user identification infor-
mation that allows them to differentiate user input.

Graphical affordances The toolkit provides default graphical representations for
its widgets. Widgets also provide graphical input feedback on the public dis-
play when an input event occurs.

A fifth contribution was the in-breadth evaluation of the PuReWidgets toolkit along
several dimensions, including the system’s performance and scalability, the API
usability, and a real-world deployment.

189

8 CONCLUSIONS

8.1.4 Open-source software projects

This work has also contributed to the research and programming community with
several open-source software projects, allowing anyone to use, modify, and adapt for
further research and development.

The following open source projects were initiated during the course of this work:

e https://code.google.com/p/purewidgets/

— The PuReWidgets toolkit itself.
— Three interactive public display applications

*x Public YouTube Player
x Everybody Votes
x Wrod Game

e https://code.google.com/p/public-display-scheduler/
A Google Chrome extension that serves as an application scheduler.

8.2 Future Work

During the course of this work we identified some challenges related to interactive
public display applications, which fell outside the core of this thesis. These challenges
may provide opportunities for further research around the topic of interactive public
display applications.

8.2.1 More flexible content scheduling

The most common approach for content scheduling in public displays is to follow a
timetable were each content item is given a pre-determined amount of display time.
This approach works well with time-based content where the content’s duration is
known, such as in videos, or with non-time-based content where the display owner
can easily decide how much display time the content should have, as in still images or
text. However, once we have rich interactive applications, the traditional scheduling
approach may compromise the user’s experience.

For example, our Public YouTube Player application would frequently be termi-
nated by the display’s scheduler in the middle of a video that a user had just asked
to see, disturbing that user’s experience using the application. Some applications
may require display time in response to asynchronous events such as user interac-
tions or other external events. For example, an application may wish to display a

190

8.2 Future Work

calendar notification only when a specific user or group of users, who subscribed to
those calendar notifications, are present. In these cases, the traditional scheduling
approach does not work. For these situations, the display’s content scheduler should
provide a mechanism for applications to trigger short time notifications.

Interactive applications need a more flexible scheduling mechanism that allows them
to negotiate extra display time, if needed, and to request display time if they have
important or time-critical content to display. The challenge is making sure that
display owners still have enough control over of what content is played and for how
long and that applications are not allowed to misbehave and take over the display
time of other applications. Some specific questions that arise from this challenge
are:

e What tools do display owners need to specify their needs regarding application
scheduling?

e Should application developers have some degree of control over the applica-
tion’s scheduling? How much, and how can it be specified?

e How can the display system combine the developer’s and the display owner’s
needs regarding application scheduling?

e What mechanisms do we need to enforce a fair usage of the display time among
the various applications?

8.2.2 Public display application framework

Another issue we faced when developing interactive applications for public displays
was the lack of a proper application management. Some of our applications have
to complete a considerable amount of initialisation operations before being able
to display their content and react to user input. However, because our execution
environment loads and immediately displays the application, users are faced with
loading splash screens. This loading time could have been used to display the
previous content for a bit longer. Our applications would also have benefited from
the possibility of executing termination operations before they are unloaded from
the public display. This would allow applications to better manage their resources
by, for example, giving them time to write data to persistent local or remote storage.
Currently, applications have to take aggressive strategies to make sure they don’t lose
data by persisting data more often than what would be necessary. Additionally, we
noticed that in many situations there would be no need to unload an application to
display another one. In some situations the display needs to show a given application
only for a very short time, for example, a notification or alert. In our current
execution environment, this would mean unloading the current application to display
the alert for a short time and then re-loading the same application again. Loading
and unloading may constitute a significant overhead for public display systems that
switch between applications frequently.

191

8 CONCLUSIONS

Ultimately, what public display systems need is a complete application framework,
just like we have in other platforms. For example, the Android mobile platform
defines a mobile application framework that specifies, among other things, what
kind of applications it supports, and what is the runtime life-cycle of an application.

For example, on Android, developers can create graphical user interface applications
that are explicitly launched by users when they need to use the application; service
applications that run on the background, occasionally creating notifications to alert
the user; but also widget applications that have part of their graphical user interface
permanently visible on the device’s home screen. On public displays, however,
independent applications are still a relatively new concept so various questions arise:

e Do these types of applications of the Android, or other computing platforms,
make sense for public displays?

e Can we adapt them to public display systems (e.g., applications that only
show up on the display when a user requests them; applications that run on
the background, showing content only when there is something noteworthy to
display; and application are by default visible on the display)?

e What other types of applications make sense for public display systems?

The Android platform defines a rich runtime application life-cycle that breaks down
all the possible states and transitions between states of an application from the time
it is loaded into memory and started, to the time it is shut down and removed from
memory. This break down of possible states allows application programmers and
system to negotiate the resources that an application needs in each state, guaran-
teeing an efficient usage of those resources on the one hand, and rapid application
switching and loading, on the other hand. The transitions between applications
states in Android are represented by callback functions that applications can listen
to make sure they react appropriately to the transition. For example, an applica-
tion may be paused if another application comes to the foreground (e.g., because
the user requested another application). Applications can detect the paused state
and stop animations and other CPU consuming operations and save its state to
persistent storage (because paused applications may be destroyed by the system if
it needs memory). When the application is resumed, it can start the animations
again. It is easy to imagine that display systems will need this kind of resource
management when the number of applications that each display handles grows. The
basic questions to answer are:

e What applications states should exist for public display applications?

e What events can cause transitions and how should transitions be handled by
applications?

192

8.2 Future Work

8.2.3 Improvements to PuReWidgets

We have also identified various improvements that could be incorporated into PuReWid-
gets.

Javascript library

Although Google Web Toolkit (GWT) is a web development platform used by a
large programming community, Javascript and Javascript-based libraries are also
largely used today. Providing a Javascript library for PuReWidgets would open up
the development of interactive public display applications to an even wider com-
munity. Re-implementing the PuReWidgets library (GWT) in Javascript means
re-implementing all communication with the Interaction Manager (IM), the widget
management logic for the delayed synchronisation, local storage functions, input
feedback logic, and all the current widgets.

User profiles

Allowing users to create profiles available to the IM would allow the IM to better
identify its users and provide applications with information that could be used to
provide more interesting interactions. For example, a user profile that listed a
user’s phone number, email address, Bluetooth address, and the profile id for an
authentication source such as Google, or Facebook, would allow the IM to associate
with a single user, input from different sources (SMS, email, web GUI, Bluetooth
naming) and provide applications with more accurate information about the id of
the user of a given input.

Richer profiles with preferences information, biographical information, or profiles
with connections to other Social Networking Site (SNS) profiles, would allow appli-
cations with access to these to better adapt to their user’s preferences automatically.
The challenge is achieving this integration while respecting the users’ privacy and
allowing them to have complete control over which application can access what
information.

Interaction history in the web GUI

Providing an interaction or activity panel in the web GUI may help users in some
situations. For example, in the Everybody Votes application it is easy to forget
if and what option we voted for a given poll. Having an activity panel for each
application would help users remember their interactions in these situations.

Given that the web GUI can be accessed via different devices, in order to provide
an appropriate user experience, the activity information should be stored in a server

193

8 CONCLUSIONS

and synchronised across devices (although for un-authenticated users this would not
be necessary, and a simple local storage solution would suffice). This feature could
be combined with the previous one, so that the activity information would simply
be another field of the user’s profile in the IM.

Application-specific feedback on the web GUI

Currently, feedback messages on the web GUI when users interact with a given
widget are generic, contrary to the feedback on the public display itself, which ap-
plications can customise. There are only two different messages - one for when users
interact with on-screen applications and another when users interact with off-screen
applications. These messages are always the same regardless of the application and
regardless of the widget.

A future enhancement for PuReWidgets would be to allow applications to define
their own feedback to appear on the web GUI. As for regular widget feedback on
the public display, applications should be able to define different messages for each
widget and the two situations: a message for the situation in which the application
is currently on-screen and for the situation in which the application is off-screen.
With well-structured messages, this would potentially mitigate some of the confusion
users faced when interacting with off-screen applications.

Feedback for off-screen application on the public display

Currently, PuReWidgets is unable to display feedback on the public display for off-
screen applications. There are several approaches that could be taken to provide this
functionality. One approach would be to change the Widget Manager component of
the PuReWidgets library in order for it to ask for input directed at all applications in
the same place as the currently on-screen application, which could provide generic
feedback for the input directed at other applications. However, this would only
work in cases where the public display only shows one application at a time. If the
display shows, for example, two applications spatially arranged on the display, that
approach would result in duplicate feedback, as on-screen applications would not be
aware of each other.

A better solution would be to develop a notification application and change the IM
so that it detects input for off-screen applications and directs it to the notification
application. This application would show generic feedback messages for the received
input and, ideally, it would only be displayed for the needed duration for the feed-
back and as a popup window on the display, similar to what we now have with the
notification centre for Mac OS X, or notification area in the Windows OS. This, how-
ever, would require a special scheduler software for the public display that would be
able to display applications on-demand rather than based on a pre-defined schedule.
Alternatively, the notification application could be displayed in a permanent region
of the display, as a regular application.

194

8.3 Final Remarks

8.3 Final Remarks

We hope that the PuReWidgets toolkit will contribute significantly to the emergence
of more real-world deployments of interactive public display applications. With our
toolkit of interaction abstractions, developers can concentrate on the user experience
and on the creative aspects of application development. By making the toolkit
open-source, we guarantee that anyone can freely use it and we hope that others
will contribute to its development, or use it as inspiration for other public display
toolkits. The ultimate goal is that public displays become a richer, more valuable
communication medium for society.

195

8 CONCLUSIONS

196

10.

11.

Chapter A

List of coded papers

AgentSalon: Sumi, Y., & Mase, K. (2001). AgentSalon: facilitating face-to-face knowledge exchange through
conversations among personal agents. Proceedings of the fifth international conference on Autonomous
agents - AGENTS ’01 (pp. 393-400). New York, New York, USA: ACM Press. doi:10.1145/375735.376344

Aware Community Portals: Sawhney, N., Wheeler, S., & Schmandt, C. (2001). Aware Community Portals:
Shared Information Appliances for Transitional Spaces. Personal and Ubiquitous Computing, 5(1), 66-70.
doi:10.1007/s007790170034

Beye & Meier: Beyer, G., & Meier, M. (2011). Music Interfaces for Novice Users : Composing Music on
a Public Display with Hand Gestures. Proceedings of the International Conference on New Interfaces for
Musical Expression, (pp. 507-510).

Blueboard: Russell, D. M., & Gossweiler, R. (2001). On the Design of Personal & Communal Large
Information Scale Appliances. UbiComp ’01: Proceedings of the 3rd international conference on Ubiquitous
Computing (pp. 354-361). London, UK: Springer-Verlag.

Bluemusic: Mahato, H., Kern, D., Holleis, P., & Schmidt, A. (2008). Implicit personalization of public
environments using bluetooth. Proceeding of the twenty-sixth annual CHI conference extended abstracts
on Human factors in computing systems - CHI "08 (p. 3093). New York, New York, USA: ACM Press.
doi:10.1145/1358628.1358813

Bluetone: Dearman, D., & Truong, K. N. (2009). BlueTone. Proceedings of the 11th international
conference on Ubiquitous computing - Ubicomp ’09 (p. 97). New York, New York, USA: ACM Press.
doi:10.1145/1620545.1620561

BluScreen: Sharifi, M., Payne, T., & David, E. (2006). Public Display Advertising Based on Bluetooth
Device Presence. Mobile Interaction with the Real World (MIRW 2006) in conjunction with the 8th Inter-
national Conference on Human Computer Interaction with Mobile Devices and Services. Retrieved from
http://www.hcilab.org/events/mirw2006 /pdf/mirw2006_sharifi.pdf

C-Blink: Miyaoku, K., Higashino, S., & Tonomura, Y. (2004). C-blink: a hue-difference-based light signal
marker for large screen interaction via any mobile terminal. UIST ’04: Proceedings of the 17th annual
ACM symposium on User interface software and technology (pp. 147-156). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1029632.1029657

CityWall: Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G., [lmonen, T., Evans, J., Oulasvirta, A., et
al. (2008). It’s Mine, Don’t Touch!: interactions at a large multi-touch display in a city centre. CHI 08
Proceeding of the twentysixth annual SIGCHI conference on Human factors in computing systems (Vol. 16,
pp. 1285-1294). ACM. doi:10.1145/1357054.1357255

CoCollage: McCarthy, J. F., Farnham, S. D., Patel, Y., Ahuja, S., Norman, D., Hazlewood, W. R., & Lind,
J. (2009). Supporting community in third places with situated social software. Proceedings of the fourth
international conference on Communities and technologies - C&T ’09 (p. 225). New York, New York, USA:
ACM Press. doi:10.1145/1556460.1556493

Code Space: Bragdon, A., DeLine, R., Hinckley, K., & Morris, M. R. (2011). Code space: touch +
air gesture hybrid interactions for supporting developer meetings. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces - ITS ’11 (p. 212). New York, New York, USA: ACM
Press. doi:10.1145/2076354.2076393

197

A LIST OF CODED PAPERS

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

198

ContentCascade: Raj, H., Gossweiler, R., & Milojicic, D. (2004). Contentcascade incremental content ex-
change between public displays and personal devices. Mobile and Ubiquitous Systems, Annual International
Conference on (Vol. 0, pp. 374-381). IEEE Computer Society. doi:10.1109/MOBIQ.2004.1331744

Cwall: Grasso, A., Muehlenbrock, M., Roulland, F., & Snowdon, D. (2003). Supporting communities of
practice with large screen displays. In K. O’Hara, E. Perry, E. Churchill, & D. M. Russel (Eds.), Public and
Situated Displays - Social and Interactional Aspects of Shared Display Technologies (pp. 261-282). Kluwer.

Digifieds: Alt, F., Kubitza, T., Bial, D., Zaidan, F., Ortel, M., Zurmaar, B., Lewen, T., et al. (2011). Digi-
fieds: Insights into Deploying Digital Public Notice Areas in the Wild. Proceedings of the 10th International
Conference on Mobile and Ubiquitous Multimedia - MUM ’11 (pp. 165-174). New York, New York, USA:
ACM Press. doi:10.1145/2107596.2107618

Digital graffitti: Carter, S., Churchill, E. F., Denoue, L., Helfman, J., & Nelson, L. (2004). Digital graffiti:
public annotation of multimedia content. CHI ’04 extended abstracts on Human factors in computing
systems (pp. 1207-1210). New York, NY, USA: ACM. doi:http://doi.acm.org/10.1145/985921.986025

Dynamo: Brignull, H., Izadi, S., Fitzpatrick, G., Rogers, Y., & Rodden, T. (2004). The introduction
of a shared interactive surface into a communal space. Proceedings of the 2004 ACM conference on
Computer supported cooperative work - CSCW ’04 (p. 49). New York, New York, USA: ACM Press.
doi:10.1145/1031607.1031616

e-Campus: Davies, N., Friday, A., Newman, P., Rutlidge, S., & Storz, O. (2009). Using bluetooth device
names to support interaction in smart environments. Proceedings of the 7th international conference on
Mobile systems, applications, and services - Mobisys '09 (p. 151). New York, New York, USA: ACM Press.
doi:10.1145/1555816.1555832

FizzyVis: Coutrix, C., Kuikkaniemi, K., Kurvinen, E., Jacucci, G., Avdouevski, 1., & Mikeld, R. (2011).
FizzyVis : Designing for Playful Information Browsing on a Multitouch Public Display. Proceedings of
DPPI’11, Designing Pleasurable Products and Interfaces. Milan.

Gesture Frame: Li, Y., Groenegress, C., Strauss, W., & Fleischmann, M. (2004). Gesture Frame — A Screen
Navigation System for Interactive Multimedia Kiosks. In A. Camurri & G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction (Vol. 2915, pp. 93-94). Springer Berlin / Heidelberg.
doi:10.1007/978-3-540-24598-8_35

GroupCast: McCarthy, J. F., Costa, T. J., & Liongosari, E. S. (2001). UniCast, OutCast & GroupCast:
Three Steps Toward Ubiquitous, Peripheral Displays. UbiComp ’01: Proceedings of the 3rd international
conference on Ubiquitous Computing (pp. 332-345). London, UK: Springer-Verlag.

Hello.Wall: Prante, T., Rocker, C., Streitz, N., Stenzel, R., Magerkurth, C., van Alphen, D., & Plewe, D.
(2003). Hello.Wall - Beyond Ambient Displays. Video Track and Adjunct Proceedings of the 5th Intern.
Conference on Ubiquitous Computing (UBICOMP’03). Seattle, Wash., USA.

Hermes Photo Display: Cheverst, K., Dix, A. J., Fitton, D., Kray, C., Rouncefield, M., Sas, C., Saslis-
Lagoudakis, G., et al. (2005). Exploring bluetooth based mobile phone interaction with the hermes photo
display. Proceedings of the 7th international conference on Human computer interaction with mobile devices
& services - MobileHCI "05 (p. 47). New York, New York, USA: ACM Press. doi:10.1145/1085777.1085786

Instant Places: José, R., Otero, N., Izadi, S., & Harper, R. (2008). Instant Places: Using Bluetooth for Sit-
uated Interaction in Public Displays. IEEE Pervasive Computing, 7(4), 52-57. do0i:10.1109/MPRV.2008.74

Interactive Public Ambient Displays: Vogel, D., & Balakrishnan, R. (2004). Interactive Public Ambient
Displays: Transitioning from Implicit to Explicit, Public to Personal, Interaction with Multiple Users.
Proceedings of the 17th annual ACM symposium on User interface software and technology - UIST 04 (p.
137). New York, New York, USA: ACM Press. doi:10.1145/1029632.1029656

iSchool: Zhang, S., & Jeng, W. (2011). Designing a public touchscreen display system for iSchool community.
Proceedings of the 2011 iConference on - iConference ’11 (pp. 808-810). New York, New York, USA: ACM
Press. doi:10.1145/1940761.1940915

Jeon et al.: Jeon, S., Hwang, J., Kim, G. J., & Billinghurst, M. (2006). Interaction techniques in large display
environments using hand-held devices. Proceedings of the ACM symposium on Virtual reality software and
technology - VRST 06 (p. 100). New York, New York, USA: ACM Press. doi:10.1145/1180495.1180516

JoeBlogg: Martin, K., Penn, A., & Gavin, L. (2006). Engaging with a situated display via picture messaging.
CHI ’06 extended abstracts on Human factors in computing systems - CHI '06 (p. 1079). New York, New
York, USA: ACM Press. do0i:10.1145/1125451.1125656

Jukola: O’Hara, K., Lipson, M., Jansen, M., Unger, A., Jeffries, H., & Macer, P. (2004). Jukola: Democratic
Music Choice in a Public Space. Proceedings of the 2004 conference on Designing interactive systems
processes, practices, methods, and techniques - DIS 04 (p. 145). New York, New York, USA: ACM Press.
doi:10.1145/1013115.1013136

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Locamoda: LocaModa. (2010). LocaModa App Store. Retrieved from http://locamoda.com/apps/

Looking Glass: Miiller, J., Walter, R., Bailly, G., Nischt, M., & Alt, F. (2012). Looking glass: a field
study on noticing interactivity of a shop window. Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems - CHI ’12 (p. 297). New York, New York, USA: ACM Press.
doi:10.1145/2207676.2207718

MAID: Salvador, R., & Romao, T. (2011). Let’s move and save some energy. Proceedings of the 8th
International Conference on Advances in Computer Entertainment Technology - ACE ’11 (p. 1). New York,
New York, USA: ACM Press. doi:10.1145/2071423.2071527

Mobile Service Toolkit: Toye, E., Sharp, R., Madhavapeddy, A., & Scott, D. (2005). Using smart phones
to access site-specific services. IEEE Pervasive Computing, 4(2), 60-66. doi:10.1109/MPRV.2005.44

Mobilenin: Scheible, J., & Ojala, T. (2005). MobiLenin combining a multi-track music video, personal
mobile phones and a public display into multi-user interactive entertainment. Proceedings of the 13th
annual ACM international conference on Multimedia - MULTIMEDIA 05 (p. 199). New York, New York,
USA: ACM Press. do0i:10.1145/1101149.1101178

Notification Collage: Greenberg, S., & Rounding, M. (2001). The Notification Collage: Posting Information
to Public and Personal Displays. Proceedings of the SIGCHI conference on Human factors in computing
systems (pp. 515-521). Seattle, Washington, United States: ACM. doi:10.1145/365024.365339

Opinionizer: Rogers, Y., & Brignull, H. (2002). Subtle ice-breaking: encouraging socializing and interaction
around a large public display. CSCW’02 Workshop Proceedings.

OutCast: McCarthy, J. F., Costa, T. J., & Liongosari, E. S. (2001). UniCast, OutCast & GroupCast:
Three Steps Toward Ubiquitous, Peripheral Displays. UbiComp ’01: Proceedings of the 3rd international
conference on Ubiquitous Computing (pp. 332-345). London, UK: Springer-Verlag.

Pendle: Villar, N., Kortuem, G., Van Laerhoven, K., & Schmidt, A. (2005). The Pendle: A Personal
Mediator for Mixed Initiative Environments. Retrieved from http://eprints.lancs.ac.uk/12662/1/pendle-
ie05.pdf

Plasma Posters: Churchill, E. F., Nelson, L., Denoue, L., Helfman, J., & Murphy, P. (2004). Sharing
multimedia content with interactive public displays. Proceedings of the 2004 conference on Designing
interactive systems processes, practices, methods, and techniques - DIS ’04 (pp. 7-16). New York, New
York, USA: ACM Press. doi:10.1145/1013115.1013119

Point & Shoot: Ballagas, R., Rohs, M., & Sheridan, J. G. (2005). Sweep and Point & Shoot: Phonecam-
Based Interactions for Large Public Displays. CHI ’05: CHI ’05 extended abstracts on Human factors in
computing systems (pp. 1200-1203). New York, NY, USA: ACM. doi:10.1145/1056808.1056876

Proactive displays: McDonald, D. W., McCarthy, J. F., Soroczak, S., Nguyen, D. H., & Rashid, A. M. (2008).

Proactive displays. ACM Transactions on Computer-Human Interaction, 14(4), 1-31. doi:10.1145/1314683.1314684

Publix: Ventura, P., Sousa, H., & Jorge, J. (2008). Mobile Phone Interaction with Outdoor Advertisements.
Workshop on Designing and evaluating mobile phone-based interaction with public displays. CHI2008.
Florence.

ReflectiveSigns: Miiller, J., Exeler, J., Buzeck, M., & Kriiger, A. (2009). ReflectiveSigns: Digital Signs
That Adapt to Audience Attention. In H. Tokuda, M. Beigl, A. Friday, A. J. B. Brush, & Y. Tobe (Eds.),
Proceedings of the 7th International Conference on Pervasive Computing (Vol. 5538, pp. 17-24). Nara,
Japan: Springer-Verlag. doi:10.1007/978-3-642-01516-8

Remote Commander: Myers, B. A., Stiel, H., & Gargiulo, R. (1998). Collaboration using multiple PDAs
connected to a PC. CSCW ’98: Proceedings of the 1998 ACM conference on Computer supported cooperative
work (pp. 285-294). New York, NY, USA: ACM. doi:http://doi.acm.org/10.1145/289444.289503

Semi-public displays: Huang, E. M., & Mynatt, E. D. (2003). Semi-public displays for small, co-located
groups. CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing systems (pp.
49-56). New York, NY, USA: ACM. doi:http://doi.acm.org/10.1145/642611.642622

SmartKiosk: Rehg, J. M., Loughlin, M., & Waters, K. (1997). Vision for a smart kiosk. Proceedings of
the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97) (p. 690). IEEE Computer
Society. Retrieved from http://dl.acm.org/citation.cfm?id=794189.794413

Spalendar: Chen, X. A., Boring, S., Carpendale, S., Tang, A., & Greenberg, S. (2012). SPALENDAR:
Visualizing a Group’s Calendar Events over a Geographic Space on a Public Display. Design. Calgary, AB,
Canada. Retrieved from http://grouplab.cpsc.ucalgary.ca/grouplab/uploads/Publications/Publications/2012-
Spalendar.Report2012-1018-01.pdf

199

A LIST OF CODED PAPERS

47.

48.

49.

50.

51.

52.

53.

54.

55.

200

Sweep: Ballagas, R., Rohs, M., & Sheridan, J. G. (2005). Sweep and Point & Shoot: Phonecam-Based
Interactions for Large Public Displays. CHI '05: CHI ’05 extended abstracts on Human factors in computing
systems (pp. 1200-1203). New York, NY, USA: ACM. doi:10.1145/1056808.1056876

Touch & Interact: Hardy, R., & Rukzio, E. (2008). Touch & interact: touch-based interaction of mobile
phones with displays. In G. H. ter Hofte, I. Mulder, & B. E. R. de Ruyter (Eds.), Mobile HCI (pp. 245-254).
ACM. Retrieved from http://dblp.uni-trier.de/db/conf/mhci/mhci2008.html#HardyR08

UBIl-hotspot: Ojala, T., Kukka, H., Lindén, T., Heikkinen, T., Jurmu, M., Hosio, S., & Kruger, F. (2010).
UBI-Hotspot 1.0: Large-Scale Long-Term Deployment of Interactive Public Displays in a City Center.
2010 Fifth International Conference on Internet and Web Applications and Services (pp. 285-294). IEEE.
doi:10.1109/ICIW.2010.49

VisionWand: Cao, X., & Balakrishnan, R. (2003). VisionWand: Interaction Techniques for Large Displays
using a Passive Wand Tracked in 3D. Proceedings of the 16th annual ACM symposium on User interface
software and technology - UIST ’03 (Vol. 5, pp. 173-182). New York, New York, USA: ACM Press.
doi:10.1145,/964696.964716

Vista: Wichary, M., Gunawan, L., Van Den Ende, N., Hjortzberg-Nordlund, Q., Matysiak, A., Janssen, R.,
& Sun, X. (2005). Vista: interactive coffee-corner display. CHI 05 CHI 05 extended abstracts on Human
factors in computing systems (pp. 1062-1077). ACM. doi:10.1145/1056808.1056818

Visual code widgets: Rohs, M. (2005). Visual Code Widgets for Marker-Based Interaction. 25th IEEE
International Conference on Distributed Computing Systems Workshops (pp. 506-513). Washington, DC,
USA: IEEE. doi:10.1109/ICDCSW.2005.140

Vodafone Cube: Ydreams. (2003). Vodafone Cube. Retrieved from
http://www.ydreams.com/# /en/projects/publicurbanexperiences/giantinteractivebillboardsvodafone/

WebGlance: Paek, T., Agrawala, M., Basu, S., Drucker, S., Kristjansson, T., Logan, R., Toyama, K., et
al. (2004). Toward universal mobile interaction for shared displays. CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work (pp. 266-269). New York, NY, USA: ACM.
doi:10.1145/1031607.1031649

Webwall: Ferscha, A., Kathan, G., & Vogl, S. (2002). WebWall - An Architecture for Public Display WWW
Services. The Eleventh International World Wide Web Conference. Honolulu, Hawaii, USA. Retrieved from
http://www2002.org/ CDROM/alternate/701/

Chapter B

Questionnaires

B.1 Programming Study: Screening Questionnaire

PuReWidgets programming study - pre-study
questionnaire

*Obrigatorio

Personal data

Some personal data to help us analyze the results.

Name *
First and last names suffice.

Email *
Gender *

Male

Age*®

201

B QUESTIONNAIRES

Programming experience

What programming languages are you experienced with? *
List the ones you are most experienced with.

For how long (years) have you programmed? *

Do you have Web development experience with any of the following:7 *
If you don't know what an item means, don't mark it.

|| HTML

O css

| JavaScript
] JSON

[REST

Have you ever used external web APIls to get data from, in your web applications? *

For example, frem Facebook, Twitter, Google, ... If you don't have web programming experience,
mark "No".

) Yes
) No

If you answered "Yes" in the previous question, list some of the latest APIs you remember to
have used.

Have you programmed in Google Web Toolkit (GWT) before? *
) Yes
) No

List other web development frameworks (server, or client side) you have experience with.
GWT, jQuery, Djando, Ruby on Rails, ASP.NET, ...

Have you ever used Eclipse before? *
) Yes
) No

What other IDEs have you used?
List up to three other.

| Enviar |

Tecnologia do Geogle Docs

202

B.2 Programming Study: Final Questionnaire

B.2 Programming Study: Final Questionnaire

PuReWidgets post-study questionnaire

*Obrigatério

Concepts

| understood the concept of place as used in PuReWidgets *

1 2 3 4 5

Totally disagree Totally agree

| understood the concept of application as used in PuReWidgets *

1 2 3 4 5

Totally disagree Totally agree

| understood the concept of widget as used in PuReWidgets *

1 2 3 4 5

Totally disagree Totally agree

| understood the concept of input feedback as used in PuReWidgets *

1 2 3 4 5

Totally disagree Totally agree

Cantinuar »

Tecnologia do Google Docs

Denunciar abuso - Termos de Uliliza¢ao - Termos adicionais

203

B QUESTIONNAIRES

PuReWidgets post-study questionnaire

*Obrigatdric

Tasks

Tasks

| was able to complete satisfactorily the first task (modifying helloworld) *
True

Falsa

| was able to complete satisfactorily the second task (SlideShow) *
True

Falsa

| was able to complete satisfactorily the third task (Multi-user) *
True

False

| was able to complete satisfactorily the fourth task (Enhanced feedback) *
True

False

| understood how to create widgets *

1 2 3 4 5

Totally disagree () () (O (O (O Totally agree

| understood how to delete widgets *

1 2 3 4 5

Totally disagree () () (O (O (O Totally agree

| understood how to modify the input feedback shown on the public display. *

1 2 3 4 5

Totally disagree (_))) _) Totally agree

Any comments or suggestions regarding the tasks or widget/input feedback operations

« Anterior | | Continuar »

Tecnologia do Google Docs

204

Denunciar abuso - Tarmos de Utilizacao - Termos adicionais

B.2 Programming Study: Final Questionnaire

PuReWidgets post-study questionnaire
*Obrigatdrio

Documentation

During the tasks | used the wiki documentation available at the project's site *
) Yes
I No

During the tasks | used the javadoc documentation available at the project’s site *
) Yes
I No

I think the wiki documentation was clear *

1 2 3 4 5

Totally disagree () () () () () Totally agree

I think the javadoc documentation was clear *

1 2 3 4 5

Totally disagree () () () () () Totally agree
| think the wiki and javadoc documentation was sufficient to complete the tasks. *
1 2 3 4 5

Totally disagree () () () () (O Totally agree

Any comments regarding the documentation

« Anterior | | Continuar »

Tecnologia do Google Docs

Denuncar abuso - Tarmos da Utilizacia - Tarmos adicionais

205

B QUESTIONNAIRES

PuReWidgets post-study questionnaire

*Obrigatério
PuReWidgets
| believe | could create a public display application using PuReWidgets by myself. *

1 2 3 4 5

Totally disagree Totally agree

| think PuReWidgets project could be improved in the following ways

« Anterior | | Continuar »

PuReWidgets post-study questionnaire

*Obrigatério

Name

Your name *

« Anterior Enviar

Tecnologia do Google Docs

Denunciar abuso - Termos de Uliliza¢ao - Termos adicionais

206

References

Alt, F., Kubitza, T., Bial, D., Zaidan, F., Ortel, M., Zurmaar, B., Lewen, T., Shirazi,
A. S., and Schmidt, A. Digifieds: Insights into Deploying Digital Public Notice Areas in
the Wild. In Proceedings of the 10th International Conference on Mobile and Ubiquitous
Multimedia - MUM 11, pages 165-174, New York, New York, USA, December 2011.
ACM Press. ISBN 9781450310963. DOI 10.1145/2107596.2107618. URL http://dl.
acm.org/citation.cfm?id=2107596.2107618.

Alt, F., Shirazi, A. S., Kubitza, T., and Schmidt, A. Interaction techniques for creating
and exchanging content with public displays. In CHI ’18 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1709-1718. ACM, April
2013. ISBN 978-1-4503-1899-0. DOI 10.1145/2466110.2466226. URL http://dl.acm.
org/citation.cfm?id=2466110.2466226.

Amador, G. and Gomes, A. TouchAll: A Multi-Touch, Gestures, and Fiducials API for
Flash/Action Script 3.0. In 2011 Fifth FTRA International Conference on Multimedia
and Ubiquitous Engineering, pages 53-58. IEEE, June 2011. ISBN 978-1-4577-1228-9.
DOI 10.1109/MUE.2011.21. URL http://www.computer.org/portal/web/csdl/doi/
10.1109/MUE.2011.21.

Ballagas, R., Ringel, M., Stone, M., and Borchers, J. iStuff: A Physical User Interface
Toolkit for Ubiquitous Computing Environments. In Proceedings of the conference on
Human factors in computing systems - CHI ’03, CHI ’03, page 537, New York, New
York, USA, 2003. ACM Press. ISBN 1581136307. DOI 10.1145/642611.642705. URL
http://portal.acm.org/citation.cfm?doid=642611.642705.

Ballagas, R., Rohs, M., and Sheridan, J. G. Sweep and Point & Shoot: Phonecam-Based
Interactions for Large Public Displays. In CHI ’05: CHI ’05 extended abstracts on
Human factors in computing systems, pages 1200-1203, New York, NY, USA, 2005.
ACM. ISBN 1-59593-002-7. DOI 10.1145/1056808.1056876.

Ballagas, R., Rohs, M., Sheridan, J. G., and Borchers, J. The Design Space of Ubiquitous
Mobile Input. In Lumsden, J., editor, Handbook of Research on User Interface Design
and Evaluation for Mobile Technology, volume 1, chapter 24, pages 386-407. IGI Global,
2008. URL http://www.igi-global.com/bookstore/chapter.aspx?TitleId=21843.

Bass, L. and Coutaz, J. Developing Software for the User Interface. Addison Wesley,
1991. ISBN 0201510464.

Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B., Razgulin,
S., Sundaresan, K., Surendar, B., Terada, M., and Han, R. WhozThat? evolving an
ecosystem for context-aware mobile social networks. IEEE Network, 22(4):50-55, July

207

B REFERENCES

2008. ISSN 0890-8044. DOI 10.1109/MNET.2008.4579771. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4579771.

Bellotti, V., Back, M., Edwards, W. K., Grinter, R. E., Henderson, A., and Lopes, C.
Making sense of sensing systems. In Proceedings of the SIGCHI conference on Human
factors in computing systems Changing our world, changing ourselves - CHI ’02, page
415, New York, New York, USA, 2002. ACM Press. ISBN 1581134533. DOI 10.1145/
503376.503450. URL http://portal.acm.org/citation.cfm?doid=503376.503450.

Bellucci, A., Malizia, A., Diaz, P., and Aedo, I. Human-Display Interaction Technology:
Emerging Remote Interfaces for Pervasive Display Environments. IEEFE Pervasive Com-
puting, 9(2):72-76, April 2010. ISSN 1536-1268. DOI 10.1109/MPRV.2010.30. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5437545.

Blanchette, J. The Little Manual of API Design. Technical report, Trolltech, a Nokia
company, 2008. URL http://www4.in.tum.de/~blanchet/api-design.pdf.

Bohmer, M. and Muller, J. Users’ Opinions on Public Displays that Aim to Increase Social
Cohesion. In 2010 Sixth International Conference on Intelligent Environments, pages
255-258. IEEE, July 2010. ISBN 978-1-4244-7836-1. DOI 10.1109/IE.2010.53. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5673865.

Bollen, J., Pepe, A., and Mao, H. Modeling public mood and emotion: Twitter
sentiment and socio-economic phenomena. CoRR, abs/0911.1, 2009. URL http:
//dblp.uni-trier.de/db/journals/corr/corr0911.html#abs-0911-1583.

Bragdon, A., DeLine, R., Hinckley, K., and Morris, M. R. Code space: touch +
air gesture hybrid interactions for supporting developer meetings. In Proceedings
of the ACM International Conference on Interactive Tabletops and Surfaces - ITS
’11, page 212, New York, New York, USA, November 2011. ACM Press. ISBN
9781450308717. DOI 10.1145/2076354.2076393. URL http://dl.acm.org/citation.
cfm?i1d=2076354.2076393.

Brignull, H. and Rogers, Y. Enticing People to Interact with Large Public Displays in Pub-
lic Spaces. In Rauterberg, M., Menozzi, M., and Wesson, J., editors, INTERACT’03,
pages 17-24. IOS Press, 2003. ISBN 1-58603-363-8. URL http://dblp.uni-trier.
de/db/conf/interact/interact2003.html#BrignullR03.

Brignull, H., Izadi, S., Fitzpatrick, G., Rogers, Y., and Rodden, T. The introduction of
a shared interactive surface into a communal space. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work - CSCW 04, page 49, New York,
New York, USA, 2004. ACM Press. ISBN 1581138105. DOI 10.1145/1031607.1031616.
URL http://portal.acm.org/citation.cfm?doid=1031607.1031616.

Cardoso, J. C. S. and Jose, R. A Framework for Context-Aware Adaptation in Public Dis-
plays. In Meersman, R., Herrero, P., and Dillon, T., editors, On the Move to Meaningful
Internet Systems: OTM 2009 Workshops, volume 5872/2009 of Lecture Notes in Com-
puter Science, pages 118-127, Vilamoura, Portugal, 2009. Springer Berlin / Heidelberg.
DOI 10.1007/978-3-642-05290-3\-21. URL http://jorgecardoso.eu/publications/
2009-cams—-digitalfootprintsframework.pdf.

Cardoso, J. C. S. and José, R. Assessing Feedback for Indirect Shared Interaction with
Public Displays. In Meersman, R., Dillon, T., and Herrero, P., editors, On the Mowve
to Meaningful Internet Systems: OTM 2011 Workshops, volume 7046 of Lecture Notes

208

in Computer Science, pages 553-561. Springer Berlin / Heidelberg, 2011. ISBN 978-
3-642-25125-2. DOI 10.1007/978-3-642-25126-9_67. URL http://dx.doi.org/10.
1007/978-3-642-25126-9_67.

Cardoso, J. C. S. and José, R. Creating web-based interactive public display applications
with the PuReWidgets toolkit. In Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia - MUM 12, page 1, New York, New York, USA,
2012a. ACM Press. ISBN 9781450318150. DOI 10.1145/2406367.2406434. URL http:
//dl.acm.org/citation.cfm?doid=2406367.2406434.

Cardoso, J. C. S. and José, R. PuReWidgets: a programming toolkit for interactive
public display applications. In José Creissac Campos, Simone D. J. Barbosa, Philippe
Palanque, Rick Kazman, Michael Harrison, S. R., editor, Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems - EICS ’12, page 51,
New York, NY, USA, June 2012b. ACM Press. ISBN 9781450311687. DOI 10.1145/
2305484.2305496. URL http://dl.acm.org/citation.cfm?doid=2305484.2305496.

Cardoso, J. C. S. and José, R. The PuReWidgets Toolkit for Interactive Public Display
Applications. In The International Symposium on Pervasive Displays, Porto, June
2012c. URL http://dx.doi.org/10.6084/m9.figshare.92165.

Carter, S., Churchill, E. F., Denoue, L., Helfman, J., and Nelson, L. Digital graffiti: public
annotation of multimedia content. In CHI ’04 extended abstracts on Human factors in
computing systems, pages 1207-1210, New York, NY, USA, 2004. ACM. ISBN 1-58113-
703-6. DOI http://doi.acm.org/10.1145/985921.986025.

Cheverst, K., Dix, A. J., Fitton, D., Friday, A., and Rouncefield, M. Exploring the Utility
of Remote Messaging and Situated Office Door Displays. In Mobile HCI, pages 336-341,
2003. URL http://www.springerlink.com/content/g27glvnedqd211lmp/.

Cheverst, K., Dix, A. J., Fitton, D., Kray, C., Rouncefield, M., Sas, C., Saslis-Lagoudakis,
G., and Sheridan, J. G. Exploring bluetooth based mobile phone interaction with the
hermes photo display. In Proceedings of the 7th international conference on Human
computer interaction with mobile devices & services - Mobile HCI 05, page 47, New
York, New York, USA, 2005. ACM Press. ISBN 1595930892. DOI 10.1145/1085777.
1085786. URL http://portal.acm.org/citation.cfm?doid=1085777.1085786.

Churchill, E. F., Nelson, L., and Denoue, L. Multimedia fliers: information sharing with
digital community bulletin boards. In M.H. Huysman Etienne Wenger, V. W., editor,
Communities and technologies, pages 97-117. Kluwer, B.V., Deventer, The Netherlands,
The Netherlands, 2003a. ISBN 1-4020-1611-5.

Churchill, E. F.; Nelson, L., Denoue, L., and Girgensohn, A. The Plasma Poster Network:
Posting Multimedia Content in Public Places. In Rauterberg, M., Menozzi, M., and
Wesson, J., editors, Human-Computer Interaction INTERACT 03, pages 599-606. I0OS
Press, 2003b. URL http://www.fxpal.com/publications/FXPAL-PR-03-197.pdf.

Churchill, E. F., Nelson, L., Denoue, L., Helfman, J., and Murphy, P. Sharing multi-
media content with interactive public displays. In Proceedings of the 2004 conference
on Designing interactive systems processes, practices, methods, and techniques - DIS
04, pages 7-16, New York, New York, USA, 2004. ACM Press. ISBN 1581137877.
DOI 10.1145/1013115.1013119. URL http://portal.acm.org/citation.cfm?doid=
1013115.10131109.

209

B REFERENCES

Cooper, A., Reimann, R., and Cronin, D. About face 3: the essentials of interaction
design. John Wiley & Sons, Inc., New York, NY, USA, 2007. ISBN 9780470084113.

Cox, D., Kindratenko, V., and Pointer, D. IntelliBadge : Towards Providing Location-
Aware Value-Added Services at Academic Conferences. In Dey, A., Schmidt, A., and
McCarthy, J., editors, UbiComp 2003: Ubiquitous Computing, pages 264—280. Springer
Berlin / Heidelberg, 2003. DOI 10.1007/978-3-540-39653-6\-21. URL http://www.
springerlink.com/content/wddnwhf8e9mdbOtl.

Davies, N., Friday, A., Newman, P., Rutlidge, S., and Storz, O. Using bluetooth de-
vice names to support interaction in smart environments. In Proceedings of the 7th
international conference on Mobile systems, applications, and services - Mobisys 09,
pages 151-164, New York, New York, USA, 2009. ACM Press. ISBN 9781605585666.
DOI 10.1145/1555816.1555832. URL http://portal.acm.org/citation.cfm?doid=
1555816.1555832.

Davies, N., Langheinrich, M., Jose, R., and Schmidt, A. Open Display Networks: A
Communications Medium for the 21st Century. Computer, 45(5):58-64, May 2012.
ISSN 0018-9162. DOI 10.1109/MC.2012.114. URL http://www.computer.org/csdl/
mags/co/2012/05/mc02012050058-abs . html.

Dearman, D. and Truong, K. N. BlueTone: a framework for interacting with public
displays using dual-tone multi-frequency through bluetooth. In Proceedings of the 11th
international conference on Ubiquitous computing - Ubicomp 09, pages 97-100, New
York, New York, USA, 2009. ACM Press. ISBN 9781605584317. DOT 10.1145/1620545.
1620561. URL http://portal.acm.org/citation.cfm?doid=1620545.1620561.

Deecker, G. F. P. and Penny, J. P. Standard input forms for interactive computer graphics.

ACM SIGGRAPH Computer Graphics, 11(1):32-40, April 1977. ISSN 00978930. URL
http://dl.acm.org/citation.cfm?id=988655.988659.

Dey, A. K. Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, Georgia Institute of Technology, 2000. URL http://www.cc.gatech.edu/fce/
ctk/pubs/dey-thesis.pdf.

Dix, A. J. and Sas, C. Public displays and private devices: A design space analysis.
In Workshop on Designing and evaluating mobile phone-based interaction with public
displays. CHI2008, Florence, 2008.

Dix, A. J. and Sas, C. Mobile Personal Devices meet Situated Public Displays : Synergies
and Opportunities. International Journal of Ubiquitous Computing, 1(1):11-28, 2010.
URL http://www.alandix.com/academic/papers/MPD-SPD-2010/.

Fass, A., Forlizzi, J., and Pausch, R. MessyDesk and MessyBoard: two designs inspired by
the goal of improving human memory. In DIS ’02: Proceedings of the 4th conference on
Designing interactive systems, pages 303-311, New York, NY, USA, 2002. ACM. ISBN
1-58113-515-7. DOI http://doi.acm.org/10.1145/778712.778754.

Ferscha, A., Kathan, G., and Vogl, S. WebWall - An Architecture for Public Display
WWW Services. In The Eleventh International World Wide Web Conference, Honolulu,
Hawaii, USA, 2002. URL http://www2002.org/CDROM/alternate/701/.

Foley, J. D., Chan, P., and Wallace, V. L. The human factors of computer graphics interac-
tion techniques. Technical report, U. S. Army Research Institute for the Behavioral and
Social Sciences, 1980. URL http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA136605.

210

Glaser, B. and Strauss, A. The Discovery of Grounded Theory. AldineTransaction, 1967.
ISBN 0202302601. URL http://books.google.com/books?id=tSi7Ki0HkpYC.

Google. Google App Engine. Webpage: http://code.google.com/appengine/, 2011a. URL
http://code.google.com/appengine/.

Google. Google Web Toolkit. Webpage: http://code.google.com/webtoolkit/, 2011b,
Accessed June 2010. URL http://code.google.com/webtoolkit/.

Grasso, A., Muehlenbrock, M., Roulland, F., and Snowdon, D. Supporting communities of
practice with large screen displays. In O’Hara, K., Perry, E., Churchill, E., and Russel,
D. M., editors, Public and Situated Displays - Social and Interactional Aspects of Shared
Display Technologies, pages 261-282. Kluwer, 2003.

Greenberg, S. Toolkits and interface creativity. Multimedia Tools and Ap-
plications, 32(2):139-159, 2007. ISSN 1380-7501 (Print) 1573-7721 (Online).
DOI 10.1007/s11042-006-0062-y. ~ URL http://www.springerlink.com/content/
b5760748p3233316/.

Greenberg, S. and Rounding, M. The Notification Collage: Posting Information to Public
and Personal Displays. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 515-521, Seattle, Washington, United States, 2001. ACM.
ISBN 1-58113-327-8. DOI 10.1145/365024.365339.

Hardy, J. and Alexander, J. Toolkit support for interactive projected displays. In
Proceedings of the 11th International Conference on Mobile and Ubiquitous Multime-
dia - MUM ’12, page 1, New York, NY, USA, December 2012. ACM Press. ISBN
9781450318150. DOI 10.1145/2406367.2406419. URL http://dl.acm.org/citation.
cfm?id=2406367.2406419.

Hardy, R. and Rukzio, E. Touch & interact: touch-based interaction of mobile phones
with displays. In ter Hofte, G. H., Mulder, I., and de Ruyter, B. E. R., editors,
Mobile HCI, ACM International Conference Proceeding Series, pages 245-254. ACM,
2008. ISBN 978-1-59593-952-4. URL http://dblp.uni-trier.de/db/conf/mhci/
mhci2008.html#HardyROS8.

Heer, J., Card, S. K., and Landay, J. A. prefuse: A Toolkit for Interactive Information
Visualization. In Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI "05, page 421, New York, New York, USA, April 2005. ACM Press. ISBN
1581139985. DOI 10.1145/1054972.1055031. URL http://dl.acm.org/citation.cfm?
id=1054972.1055031.

Hodes, T. D. and Katz, R. H. A document-based framework for internet application con-
trol. In Proceedings of the 2nd conference on USENIX Symposium on Internet Technolo-
gies and Systems - Volume 2, page 6, Berkeley, CA, USA, 1999. USENIX Association.
URL http://portal.acm.org/citation.cfm?id=1251480.1251486.

Huang, E. M., Russell, D. M., and Sue, A. E. IM here: public instant messaging on large,
shared displays for workgroup interactions. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 279-286, New York, NY,
USA, 2004. ACM. ISBN 1-58113-702-8. DOI 10.1145/985692.985728.

Huang, E. M., Koster, A., and Borchers, J. Overcoming Assumptions and Uncovering
Practices: When Does the Public Really Look at Public Displays? In Pervasive, pages
228-243, 2008.

211

B REFERENCES

Janrain. Janrain - user management platform for the social web, 2013. URL http:
//www.janrain.com/.

Jansen, M., Uzun, 1., Hoppe, U., and Rossmanith, P. Integrating Heterogeneous Per-
sonal Devices with Public Display-Based Information Services. In IEFEE Interna-
tional Workshop on Wireless and Mobile Technologies in Education (WMTE’05), pages
149-153. IEEE, 2005. ISBN 0-7695-2385-4. DOI 10.1109/WMTE.2005.37. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1579254.

Johanson, B. and Fox, A. The Event Heap: a coordination infrastructure for interactive
workspaces. In Mobile Computing Systems and Applications, 2002. Proceedings Fourth
IEEE Workshop on, pages 83-93, 2002. DOI 10.1109/MCSA.2002.1017488.

Jose, R. and Cardoso, J. C. S. Opportunities and Challenges of Interactive Public Dis-
plays as an Advertising Medium. In Mueller, J., Alt, F., and Michelis, D. E., edi-
tors, Pervasive Advertising, Human-Computer Interaction Series, chapter 3, pages 139—
157. Springer-Verlag London Limited, 2011. ISBN 978-0-85729-351-0. DOI 10.1007/
978-0-85729-352-7_7. URL http://dx.doi.org/10.1007/978-0-85729-352-7_7.

José, R., Otero, N., Izadi, S., and Harper, R. Instant Places: Using Bluetooth for Situated
Interaction in Public Displays. IEEE Pervasive Computing, 7(4):52-57, October 2008.
ISSN 1536-1268. DOI 10.1109/MPRV.2008.74. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4653472.

José, R., Pinto, H., Silva, B., Melro, A., and Rodrigues, H. Beyond interaction: Tools
and practices for situated publication in display networks. In Proceedings of the 2012
International Symposium on Pervasive Displays - PerDis ’12, pages 1-6, New York,
New York, USA, June 2012. ACM Press. URL http://dl.acm.org/citation.cfm?
id=2307798.2307806.

José, R., Cardoso, J., Alt, F., Clinch, S., and Davies, N. Mobile applications for
open display networks: common design considerations. In Proceedings of the 2nd
ACM International Symposium on Pervasive Displays — PerDis ’13, pages 97-102.
ACM, June 2013. ISBN 978-1-4503-2096-2. DOI 10.1145/2491568.2491590. URL
http://dl.acm.org/citation.cfm?id=2491568.2491590.

JQuery. jQuery. Webpage, 2013. URL http://jquery.com/.

Ju, W., Lee, B. A., and Klemmer, S. R. Range: Exploring Implicit Interaction through
Electronic Whiteboard Design. In Proceedings of the ACM 2008 conference on Computer
supported cooperative work - CSCW ’08, page 17, New York, New York, USA, 2008.
ACM Press. ISBN 9781605580074. DOI 10.1145/1460563.1460569. URL http://
portal.acm.org/citation.cfm?doid=1460563.1460569.

Kaviani, N., Finke, M., Fels, S., Lea, R., and Wang, H. What goes where?: designing
interactive large public display applications for mobile device interaction. In Proceedings
of the First international Conference on internet Multimedia Computing and Service,
pages 129-138. ACM, 2009. ISBN 9781605588407. DOI 10.1145/1734605.1734637. URL
http://portal.acm.org/citation.cfm?id=1734637.

Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. Papier-Maché: Toolkit Support for
Tangible Input. In Proceedings of the 2004 conference on Human factors in computing
systems - CHI 04, pages 399-406, New York, New York, USA, April 2004. ACM Press.
ISBN 1581137028. DOI 10.1145/985692.985743. URL http://dl.acm.org/citation.
cfm?id=985692.985743.

212

Kostakos, V. and O’Neill, E. Cityware: Urban Computing to Bridge Online and Real-world
Social Networks. In Foth, M., editor, Handbook of Research on Urban Informatics: The
Practice and Promise of the Real-Time City, chapter XIII, pages 195-204. Information
Science Reference, IGI Global, 2008a.

Kostakos, V. and O’Neill, E. Capturing and visualising Bluetooth encounters. In adjunct
proceedings of the conference on Human factors in computing systems (CHI 2008), Flo-
rence, Italy, 2008b.

Kubitza, T., Clinch, S., Davies, N., and Langheinrich, M. Using mobile devices to person-
alize pervasive displays. ACM SIGMOBILE Mobile Computing and Communications
Review, 16(4):26, February 2013. ISSN 15591662. DOI 10.1145/2436196.2436211. URL
http://dl.acm.org/citation.cfm?id=2436196.2436211.

Kwon, Y. Age Classification from Facial Images. Computer Vision and Image Under-
standing, 74(1):1-21, April 1999. ISSN 10773142. DOI 10.1006/cviu.1997.0549. URL
http://linkinghub.elsevier.com/retrieve/pii/S107731429790549X.

Li, Y., Groenegress, C., Strauss, W., and Fleischmann, M. Gesture Frame — A Screen
Navigation System for Interactive Multimedia Kiosks. Computer, pages 380-385, 2004.
DOI 10.1007/978-3-540-24598-8\ _35.

LocaModa. LocaModa App Store. Webpage, 2010, Accessed September 2010. URL
http://locamoda.com/apps/.

Mackinlay, J. D., Card, S. K., and Robertson, G. G. A Semantic Analysis of the Design
Space of Input Devices. Human-Computer Interaction, 5(2&3):145-190, 1990.

Martin, K., Penn, A., and Gavin, L.. Engaging with a situated display via picture mes-
saging. In CHI 06 extended abstracts on Human factors in computing systems - CHI
06, page 1079, New York, New York, USA, 2006. ACM Press. ISBN 1-59593-298-4.
DOI 10.1145/1125451.1125656. URL http://portal.acm.org/citation.cfm?doid=
1125451.1125656.

Maunder, A., Marsden, G., and Harper, R. Creating and sharing multi-media pack-
ages using large situated public displays and mobile phones. In Proceedings of the
9th international conference on Human computer interaction with mobile devices and
services - MobileHCI 07, pages 222-225, New York, New York, USA, September
2007. ACM Press. ISBN 9781595938626. DOI 10.1145/1377999.1378010. URL
http://portal.acm.org/citation.cfm?doid=1377999.1378010.

McCarthy, J. F. Using Public Displays to Create Conversation Opportunities. In CSCW
2002 Workshop on Public, Community and Situated Displays, New Orleans, 2002.

McCarthy, J. F., Costa, T. J., and Liongosari, E. S. UniCast, OutCast & GroupCast:
Three Steps Toward Ubiquitous, Peripheral Displays. In UbiComp ’01: Proceedings of
the 3rd international conference on Ubiquitous Computing, pages 332-345, London, UK,
2001. Springer-Verlag. ISBN 3-540-42614-0.

McCarthy, J. F., Farnham, S. D., Patel, Y., Ahuja, S., Norman, D., Hazlewood, W. R., and
Lind, J. Supporting community in third places with situated social software. In Proceed-
ings of the fourth international conference on Communities and technologies - C6T 09,
pages 225234, New York, New York, USA, 2009. ACM Press. ISBN 9781605587134.
DOI 10.1145/1556460.1556493. URL http://portal.acm.org/citation.cfm?doid=
1556460.1556493.

213

B REFERENCES

McCormack, J. and Asente, P. An overview of the X toolkit. In Proceedings of the 1st
annual ACM SIGGRAPH symposium on User Interface Software - UIST 88, pages
46-55, New York, New York, USA, 1988. ACM Press. ISBN 0897912837. DOI 10.1145/
62402.62407. URL http://portal.acm.org/citation.cfm?doid=62402.62407.

McDonald, D. W., McCarthy, J. F., Soroczak, S., Nguyen, D. H., and Rashid, A. M.
Proactive displays: Supporting awareness in fluid social environments. ACM Trans-
actions on Computer-Human Interaction, 14(4):1-31, January 2008. ISSN 10730516.
DOI 10.1145/1314683.1314684. URL http://portal.acm.org/citation.cfm?doid=
1314683.1314684.

Michelis, D. and Miiller, J. The Audience Funnel: Observations of Gesture Based Interac-
tion With Multiple Large Displays in a City Center. International Journal of Human-
Computer Interaction, 27(6):562-579, June 2011. ISSN 1044-7318. DOI 10.1080/
10447318.2011.555299. URL http://dx.doi.org/10.1080/10447318.2011.555299.

Miraglia, E. The Yahoo! User Interface Library. Blog post, 2006. URL http://wuw.
yuiblog.com/blog/2006/02/13/the-yahoo-user-interface-library/.

MoDAL. MoDAL (Mobile Document Application Language). Webpage, 2011, Accessed
January 2011. URL http://www.almaden.ibm.com/cs/TSpaces/MoDAL/.

Montiel-Hernandez, J. and Cuayahuitl, H. SUIML: A Markup Language for Facilitating
Automatic Speech Application Development. In Sheremetov, L. and Alvarado, M.,
editors, Workshop on Intelligent Computing, pages pp. 376-387, 2004. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.9666.

Miiller, J. and Kriiger, A. MobiDiC: Context Adaptive Digital Signage with Coupons.
In Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T.,
Meschterjakov, A., and Reitberger, W., editors, Ambient Intelligence, volume 5859
of Lecture Notes in Computer Science, pages 24-33. Springer Berlin / Heidel-
berg, 2009. DOI 10.1007/978-3-642-05408-2_3. URL http://dx.doi.org/10.1007/
978-3-642-05408-2_3.

Miiller, J., Paczkowski, O., and Kriiger, A. Situated Public News and Reminder Displays.
In Schiele, B., Dey, A., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts,
E., and Buchmann, A., editors, Ambient Intelligence, volume 4794 of Lecture Notes in
Computer Science, pages 248-265. Springer Berlin / Heidelberg, 2007. DOI 10.1007/
978-3-540-76652-0_15. URL http://dx.doi.org/10.1007/978-3-540-76652-0_15.

Miiller, J., Walter, R., Bailly, G., Nischt, M., and Alt, F. Looking glass: a field study
on noticing interactivity of a shop window. In Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems - CHI 12, page 297, New York,
New York, USA, May 2012. ACM Press. ISBN 9781450310154. DOI 10.1145/2207676.
2207718. URL http://dl.acm.org/citation.cfm?id=2207676.2207718.

Myers, B. User-interface tools: introduction and survey. IEEE Software, 6(1):15-23, 1989.
ISSN 07407459. DOI 10.1109/52.16898. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=16898.

Myers, B. A. A new model for handling input. ACM Trans. Inf. Syst., 8(3):289-320, 1990.
ISSN 1046-8188. DOI http://doi.acm.org/10.1145/98188.98204.

Myers, B. A., Stiel, H., and Gargiulo, R. Collaboration using multiple PDAs connected to
a PC. In CSCW ’98: Proceedings of the 1998 ACM conference on Computer supported

214

cooperative work, pages 285-294, New York, NY, USA, 1998. ACM. ISBN 1-58113-009-0.
DOI 10.1145,/289444.289503. URL http://doi.acm.org/10.1145/289444 .289503.

NEC. NEC Launches Eye Flavor, Japan’s First All-in-One Digital Signage Board with
Face Recognition Technology. Webpage, 2009, Accessed November 2010. URL http:
//www.bloomberg.com/apps/news?pid=newsarchive&sid=azUYhTnA4rXk.

Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K., Rosenfeld, R., and
Pignol, M. Generating remote control interfaces for complex appliances. In Proceed-
ings of the 15th annual ACM symposium on User interface software and technology -
UIST ’02, UIST °02, page 161, New York, New York, USA, 2002. ACM Press. ISBN
1581134886. DOI 10.1145/571985.572008. URL http://portal.acm.org/citation.
cfm?doid=571985.572008.

Norman, D. A. The Design of Everyday Things. Basic Books, 2002.

O’Hara, K., Lipson, M., Jansen, M., Unger, A., Jeffries, H., and Macer, P. Jukola:
Democratic Music Choice in a Public Space. In Proceedings of the 2004 conference on
Designing interactive systems processes, practices, methods, and techniques - DIS 04,
page 145, New York, New York, USA, 2004. ACM Press. ISBN 1581137877. DOI 10.
1145/1013115.1013136. URL http://portal.acm.org/citation.cfm?doid=1013115.
1013136.

Ohlson, M. System Design Considerations for Graphics Input Devices. Computer, 11(11):
9-18, November 1978. ISSN 0018-9162. URL http://ieeexplore.ieee.org/xpl/
articleDetails. jsp?reload=true&arnumber=1646749&contentType=Journals+&+
Magazines.

Olsen, D. R., Jefferies, S., Nielsen, T., Moyes, W., and Fredrickson, P. Cross-modal
interaction using XWeb. Proceedings of the 13th annual ACM symposium on User
interface software and technology - UIST 00, 2:191-200, 2000. DOT 10.1145/354401.
354764. URL http://portal.acm.org/citation.cfm?doid=354401.354764.

Paek, T., Agrawala, M., Basu, S., Drucker, S., Kristjansson, T., Logan, R., Toyama, K.,
and Wilson, A. Toward universal mobile interaction for shared displays. In CSCW
'04: Proceedings of the 2004 ACM conference on Computer supported cooperative work,
pages 266-269, New York, NY, USA, 2004. ACM. ISBN 1-58113-810-5. DOI 10.1145/
1031607.1031649. URL http://doi.acm.org/10.1145/1031607.1031649.

Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G., Ilmonen, T., Evans, J., Oulasvirta,
A., and Saarikko, P. It’s Mine, Don’t Touch!: interactions at a large multi-touch display
in a city centre. In CHI 08 Proceeding of the twentysizth annual SIGCHI conference
on Human factors in computing systems, volume 16 of April 05-10, pages 1285-1294.
ACM, ACM, 2008. ISBN 9781605580111. DOI 10.1145/1357054.1357255. URL http:
//portal.acm.org/citation.cfm?id=1357255.

Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and Winograd, T. ICrafter: A Service
Framework for Ubiquitous Computing Environments. In Proceedings of the 3rd interna-
tional conference on Ubiquitous Computing, UbiComp 01, pages 56—75, London, UK,
2001. Springer-Verlag. ISBN 3-540-42614-0. URL http://portal.acm.org/citation.
cfm?id=647987.741344.

Prante, T., Rocker, C., Streitz, N., Stenzel, R., Magerkurth, C., van Alphen, D., and
Plewe, D. Hello.Wall - Beyond Ambient Displays. In Video Track and Adjunct Proceed-
ings of the 5th Intern. Conference on Ubiquitous Computing (UBICOMP’03), Seattle,
Wash., USA, 2003.

215

B REFERENCES

Quividi. Quividi - Automated Audience Measurement of Billboards and Out Of Home
Digital Media. Webpage, 2013, Accessed April 2009. URL http://www.quividi.com/.

Raj, H., Gossweiler, R., and Milojicic, D. Contentcascade incremental content ex-
change between public displays and personal devices. Mobile and Ubiquitous Sys-
tems, Annual International Conference on, 0:374-381, 2004. DOI 10.1109/MOBIQ.
2004.1331744. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1331744.

Rattenbury, T. and Naaman, M. Methods for extracting place semantics from Flickr tags.
ACM Transactions on the Web, 3(1):1-30, January 2009. ISSN 15591131. DOI 10.
1145/1462148.1462149. URL http://portal.acm.org/citation.cfm?doid=1462148.
1462149.

Ribeiro, F. and José, R. Autonomous and Context-Aware Scheduling for Public Dis-
plays Using Place-Based Tag Clouds. In Augusto, J., Corchado, J., Novais, P., and
Analide, C., editors, Ambient Intelligence and Future Trends-International Symposium
on Ambient Intelligence (ISAmI 2010), volume 72 of Advances in Soft Computing, pages
131-138. Springer Berlin / Heidelberg, 2010. DOI 10.1007/978-3-642-13268-1_-16. URL
http://dx.doi.org/10.1007/978-3-642-13268-1_16.

Rogers, Y. and Brignull, H. Subtle ice-breaking: encouraging socializing and interaction
around a large public display. In CSCW’02 Workshop Proceedings, 2002.

Rohs, M. Visual Code Widgets for Marker-Based Interaction. In 25th IEEE International
Conference on Distributed Computing Systems Workshops, pages 506-513, Washington,
DC, USA, 2005. IEEE. ISBN 0-7695-2328-5. DOI 10.1109/ICDCSW.2005.140. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1437218.

Roman, M., Beck, J., and Gefflaut, A. A device-independent representation for services.
Proceedings Third IEEE Workshop on Mobile Computing Systems and Applications,
pages 73-82, 2000. DOI 10.1109/MCSA.2000.895383. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=895383.

Russell, D. M. and Gossweiler, R. On the Design of Personal & Communal Large Informa-
tion Scale Appliances. In UbiComp ’01: Proceedings of the 3rd international conference
on Ubiquitous Computing, pages 354-361, London, UK, 2001. Springer-Verlag. ISBN
3-540-42614-0.

Salber, D., Dey, A. K., and Abowd, G. D. The context toolkit. In Proceedings of
the SIGCHI conference on Human factors in computing systems the CHI is the limit
- CHI 99, pages 434-441, New York, New York, USA, 1999. ACM Press. ISBN
0201485591. DOI 10.1145/302979.303126. URL http://portal.acm.org/citation.
cfm?doid=302979.303126.

Sawhney, N., Wheeler, S., and Schmandt, C. Aware Community Portals: Shared Informa-
tion Appliances for Transitional Spaces. Personal and Ubiquitous Computing, 5(1):66—
70, February 2001. ISSN 1617-4909. DOI 10.1007/s007790170034. URL http://www.
springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s007790170034.

Scheible, J. and Ojala, T. MobiLenin combining a multi-track music video, personal mobile
phones and a public display into multi-user interactive entertainment. In Proceedings
of the 13th annual ACM international conference on Multimedia - MULTIMEDIA 05,
page 199, New York, New York, USA, 2005. ACM Press. ISBN 1595930442. DOI 10.
1145/1101149.1101178. URL http://portal.acm.org/citation.cfm?doid=1101149.
1101178.

216

Schmidt, D., Chehimi, F., Rukzio, E., and Gellersen, H. PhoneTouch: a technique for
direct phone interaction on surfaces. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology - UIST ’10, page 13, New York, New York,
USA, October 2010. ACM Press. ISBN 9781450302715. DOI 10.1145/1866029.1866034.
URL http://dl.acm.org/citation.cfm?7id=1866029.1866034.

Sharifi, M., Payne, T., and David, E. Public Display Advertising Based on Bluetooth
Device Presence. Mobile Interaction with the Real World (MIRW 2006) in conjunction
with the 8th International Conference on Human Computer Interaction with Mobile
Devices and Services, 2006. URL http://www.hcilab.org/events/mirw2006/pdf/
mirw2006_sharifi.pdf.

Shneiderman, B. Direct Manipulation: A Step Beyond Programming Languages. Com-
puter, 16(8):57-69, August 1983. ISSN 0018-9162. DOT 10.1109/MC.1983.1654471. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1654471.

Spaeth, J., Singer, S., and Hordeychuk, M. Audience Metrics Guidelines. Webpage, 2008,
Accessed November 2010. URL http://www.dp-aa.org/media/DPAA.

Streitz, N., Prante, T., Rocker, C., Alphen, D. V., Magerkurth, C., Stenzel, R., and Plewe,
D. Ambient Displays and Mobile Devices for the Creation of Social Architectural Spaces:
Supporting informal communication and social awareness in organizations. In O’Hara,
K., Perry, M., Churchill, E., and Russell, D., editors, Public and Situated Displays:
Social and Interactional Aspects of Shared Display Technologies, chapter 16, pages 387—
409. Kluwer Publishers, 2003.

Sumi, Y. and Mase, K. AgentSalon: facilitating face-to-face knowledge exchange through
conversations among personal agents. In Proceedings of the fifth international conference
on Autonomous agents - AGENTS 01, pages 393-400, New York, New York, USA,
May 2001. ACM Press. ISBN 158113326X. DOI 10.1145/375735.376344. URL http:
//portal.acm.org/citation.cfm?id=375735.376344.

Swick, R. R. and Ackerman, M. S. The X Toolkit: More Bricks for Building User Interfaces,
or Widgets for Hire. In Proceedings of the Usenixz Winter 1988 Conference, pages 221—
228, 1988.

Terrenghi, L., Quigley, A., and Dix, A. J. A taxonomy for and analysis of multi-person-
display ecosystems. Personal and Ubiquitous Computing, 13(8):583-598, June 2009.
ISSN 1617-4909. DOI 10.1007/s00779-009-0244-5. URL http://portal.acm.org/
citation.cfm?id=1644246.1644265.

Toye, E., Sharp, R., Madhavapeddy, A., and Scott, D. Using smart phones to access
site-specific services. IEEE Pervasive Computing, 4(2):60-66, 2005. ISSN 15361268.
DOI 10.1109/MPRV.2005.44. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm7arnumber=1427650.

Toye, E., Madhavapeddy, A., Sharp, R., Scott, D., Blackwell, A., and Upton, E. Us-
ing camera-phones to interact with context-aware mobile services. Technical report,
University of Cambridge, Computer Laboratory, Cambridge, 2004.

TruMedia. TrueMedia: iTALLY: Opportunity to See (OTS) People Counter. Webpage,
2013, Accessed April 2009. URL http://www.trumedia.co.il.

Vanderheiden, G. C. and Zimmermann, G. Use of User Interface Sockets to Create Natu-
rally Evolving Intelligent Environments. In 11th International Conference on Human-
Computer Interaction, Las Vegas, Nevada USA, 2005.

217

B REFERENCES

Venners, B. The Jini ServiceUI API Specification. Webpage, 2005, Accessed January
2011. URL http://www.artima.com/jini/serviceui/Spec.html.

Ventura, P., Sousa, H., and Jorge, J. Mobile Phone Interaction with Outdoor Advertise-
ments. In Workshop on Designing and evaluating mobile phone-based interaction with
public displays. CHI2008, Florence, 2008.

Verschae, R., Ruiz-del Solar, J., and Correa, M. A unified learning framework for
object detection and classification using nested cascades of boosted classifiers. Ma-
chine Vision and Applications, 19(2):85-103, October 2007. ISSN 0932-8092. DOI
10.1007/s00138-007-0084-0. URL http://www.springerlink.com/index/10.1007/
s00138-007-0084-0.

Vogel, D. and Balakrishnan, R. Interactive Public Ambient Displays: Transitioning from
Implicit to Explicit, Public to Personal, Interaction with Multiple Users. In Proceedings
of the 17th annual ACM symposium on User interface software and technology - UIST
04, pages 137-146, New York, New York, USA, 2004. ACM Press. ISBN 1581139578.
DOI 10.1145/1029632.1029656. URL http://portal.acm.org/citation.cfm?doid=
1029632.1029656.

Vogl, S. Coordination of Users and Services via Wall Interfaces. PhD thesis, University
of Linz, Linz, Austria, 2002.

VoiceXML. VoiceXML Forum. Webpage, (year not available), Accessed January 2011.
URL http://www.voicexml.org/.

von Ahn, L. and Dabbish, L. Designing games with a purpose. Communications of the
ACM, 51(8):57, August 2008. ISSN 00010782. DOI 10.1145/1378704.1378719. URL
http://portal.acm.org/citation.cfm?doid=1378704.1378719.

Wang, M., Boring, S., and Greenberg, S. Proxemic peddler. In Proceedings of the 2012
International Symposium on Pervasive Displays - PerDis ’12, pages 1-6, New York,
New York, USA, June 2012. ACM Press. ISBN 9781450314145. DOT 10.1145/2307798.
2307801. URL http://dl.acm.org/citation.cfm?id=2307798.2307801.

Weiser, M. The Computer for the 21st Century. Scientific American Special Issue
on Communications, Computers, and Networks, 1991. URL http://www.ubiq.com/
hypertext/weiser/SciAmDraft3.html.

Yahoo! YUI Library. Webpage, 2013, Accessed January 2011. URL http://developer.
yahoo.com/yui.

Ydreams. Vodafone Cube. Webpage, 2003. URL http://www.ydreams.com/#/en/
projects/publicurbanexperiences/giantinteractivebillboardsvodafone/.

218

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Challenges
	Objectives and Contributions
	Outline of this Document

	Related Work
	Introduction
	Interaction in Public Display Systems
	Software Support for Application Development
	Conclusion

	Requirements for Interaction Abstractions for Public Displays
	Introduction
	Assumptions
	Design Requirements
	Conclusion

	Digital Footprints for Socially-Aware Interactive Displays
	Introduction
	Digital Footprints
	Presence Sensing
	Self-exposure
	User-generated Content
	Actionables
	Mapping Footprints to Adaptation Models
	Conclusion

	Interaction Tasks and Controls for Public Display Applications
	Introduction
	Procedure
	Interaction Tasks for Public Displays
	Design Space for Interaction Controls and Mechanisms
	Conclusion

	The PuReWidgets Toolkit – A Widget-based Interaction Abstraction for Public Displays
	Introduction
	Architecture
	Widgets and Events
	User Interaction with PuReWidgets
	Implementation Details
	Conclusion

	Evaluating PuReWidgets
	Introduction
	System Performance
	API Flexibility and Capabilities
	API Usability
	End-user Study
	Conclusion

	Conclusions
	Contributions
	Future Work
	Final Remarks

	List of coded papers
	Questionnaires
	Programming Study: Screening Questionnaire
	Programming Study: Final Questionnaire

	References

