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SUMMARY 

Technometrics concerns on the development and use of statistical methods in different fields, such as 

biotechnological processes, in order to understand their multivariate and multidimensional complexity. 

Chemical changes occurring within these processes can be monitored using chemometric tools that 

combined with bioinformatic methodologies, can provide an enlarged overview of the process, enabling 

the unbiased study of metabolites and dynamic changes in response to the environmental conditions. 

For this purpose, different chemometric tools were used, namely relevant principal component analysis 

(RPCA), multi-way principal component analysis (MPCA), partial least squares logistic regression (PLS-

LOG) and unfolded partial least squares (U-PLS). 

Phenotypic and physiological behaviors of three different Saccharomyces cerevisiae strains, a 

laboratorial S288c, and two industrials CA11 and PE-2, were evaluated under different stress 

conditions. Toxic and inhibitory conditions were induced by introducing 1.0% (v/v) ethanol, 1-butanol, 

isopropanol, tert-Amyl alcohol, 0.2% (v/v) furfural and 0.5% (v/v) 5-hydroxymethylfurfural (5-HMF) in 

batch fermentations with YPD as culture medium. MPCA and PLS-LOG allowed to evidence the different 

behavior of S288c comparing to PE-2 and CA11, and a higher impact caused by 1-butanol, furfural and 

5-HMF in phenotypic and physiological profiles. PE-2 revealed to be the most robust strain, quickly 

adapting to the environmental conditions, even under the highest stress conditions. It was also 

observed a correlation between the flocculation profile inhibition under those conditions, with an 

increased production of intracellular glycerol. This relationship was confirmed by PLS-LOG where 

intracellular glycerol and trehalose, as well as extracellular acetic acid production showed to be linked 

to the inhibition of CA11 cells flocculation. 

Metabolic changes occurring within CA11 and PE-2 fermentations in the presence of 1-butanol, furfural 

and 5-HMF were also evaluated, using RPCA. CA11 fermentations enhanced the production of ethanol, 

isovaleric acid and isoamyl acetate, whereas PE-2 favored the production of more aromatic 

compounds, such as esters - phenylethyl acetate, ethyl hexanoate, ethyl octanoate and ethyl 

dodecanoate. These results suggested that PE-2 is less susceptible to the stress effect of the three 

tested molecules. PLS-LOG models allowed the prediction (R
2 

=0.90) of the metabolic behavior of both 

strains during the fermentations: the presence of 1-butanol induced the production of esters ethyl 

acetate and isoamyl acetate (and its precursor, 3-methyl-1-butanol), as well as butyric acid (which 

encourages the use of both strains in bio-butanol production systems); CA11 and PE-2 synthesized 

furfuryl alcohol from furfural; the presence of furfural and 5-HMF induced the production and 

accumulation of fatty acids in the medium, to counterbalance the inhibitory effects.  



x SUMMARY 

 

The impact of metabolic profile of S. cerevisiae PYCC 4653 on its antioxidant capacity, in synthetic 

grape juice supplemented with phenolics acids was assessed. A bioanalytical pipeline, combining 

electrochemical features with biochemical background was proposed, for biological systems 

fingerprinting and sample classification. The electrochemical profile, phenolic acids and the volatile 

fermentation fraction, were evaluated for 11 days, using cyclic voltammetry, target and non-target 

metabolic approaches, respectively. It was found that acetic acid, 2-phenylethanol and isoamyl acetate 

have a significative contribution for samples metabolic variability and the electrochemical features 

demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end, a 

similar pattern to normal wines. S. cerevisiae also showed the capacity of producing chlorogenic acid in 

the supplemented medium fermentation from simple precursors present in the minimal medium. The 

proposed bioanalytical pipeline proved to be a very efficient strategy for fingerprinting biological 

systems, by integration of the information from different chemical detectors. 

Finally, a non-targeted high-throughput metabolomics pipeline combining GC-MS data preprocessing 

with multivariate analysis, was developed and integrated in new “in-house” software, called X-

Metabolomics (developed during this thesis). The pipeline was built to enhance the identification of key 

metabolites involved in the process, through the exploration of the temporal relationships between 

interesting metabolites related to a chemical phenomenon. It was applied to a Port wine “forced aging” 

process under different oxygen saturation regimes. RPCA showed that the use of extreme oxygen 

saturation and high temperatures during Port wine aging induced the occurrence of chemical reactions 

undesirable for the aromatic profile, affecting the quality of the final product. Under those conditions an 

increased production of dioxane and dioxolane isomers and furfural was observed, leading to excessive 

degradation of the wine aromatic profile, color and taste. The production of dioxane isomer was highly 

correlated with the production of dioxolane isomer, benzaldehyde, sotolon, and many other metabolites 

whose identification could be of great interest for their contribution for the final aromatic profile of the 

Port wine.  

In sum, during this thesis, the potential of the use of chemometrics and bioinformatics approaches was 

explored in the characterization (by RPCA and MPCA), classification and prediction (by PLS-LOG and U-

PLS, respectively) of physiological, phenotypic and metabolic changes in bioprocesses as an adaptation 

response to environmental conditions. The joint effect of distinct variables (measured using HPLC, GC-

FID, GC-MS and cyclic voltammetry) in multivariate data analysis allowed enhancing the knowledge 

about chemical and biochemical dynamics in biotechnological processes. 
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RESUMO 

A tecnometria consiste no desenvolvimento e uso de métodos estatísticos em diferentes áreas, tais como 

processos biotecnológicos, de modo a compreender a sua complexidade multivariada e multidimensional. 

As alterações químicas que ocorrem nestes processos podem ser monitorizadas utilizando ferramentas de 

quimiometria que, associadas a métodos de bioinformática, podem proporcionar uma visão alargada do 

processo e logo, o estudo equitativo dos metabolitos e as alterações dinâmicas em resposta às condições 

ambientais. Ao longo deste trabalho, diferentes ferramentas de quimiometria foram utilizadas, 

nomeadamente, relevant principal component analysis (RPCA), multi-way principal component analysis 

(MPCA), partial least squares logistic regression (PLS-LOG) e unfolded partial least squares (U-PLS). 

Foi efetuado o estudo de comportamentos fenotípicos e fisiológicos de três estirpes diferentes de 

Saccharomyces cerevisiae, uma laboratorial, S288c, e duas industriais, CA11 e PE -2, sob diferentes 

condições de stress. Foram adicionadas moléculas tóxicas e inibitórias no meio YPD, nomeadamente, 1,0% 

(v/v) de etanol, 1-butanol, isopropanol e 2-metil-2-butanol, 0,2 % (v/v) de furfural e 0,5 % (v/v) de 5-hidroxi-

metil-furfural (5-HMF). O MPCA e o PLS-LOG evidenciaram o diferente comportamento da estirpe S288c em 

relação à CA11 e PE-2, e um maior impacto causado pelo 1-butanol, furfural e 5-HMF nos perfis fenotípicos 

e fisiológicos. A PE-2 revelou ser a estirpe mais robusta e a que melhor se adaptou às condições ambientais 

impostas, mesmo sob as mais severas. Observou-se uma correlação entre a inibição do perfil de floculação 

nestas condições, com um aumento da produção de glicerol intracelular. Esta relação foi confirmada 

utilizando o PLS-LOG onde a produção de glicerol e trealose intracelulares, bem como de ácido acético 

extracelular mostraram estar associadas ao fenómeno de inibição da floculação das células da CA11. 

As alterações metabólicas que ocorrem nas fermentações utilizando a CA11 e PE- 2 na presença de 1-

butanol, furfural e 5- HMF também foram avaliadas por RPCA. Enquanto a estirpe CA11 favoreceu a 

produção de etanol, ácido isovalérico e acetato de isoamilo, a PE-2 levou à produção de outros compostos 

aromáticos, tais como o acetato de feniletilo, etil hexanoato, octanoato e dodecanoato ao longo das 

fermentações. Estes resultados reforçam que a PE-2 é menos suscetível ao efeito stressante dessas 

moléculas. Os modelos PLS-LOG permitiram prever (R
2

 = 0,90) o comportamento metabólico de ambas as 

estirpes, durante as fermentações: a presença de 1-butanol induziu a produção de ésteres de acetato de 

etilo e acetato de isoamilo (e o seu precursor, 3-metil -1- butanol), bem como o ácido butírico (encorajando 

a utilização de ambas as estirpes em sistemas de produção de bio-butanol); as estirpes CA11 e PE-2 

sintetizaram álcool furfurílico a partir de furfural; a presença de furfural e 5- HMF induziu a produção e 

acumulação de ácidos gordos, de forma a contrabalançar os efeitos inibitórios na obtenção de energia para 

as células, metabolizando ácidos gordos no meio. 



xii RESUMO 

 

O impacto do perfil metabólico da S. cerevisiae PYCC 4653 sobre a capacidade antioxidante foi avaliado, 

em fermentações utilizando sumo de uva sintético suplementadas com ácidos fenólicos. Foi apresentada 

uma metodologia bio-analítica (combinando os perfis eletroquímico e bioquímico) para a caracterização do 

comportamento da levedura em resposta às perturbações impostas. O perfil eletroquímico, os ácidos 

fenólicos e a fração volátil das fermentações, foram avaliados durante 11 dias, utilizando a voltametria 

cíclica, e abordagens metabólicas supervisionadas e não supervisionadas. Verificou-se que o ácido acético, 

2- feniletanol e o acetato de isoamilo têm uma contribuição significativa na variabilidade metabólica e as 

características electroquímicas revelaram as alterações do potencial redox durante as fermentações. O 

perfil eletroquímico da fermentação alcoólica mostrou, no final, um padrão semelhante ao dos vinhos reais. 

A S. cerevisiae também mostrou a capacidade de produzir ácido clorogénico, no meio de fermentação 

suplementado a partir de precursores simples, presentes no meio mínimo. A metodologia proposta provou 

ser uma estratégia eficiente na caracterização de fenómenos biológicos e químicos, através da integração 

da informação de vários detetores químicos. 

Por fim, uma metodologia de processamento metabólico não-direcionado e de alto-débito, combinando o 

pré-processamento dos dados de GC-MS com a análise multivariada, foi desenvolvida e integrada num novo 

software, denominado X-Metabolomics também desenvolvido no decorrer desta tese. A metodologia foi 

construída para melhorar a identificação dos metabolitos-chave envolvidos no processo biotecnológico, 

através da exploração das relações temporais entre os metabólitos interessantes relacionados ao mesmo 

fenómeno químico. Esta foi aplicada a um processo de “envelhecimento forçado” de vinho do Porto, sob 

diferentes regimes de saturação de oxigénio. O RPCA mostrou que a utilização da saturação extrema de 

oxigénio e de temperaturas elevadas durante o envelhecimento do vinho do Porto induziu a ocorrência de 

reações químicas indesejáveis para o perfil aromático, que afetam a qualidade do produto final. Nestas 

condições, foi observado um aumento da produção de isómeros de dioxano e dioxolano e furfural, que 

levaram a uma degradação excessiva do perfil aromático, cor e sabor do vinho. A produção do isómero de 

dioxano está altamente correlacionada com a produção de um isómero dioxolano, benzaldeído, sotolon, e 

muitos outros metabolitos, cuja identificação poderia ser de grande interesse pela sua contribuição para o 

perfil aromático final do vinho do Porto. 

Em suma, durante esta tese, foi explorado o potencial da utilização de abordagens de tecnometria, 

incluindo métodos de quimiometria e bioinformática, na caracterização (por RPCA e MPCA), classificação e 

previsão (por PLS-LOG e U-PLS respetivamente) das alterações fisiológicas, fenotípicas e metabólicas em 

bioprocessos, em resposta às condições ambientais. O efeito conjunto de distintas variáveis na análise 

multivariada, permitiu ampliar o conhecimento acerca das dinâmicas químicas e bioquímicas em processos 

biotecnológicos.
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CHAPTER 1 

1.  MOTIVATION AND OUTLINE 

 

This chapter introduces the background information about the theme of the work, as well as its 

objectives. The outline of the thesis is also presented. 
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1.1 CONTEXT AND MOTIVATION 

The understanding of living systems by exploring the dynamic patterns of the relationships of 

organisms with their environment is the basis of the theory of biological sciences. Yeasts growth, 

fermentation, maturation and storage processes are some examples of dynamic systems that 

involve chemical and biochemical changes that confer the character and quality of the final product 

[1-3]. 

Fermented food and beverages production is accompanied by the production of several 

compounds, namely alcohols, aldehydes, organic acids, esters, organic sulfides, carbonyl 

compounds and fusel alcohols, which contribute to flavors and aromas quality of the final product 

[4, 5]. The industrial handling of yeasts for food and beverage and also for bio-fuel production, can 

introduce distinct disturbances, mainly osmotic, oxidative, temperature, nutrient starvation, ethanol 

toxicity, by-products inhibition, among others [6, 7]. 

Saccharomyces cerevisiae is one of the most used microorganisms which can undergo different 

phenotypic, morphological and metabolic or physiological changes [8]. The way how different yeast 

strains respond to the external conditions can be significantly different, according to yeasts 

genomic information. Therefore the understanding of how cells behave is of great importance for 

fermentations monitoring and to provide an external control of the process, inducing cells to grow 

in a particular conformation or to produce a specific end-product of fermentation [9]. Although the 

yeast is the most studied eukaryote microorganisms, the increased diversity and complexity of the 

cellular processes dynamic, sets forth the need of the existence of high-throughput methods of 

analysis as well as different approaches for handling the massive amounts of information. 

Biochemical processes can be monitored by measuring different metabolites and fermentation 

parameters throughout the process [10]. Liquid or gas chromatography coupled with mass 

spectrometer [11, 12] and cyclic voltammetry [13, 14] are some of the analytical techniques that 

have been used in this context. Gathering the maximum metabolic information about the biological 

process is one challenge of metabolomics field [15, 16], and different high-throughput 

metabolomics tools have emerged in the last years [17-19] for this purpose. However, the high 

content of information resulting from these untargeted and high-throughput methods, creates the 

need for statistical tools capable of extracting the crucial information about ‘in vivo’ process, 
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putting a biological meaning of the preprocessed output and increasing the knowledge about the 

overall process.  

The main goal of this thesis is the application of technometric tools in order to monitor, understand 

and predict the biochemical changes occurring within dynamic biological systems, as an adaptation 

to the induced environmental conditions. Different multivariate statistical tools were applied to 

target physiological and metabolic profiles matrixes from batch fermentations using different S. 

cerevisiae yeast strains. Therefore, in order to enlarge the knowledge of undergoing metabolic 

changes, a high-throughput metabolomics pipeline was used and applied to a Port wine forced 

aging process. It was also purposed to demonstrate the potential of combining metabolomic 

preprocessing tools (bioinformatics) with mathematical and statistical methods (chemometrics) for 

gathering the information about metabolites profiling, relations with other metabolites in the 

process, contextualization in biochemical pathways and new metabolites discovery.  

For this purpose, the following main topics were focused:  

 Characterization of physiological behavior of S. cerevisiae S288c, CA11 and PE-2 yeast 

strains under different stress conditions during batch fermentations. 

 Early detection of stress molecules throughout the fermentation process using multivariate 

tools. 

 Characterization and prediction of extracellular metabolic profile of CA11 and PE-2 yeast 

strains under induced stress conditions. 

 Evaluation of the impact of a S. cerevisiae strain metabolism in the profile of compounds 

with antioxidant capacity in a synthetic wine during fermentation using cyclic voltammetry 

and gas chromatography – mass spectrometry. 

 Application of a metabolomic pipeline for high-throughput data obtaining and 

characterization of forced aging process of Port wine. 

  



CHAPTER 1  5 

 

CASTRO CC | 2013 

1.2 OUTLINE OF THE THESIS 

The main goal of this work was to answer the question “how is it possible to monitor and maximize 

the information and knowledge about yeast strains behaviors under different fermentation 

conditions?” An attempt to answer it is presented in this thesis, which is divided in eight chapters: 

- In Chapter 1, the context and motivation of the thesis, as well as the studies aims and the global 

structure of the thesis are presented. 

- The general literature overview concerning to yeasts capabilities and usage, metabolomics 

potential and tools for fermentations understanding and chemometric methodologies applied to 

high-throughput metabolomics within chemical and biochemical processes is presented in Chapter 

2. 

- The Experimental Results are presented from Chapter 3 to Chapter 6. Each Chapter includes 

Introduction, Materials and Methods, Results and Discussion and Conclusions sections according 

to the objective of the experimental work. 

- In Chapter 3 it was performed a physiological characterization of S288c, CA11 and PE-2 

yeast strains under different stress conditions in batch fermentations. Multi-way principal 

component analysis and partial least squares logistic regression were the statistical tools used for 

the characterization of physiological changes of yeasts, as well as to classify the flocculation 

phenotype changes in CA11, as a response to the induced stressful molecules within each 

process. 

- In Chapter 4, principal component analysis and partial least squares for discriminant 

analysis were applied to a metabolic dataset resulting from liquid- and gas-chromatography 

analytical techniques (high performance liquid chromatography (HPLC), gas chromatography–

flame ionization detector (GC-FID) and gas chromatography–mass spectrometry (GC-MS)) in order 

to characterize and predict the metabolic state of industrial yeasts strains (CA11 and PE-2) under 

induced stress conditions.  

- In Chapter 5 it is proposed a bioanalytical pipeline for biological systems fingerprinting 

and sample classification by combining electrochemical features with biochemical background. The 
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methodology was applied to a synthetic wine fermentation where the impact of a Saccharomyces 

cerevisiae strain in the profile of compounds with antioxidant capacity was evaluated. 

- A high-throughput metabolomics pipeline, applied to Port wine maturation process is 

presented in Chapter 6, where it is shown how it is possible to gather the maximum information of 

the biochemical changes occurring during the forced aging process, based on the target 

supervision of interesting metabolites involved in the process.  

- Chapter 7 presents the overall conclusions and suggestions for future work. 

- Finally, Chapter 8 gathers all the references used in the elaboration of this thesis. 

 



 

 

 

 

 

 

 

CHAPTER 2 

2. LITERATURE REVIEW 

 

In several industrial fermentations, yeasts are subjected to harsh conditions to which they are 

capable to resist by adapting their entire machinery that is, their genome, metabolome, 

transcriptome, proteome and/or flux dynamics. Different yeast strains respond in different ways to 

those conditions, according to their properties, biogeographical distribution or applications.  

The knowledge of exometabolome provides improved information about different biochemical 

changes taking place in the fermentation media. However, the increased complexity of the 

biological processes leading to cellular structure and function, as well as to the emergence and 

evolution of organisms and species, emphasizes the need of technometric tools, in order to unravel 

and explore the enlarged convoluted information of the living system.  

The application of technometric tools to metabolomics involves the application of bioinformatic 

methodologies for high-throughput analysis of the analytical signals, combined with chemometric 

approaches, i.e., statistical and mathematical methodologies, used to extract the relevant biological 

information. These tools facilitate the characterization and prediction of yeasts metabolic behavior 

inside bioreactors, enhancing the understanding of the complex interactions of, and within 

bionetworks, and fundamental relations essential to microorganisms’ life.  

This Chapter is focused on the contextualization of the application of technometric tools to 

metabolomics data sets, for crucial data extraction and metabolic profile characterization and 

prediction within any biological or biochemical system. 
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2.1 INTRODUCTION 

Industrial microbiology or microbial biotechnology concerns the study and development of 

technologies to control and manipulate microorganisms’ growth and activities in order to produce 

desirable substances or changes in products promoting economic gain or preventing economic 

loss [20]. 

Yeasts are the most extensively used microorganisms in industry. Saccharomyces cerevisiae yeast 

strains are highly specialized organisms, which have evolved to apply their full potential through 

different environments or ecological niches provided by manufacturers [21]. These strains have 

been used for a long time as a model for identifying genes and pathways involved in basic cellular 

processes, including cell cycle, aging, and stress response [22].  

Alcoholic fermentations and maturation processes, are two distinct forms of biotechnological 

applications of yeasts [23], which undergo continuous enzymatic and non-enzymatic changes 

according to external physical factors and the biological activity of the fermenting organisms [3, 

24]. Both processes highly influence the organoleptic character and quality of the fermented 

product [25], although they introduce chemical or physical parameters, unfavourable to yeasts 

performance. Chemical changes can lead to nutrients availability or concentration (e.g. fermentable 

sugars, assimilable nitrogen, oxygen, vitamins, minerals) and the presence of inhibitory conditions 

(e.g. ethanol, acetic acid, furfural and 5-hydroxymethyl-furfural), while physical parameters include 

pH, temperature, agitation and osmotic pressure [21] In far-from optimal fermentation or 

maturation conditions, yeasts are able to survive, as these are equipped with a molecular 

machinery capable to maintain their integrity and metabolic activity [26].  

The sensing of the environmental signals is carried out by specific receptor proteins, generally 

located in cells surface that transmit the information by interconnected signal transduction 

pathways to the different cellular compartments which implement an adaptive response, a process 

referred to as “stress response” [21]. As a consequence, different chemical and biochemical 

reactions take place, and yeasts attempt to adapt efficiently to the changing environment and/or 

unfavorable growth conditions [27]. 

To understand the overall complexity linked to the different defense mechanisms triggered by 

yeasts cells is one of the major challenges in biotechnology. In this context, distinct technometric 
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approaches have been developed, in order to extract the maximum meaningful chemical and 

biochemical information about the bioprocesses complexity [28]. Technometrics approaches 

concern to bioinformatic tools, capable of extracting an increased information from any analytical 

experiment and any type of instrumental signal, combined with chemometric algorithms, that is, 

mathematical and statistical multivariate methods for extracting the relevant information [29]. 

These can be applied to the different ‘omic’ fields (e.g. genomics, transcriptomics, proteomics or 

metabolomics), in order to provide a comprehensive overview of the response of biological systems 

to disease, genetic and environmental perturbations [30].  

Metabolomics was the ‘omics’ field explored in the present work and consists in the analysis of all 

the small molecular weight metabolites within the process [31-33]. In metabolomics, the 

acquisition of a meaningful metabolic information resulting from the activities of metabolic 

pathways can be enhanced by following: 1) the application of practical approaches, such as an 

efficient sample preparation; 2) the selection of the adequate analytical instrument; 3) the use of 

chemometric and bioinformatic tools for selective extraction of metabolites within the different 

analytical signals; 4) the use of statistical methodologies, such as principal component analysis 

and partial least squares regression for data classification and prediction [11, 17, 18, 34-38]. 

Therefore, it is possible to extract an accurate and relevant metabolic information related to yeasts 

metabolism changes under specific environmental conditions [32]. 

So, only a holistic and multi-scale approach comprising analytical chemistry, signal processing, 

bioinformatics and statistical algorithms produces the necessary amount of information to take 

advantage of the natural evolution from individuals to colonies into new production strategies. 



CHAPTER 2  11 

 

CASTRO CC | 2013 

2.2 YEASTS METABOLISM 

Metabolism concerns to all biochemical reactions and transformations of living cells, mediated by 

enzymatic reactions, that allow microorganisms to grow, reproduce, maintain their structures and 

respond to the involved environments [39]. German et al. [40] define metabolism as the key 

feature to microorganisms phenotype, and metabolites distribution results from functional 

genomics. 

The main carbon and energy source for yeasts is glucose that is converted to pyruvate throughout 

the glycolytic pathway and to anabolites and energy in the form of adenosine triphosphate (ATP) 

throughout the tricarboxylic acid (TCA) cycle [41]. Yeast cells can gain energy from two processes, 

namely respiration and fermentation [39, 42], both regulated by glucose and oxygen 

concentrations [41], as it is possible to observe in Figure 2.1. In cellular respiration pyruvate is 

decarboxilated in the mitochondrion to acetyl coenzyme A (acetyl-CoA), being completely oxidized 

in the TCA cycle to carbon dioxide (CO2), energy and intermediates to promote yeast cells growth. 

In the alcoholic fermentation process, while glucose is gradually used to produce the required 

energy to keep cells alive, it is not completely oxidized to ethanol and CO2 [39, 41, 42].  

Beyond ethanol and CO2, during alcoholic fermentation other quantitatively important metabolites 

are produced, including polyols, specially glycerol and 2,3-butanediol, and organic acids, such as 

succinic, keto and acetic acids [3, 43], as it is presented in Figure 2.2. Other minor metabolites, 

such as higher alcohols, esters, volatile fatty acids and carbonyls can be produced, representing < 

1% of sugar carbon, which contribute to final flavor-active properties. Because of these metabolic 

losses occurring in the process, the complete fermentation of hexose sugars only yields 94 - 96% of 

the theoretical maximum ethanol yield [43]. Yeasts species, fermentation conditions and nutrient 

content of the wort must modulate the production of these compounds [3, 44]. 

The growth of microorganisms tends to follow a specific order [43] during alcoholic fermentation. 

Distinct phases - lag, accelerating growth, exponential, decelerating growth and stationary phases - 

can be identified, all of which are part of the yeast cells life cycle pitched into fresh wort. Each 

phase can be described separately and its relative time depends on different factors namely the 

wort’s composition, the environment conditions and the amount of yeast used. Lag phase 

corresponds to the first phase of the cycle, where yeast cells adapt to the environment while use 

their internal reserves, namely carbohydrate glycogen, to produce enzymes in order to grow and 
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ferment the wort. During this lag phase, yeast cells are biochemically active but still do not divide 

[6]. 

 

Figure 2.1 The influence of oxygen and ATP throughout yeasts metabolism. 

 

While adapting, yeasts assess the dissolved oxygen level, the overall and relative amounts of amino 

acids and the overall and relative amounts of sugars present in the wort, which will be further used 

for cells division [45, 46]. So at the end of lag phase, yeasts will move to the next phase of the life 

cycle, the growth phase during which yeast cells start to grow and divide, beginning also to store 

sugar in the form of glycogen for later use. In the third phase, the exponential phase, yeast 

reproduction is increased as it is now completely adapted to the conditions of the wort and 

transport of both amino acids and sugars into the cells for metabolism will be very active. During 

this period fusel alcohols can be produced. 

After the exponential phase, in decelerating phase, yeasts begin anaerobic metabolism, with the 

production of CO2, since all of the oxygen has now been depleted. Finally, the stationary phase of 

microbial growth in a batch fermentation process occurs when the number of cells dividing and 

dying is in equilibrium and can be the result of the following: depletion of one or more essential 

growth nutrients and/or accumulation of toxic by-products [47]. 
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Figure 2.2 Main metabolites and biomass production during alcoholic fermentation by yeasts (Adapted from 

Ugliano and Henschke (2009) [43]). 
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2.3 YEASTS IN INDUSTRIAL FERMENTATION PROCESSES 

Industrial biotechnology, also known as white biotechnology, is providing some solutions for facing 

many hurdles introduced by the chemical synthesis of products, namely the generation of large 

amounts of waste for manufacturing a limited range of products. The implemented solutions result 

in the depletion of fossil fuel reserves and the increasing global environment problems, filling the 

higher demand of energy and consumer products. The use of renewable feedstock for chemical 

production, as well as the use of enzymes and microorganisms, as S. cerevisiae yeasts, are some 

of the strategies applied to make useful products in different industries, such as food, chemicals 

and feed, paper and pulp, textile and energy [48]. 

Yeasts have long been used to ferment the sugars of rice, wheat, barley, and corn to produce 

alcoholic beverages, fuel ethanol and in the baking industry to expand, or raise, dough. The 

combination of the alcoholic fermentation process resulting metabolites is responsible for the 

chemical and organoleptic profile of the fermented product. Alcoholic fermentation is a 

combination of complex interactions involving must or wort variety, microbiota and fermentation 

technology [49]. In this context, different factors can affect yeasts and fermentations behaviors and 

thus the quality of the final product, namely fermentation and/or must temperatures [49, 50], 

inoculum size [51], type of yeasts used [52], fermentable and non-fermentable sugars availability 

[8, 53], and pH [8].  

S. cerevisiae is clearly the ideal eukaryotic microorganism for biological studies as the "awesome 

power of yeast genetics" has become legendary and the complete sequence of its genome has 

proved to be extremely useful as a reference towards the sequences of human and other higher 

eukaryotic genes [54]. In addition, S. cerevisiae cells have several prominent useful features, 

namely the cheap and easy cultivation, short generation times (rapid growth), a highly versatile 

deoxyribonucleic acid (DNA) transformation system, the detailed genetic and biochemical 

knowledge accumulated in many years of research. These particularities convert yeast, a simple 

unicellular eukaryote, into an unique powerful model system for biological research and application 

in industrial processes [55].  

The understanding of S. cerevisiae cell cycle, growth, communication and morphology 

differentiation inside colonies is of great importance for industrial applications of the yeast [56]. 

Recent studies have shown that cell cycles inside S. cerevisiae colonies are highly dynamic, not 
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only alternating between haploid and diploid, but being capable of changing to filamented 

morphologies at specific points of the colony due to long-range communication molecules 

(“quorum sensing”), such as fusel alcohols, as a foraging response and subsequent robust 

adaptation of the colony to more rigorous metabolomic conditions [57].  

So, the use of specialized chemometric tools, capable of extracting robust and enlarged 

information about yeast cells metabolic behavior inside bioreactors, as well as, combined with 

classification and prediction tools, able to manage and predict the metabolic response of yeasts as 

response to the environmental conditions, can have profound positive implications in industrial 

processes [29, 58, 59]: i) increase the knowledge about the biological process and how to manage 

yeast colonies inside biofilms or flocculating fermentations; ii) understand the interactions between 

intracellular and/or extracellular metabolites and metabolic pathways involved in the response 

mechanism; iii) recognize physiological and phenotypic changes occurring in yeasts cells, 

associated to specific changes in the metabolic behavior; iv) manage the colony dynamics to 

produce desired combinations of metabolites (such as the management of the Ehrlich pathway for 

flavor chemistry) nutraceuticals and anti-oxidant agents production (isoprenoids, flavonoids) [42]; 

and finally v) reduce time, energetic and manufacturing costs in industrial biotechnological 

processes. 

 

2.3.1 Beverages and flavor production mechanisms 

In beverages production, different microorganisms can be used to produce aroma-active 

compounds, including esters, higher alcohols, carbonyls, volatile fatty acids and sulfur compounds. 

These compounds are the result of sugar and amino acids metabolism, that provide final chemical 

quality and character to alcoholic beverages that include wine, cider, sake, beer and distilled spirits 

(e.g. whisky) [3, 8].  
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Figure 2.3 Formation of higher alcohols and esters from sugars and amino acids (Adapted from Ugliano and 

Henschke (2009) [43]). 

 

The complex aroma of beverages can result directly from chemical components of must/wort or 

from the different mechanisms involved in the production process. Must composition depends on 

the raw substrates variety, characteristics of the soil, climatic conditions and techniques used in 

the production process [43]. Production processes include chemical molecules released and/or 

modified by the action of flavor-active yeasts and bacteria or arises from molecular activities of 

these microorganisms [4, 5, 60] during fermentation and chemical transformations occurring 

generally during maturation and aging processes in both bottle or barrel vessels. During 

fermentation and subsequent maturation and aging, a variety of yeast biochemical mechanisms 

are involved, including hydrolysis, transformation reactions such as reduction, esterification and 

decarboxylation, oxidation and metabolite-induced condensation reactions [43], as it is shown in 

Figure 2.3. 

Ethanol, higher alcohols and esters characterize the aroma of the fermented product, being 

alcohols formed by yeasts and bacteria within the fermentation process [3]. Ethanol is the major 

product resulting from sugars conversion by yeasts during fermentation, and it is capable of 

masking the “fruitiness” of beverages, that is the esters contribution [61]. Glycerol is also a major 

product of alcoholic fermentation [62], chemically it is a polyol with a colorless, odorless and highly 
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viscous character, and it has also a slightly sweet taste and a oily and heavy mouth-feel [3]. Both 

ethanol and glycerol production mechanisms are presented in Figure 2.2. The secondary yeasts 

metabolites include higher alcohols, also known as fusel alcohols, which can have positive or 

negative effects on the aroma and flavor of the final product. At optimal levels, these contribute 

with “fruity” character, although, excessive concentrations can result in a strong, pungent smell 

and taste [44]. Higher alcohols are quite stable throughout the aging process [63]. Branched-chain 

higher alcohols are produced throughout the Ehrlich pathway [4, 5], which involves the degradation 

of branched-chain amino acids (synthesized via the catabolic or Ehrlich pathway or an anabolic 

pathway though their biosynthetic pathway from glucose [3]). The amino acids uptake by S. 

cerevisiae is mediated by transport proteins, called permeases [64]. The first step of the Ehrlich 

pathway involves the transamination to form the respective  -keto acids, which are therefore 

converted to the corresponding branched-chain aldehydes by a pyruvate decarboxylase. Finally, an 

alcohol dehydrogenase catalyses the reduced nicotinamide adenine dinucleotide (NADH)-

dependent reduction of this aldehydes to the corresponding fusel alcohol [3]. Instead, the 

aldehydes might be oxidized to an acid [65].  

Volatile acidity leads to a group of volatile organic acids of short carbon chain-length. Free or 

saturated volatile fatty acids represent 10 – 15% of the total acid content, and of this, acetic acid 

represents about 90% of the volatile acids produced by yeasts and bacteria [66]. Volatile acids 

concentrations increase and decrease within beverages aging, mainly due to chemical hydrolysis of 

some fatty acid ethyl esters occurring during the formation of acid compounds [63]. 

The production of esters can have a significant influence on the fruity flavors of the final product. 

Two esters groups can be found, namely ethyl acetate esters and fatty acid ethyl esters, which 

production can occur by both chemical reactions or via intracellular enzymatic reactions during 

fermentation [67]. Esters concentrations can differ during the aging process, leading to the 

occurrence of “fruity” flavors loss. Thus, while acetate esters usually decrease during the aging 

process, fatty acid ethyl esters behavior depends on the structure of the fatty acid carbon chain. 

Straight-chain fatty acids ethyl esters concentration decrease over time and branched-chain fatty 

acid ethyl esters are stable and concentrations can increase during aging [68]. 

In industrial beverages fermentations, yeasts must respond to environmental fluctuations, leading 

to dissolved oxygen concentrations, pH, osmotic potential, ethanol concentration, nutrient supply 

and temperature [8, 69]. 
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After pitching yeast cells into the aerated wort in the fermentor, these start to adapt to the external 

conditions, and after a brief lag phase, yeasts grow exponentially, rapidly depleting the available 

oxygen and creating an anaerobic environment [8]. Sugars and assimilable nutrients in the wort 

are also used rapidly, resulting in carbon and nutrient limitation that lead cells to a resting state 

[70]. This limitation of carbon and nutrients is coincident with an increase in ethanol concentration, 

which represents a stress condition to yeasts [3]. Also, the production of other minor metabolites 

as higher alcohols during the fermentation process, at high concentrations can introduce oxidative 

stress to cells [71].  

The maturation and subsequent aging process can also introduce a series of complex 

transformations, namely formation or degradation of varietal compounds, oxidation, reduction, 

esterification or hydrolysis mechanisms, which can result in significant changes to its aroma 

composition and quality especially when it occurs in oak barrels or bottles [43], as the Port [72, 

73] and Madeira wine aging [74].  

 

Port wine 

Port wine is a fortified wine, with specific quality and character produced in Douro Region in the 

North of Portugal. A complete and fast extraction of both color and flavor from tannins of the grape 

skins must be performed before adding the fortifying spirit (about 77% alcohol) after two or three 

days to stop the must fermentation. The unfermented sugars attribute an increased sweetness to 

the Port wine, which at the end of the process reaches 19 - 21% (v/v) alcohol. Ruby Port wines are 

aged in bottles while Tawny Port wines are stored in barrel oaks. The different aging conditions of 

Port wines lead to different final aromatic profiles.

The aging process knowledge has an increased commercial interest as this is a time-consuming 

process during which the wine acquires important and specific organoleptic properties, which is 

reflected in the final product prices [75]. Usually, during the aging process aromas linked to the 

fermentation and must properties are lost and new aromas characteristic of older wine or 

uncommon aromas associated with wines deterioration (or oxidation) are produced [76]. Also, the 

storage of wine on oak barrels introduces some “woody” characteristics to the wine, such as cis- 

(“vanilla”) and trans- (“coconut like”) oak lactones [77], aldehydes - furfural and 4-methylfurfural – 

that provide “sweet”, “butterscotch” and “woody” aromas [78], 2-furanmethanethiol (“roasted 
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coffee”) [79], guaiacol and 4-methylguaiacol, which impart “smoky” aromas to wine and indicate 

the level of the toasting or charring of oak barrels [77]. An important volatile metabolite which is 

characteristic of Port and Madeira wines is called sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) 

and it is known to have an intense odor of curry [72]. 

After a long period of maturation, the non-enzymatic reactions, namely the Maillard reaction, a 

form of non-enzymatic browning resulting from the reaction of a reducing sugar and an amino acid, 

and the related Strecker degradation of amino acids induce aroma changes. Browning is a desired 

characteristic in Port wines, although it is unpleasant in white wines [72].  

Hydroxymethyl-furfural and furfural can be formed during the Maillard reaction or from the 

dehydratation of sugars in acidic medium and caramelization [80], and their concentrations are 

higher in wines stored in oak barrels which are mainly formed during the toasting of the oak and 

can be release to the wine during aging [81].  

Also, during the second part of the Maillard reaction, the Strecker degradation other compounds, 

such as aldehydes, are formed, which attribute also aromatic characteristics to wines.

2.3.2 Bio-fuels production 

The increased awareness worldwide related to energy costs, security and environmental problems 

concerning to petroleum-derived transportation fuels are drawing an enlarged interest in the 

alternative bio-fuels. The term bio-fuel leads to any liquid fuel produced from renewable resources 

as an alternative for petroleum-derived fuel. Bio-fuels have the potential to reduce either the 

dependency of countries on oil imports and the greenhouse emissions causing the global warming 

[82]. Two of the most common bio-fuels are ethanol and butanol. 

 

Bio-ethanol production 

Bio-ethanol is a renewable and environment friendly alternative to fossil fuels which has been 

produced using sugars from different sources, namely, plants (e.g. sugar cane, sugar beet, sweet 

sorghum) and plants starch (e.g. maize, wheat, rye), both included in the first generation of bio-

ethanol processes, and plants cellulose (herbaceous plants, agriculture residues), known as 
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second generation of bio-ethanol processes [83]. A third generation of bio-ethanol production 

processes concern to the use of algae, while the fourth generation status is claimed by every new 

technology, such as genetic manipulation or nanotechnologies [84, 85]. 

Depending on the biomass feedstock used for bio-ethanol production, different steps are needed in 

order to produce fermentable single sugar molecules. In first generation processes, pretreatments 

of sugar containing plants is mainly focused on removal of impurities and disinfection, whereas in 

second generation starch and cellulose containing plants need to be preprocessed and distinct 

technologies have been applied for this purpose [86]. Although, the application of preprocessing 

methodologies, based on enzymatic or chemical hydrolysis processes applied to lignocellulosic 

biomass, leads to the generation of monomeric sugars, capable to be assimilated by yeasts, 

stressful conditions are introduced. Oxidative stress is generally caused by the resulting inhibitory 

material, such as furans derivates – furfural, 5-hydroxymethyl-furfural (5-HMF), phenolics and 

organic acids [86-88]. 5-HMF concentrations can vary from 2.0 to 5.9 g/L, and furfural is usually 

found in lower levels than 5-HMF, around 1 g/L, however high enough to be an inhibitor [87]. The 

use of very high gravity systems (VHG) introduces also osmotic and oxidative stress to yeasts cells 

leading to the higher concentrations of sugar substrates (> 250 g/L), typical in these systems [89] 

and thus to the final increased ethanol concentrations in the medium (85 – 100 g/L) [88, 90]. 

Increased sugar concentrations causes an increased accumulation of intracellular ethanol in yeast 

cells which promotes an unfavorable effect on intracellular enzymes necessary to ethanol 

production [91]. The high concentrations of ethanol at the end of VHG process can affect cell 

membranes, cellular pH and nutrient transport processes [92-94]. Several studies stated that 

furans are linked to enzymes inhibition, namely alcohol, pyruvate and aldehyde dehydrogenases, 

and thus the glycolytic pathway, which cause a reduced ATP synthesis and in some cases DNA 

damages [87, 95-98]. Aliphatic acids also interferes in ATP availability as this is forwarded to 

maintain the cellular pH and thus inhibits cells growth [87, 99], whereas phenolics mostly affect 

the cell membrane integrity by disruption of sugar transport and cells growth [100, 101]. The 

inhibition mechanisms of furan-derivates, weak acids and phenolics are schematized in Figure 2.4. 

All of these effects concern to a decrease of fermentations performance under VHG conditions, 

characterized by loss of yeast viability, reduced fermentation rates and incomplete fermentations 

[102, 103]. 
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Figure 2.4 Schematic representation of inhibition mechanisms by furan-derivates, weak acids and phenolics 

(Adapted from Almeida et al (2007) [87]). 

 

Bio-butanol production 

Bio-butanol produced from renewable biomass is a promising alternative to ethanol as bio-fuel 

[104]. It is less volatile, less hygroscopic and less corrosive than ethanol, presents higher energy 

content, and it is can be used as an additive to gasoline or for replacing it completely without any 

modification of cars engines [105, 106]. It is also produced by substrates from the first order 

substrates as starches (corn, wheat, potato) or sugars (sugar beets, sugar cane) and from the 

second order, as lignocellulosic biomass, such as crop residues, woody crops or energy grasses. 

Both native and engineered microorganisms have been used for butanol production [48, 105, 107-

111]. 1-Butanol is naturally produced by some Clostridium species (e.g. C. acetobutylicum and C. 

beijerinckii) mixed with acetone and ethanol [112]. Although other microorganisms with easier 

genetic manipulation are becoming more competitive than Escherichia coli and S. cerevisiae [111], 

S. cerevisiae was already engineered either by redirecting amino-acid biosynthetic pathways or by 

introducing the 1-butanol pathway of C. acetobutylicum for 1-butanol and isobutanol production 

[113, 114]. 
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The production of bio-butanol is generally performed by using the acetone/butanol/ethanol (ABE) 

fermentation pathway, which consists in two distinct phases: the acidogenic and solventogenic 

phases (Figure 2.5). The first phase, the acidogenesis, is coupled with cells growth and production 

of acetic acid, butyric acid and CO2. The second one, the solventogenesis, starts with the medium 

acidification and is characterized by the initiation of sporulation and metabolic switch, when usually 

part of formed acids together with sugar carbon source are metabolized to acetone, ethanol and 1-

butanol [115]. 

 

Figure 2.5 Acetone/butanol/ethanol (ABE) mechanism for bio-butanol production. 

 

In addition to pathway engineering challenge, the end product toxicity represents the major limiting 

factor in developing an effective butanol production process [106, 116, 117]. The toxicity of 1-

butanol isomer to cells is higher - inhibitory concentrations above 1.5 – 2% (v/v) - comparing to iso-

butanol or 2-butanol, probably because of its higher hydrophobicity which leads to the strongest 

ability to permeate and/or interact with the cellular membrane [118, 119]. Cells are widely 

vulnerable to the presence of n-butanol, and different changes can be triggered by its presence, 

namely, the loss of the cells ability to maintain the internal pH due to the increased proton 

permeability of the cytoplasmatic membrane, the inhibition of the membrane 

adenylpyrophosphatase (ATPase) [120, 121], the loss of intracellular molecules, as proteins, 
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ribonucleic acid (RNA) and ATP (as the fluidity of the membrane increases) [110] and finally the 

obstruction of glucose uptake [120].  

In bio-butanol production industry, product recovery systems are implemented in order to reduce 

the butanol levels in the medium, and thus to reduce the toxicity to the cells, although, these 

systems require a significant capital and operating costs to the process [122, 123]. The possibility 

of operating under increased concentrations of n-butanol [116, 117], by using more tolerant strains 

would greatly improve process economics and is still a challenge in bio-butanol production. 

 

2.3.3 Flocculation in biotechnological processes 

The main goal of biotechnological processes is the increase of productivity. Several strategies have 

been developed for this purpose, namely, the modification of yeast strains [124, 125], the 

development and optimization of operational strategies and bioreactors, the improvement of 

separation processes efficiencies, the utilization of efficient control systems and the use of 

techniques of cells immobilization, adhesion or flocculation [126, 127]. In industrial processes, the 

use of flocculating yeasts or strategies that induce flocculation of cells provide several advantages, 

including, the increased fermentation rates as a result of high cells densities per unit bioreactor 

volume, the possibility of reusing cells for extended periods of time, the simple separation of cells 

from the liquid phase, the decreased risk of contamination and the smaller bioreactor volumes that 

results in reduced capital costs for the process [128]. 

Yeasts flocculation can occur by three different mechanisms, including, sexual aggregation, chain 

formation [129] and non-sexual cells aggregation. According to sexual aggregation, complementary 

  and a haploid strains exchange small peptide mating pheromones,   and a – factors, 

responsible for physiological changes that promotes protein-protein bonding of complementary cell 

walls, enhancing cells aggregation before nucleus fusion to form diploids [126]. The formation of 

cells chain occurs during yeast cells growth when bud cell fails to breakup from the mother cell, 

and as both mother and daughter cells continue to form new buds, it results in a chain formation 

[130]. In non-sexual aggregation, it is known that interactions in flocculation may be mediated by 

specific recognition mechanisms of cells surface, relating cell surface proteins, called “adhesins” 

or “flocculins” binding specific amino acids or sugar residues on the surface of adjacent cells 

[127]. 
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2.3.4 Intracellular metabolites 

Some oxidative stresses, such as high ethanol concentrations may interact with the yeast cells 

membranes changing the membrane polarity and weakening the hydrophobic barrier to the free 

exchange [131]. It has been reported that trehalose is considered one of the main reserve 

carbohydrates in yeast and act as yeast protector, maintaining structural integrity of the cytoplasm 

under stress conditions [132]. The intracellular concentration of trehalose, non-reducing 

disaccharide consisting of two glucose molecules, has been suggested to play an important role in 

the ability of many organisms to tolerate adverse environmental conditions [133].  

On the other hand, glycerol is known to serve at least two important functions in yeast: (i) as a sink 

for the excess NADH which is produced by anabolic reactions during anaerobic conditions [134], 

and (ii) as an osmolyte balancing a high external osmotic pressure during salt or sugar stress due 

to low water activity [135]. S. cerevisiae intracellular glycerol increases with the decrease of the 

water potential in the medium, playing an important role in the osmoregulation of yeast cells. 

Recent advances on molecular biology and genetics, showed that glycerol is essential to balance 

the osmotic stress of the yeast membranes [136]. 
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2.4 SENSORS AND INSTRUMENTAL METHODS 

Metabolic changes occurring in “in vivo” biological processes can be perceived by metabolites 

measurements using different analytical sensors and instrumental methods. Some examples 

include cyclic voltammetry (CV), high performance – liquid chromatography (HPLC), gas 

chromatography – mass spectrometry (GC-MS), and gas chromatography – flame ionization 

detector (GC-FID) which have been used in combination with multivariate tools in metabolomics 

studies [11, 12, 36, 137]. 

The selective and non-destructive detection of biologically relevant metabolites can be performed 

using potential control in CV. The ability to selectively detect and electrochemically resolve analytes 

in a dynamic system by CV results in the large ability for its application in metabolomics studies, 

because of the higher chemical complexity of samples involved [138]. Also, the combination of CV 

spectral information with other analytical techniques, such as HPLC and gas chromatography (GC), 

makes CV a useful tool in metabolomics as it can conduct to rapid metabolic profiling analyses 

[137]. 

Liquid and gas chromatography systems are two of the mostly used analytical methods for 

metabolomics [138], allowing the quantification of important metabolites involved in the dynamic 

system. These systems are characterized for having a stationary phase chemically bound to the 

surface and fixed in a column (behaving as a liquid), and a mobile phase which can be a gas (gas-

liquid chromatography) or a liquid (liquid-liquid chromatography) [139].  

 

2.4.1 Samples preparation for metabolomics analysis 

Practical metabolomics approaches applies efficient sample preparation methodologies, combined 

with selective extractions coupled with different analytical techniques, in order to gather the 

maximum information about the metabolome [37, 140]. The preparation of samples for 

metabolome analysis is of extreme importance and follows a sequence of practical steps, as 

represented in Figure 2.6, in order to obtain the accurate response of the biological system to 

genetic or environmental changes [139].  
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Figure 2.6 General methodologies used for samples preparation for metabolomics approaches (Adapted 

from Villas-Bôas et al. (2006) [141]). 

 

The initial step which must be taken in consideration to preserve the integrity of metabolites, is the 

sample collection [142]. As metabolites concentrations inside the biological systems verify quick 

changes according to the response to the environmental conditions [143]– the typical half-time for 

an intracellular metabolite is on the order of a second or less, being longer for an extracellular 

metabolite [144] - a rapid quenching of all biochemical processes is firstly necessary [12, 145]. 

Villas-Bôas et al. [139] summarized some of the quenching methods, including the use of cold 

methanol [144], liquid nitrogen [146], perchloric acid [147], acid/alkali [148], and their 

applications, advantages and disadvantages. After the quenching, biomass and extracellular 

medium can be separated for intra and extracellular metabolome analysis, usually by centrifugation 

at low temperatures or filtration [149]. For intracellular analysis, metabolites must be extracted 

from cells fraction, with the minimal losses and preventing any further physical and chemical 

alterations of the molecules, making them accessible to many different analytical techniques [143, 

150]. 

Intra- and extracellular metabolites are divided into three main classes, namely, polar or water 

soluble compounds, non-polar or water insoluble compounds and volatile compounds. The 

extraction of each of these groups can be performed using different methods, according to the 

nature of the sample [37]. These include solvent extractions - exhaustive extraction with organic 

solvents [151], the use of a mixture cold methanol: chloroform: buffer [144], boiling ethanol [152], 

cold methanol [153] and dichloromethane [154] - and mechanical extraction - pressurized liquid 

extraction [155], microwave and sonic wave [156] and supercritical fluid extraction [157, 158]. 
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After extraction, intracellular and extracellular samples can be directly used for analytical 

measurement or in some cases, they must be concentrated (extraction methods generally produce 

high diluted samples) before using them [139].  

Samples concentration consists in both removing the excess of solvents used in metabolites 

extraction from intra- or extracellular fraction or removing water from aqueous samples to avoid any 

thermal degradation and to enable samples injection in analytical techniques [143]. Different 

strategies have been also developed for samples concentration for metabolomics analysis, namely, 

solvent evaporation under vaccum [159], evaporation under anhydrous sodium sulphate stream 

[154], freeze-drying or liophilization [160] and solid-phase extraction (SPE) and/or solid-phase 

micro-extraction (SPME) [161].  

Complementary  to the importance of the selection of efficient sample preparation and separation 

techniques, gathering the complete information about metabolome within the biological system 

entails other relevant challenges that must be considered in metabolomics: the complexity and 

diversity of biological samples, the chemical diversity of small molecules, the large concentration 

dynamic range (as high as 1014), the incomplete chemical information for identification of all 

metabolites, the need of reliable bioinformatics tools for non-targeted strategies, and the use of 

statistical tools capable of extracting the crucial information [11, 31, 143, 162]. 

 

2.4.2 Cyclic voltammetry 

Voltammetry is one of the techniques which electrochemists employ to investigate electrolysis 

mechanisms and different voltammetry forms can be found, namely potential step, linear sweep 

and cyclic voltammetry [163]. For each of these cases a voltage or series of voltages are applied to 

the electrode and the corresponding current that flows is monitored. The essential elements for 

measuring the electrochemical signals are: the electrode, which is normally made of an inert metal 

(gold or platinum); the solvent, that has high dielectric constant (e.g. water or acetonitrile), which 

allows the electrolyte to dissolve, aiding the passage of current; a background electrolyte, a high 

concentrated inert salt (e.g. sodium chloride (NaCl) or tetrabutylammonium (TBAP)) – 0.1 M – 

which allows the current to pass; and finally the reactant, typically in low concentration 10-3 M 

[164]. 



28 LITERATURE REVIEW 

 

CASTRO CC | 2013 

Cyclic voltammetry (CV) is a very versatile electrochemical technique which allows exploring the 

mechanics of redox and transport properties of a system in solution [13]. Its versatility combined 

with ease of measurement has resulted in extensive use of CV in different fields, including 

electrochemistry, inorganic chemistry, organic chemistry, and biochemistry [165]. 

In CV, the voltage is swept between two values (as it is possible to observe in Figure 2.7 A) at a 

fixed rate, and when the voltage reaches V2, the scan is reversed and the voltage is swept back to 

V1. A typical cyclic voltammogram is recorded for a reversible single electrode transfer reaction, and 

followed by the appearance of the current at a certain potential, as it is shown in Figure 2.7 B. This 

voltammogram leads to the electrochemical oxidation of a given compound within an inert carbon 

glassy electrode [166].  

 

Figure 2.7 Voltage as function of time (A) and current as function of voltage (B) for CV (Adapted from 

Kilmartin et al (2001) [166]). 

 

The potential of the CV peak reflects the redox properties of the compound, while the value of the 

current shows the quantity of the compound [164]. For a reversible electrochemical reaction, the 

CV recorded follows well defined characteristics: the voltage separation between the current peaks 

is given by Equation 2.1, corresponds to the electric potential in the minimum and maximum 

current intensity, respectively; peaks voltage positions do not change as function of the voltage 

scan rate; the ratio of peaks currents intensities is equal to one (Equation 2.2); peak currents are 

proportional to the square root of the scan rate. 
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Equation 2.1 

 
  
 

  
     

Equation 2.2 

 

CV can be used for evaluating the antioxidant capacity of a certain sample. The resulting 

voltammogram provides the information describing the integrated antoxidant capacity of the 

mixture or phenolics groups present there (e.g. catechins, gallates, monophenolics), although it 

does not allow the identification of antioxidants in complex mixtures [13, 166]. 

Principal component analysis (PCA) has been applied to CV studies, related to wines oxidation 

resistance, in order to characterize qualitatively the oxidation status of those wines [14, 167, 168]. 

Wines and other beverages are chemically complex mixtures where changes in redox potential take 

place, and their resistance to oxidation depends on the antioxidants quantity and their redox 

potential [167].  

The chemical structure of phenolics acids comprises a hydroxyl group combined with a benzene 

ring, although the presence of other group and their position in the ring largely affect their 

electrochemical activity [166, 169], which allows their distinction throughout the voltammogram. 

Phenolic compounds with the ortho and para diphenol group show inferior oxidation potentials than 

those containing the meta diphenol group [166]. 

 

2.4.3 Chromatography techniques for metabolites separation 

In metabolomics field, the separation of small molecules is nearly always based on high-

performance chromatography using either a gas or a liquid as mobile phase [162]. The general 

operating system of the chromatography consists in different modules, namely, the injector, the 

stationary phase (column) and the detector. The separation process starts by laying a small sample 

in the mobile phase (using the injection port) at the beginning of the stationary phase (column). 

Then according to the distribution coefficient of each metabolite, these are separated (with small 
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differences) through the two-phase system (liquid-liquid or gas-liquid). A plot of intensity versus 

time is the resulting chromatogram as represented in Figure 2.8, where the peaks presented 

corresponds to the eluted compounds. Each peak is characterized by a retention time (time from 

the injection to its elution), peak width, peak height (maximal signal) and peak area, which is 

determined as the area under the curve in Figure 2.8 from the beginning until the end of the peak 

[170]. The accurate determination of the area under the curve requires a stabilized baseline, which 

in some cases needs to be adjusted. 

Different factors can cause peaks dispersion during the chromatographic separation, mainly 

dependent on the column geometry (which determines the band broadening during metabolites 

elution), on the flow rate (lower flow rate enhances the dispersion effect), on the stationary and 

mobile phases used, and on the equilibrium between both phases [170, 171]. 

Liquid and gas chromatography are equivalent analytical systems and present similar 

chromatographic profiles, where separation efficiency can be affected by dispersion effects. They 

can differ in their components, namely, in the mobile phase used, the stationary phase and the 

detectors used for metabolites identification and quantification [162]. 

 

Figure 2.8 General chromatogram profile (Adapted from Villas-Bôas et al. (2007) [162]). 
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Liquid chromatography 

Liquid chromatography (LC) is a quite simple methodology to operate and uses a liquid mobile 

phase to separate metabolites within a column by a pumping system. LC is considered a powerful 

technique for determining highly polar compounds in several matrices [172], when compared to 

gas chromatography. Different mobile phases, columns and stationary phases can be used in 

liquid chromatography, promoting the capacity of dissolving nearly all types of compounds in a 

mobile phase. 

The mobile phase (one solvent or solvent gradients), free from air bubbles, is supplied to the 

column using high-performance pumps, with a constant and pulse-free flow, using the rate required 

for metabolites separation. Samples are injected into the solvent stream using the injector to be 

separated within the column, where the stationary phase is chemically bounded. Therefore, the 

eluent arising from the columns can pass through a flow cell in a spectrometer for nondestructive 

detection of compounds with spectrometric features, e.g., a chromophore or a fluorophore. UV and 

fluorescence spectrometers have a good performance for quantitative analysis and are generally 

used in high performance liquid chromatography (HPLC).  

Other commonly used liquid chromatographic technique is ultra high performance liquid 

chromatography (U-HPLC), which uses high pressure level instruments (until 15,000 psi) and 

provides higher chromatographic resolution [173] and peak capacity [174] than HPLC. Also, it 

improves the separation performance in terms of velocity and high-throughput analysis [175]. 

Furthermore, the use of hydrophilic interaction chromatography (HILIC) technique or ion-exchange 

chromatography also improves the detection and separation of many polar and ionic compounds, 

increasing the metabolic information [36, 176].  

 

Gas-Chromatography 

Gas-Chromatography (GC) is a simple and proficient analytical tool, where up to thousand of 

metabolites can be separated within an hour [170]. The main elements that constitute a gas-

chromatography system include a gas supply, an injector, a column inside the oven and finally a 

detector (or mass spectrometer). GC analysis can be done using constant flow, constant pressure, 

or a flow program. 
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The mobile phase of a gas-chromatographer is a gas, generally highly pure helium, delivered from 

a compressed gas supply. The injection of samples, containing more or less volatile compounds, is 

the most critical practical step in gas chromatograph. This is due mainly because of the possible 

occurrence of a slow and incomplete evaporation of the volatile metabolites, and the time needed 

for transferring the samples through the mobile phase into the column which must be insignificant 

for the peak width [177]. 

The stationary phase of these systems is bound to the inner surface of the column - a long opened 

squeeze bore fused tube - placed in an oven with controlled temperature. The selection of 

stationary phases depends on the metabolic information aimed to extract: volatile compounds with 

low retention time typically need a thick stationary phase, while less-volatile compounds require a 

thin-film column eluting at high temperature. Still, the higher the column length, the higher the 

retention time is, and thus, the metabolite spends much time in the stationary phase. Although, the 

longer is this time, the wider the peaks get, because of band broadening effects. The temperature 

of the oven where the column is placed also influences the distribution coefficient and thus, 

metabolites separation in GC analysis  and temperature variations are defined within the analysis 

[177]. 

Gas chromatography is used for the analysis of several compounds, namely trace amounts of 

organically extractable, non-polar, volatile and highly volatile compounds [178]. Non-volatile 

metabolites as organic acids, amino acids and sugars, can be also analyzed by gas 

chromatography however this analysis requires a previous chemical derivatization to induce 

volatility and enhance thermal stability for further analysis [162]. 

After metabolites separation within gas chromatography, different detectors can be associated, 

namely flame ionization detector (FID) in GC-FID and mass spectrometer (MS) in GC-MS. From the 

industrial point of view, GC-FID is much more attractive, as this is a rapid, high sensitivity and cost-

effective methodology for a large number of routine samples analysis [179], and provides the 

report of carbon-containing compounds. It can be more useful than GC-MS in some cases, namely 

classification or prediction based on the quantification of specific metabolites, although, peaks 

identification is not possible using GC-FID [180]. For these reasons, GC-FID hasbeen used in few 

researches in metabolomics field [181, 182]. On the other hand, GC-MS have been widely used in 

metabolomic studies, providing a comprehensive quantitative and qualitative analysis of the 
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metabolome and is characterized by having high sensitivity, reproducibility and robustness [32, 

141]. 

 

2.4.4 Mass spectrometry 

The analysis of the chemical complexity of the metabolome requires the use of multiple 

technologies to gather a comprehensive visualization of the system [30, 145, 183-185]. The 

selection of the most suitable methodology is usually a balance between speed, chemical 

selectivity, and instrumental sensitivity [186].  

The initial works in metabolomics were based on nuclear magnetic resonance (NMR) studies, 

namely on biofluids, cells and tissues [187, 188]. NMR are rapid, highly selective, and non-

destructive, however, have a relatively lower sensitivity [16]. Other techniques including capillary 

electrophoresis (CE) combined with laser – induced fluorescence detection, are highly sensitive, 

however the chemical selectivity of these systems is limited [189, 190]. Because of their 

comparatively poor sensitivity cannot be used in lower concentrations metabolites analysis as MS 

[143]. Subsequently the general concept of metabolomics was extended on the usage of high-

resolution separation systems, coupled with mass spectrometer (MS) detector: GC-MS [30, 139, 

191], Liquid chromatography – mass spectrometry (LC-MS) [12, 192-194], hydrophilic interaction 

chromatography - mass spectrometry/mass spectrometry (HILIC-MS/MS) [194], high performance 

liquid chromatography – mass spectrometry (HPLC-MS) [195], ultra high performance liquid 

chromatography – mass spectrometry (U-HPLC-MS) [196, 197] and CE [198], which provide an 

increase of the metabolic information. 

MS measurements coupled with chromatographic separation provides an increased sensibility and 

sensitivity for a rapid qualitative and quantitative analysis, allowing the identification of metabolites 

[145]. MS has also some potential for determining proteins sequence quickly and efficiently, using 

low samples quantities in proteomics [143], although it is most used for metabolomics, as it is still 

more suitable for reproducing phenotype changes of the living system  [12, 36, 162, 193].  

MS requires the ability of electron impact ionization and fragmentation for detecting any 

compounds in a specific mass range, typically m/z 10 – 1,000. As a result, compounds that do 

not form ions within this range will not be detected [179]. So, mass-selective detection of mass 
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spectrometers operate by ion formation, separation of ions according to their mass-to-charge (m/z) 

ratio and detection of separated ions [145], providing highly specific chemical information leading 

to the chemical structure of the metabolites [186]. The information about the molecular mass 

and/or characteristic fragment-ion information is then used for compounds identification through 

the spectral matching with data contained in libraries or for de novo structural revelation [36]. The 

limits of detection for many primary and secondary metabolites identification using MS chemical 

selective systems are very low (µmole to pmole) and small quantities of metabolites are needed to 

extract the chemical information [186]. 

Mass spectrometric analyses are performed in the mass spectrometers, which are made up of 

three main components: an ion source, a mass analyser, and the detector, as it is presented in  

Figure 2.9 [162]. Samples contained in gas or liquid mobile phases are supplied to the ionization 

source, where these are transferred to the gas phase, ionized as positively or negatively charged 

ions and then transferred to vacuum. These ions are carried to the mass analyser where the 

separation based on the mass-to-charge ratio (m/z) occurs based on a combination of electric 

and/or magnetic fields. Once separated, ions enter into the detector where the mass-to-charge 

ratio and the relative abundance of each ion is determined, and the information is compiled within 

a spectrum graph [199].  

 

Figure 2.9 Mass spectrometer components for metabolites detection (adapted from Villas-Bôas et al. (2007) 

[162]. 



CHAPTER 2  35 

 

CASTRO CC | 2013 

Data systems of mass spectrometers are nowadays designed for instruments controlling and also 

for data processing. In non target approaches, chromatogram processing is performed separately 

[11, 12]. 

 

Ion source 

The classical procedure of ionization involves shooting energetic electrons into a gaseous neutral. 

The ionization sources are typically classified according to the resulting degree of molecules 

fragmentation. Hard ionization as electron impact ionization (EI) provides considerable and highly 

reproducible fragmentation patterns for small molecules [200]. Soft ionization techniques mostly 

used as interfaces to HPLC and MS include chemical ionization (CI), matrix assisted laser 

desorption / ionization (MALDI), atmospheric pressure chemical ionization (APCI) and atmospheric 

pressure photo ionization (APPI), which produce larger fragments [200, 201]. The main 

advantages and disadvantages of these detectors are presented in Table 2.1 

The most frequent ionization techniques are EI and electrospray ionization (ESI) commonly used in 

gas and liquid chromatography, respectively. As ionization in GC-MS occurs under vacuum 

conditions and in LC-MS at the atmospheric pressure, they require completely different interfaces 

to mass spectrometer [201]. In GC-columns the EI occurs by impact of a beam of energetic 

electrons emitted from a heated filament and accelerated (70 eV), under high vacuum (< 5×10-5 

hPa). Ions formed by electron impact are dragged out by an electrical acceleration potential [139]. 

In LC-MS, during the ESI, the eluent is pumped from the LC-column through a narrow steel 

capillary tube into an open source chamber at atmospheric pressure. Therefore a high voltage is 

applied to the capillary tube, inducing the emission of a spray (electrospray) of fine highly charged 

droplet. This electrospray ionizes the molecules in positive or negative ions, depending on the 

potentials applied on the sprayer and the related counter electrode. Finally ions are driven through 

a small orifice of heated capillary to the vacuum [139].  
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Table 2.1 General comparison of ion sources (Adapted from Villas-Bôas et al. (2007) [162]) 

Ion source Advantages Disadvantages 

EI 
- High performance; 
- Ease to operate; 
- High reproducibility; 

- Not suitable for non-volatile analytes analysis; 
- Influence of pyrolisis of analytes in EI 
spectrum; 

ESI 

- Detection of non-selective and most ionisable 
ions; 
- Well-suitable for polar metabolites detection; 
- Fast; 
- High accuracy; 

- Matrix effects: loss of sensitivity and 
discrimination of minor metabolites; 
- Fine tuning work: flow rate, solvent/sample 
ratios, etc to get the analytes to ionize 

MALDI 

- Fast; 
- Good reproducibility; 
- Sensitive to small amounts of sample; 
- Easy spectra; 
- Accurate; 
- Not affected by salts; 
- Soft ionization; 

- Fine tuning: spotting plate, getting good 
crystals, adjusting intensity of laser, finding 
crystals on plate with sample; 
- Low shot to shot reproducibility; 
- Possible occurrence of photo degradation by 
laser desorption/ionization; 
- Acidic matrix used in the ionization can cause 
compounds degradation; 

CI 
- Less energy transferred causes less 
fragmentation; 
- Well suited to the negative ionization mode; 

- Spectrum analysis can be influenced by 
interactions between the reagent carrier gas 
and the sample; 
- Higher source pressures required ca difficult 
high resolution tuning of the ion source; 

APPI 
- Efficient ionization of non-polar compounds; 
- Relatively low ionization energy leads to 
minimal fragmentation; 

- Higher signal-to-noise ratios leasing to lower 
background ionization; 

APCI - Handles high flow rates; 
- Insensitive to salts; 

- Generation of background ions from solvents; 
- Requires high vaporization temperatures that 
cause thermal degradation; 

 

Mass analyzers 

The determination of the mass-to charge ration of the ions is performed through mass analyser, 

under vacuum, in order to guarantee that ions do not collide with uncharged molecules, as air or 

with each other [139]. Mass analysers are divided into two main groups, according to their 

performance: nominal mass analysers (mass resolution: around 1:1000 – 2000; mass accuracy: 

integer) and high resolution mass analysers (mass resolution: 1:7000 - 100,000; mass accuracy: 

below 1 ppm) [202], which are summarized in Table 2.2.  

Ions separated in mass analyzer can be analysed by a detection system that measures the ion 

current (flux) constantly as a function of the scan in progress and quantifies ions arriving in small 
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time segments, called bins. The measurement of each ion current is performed by intermediate 

detectors which concerns either a conversion dynode and electron multipliers in quadrupole and 

ion-trap analyzers or a micro-channel plate (MCP) detector coupled to time-to-digital converter 

(TDC) in time-of-flight (TOF) instruments [162]. 

The resulting mass spectrum displays masses of the ionized molecule and its fragments, which 

correspond to the masses of the component atoms. This mass spectrum provides enhanced 

analytical and structural information of the system and there are several available software 

applications that make the interpretation of MS data relatively easy [139]. 

Table 2.2 General comparison of mass analyzers (Adapted from Siuzdak (1996) [202] and Villas-Bôas et al. 

(2007) [162]) 

Mass analyzer 
Typical mass range 
and resolution 

Advantages Disadvantages 

Ion trap 
Range m/z: 2000 
Resolution: 1500 

- Small size; 
- Medium resolution; 
- Simple design, low cost; 
- Well-suited for tandem mass 
spectrometry; 
- Easy for positive/negative ions; 

- Limited mass range; 
- Subject to space charge effects 
and ion molecule reactions; 
- Artifacts such as harmonics and 
sidebands are present in the 
mass spectra; 

Quadrupole 
Range m/z: 3000 
Resolution: 2000 

-Tolerant of high pressures; 
-Well-suited for electrospray; 
-Ease of switching between 
positive/negative ions; 
- Small size; 
- Relatively low cost; 
- High sensitivity and reproducibility; 

- Mass range limited to about 
3000 m/z; 
- Poor adaptability to MALDI; 
- Peak heights variable as a 
function of mass; 

TOF 
Range m/z:   

Resolution: 350 

- Highest mass range; 
- Very fast scan speed; 
- Simple design, low cost; 
- Ease adaptation to MALDI; 

- Low resolution; 
- Difficulty of adaptation to 
electrospray; 
- Fast digitizers used in TOF can 
have limited dynamic range; 
- Limited precursor-ion selectivity 
for most MS/MS experiments; 

Fourier transform – 
mass spectrometry 
(FT-MS) 

Range m/z: 10,000 
Resolution: 30,000 

- High resolution; 
- Well-suited for tandem mass 
spectrometry; 

- High vacuum required; 
- Expensive; 
- Instrument massive; 
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Direct injection mass spectrometry (DIMS) 

Separation of complex mixtures is usually required prior to MS analysis, however, direct injection of 

samples is another approach [200]. Direct injection mass spectrometry (DIMS) consists in injecting 

directly samples metabolites in front of the ion source of a mass spectrometer without prior 

chromatographic or electrophoretic separation [203]. This is a high-throughput methodology which 

allows to process samples within a few minutes. The short analysis time increases inter-sample 

reproducibility and improves the accuracy of subsequent cluster analysis [200]. DIMS analyses 

have been performed using electrospray ionization – mass spectrometry (ESI-MS) [204, 205]. 

The major DIMS disadvantage is the purported ‘matrix effect’ [206], that can commit the sensitivity 

and accuracy of the quantification in different matrix composition samples. This approach can be 

used in non-target metabolomics when the matrix composition variation is low or does not affect 

the comparison between samples [203]. 
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2.5 METABOLOMICS 

Metabolome is defined as the full collection of low-molecular-weight metabolites present within a 

cell or biological system under a given set of physiological conditions, and is considered the 

endpoint of “omics” analysis [11, 31, 32, 207]. Changes in cells physiology, as a result of gene 

deletion or overexpression and/or environmental changes, can be measured throughout the 

metabolome, complementarily to transcriptome and proteome [11, 207]. In Figure 2.10 is 

presented the relationship between genomics, transcriptomics, proteomics, and metabolomics, 

called the “omics” cascade [30].  

 

 

Figure 2.10 The ‘omics’ cascade summarizing the relationship between metabolomics to genomics, 

transcriptomics, proteomics and phenotyping in “systems biology”. 

 

In Figure 2.10, it is possible to observe that being complementary fields, genomics looks for the 

entire collection of genes which leads to the genome of an organism (“What can happen…”), 

transcriptomics looks at the entire transcriptome, that is the complete set of messenger RNA 

(mRNA) transcripts (“What appears to be happening…”), and finally proteomics looks at the 

proteome (“What makes it happen…”) concerning to the expressed proteins that are encoded by 

the genome. In the same manner, metabolomics can be defined by the complete set of small 
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molecules involved in general metabolic reactions, synthesized by a cell, tissue or organism (“What 

has happened and is happening…”) [143]. The combination of the ‘omics’ fields can provide a 

comprehensive overview of the response of biological systems to disease, genetic and 

environmental perturbations [30]. 

In spite of this complementarity, metabolome measurement has some advantages [36]. It is just 

one part of the system biology through it may be the most useful as it is the most direct 

observation of the status of the cellular physiology [143]. In a biological system, at a given time, 

the rate of an enzymatic reaction is a function of the available substrates, products and modifiers, 

as well as gene expression. Although changes occurring in the expression of proteins might have 

little influence on fluxes [208], the influence on the concentration of intermediary metabolites can 

be large [209]. The effect of the metabolic pathways activities is reflected more accurately in the 

concentration of metabolites (or pool of metabolites) comparing to the concentration of the specific 

enzymes (or mRNAS encoding them) [11]. Indeed, while the genome is what might be expressed 

and the proteome is what is actually expressed, the metabolome is what is done and represents 

the current status of a biological system [143]. 

Metabolomics is the comprehensive analysis of metabolome in which all the metabolites of an 

organism are identified and quantified [31, 32], and represents the evolution from large-scale 

analysis of RNA and proteins at the systems level [210]. It also studies the dynamic changes in the 

metabolome [143]. Different studies on metabolomics field revealed different analysis approaches, 

presented in Figure 2.11, which can be distinguished between two different methodologies, namely 

targeted approaches (target analysis and quantitative metabolite profiling) and non-targeted 

approaches (metabolic fingerprinting and metabolic footprinting) [30, 149, 211].  

Target approaches concern to quantitative measurements of metabolites and, while in metabolic 

profiling sets of analytes of a common biochemical pathway or chemical group are quantified, in 

target analysis, specific metabolites (substrates or products) are quantified [30, 145, 150, 212-

214]. The non-targeted approaches lead to non-quantitative analysis, where statistical tools are 

used for raw data processing in order to extract distinctive features in different samples types [11, 

140, 195, 203, 215]. 
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Figure 2.11 Contextualization of different investigations of metabolomics approaches (Adapted from Oldiges 

et al. 2007 [150]). 

 

2.5.1 Target analysis 

Target metabolomics includes target intracellular and/or extracellular metabolites analysis and 

metabolite profiling and concerns to the quantification of one or a reduced group of metabolites of 

interest in the dynamic metabolic systems, respectively [194, 203]. In target metabolomics, 

previous to metabolites measurement it is important to understand the context of their biochemical 

pathways [216]. Using the internal standards of the defined metabolites it is possible to quantify 

them in samples, by metabolites concentrations normalization across samples, being possible to 

have a comprehensive understanding of a wide range of metabolic enzymes, their kinetics and end 

products, as well as the biochemical pathways where are included [217]. The study of the 

predefined metabolites or group of metabolites can also highlight novel associations between them 

leading to specific physiological states [31]. 

MS - based metabolomics platform after the separation methodology (liquid or gas 

chromatography) for target metabolomics analysis, allows the exact identification of each molecule 

which can be fully defined and incorporated into the analysis. Also, prior to the full analysis, it is 

crucial to define metabolites specific transitions, retention times and dynamic concentrations 

ranges [217]. In target metabolic analysis and metabolite profiling, where specific metabolites or 

group of metabolites are measured, the most used platforms include GC-MS [218-220], HPLC-
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MS/MS [195, 221, 222], or capillary electrophoresis – mass spectrometry (CE-MS) [190, 198, 

223].  

 

2.5.2 Non-target metabolomics 

Metabolomics analysis using analytical methodologies including chromatographic systems followed 

by MS or NMR can produce large amounts of analytical data [211, 224], and once optimized can 

provide highly quantitative data of many metabolites at the same time [40]. This is called high-

throughput or non-target metabolomics analysis and concerns to the comprehensive analysis of all 

the measurable analytes in each sample, known or unknown. An unbiased and comprehensive 

high-throughput analysis of a wide range of chemical compounds [31] can provide a critical context 

necessary to obtain information about cells physiology and metabolism from metabolite data, 

allowing also the integration of transcriptomics, proteomics, and metabolomics data to achieve a 

complete systems biology approach [217].  

Methodologies for samples preparation, the sensitivity and specificity of the analytical technique, 

protocols and time required to manage the large amounts of raw data generated, problems in the 

identification and characterization of unknown small molecules, the reliance on the analytical 

report of the platform in use and the trend of detection of highly abundant molecules, are the main 

constraints of non-target approaches [217].  

Rapid improvements in MS – based methodologies and computer hardware and software have 

emerged for a high-throughput metabolomics assessment and large datasets handling [225]. In 

this context, it is of great importance to establish a robust data handling pipeline, combining 

different data processing technologies in order to provide an interpretation of the hundreds of 

chromatographic peaks and mass spectra produced as well as to make meaningful associations 

with different instruments [31]. 

 

Metabolic fingerprinting or endo-metabolome 

Metabolic fingerprint (or endo-metabolome) concerns to the quantification of intracellular 

metabolites involved in the living system, and can be applied to a specific metabolite or to a small, 
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isolated group of intracellular metabolites [226]. The intracellular metabolism of yeasts is extremely 

fast - the turnover of an intracellular metabolite can be under 1 second even for metabolites at mM 

concentrations [11] - and thus the quantification of intracellular metabolites requires an efficient 

quenching of the cell metabolism followed by an effective separation of intra- and extra- cellular 

metabolites and subsequent extraction of intracellular compounds [139]. Since the intracellular 

metabolism is more dynamic than the extracellular, such might be a weakness of this analysis, as 

it is still not possible to fulfill the need for and accurate, simple and rapid timescale for the turnover 

of an intracellular metabolite [11]. Different methodologies have been developed for intracellular 

metabolites determination [11]. These include efficient samples preparation methods (referred in 

Section 2.4.1), sensitive and accurate methods for detection of metabolites, for improving data 

mining and data analysis [160]. 

 

Metabolic footprinting or exo-metabolome 

In dynamics systems such as fermentations using microorganisms, extracellular metabolites 

include those excreted and secreted by cells into their living environment and also byproducts of 

the natural environment resources which are left and discharged into the medium [3]. Changes in 

extracellular metabolites lead to modifications of the fermentation medium as a result of the 

microorganisms’ activities. Extracellular metabolites released by yeasts strains represent the 

metabolic footprinting (or exo-metabolome) of these microorganisms [11, 215]. Metabolic 

footprinting resulting from the metabolic activity of yeasts in the process, manipulate the cellular 

metabolic status, concerning to intracellular metabolism, leading to the production of other by-

products in the system [32, 208]. According to Villas-Bôas et al. (2005), the metabolic footprinting 

analysis provides crucial information for fundamental and applied research, namely: different 

strains distinction, cells “quorum sensing” elucidation with metabolites identification and integrated 

with physiological and phenotypical observations, and metabolic charts of intracellular metabolic 

pathways optimization. In addition, it can be used for monitoring the physiological status of cells 

under conditions inducing cellular stresses or in the presence of biomarkers [160]. 

Metabolic footprinting strategy for high-throughput data analysis follows an ordered methodology 

which includes extracellular samples preparation, injection in analytical equipments (e.g. GC-MS or 

LC-MS), utilization of chromatographic signals processing methodologies to extract relevant 
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metabolomic information, and finally use of multivariate statistical tools in order to structure the 

information obtained, for further understanding of the system [11, 227].  

 

 

Figure 2.12 Non-target pipeline used in metabolites footprinting analysis (adapted from Kell et al. (2005) 

[11]). 
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2.6 TECHNOMETRICS TECHINQUES 

Technometrics concerns to the development and use of statistical methods in physical, chemical 

and engineering science and also information sciences and technology. In all these fields, 

technometric allows building comparative metrics of product quality and competitiveness for a 

given product, process or service [228]. Complex processes are characterized by rich and often not 

recognized information in multivariate and multidimensional data. Technometrics provides the 

utilization and understanding of the richness of this information by using simple principle models, 

multidimensional spaces and projections. So, it leads to the use of statistics for the physical, 

chemical, and engineering sciences [229]. 

High-throughput non-target metabolomics leads to the study of the chemical processes involving 

metabolites [32, 145]. Technometric tools applied to metabolomics include bioinformatic and 

chemometric approaches that can be used for understanding the overall complexity, namely 

metabolic pathways changes and interactions, interesting metabolites measurements and/or “de-

novo” metabolites discovery [29, 58, 225]. 

Bioinformatic tools can be applied to chromatographic signals, in order to deal with analytical 

experiments and the instrumental signals [29]. In this context, these algorithms provide the use of 

the maximum potential of those techniques in metabolites extraction and interpretation of the 

biological information [229, 230]. Also, bioinformatic tools development follows the continuous 

evolution of the instrumental techniques available, in order to obtain increased number of 

metabolites and higher peaks efficiencies, to correctly characterize the overall process.  

On the other hand, data-driven chemometrics methods enable the analysis of complex multivariate 

data, whereby the extraction of the relevant information is facilitated. These are generally used to 

reduce the complexity or number of parameters from metabolomics analysis. Chemometricians 

use dimensional reduction to identify the key components that seem to contain the maximum 

amount of information, or that yield the greatest differences [231] 

In the following Sections, bioinformatic and chemometric tools that can be used for high-

throughput metabolomics analysis are explored. 
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2.6.1 Bioinformatic tools applied to chromatograms processing 

In metabolomics pipeline, data preprocessing is a critical step and demands the reduction of 

analytical data complexity and the correct extraction of peaks or metabolites present in the raw-

data for further data analysis using other algorithms [232-234]. Preprocessing includes the use of 

the most suitable algorithms for noise filtering and baseline correction (noise or signal 

discrimination), peaks detection within all samples, deisotoping (clustering the isotopic peaks 

corresponding to the same compound), alignment, identification and normalization [232]. 

Several commercial or free available software based on metabolomic raw data preprocessing, peak 

detection and/or quantification have been developed in the last years [232]. Free software tools for 

metabolomics data processing are summarized in Table 2.3. Commercial MS software, either 

provided by the manufacturers of the MS equipment or by independent vendors, generally puts 

emphasis on the graphical user interface (GUI) and the usability [235]. Some examples of 

commercial MS software include MarkerLynk (Waters Corporation, Milford, MA), ChromaTOF (Leco 

Corporation, St, Joseph, MI), ChemStation (Agilent Technologies, Santa Clara, CA), AnalyzerPro 

(SpectralWorks, Runcorn, UK), ClearView (Markes International, Rhondda Cynon Taff, UK) and 

IonSignature (Ion Signature Technology, N. Smithfield, RI) [12]. In the recent years, several freely 

available software packages have been developed for metabolomics data processing by the 

academic community. In Table 2.3 are presented some examples of freely available software 

characteristics and tools referred by each one. In this research work only XCMS, MetAlign TM and 

the commercial software application MarkerLynkx were explored, and will be explained in more 

detail. 

 

Raw data files 

Raw data resulting from GC-MS or LC-MS analytical tools is the compilation of data points vectors 

gathered during small successive time slots. Each data point is characterized by m/z and intensity 

value, and is obtained in different data formats, leading to the analytical instrument. In order to get 

open each file format, different tools can be used, namely mzXML, NetCDF or mzML [236-238]. 

Files in mzXML format are generally larger than those in the compressed form, NetCDF (binary 

compact format) and mzML (inline zlib compressed format).  
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Table 2.3 Data preprocessing steps covered by free available tools 

Software 
Licence and 

language 

Experimental 

Data 
Filtering 

Peak 

Detection 

Deisoto-

ping 
Alignment 

Gap 

filling 

Visuali-

zation 

Identifi-

cation 

Normali-

zation 

Multivarite 

analysis 

Metabolic Database 

connection 
Reference 

MZmine GNU GPL (Java) GC-MS ■ ■ ■ ■ ■ ■ ■ ■ - - [239] 

MZMine2 GNU GPL (Java) 
LC-MS; LC-

MS/MS 
■ ■ ■ ■ ■ ■ ■ ■ - 

■ PubChem; KEGG; 

METLIN; HMDB 
[240] 

MetAlignTM  Free LC/GC-MS ■ ■ - ■ - - - - - - [38] 

OpenMS 
LGPL (C++ 

library) 
LC-MS ■ ■ ■ ■ - ■ ■ - - - [241] 

XCMS GNU GPL (R ) LC-MS ■ ■ - ■ ■ ■ ■ - - - [18] 

XCMS2 GNU GPL (R ) LC-MS ■ ■ - ■ ■ ■ ■ - ■ ■ (METLIN) [242] 

XCMS Online Free (Web based ) LC-MS ■ ■ - ■ ■ ■ ■ - ■ ■ (METLIN) [243] 

MathDAMP / 

TriDAMP 

Free 

(Mathematica) 
- MS based ■ ■ - ■ - ■ - - - - [244] 

Metabolite 

Detector  
GNU GPL (C++) GC-MS ■ ■ ■ ■ ■ ■ ■ - - ■ NIST library [245] 

TargetSearch GPL (R, C) GC-MS ■ ■ - - - - - - - - [246] 

PyMS 
GNU GPL2 

(Python) 
GC-MS ■ ■ - ■ - ■ ■ - - - [235] 

MetSign  
LC-MS / DI-

MS 
■ ■ ■ ■ - ■ ■ ■ ■ 

■ MetSign; LIPIDMAPS; 

KEGG; HMDB 
[247] 

MetaboAnalyst 

2.0 
Free (R) 

GC-MS / LC-

MS 
■ ■ - ■ - ■ ■ ■ ■ ■ SMPDB; HMDB [248]  

 



 48 LITERATURE REVIEW 
 

 

CASTRO CC | 2013 

Raw data filtering 

Chromatographic signals contain, as any other instrumental signal, three main components, 

namely, signal, noise and background, which differ in their frequency. The frequency of signal is 

typically intermediate between noise (highest) and background (lowest) frequencies. 

Chromatogram enhancement can be obtained by eliminating the noise and background 

components [29]. Noise filtering or baseline correction provides peaks detection and greatly 

reduces the detection of false positive features [241]. Different smoothing filters for noise 

reduction can be applied, namely a peak-area-preserving Gaussian low-pass filter, Savitzky-Golay 

filter based on least squares smoothing  and non-linear filtering [241, 249, 250]. 

Noise filtering and peaks detection algorithms are combined within the same algorithm, as XCMS, 

XCMS2 or XCMS Online [18] combine noise filtering and peaks detection algorithms and MetAlign 

[38] is capable of performing baseline correction, noise filtering, and saturation and mass-peak 

artifact filtering, using thresholds and time intervals to reduce noise. 

 

Peaks detection and deconvolution 

Peaks detection and deconvolution allows to identify and quantify peaks signals corresponding to 

molecules in the sample, and reduce the data complexity for further analysis [251]. Peaks 

detection algorithms should be capable of correctly identify true signals and circumvent the false 

positives. Deconvolution, on the other hand is used to enhance selectivity of a specific 

chromatographic technique, mainly when the separation conditions cannot be improved to 

improve peaks separation [29].  

Matched filter [18], centWave and centroidPicker [233] are three different peak detection 

algorithms, that can be applied in XCMS. Matched Filter bins the data into slices of 0.1 m/z width 

and determines the signal in each slice by taking the maximum intensity at each retention time 

(RT). Then it applies the second-derivate Gaussian to filter each slice. Therefore, it uses a signal-

to-noise ratio (S/N) cutoff of 10 where the noise is the mean of the unfiltered data. However, this 

algorithm does not separate pairs of co-eluting peaks that fall within half of m/z bin. In this 

context, centWave can be applied, which finds a region of interest based on the mass accuracy 

and expected chromatographic peak width. Chromatographic analysis is performed using 
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continuous wavelet transform, in order to detect peaks with different widths, being the peaks 

intensity determined by the maximum value of the centroid peak in the estimated peaks 

boundaries. Local baseline and noise are detected by the truncated media and standard deviation 

in an extended region of interest. Finally centroidPicker finds the local maximum of intensity in 

each spectrum, and for each maximum. If the next scan has the corresponding maximum within 

the specified m/z window, then connects it with the local maximum in the next scan. On the other 

hand, if the next scan does not have the corresponding local maximum, it checks the length of 

the currently connected maxima, and discards the chromatographic peak if the length is not more 

than the minimum length threshold. When the spectrum has a local maximum with no 

corresponding maximum in the previous scan, starts a new chromatographic peak.  

 

Deisotoping 

During chromatographic separation, a particular molecule may produce a pattern of peaks whose 

relative heights and m/z lead to the isotopic distribution of the elements composing 

corresponding ions [252]. In these cases, selecting each observed peak as an unique chemical 

specie, will result in many false positives identification. Clustering the isotopic peaks 

corresponding to the same compound (deisotoping) can help on the identification of samples 

metabolites, as it reduces the complexity of the data by removing the redundant information 

[232]. 

 

Alignment or warping 

Chromatographic peaks alignment or warping concerns to the synchronization of the time axis, 

which is not a trivial problem [29]. This is performed to compare metabolites match features 

between samples and it should be performed prior to the statistical analysis. Different issues 

must be taken into consideration within finding matching peaks, namely: i) differences in the 

retention time across samples may be nonlinear; ii) a feature in a sample may have multiple 

possible matching features based on the m/z and retention time values (alignment algorithms 

should identify the correct match); iii) some peaks cannot be present in all samples [232]. 
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In XCMS, the alignment algorithms perform the correction of retention times of all samples in a 

single step [18]. Samples are divided using overlapping bins of 0.25 m/z wide for matching 

peaks in the mass domain, and then it applies a kernel density estimation method [253] for 

estimating the RTs distribution of the matching peaks based on the m/z bind, and determines the 

RT interval based on the estimated distribution. Furthermore, XCMS can also use a group of 

“well-behaved” peaks as temporary standards (that can be also used in the iterative alignment) to 

determine the non-linear deviation in the RT for each sample and correct it.  

MetAlign TM alignment can be performed using two distinct algorithms, namely rough alignment 

and iterative alignment [38]. While in the first, peaks are aligned based on the amplitude 

throughout a dynamic time window defined by the user, in the iterative mode, peaks contained in 

all data sets are used as reference points and the difference in RT is calculated using a minimum 

number of reference masses with a certain amplitude in the time window. The difference in RT is 

calculated in relation to the first data set (the reference), and this difference is then used to 

correct the shift in the RT for the next alignment cycle. These iterations continue, by reducing the 

time range dimension, the smallest amount of reference masses and their amplitude, until the 

dynamic time window ranges the mass peak width.  

Comparing the recall / sensitivity and the precision of some algorithms generally used for peaks 

alignment across samples, Lange et al. (2008) [254] concluded that XCMS perform better in 

metabolomic data sets (while OpenMS is better for proteomics data alignment). 

Signal shifts and correlation optimized warping approaches have been also used for 

chromatograms warping and their increased efficiency improved their popularity and interest to 

use in chemometrics [255-257]. 

 

Gap filling  

After chromatograms alignments some peaks can disappear, as during peaks detection, some of 

these cannot be detected. The non-detection can occur if peaks have low intensity, or have 

destroyed quality shape or correspond to an incorrect peak detection. The gap filling recovers the 

missing peaks from raw-data by statistics prediction of their position [29]. 
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Identification 

The identification task is usually more difficult in LC-MS metabolomics analysis comparing to GC-

MS. For both analytical techniques, the identification of the peaks is generally based on a 

combination of the computation efficiency and the analytical data. Different databases have been 

developed to cooperate with the computational challenge. According to Forcisi et al. (2013) [193], 

the total number of metabolites reported in databases ranges from 1,000 up to 200,000. 

In target metabolite profiling methodologies, databases include metabolites and metabolic 

pathway resources. Some examples are Kyoto Encyclopedia of Genes and Genomes (KEGG) 

[258-260], MetaCyc [261], Lipidmaps [262] and BRENDA [263] which are designed to improve 

the study of the metabolism and different metabolites transversely to other organisms. These also 

facilitate several practical applications in biology, such as comparative genomics and target 

genomics application [231].  

In non-target metabolomics, as thousands of metabolites are rapidly characterized at the same 

time, which are therefore used to identify disease biomarkers or model large-scale metabolic 

processes [11, 12], databases should assemble more than metabolites and pathways names, the 

NMR and MS spectra, GC-MS retention indices, chemical structures and chemical concentrations 

[231]. Some emerging metabolomics databases, which fulfil these requirements, include the 

human metabolome database (HMDB) [264], METLIN [265], BiGG [266], National Institute of 

Standards and Technology (NIST) [267] and Spectral Data Base (SDBS) [268].  

As different GC-MS or LC-MS instrumental setting can be used for metabolomics analysis, the 

establishment of an universal spectral library becomes very challenging [231]. In this context, 

efforts have been made to create a MS/MS library from different instruments [269], and the field 

of mass spectrometry is nowadays driven by high accuracy and mass resolution analytical 

equipment for annotating metabolites with an increased degree of confidence [33] 

 

Normalization  

Normalization is usually performed for data correction, refinement and reducing the overall 

variability for further mathematical analysis [270, 271].  

Different factors can support the use of normalization algorithms during metabolomics analysis, 

including biological factors - different concentrations magnitudes of the measured metabolites, 
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distinct fold changes in concentrations of metabolites leading to the imposed variation, and 

metabolites concentrations variations under similar experimental conditions, - and others – 

technical deviations concerning to sampling, samples handling and analytical issues; and 

variance introduced by biological or technical variations [270]. 

Two different normalization methods can be applied in order to eliminate the undesirable 

systematic deviation of the measurements. One concerns to the use of internal standards, that is, 

metabolites representing a group of metabolites and chromatographic behavior. The other 

concerns to the use of scaling factors, as median and/or average of peaks intensities [232] and 

dispersion measuring [270], for each sample based on complete dataset.  Some of the most 

used algorithms are auto-scaling [272], Pareto scaling [273], range scaling [274] or vast scaling 

[275]. 

 

Data visualization  

Data visualization during metabolomics preprocessing is of great importance as it provides the 

visual pattern of each data handling algorithm, which allows a faster supervision of metabolites 

patterns and chromatograms quality [232]. 

 

2.6.2 Chemometric analysis 

Chemometrics has been applied to organic and analytical chemistry [276], food research [58, 

277] and environmental studies [278].  

Similarly to other “metrics”, chemometrics depends on the use of different mathematical models 

which demands knowledge of statistics, numerical analysis, operation analysis and applied 

mathematics [229]. The most common statistical tools used in chemometrics for dimensional 

reduction include the analysis of principal components (PCA), cluster analysis and computer 

graphics [279]. Predictive modeling (regression and classification) using partial least squares 

regression (PLSR) is also widely used in chemometrics. Once the chemical properties of data are 

understood, it is possible to modify the chemometric tools to better explore the chemical data 

[229]. 
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Exploratory data analysis 

Principal component regression (PCR) is usually a way of reducing the data redundancy and 

dimension. This issue usually occurs in situations when one is measuring   independent 

variables, which produces an  -dimensional description of the state of the system, with 

interrelated or exactly the same information [280].  

One PCR methodology is PCA which is not a classification algorithm but a non-supervised 

clustering for important effects detection in data, by reducing the dimensionality of a dataset 

[231]. These effects can be detected and explored by samples position on the samples space 

(scores analysis), by variables correspondences inside each principal component (loadings 

analysis) and also by variance contribution (eigen values) [34]. PCA allows the identification of 

statistically significant loadings on each principal component providing a better interpretation on 

how the different variables affect the metabolomics data variability [281]. 

PCA is a very useful tool as it has the ability of handling collinearity among many variables, and 

its ability to compress information about many variables into few independent (uncorrelated) 

principal components [272]. Furthermore, it is particularly useful as it allows one to easily detect, 

visually or graphically, sample patterns or grouping [231]. Also, detailed descriptions of 

theoretical and computational aspects of PCA algorithms have been documented, which allows its 

implementation in different programming languages. In practice, this tool is already available in 

several user friendly statistical software packages that provide the interpretation of the resulting 

graphical interfaces. 

PCA can be done by eigen values decomposition of a data covariance (or correlation) matrix, 

singular value decomposition (SVD) of a data matrix or nonlinear iterative partial least squares 

(NIPALS), usually after mean centering (an normalization or using Z-scores) the data matrix of 

each attribute [34]. Singular value decomposition algorithm in metabolomics data sets concerns 

to the decomposition of the initial matrix       , a scaled matrix where   corresponds to 

samples and   to variables, to      ., which is done by (Equation 2.3), where    is the signal 

and      the estimated noise, respectively. 
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Equation 2.3 

The decomposition of the initial matrix    , presented in (Equation 2.4), is performed using SVD, 

which algorithm is presented in (Equation 2.5), where   are the scores,    the loadings, and   

the singular values [34, 282-284], considering the conditions (Equation 2.6) and (Equation 2.7), 

where   is the identity matrix (some variations of the technique do not require T to have unit 

norms) [34]. 

   
  

   
   

   

   
  

    
 

                        

Equation 2.4 

       

Equation 2.5 

     

Equation 2.6 

      

Equation 2.7 

In order to distinguish between the number of relevant decompositions, a randomization test is 

performed to the original data matrix    , to determine the number of relevant singular values 

[285]. The number of independent singular values and decompositions that discriminate 

metabolic differences in chromatographic spectra is determined based on the singular values of 

randomized chromatograms spectrum with the original using equation (Equation 2.8), where 

         or       and      
  are the statistically relevant scores and loadings of  , respectively 

[281]. 

            
    

Equation 2.8 
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After signal decomposition into principal components, not all features in the chromatographic 

spectra fingerprint preserve the same quality. So, the reconstruction of these samples is 

statistically not possible, which means that features that are not compressed, cannot be analyzed 

in the scores plot [286]. The quality of features extraction can be assessed by the Q-statistic 

(square prediction error) of the relevant decompositions [287], which is given by Equation 2.9, 

where   is given by Equation 2.10: 

        

Equation 2.9 

       
Equation 2.10 

The Q statistic confidence interval (  ) is determined using the average and standard deviation of 

  [288-290]. Samples above    do not present robust feature extractions [291]. In these 

situations, contribution plot can be estimated in order to understand which variables are affecting 

the Q-statistics [292, 293], indicating why features are not captured.  

The other well known statistic parameter in SVD analysis is the Hotelling    
   that can be used 

to measure the distance to the center of data. This parameter is determined by (2.12), where   is 

given by (2.13) and   by Equation 2.6 for the number of variables    : 

  
            

Equation 2.11 

  
 

   
    

Equation 2.12 

The upper confidence interval for the Hotelling T2 parameter (  
 ) is determined using the number 

of relevant singular values, the number of variables and de distribution value with 1 and n-1 

degrees of freedom at   level of significance (α = 0.05). Samples above the   
  are considered to 

present significantly different chromatographic features [294]. So, the   and    
  statistics plot 

describe the lack of model fit and the samples variability in the PCA subspace, respectively [292]. 

PCA methodology features several interpretation facilities, including scores and loadings values, 

biplots (overlap of scores and a loading plot), diagnostic plot (given by   and   
  statistics) and 



 56 LITERATURE REVIEW 
 

 

CASTRO CC | 2013 

contribution plots, which allows an enlarged analysis and overview of the preprocessed data set. 

Although, several critical documentations have been reported regarding the application of this 

statistical methodology to chemometrics measurements [29, 295-298]. The model precision for 

the given purpose, model diagnostics and interpretational issues are the most common issues 

discussed. Kozak and Scaman (2008) [299] discussed the capacity of PCs with higher 

percentage of variation for discriminating the information for samples classification, using some 

already published papers where it is not possible to perform this discrimination. 

Kjeldahl and Bro (2010) [298] discuss some practical issues for visual model interpretations, 

such as: high variance values of two components cannot confirm, per se, the conclusion taken 

from their visualization; correlations or variance between variables cannot be inferred by the 

proximity to each other or to the origin axis (it is necessary to check these correlations); model 

validation reinforces the conclusions from the visualization tools. 

One of the most used methodologies for data exploring is cluster analysis (CA). Clustering is the 

non-supervised, semi-supervised and supervised classification of patterns into groups [300]. 

Grouping of samples is performed based on their similarities, given by the distance, correlation or 

some combination of both. Two distinct methods of CA can be found, namely hierarchical 

algorithms or non-hierarchical algorithms. While in hierarchical algorithms the groups are found 

and elements are allocated to the groups, and this assignment cannot be altered, in non-

hierarchical clustering, the assignment of objects into groups can change throughout the 

application of the algorithm, being thus more flexible for the optimal solution discovery [301].  

The increasing of the complexity of experimental design and the continuous improvement of the 

performance of the analytical instruments created the need to generalize  the multivariate statistic 

tools [302]. Multi-way principal component analysis (MPCA) is one example of a generalized 

methodology [303, 304], derived from PCA. This is an efficient tool for reducing the high 

dimensionality of data arrays.  

In MPCA, the initial three-dimensional array         , where   corresponds to samples,   to 

variables and   to time intervals throughout the experiments. This initial tensor is then unfolded to 

        to reduce the dimensionality of data in order to apply PCA [10]. The output graphics of 

MPCA is similar to the PCA statistics algorithm application. 
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Calibration and prediction methodologies 

Samples classification is a crucial step in a pattern recognition problem, which dedicates to 

identify the class or membership of a given object. On the other hand, the purpose of multivariate 

prediction in metabolomics is to set up for a mathematical relationship for predicting the values of 

one or more output variables including wine properties or yeasts behavior, based on the 

observations taken from samples.  Partial least squares regression (PLSR) is a classification and 

prediction model, a prognostic two-block regression method based on estimated latent variables 

and applies to the synchronized analysis of two data sets of the same objects [35].  

PLSR is particularly used for predicting a set of dependent variables – matrix   - from large sets 

of independent variables (called predictors) – matrix   [305], as presented in Equation 2.13. The 

  matrix is similar to that one used in PCA, where the number of rows     is the number of 

samples and the number of columns     is the number of variables. In matrix  , the number of 

columns     represent the number of responses concerning to   samples. 

The principles behind the PLSR are similar to that of PCA, although in PLSR, a second piece of 

information is used, namely, the labelled set of class identities. It maximizes the covariance 

between the ‘test’ or predictor variables and the training variable(s) [231], and describes their 

common structure [305]. 

   
  

   
   

   

   
  

    
 

                               
  

 
  

                         

Equation 2.13 

The linear model resulting from the partial least squares (PLS) technique, concerns in the 

response of a variable matrix    , a descriptive or predictor variable matrix     , a regression 

coefficient      and a noise or error term    , as it is presented in Equation 2.14. Substituting 

the predictor variable matrix by   as it is presented in Equation 2.15, the   matrix for PLS model 

application is given by Equation 2.16. 

         

Equation 2.14 

     

Equation 2.15 
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Equation 2.16 

So, given Equation 2.6 and Equation 2.14, PLS regression finds components from   that are also 

relevant for  . Distinctively, PLSR searches for a set of orthogonal components (called latent 

vectors) which performs simultaneous decomposition of   and   that explain as much as 

possible the covariance between both. So, the latent variables are obtained by Equation 2.17 and 

Equation 2.18, with the constraints given by Equation 2.19 and Equation 2.20, and     be 

maximal.  

           

Equation 2.17 

           

Equation 2.18 

      

Equation 2.19 

      

Equation 2.20 

 

A regression step is followed where the decomposition of   is used to predict  . When the first 

latent vector is found, it is subtracted from both   and   and the procedure is re-iterated until   

becomes a null matrix [305]. 

So, PLSR models are used for data calibration and prediction. N-way partial least squares (N-PLS) 

creates a single model where all  -columns contribute to the loadings of the model. A partial least 

squares–1 (PLS-1) is a model built on a single  -column and the model reflects only the 

covariance between the   block and that single  -column. 

 

Unfolded-partial least squares  

The unfolded partial least squares (U-PLS) works similarly to PLS-1 [306], but firstly the second-

order data are first vectorized or unfolded along one of the data dimensions [307, 308]. Therefore 
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a PLS model is built using the unfolded data and the nominal  -column. For example, applying 

the U-PLS to chromatographic data matrices -        - where   corresponds to retention times 

or scans, and   to mass-charge ratio, these are firstly vectorized in         vectors, and 

then a usual PLS model is built using these data together with the vector of calibration 

concentrations -        . This provides a set of loadings   and weight loadings   (bothe size 

    , where   is the number of latent factors or samples) as well as regression coefficiens 

      . So, the estimation of the analyte concentration is performed according to Equation 

2.21, where    is the test sample score, obtained by projecting the vectorized data for the test 

sample         onto the space of the   latent factors (Equation 2.22), where        implies 

the vectorization of the operator. 

     
   

Equation 2.21 

                    

Equation 2.22 

 

Classification and prediction methodologies 

PLS-R was not initially designed for classification. However, based on the algorithmic structure of 

PLS-R, different algorithms were developed, namely partial least squares for discriminant analysis 

(PLS-DA) and partial least squares logistic regression (PLS-LOG), which were easily adapted for 

the classification and discrimination problems (i.e. supervised classification) [309, 310]. 

PLS-DA is an extension of the PLSR and enables the classification of the multivariate space 

directions by fitting a regular PLS model between the   matrix and an artificial   matrix providing 

discriminant directions with well separated observations, according to class membership [231]. In 

PLS-DA, the response variable is categorical, i.e., indicates the classes/categories of the samples. 

[310]. An optimal number of latent variables can be obtained by using cross-validation or external 

data sets. Cross-validation consists in partitioning many times the dataset into a calibration or 

training set, from which a model will be built, and a validation or test set and there it will be used 

for assessing the model’s performance [59].  
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PLS-LOG works as a probabilistic classificatoin model, used for predicting the outcome of a 

categorical dependent variable, based on the predictor variables. The ‘logistic’ or ‘logit’ regression 

provides a qualitative response model on estimating the values of the parameters. In PLS-LOG, 

only two categories of dependent variables are used. At the end, if a variable exhibits a high 

estimate, it indicates that the variable had a high information in the classification, given the 

correlation that the variable has with other variables in the data [311]. 

PLS-DA and PLS-LOG are PLS-R methodologies designed to operate with high-dimensional and 

highly correlated data. The capacity of these methods to do inference in high-dimensional space 

makes them ideal candidates for a nonlinear analysis of data based on an increase of their 

dimension [312]. These are the main reasons for the ability to be applied to high-throughput non-

target metabolomics approaches as classification tools. 

 



 

 

 

 

 

 

 

CHAPTER 3 

3. YEASTS PHENOTYPIC AND PHYSIOLOGICAL RESPONSES 

TO INDUCED STRESS CONDITIONS 

 

Yeasts response to stress is a complex phenomena and its understanding is of great importance 

from both scientific and industrial points of view. In this work, toxic and inhibitory conditions were 

added to fermentations with three different Saccharomyces cerevisiae strains: S288c, CA11 and 

PE-2. The impact of the inhibitory molecules introduced was monitored using the CO2 production 

kinetics while physiological and phenotypic changes of yeasts cells were evaluated by measuring 

biomass, intra- and extracellular metabolites, as well as, the flocculation profile of CA11 strain. 

Chemometric tools, as multi-way principal component analysis (MPCA) and partial least squares 

logistic regression (PLS-LOG) were used for characterizing the yeasts physiological behavior under 

the induced conditions and to predict the flocculation phenotype according to the measured 

parameters. 

According to CO2 production kinetics and MPCA analysis, it was found that the presence of 1-

butanol, furfural and 5-HMF induced physiological and phenotypic changes of the three yeast 

strains, as a response adaptation. Changes occurred mainly by the interference of these molecules 

on the enzymatic activity of the glycolytic pathway and biomass production, at different levels. 

Under these conditions, it was found a statistically significant decrease on CO2 production rates, a 

higher glucose accumulation in the extracellular medium, as well as, higher intracellular and 

extracellular glycerol levels, compared to the control.  
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The three yeast strains presented distinct fermentations performances, and the physiological 

response of the strain S288c showed to be completely different from CA11 and PE-2. CA11 strain 

produced increased levels of intracellular glycerol and its flocculation capacity markedly changed 

under 1-butanol, furfural and 5-HMF. This result evidenced the occurrence of the inhibition of the 

flocculation profile in response to the toxic and inhibitory stresses, which showed to be correlated 

with the overproduction of intracellular glycerol. This relationship was confirmed by PLS-LOG, 

where intracellular glycerol and trehalose, as well as extracellular acetic acid production showed to 

be linked to the inhibition of yeast cells flocculation. 

 

 

 

 

 

 

 

 

 

 

The results presented in this Chapter were adapted from: 

Castro CC et al. Characterization and prediction of physiological and phenotypic behavior of 

different Saccharomyces cerevisiae strains under induced stress conditions by multivariate analysis 

(To be submitted). 
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3.1 INTRODUCTION 

The industrial handling of yeasts in bio-fuel, food and beverage production introduces distinct 

disturbances mainly osmotic, oxidative, temperature, nutrient starvation, ethanol toxicity, by-

products inhibition, among others [7, 8]. The yeasts exposure to these harsh environments usually 

results in transformations in their genome, cytoplasm and cell membrane, being related with 

morphological and physiological differentiations, which largely interfere with the population 

dynamics and fermentation process [313]. 

Food and beverage fermentation using Saccharomyces cerevisiae is accompanied by the 

production of several compounds, namely alcohols, aldehydes, organic acids, esters, organic 

sulphides, carbonyl compounds and fusel alcohols [3]. At high concentrations, these fusel alcohols, 

as isopropanol and tert-Amyl alcohol (2-methyl-2-butanol) impart off-flavors and toxic conditions to 

yeasts cells whereas at low concentrations, together with esters, make an important contribution to 

flavors and aromas quality of the final product [4, 5]. The presence of some fusel alcohols within 

the fermentation processes may induce oxidative stress, being associated to morphology 

abnormalities, including cells filamentation in both haploid and diploid cells [71].  

In very high gravity (VHG) fermentation processes, characterized by high saccharides content in the 

fermentation media, for bio-ethanol production, the range of pre-treatments that can be applied to 

the lignocellulosic raw materials for obtaining a more accessible feedstock for subsequent 

fermentation, introduces some inhibitory compounds for yeasts, including furan derivatives (5-

Hydroxymethylfurfural – 5-HMF - and furfural) [314]. The composition of sugars and inhibitors in 

these media vary with raw material and the chosen pre-treatment and hydrolysis methods [315]. 

Bio-butanol production with engineered S. cerevisiae strains has also been explored as a gasoline 

substitute [111, 113, 114]. Compared to bio-ethanol, bio-butanol presents higher energy content 

and lower water absorption and volatility, making this an interesting bio-fuel, although it has an 

increased toxic effect on microorganisms cells [104, 116, 117]. 

High ethanol and other toxic compounds concentrations introduce some oxidative stresses in the 

medium, that may interact with yeast cells membranes by changing their polarity and declining its 

function as a hydrophobic barrier [131].  

Trehalose is one of the main reserve carbohydrates in yeasts, which provides cells protection 

through stress conditions by keeping their structure [132, 133]. This disaccharide is also related 
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with the protection from lipid peroxidation during oxidative stresses, as it is an important ROS 

scavenger [316]. 

Also, glycerol has two essential functions in yeasts cells, namely as a sink for the excess NADH 

which is produced by anabolic reactions during anaerobic conditions [317] and as an osmolyte, 

balancing a high external osmotic pressure during salt or sugar stress due to low water activity 

[318]. S. cerevisiae intracellular glycerol increases with the decrease of the water potential in the 

medium which leads to its role in osmoregulation of yeast cells by balancing the osmotic stress of 

the membranes [136]. 

Nowadays, both industry and research groups are focused in developing new strategies to obtain 

customized microorganisms to enhance a specific bioprocess. These strategies can be performed 

by genome modifications or by screening existing organisms showing better adaptive responses 

under specific stresses [88]. Genomic characterization of yeast strains implies inherent costs and 

labour limitations, hindering the compilation of a complete database of the thousands of different 

yeasts strains with different properties, bio-geographical distribution and applications [319]. So, 

one easier and common way to select yeasts strains, according to the bioprocess requirements 

and purpose, is their phenotypic characterization, allowing to select the most adapted for improved 

performances under specific fermentations conditions, based on an “eliminatory” approach that 

reduces the initial high number of the candidate strains [320]. 

Yeast phenotypic switching is the reversible occurrence of the spontaneous emergence of colonies 

with different morphological and physiological characteristics, providing population variability and 

contributing to a rapid adaptation to a changing harmful environment. During phenotypic switching 

of strains, genes representing diverse functions, including metabolism, adhesion, cell surface 

composition, stress response, signalling, mating type, and virulence are differently expressed, and 

one third of the differences among cell types are known to be related to metabolic pathways [321]. 

The study of protective and stress tolerance mechanisms of some indigenous strains during the 

industrial fermentation processes has raised great interest over the years [8, 88, 322, 323], and 

several strategies have been suggested to improve yeasts efficiency, including single gene 

manipulation, evolutionary engineering studies or genome shuffling, as well as optimization of 

fermentative medium [7, 324].  
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Fermentations progress is usually monitored by measuring some variables, such as sugars, 

temperature, pH and dissolved oxygen. However, these are still not enough to detect and diagnose 

problems in alcoholic fermentations [325]. Chemometrics methods, concerning the use of 

multivariate “empirical” modelling in chemical or biochemical experiments, have been developed 

for describing fermentation processes by extracting its crucial information and thus increasing the 

knowledge of the bioprocess [29]. Principal component analysis (PCA) and partial least squares 

regression (PLSR) are some of the statistical tools developed in this context [29, 229]. The use of 

both methodologies provides a more realistic framework of chemical and biochemical data 

analysis, as the joint effect of variables is taken into account, instead of using only one or a very 

few variables at the same time [29, 229]. These were already used to discriminate different wine 

strains varieties according to genetic and phenotypic characteristics [319], yeasts metabolic state 

through fermentations based on spectroscopy [286] and abnormal wine fermentations detection 

[326]. 

The present study aims at monitoring and characterizing the physiological effect of the presence of 

different stress molecules through the fermentations responses of three different strains of S. 

cerevisiae - S288c (reference strain), CA11 (industrial and flocculent) and PE-2 (industrial). Toxic 

and inhibitory conditions added were 1.0% (v/v) ethanol, 1.0% (v/v) 1-butanol, 1.0% (v/v) 

isopropanol, 1.0% (v/v) tert-Amyl alcohol, 0.2% (v/v) furfural and 0.5% (v/v) 5-HMF. Control 

fermentations were also performed using each strain, in the absence of stress. The 

characterization was performed based either on the measurement of physiological parameters, 

including biomass, CO2, ethanol, glucose, glycerol and acetic acid concentrations, or on the 

determination of intracellular concentrations of trehalose and glycerol. With respect to the 

flocculent strain, CA11, the impact of the induced fermentation conditions on the flocculent 

phenotype was explored by evaluating its sedimentation profile. Multi-way principal component 

analysis (MPCA) [326] and partial least squares logistic regression (PLS-LOG) [309, 310], were the 

statistical methodologies applied to parameters measured during batch fermentations. 
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3.2 MATERIALS AND METHODS 

3.2.1 Fermentation process 

Three S. cerevisiae strains were used, including: laboratory reference – haploid S288c [327] – an 

industrial flocculent strain - CA11 - belonging to Federal University of Lavras (Brazil) collection, 

isolated from sugar cane fermentation process to produce “cachaça” [328] – and the industrial 

strain, isolated from Brazilian industrial bio-ethanol production also from sugar cane fermentation - 

PE-2 [329]. The incubation was performed in YPD broth (YPDb) (Sigma Aldrich - ref. Y1375, USA) – 

1.0% (w/v) yeast extract, 2.0% (w/v) bacto-peptone and 2.0% (w/v) glucose - during 12 hours at 30 

ºC under constant agitation (150 rpm) for 12 - 14 hours. 

Liquid fermentations were performed in YPDb, where stress conditions were added, namely 1.0% 

(v/v) ethanol (≥ 99.8% Riedel-de-Haën, Germany), 1.0% (v/v) 1-butanol (≥ 99.0%, Sigma Aldrich, 

USA), 1.0% (v/v) isopropanol (≥ 99.5%, Sigma Aldrich, USA), 1.0% (v/v) tert-Amyl alcohol (≥ 99.0%, 

Sigma Aldrich, USA), 0.2% (v/v) furfural (98.0%, Sigma Aldrich, USA), and 0.5% (v/v) 5-HMF 

(99.0%, Sigma Aldrich, USA). Control fermentations without adding any toxic substance were also 

performed. These concentrations were considered based on different researches and according to 

their toxic and inhibitory effects in cells physiology, such as the impact on cells morphology and 

conformation [71, 107, 111, 115], and/or their influence in fermentation rates reduction [330, 

331]. A control fermentation was also done with each strain. 

Fermentations were performed using 50 mL of YPD broth in Erlenmeyer flasks (100 mL) fitted with 

perforated rubber stoppers enclosing glycerol-locks for maintenance of anaerobic conditions at 150 

rpm orbital agitation, as it is presented in Figure 3.1 [324]. 

Cell suspension was aseptically collected from incubation medium by centrifugation (10 min at 

9000 × g, 4 ºC) and re-suspended in 0.9% (w/v) NaCl to a concentration of 200 mg fresh 

yeast/mL. The yeasts cells were pitched at about 1.0×106 cells/mL into the culture medium to 

start the fermentation. Stress conditions were added to the medium except in the control, which 

was performed in the absence of stress conditions. Liquid fermentations lasted for approximately 

24 h at 30 ºC, and were monitored by mass loss (related with CO2 production [324]). Samples 

were taken within each fermentation condition at times corresponding to different levels of CO2 

production: 0, 10, 40, 85, 95 and 100% of the total concentration of CO2. For each sample, 

determinations of yeast cells biomass (dried weight), extracellular glucose, ethanol, glycerol and 
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acetic acid and intracellular glycerol and trehalose concentrations were performed. For the 

flocculent strain, CA11, sedimentation assays were also performed in order to understand the 

effect of each induced stress condition in the flocculation capacity. 

 

Figure 3.1 Experimental setup for liquid fermentations. 

 

3.2.2 Analytical procedures for determination of dried yeast biomass and extracellular 

metabolites 

Samples for yeast dry mass were prepared by centrifuging 5 mL of the fermentation broth sample 

(10 min, 4800×g, 4 ºC) and resuspended in the same volume of 0.9% (w/v) of NaCl to wash the 

yeast cells. From these, 1.5 mL at each level was centrifuged (10 min, 14000×g, 4 ºC) in a pre-

weighted dried tube (24 hours at 105 ºC). The supernatant was completely removed and the pellet 

was washed with the same volume of distilled water, mixed in the vortex and centrifuged again and 

dried overnight at 105 ºC. Dried yeast mass was obtained by the difference between the mass of 

the tube plus yeast pellet and the mass of the dried tube [332]. 

Batch fermentations samples were centrifuged (10 min, 4800×g, 4 ºC) and the supernatant was 

decarbonated to remove the dissolved CO2 in order to correctly measure the pH, then the 

supernatant was stored at -20 ºC. Glucose, ethanol, glycerol and acetic acid were measured using 

High Performance Liquid Chromatography (HPLC) analytical technique with a refractive index (RI) 

detector and a MetaCarb 87H (300 × 7.8 mm) column at 60 ºC, using 0.005 mol/L of H2SO4 as 

eluent at 0.7 mL / min flow rate. All standards employed were of analytical grade. 
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3.2.3 Intracellular metabolites quantification - trehalose and glycerol – and flocculation assays 

Yeasts cells were harvested from the liquid fermentation media at the stationary growth phase and 

centrifuged (5 min, 4800×g, 4 ºC). The supernatant was rejected and cells were weighted and re-

suspended in an ice-cold 0.9% (w/v) NaCl solution, to achieve a final concentration of 200 mg of 

fresh yeast per mL. The cell suspension was mixed in the vortex until the solution was 

homogeneous and then 0.5 mL of these samples was boiled for 5 min to disintegrate yeast 

membranes. Boiled samples were then centrifuged (5 min, 13400×g, 4 ºC), and the supernatant 

was collected to a previously weighted tube. Trehalose and glycerol were quantified by HPLC, using 

the same conditions as for extracellular metabolites quantified (referred in Sub-section 3.2.2). The 

final concentrations of intracellular trehalose and glycerol were normalized to yeast dry mass, by 

considering that dry yeast mass corresponded to 30% (w/w) of the fresh yeast mass [324, 333]. 

 

3.2.4 Flocculation capacity analysis 

The flocculation capacity of S. cerevisiae CA11 strain under each fermentation condition was 

evaluated, according to Soares et al. (1992) [334], with slight modifications from Gomes et al. 

(2012) [333]. Samples were firstly deflocculated using a 15 g / L sodium chloride (NaCl), pH 3.0, 

solution and then 1 mL of 100 mM calcium chloride (CaCl2), pH 3.0, was added to aggregate cells 

again. 200 µL samples were periodically (every 2 min) taken at a fixed distance of 20 mL in the 

graduated cylinder during 10 min and resuspended in NaCl for optical density at 600 nm (OD600) 

measurements. Control assays were also performed without CaCl2 for all the fermentation 

conditions tested. The sedimentation profiles were obtained by plotting the percentage of yeast 

cells in suspension for each sample.  

 

3.2.5 Chemometrics applied to fermentations 

Six samples were collected from each of the 21 different batch fermentations, concerning to the 

three tested yeast strains through seven different fermentation conditions. For each sample, 

physiological parameters were measured. The same number of samples per fermentation provided 

a homogeneous data matrix, enabling to compare variables discrimination between fermentations.  
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Multi-way principal component analysis (MPCA), a principal component analysis (PCA) variant 

method published by Urtubia et al. (2012) [326], was used to classify samples according to the 

measured physiological information. Samples variability and variables contribution for their 

differences were explored by scores and loadings of the MPCA methodology. Furthermore, partial 

least squares logistic regression (PLS-LOG) was used to predict the CA strain flocculation 

phenotype according the induced stress conditions for fermentation. 

 

The 3D data tensor X (S,V,T), where S corresponds to samples (strains under each condition), V 

corresponds to variables (parameters measured for each sample), and T corresponds to batch 

fermentation time-course, was organized according to the methodologies purposes. In MPCA the 

tensor X is unfolded to a bi-dimensional matrix for further applying PCA [326]. In MPCA the bi-

dimensional M matrix corresponds to S × TV dimensions, where each row concerns to batch 

fermentation.  

PLS-LOG is a probabilistic classification model [335] which was used for predicting the outcome of 

the flocculation phenotype of CA11 strain, based on the predictor features, that is, the physiological 

behavior of the strain under each fermentation condition. So, the X tensor, unfolded to the M’ 

matrix as TS × V dimensions, and a Y matrix are used for PLS-LOG prediction. The logistical or logit 

regression determines the impact of the independent variable (the flocculation phenotype) to 

predict the membership of the dependent variables (physiological parameters), determining the 

probability of success over the probability of failure of the flocculation phenotype, according to the 

physiological behavior under the used conditions. The partial least squares (PLS) methodology 

maximizes the co-variance between both M’ and Y matrices, while determines the eigen vectors 

and eigen values of the co-variance matrix between the two matrices [35]. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Fermentations synchronization 

The introduction of stress or inhibitory molecules to fermentations leads to different yields and 

distinct metabolites production or consumption rates [21]. In this context, the synchronization of 

fermentations performed under different environmental conditions becomes a crucial step for 
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comparing the physiological measurements and to evaluate the performance of each S. cerevisiae 

according to the external conditions. 

In this study, the way to synchronize fermentations was selecting sampling data points concerning 

to percentages of CO2 production (0, 10, 40, 85, 95 and 100% of the total concentration of CO2), 

for all fermentation conditions. Several preliminary fermentations were previously performed using 

the same conditions, in order to accurately define these sampling points concerning to different 

growing phases of yeast cells: lag, exponential and stationary phases. Thus, it was possible to 

compare the physiological information of the three yeasts strains used, under different stress 

conditions. 

In Figure 3.2, CO2 production kinetics within different fermentations for the three strains are 

presented. According to this figure, similar fermentation profiles were obtained for S288c, CA11 

and PE-2 (Figure 3.2 A, B and C, respectively), however, the adaptation of each strain seems to be 

dependent on the fermentation condition. For the three strains studied, the presence of 1.0% (v/v) 

ethanol (■), isopropanol (×) and tert-Amyl alcohol (+), did not cause a statistically evident change in 

the CO2 production profiles (at a level of significance of  α = 0.05), when compared to the control 

fermentation (♦). This result suggests that the introduction of such concentrations - 1.0% (v/v) - 

does not represent a harmful environment for these strains, as these metabolites can be produced 

during the fermentation process and yeasts can easily adapt to their presence in the medium.  

The adaptation to environmental conditions can be observed during the lag phase for the three 

strains, where it seems to be lower in the presence of unfavourable conditions compared to the 

control (♦), although less evident for PE-2 (Figure 3.2 C) and CA11 strains (Figure 3.2 B). The 

stress response mechanism of industrial strains, commonly used in bio-ethanol or “cachaça” 

production, within VHG processes, should easily be able to adapt to ethanol rich environments, as 

final ethanol concentrations up to 10% (v/v) can be reached [88, 336]. CA11 and PE-2 can tolerate 

up to 17% (v/v) ethanol [88], and the effects on yeasts physiology induced by the presence of 

ethanol at high concentrations have been reported for many years [337]. Lorenz et al. (2000) [71] 

have previously demonstrated that the presence of only 1% (v/v) ethanol stimulated 

hyperfilamentation of diploid cells in nitrogen limiting conditions, however in YPD medium the 

fermentation rate was not affected nor the morphology of cells (results not shown). 
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Figure 3.2 CO2 profiles within YPDb fermentations using: A – S288c , B – CA11 and C – PE-2, under 

different fermentation conditions: (♦) control, (■) 1.0% (v/v) ethanol, (▲) 1.0% (v/v) 1-butanol, (×) 1.0% 

(v/v) isopropanol, (+) 1.0% (v/v) tert-Amyl alcohol, (●) 0.2% (v/v) furfural, (-) 0.5% (v/v) 5-HMF. 

 

On the other hand, it is possible to observe that in the presence of 1.0, 0.2 and 0.5% (v/v) of 1-

butanol (▲), furfural (-) and 5-HMF (●), respectively, the CO2 production rate undergoes a 

statistically significant decrease for the three strains (at a level of significance of α= 0.05), 

compared to the other fermentation conditions. Figure 3.3 presents the fold-changes, compared to 

the control fermentation, occurring under these significant conditions. 
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Figure 3.3 Fold-changes in CO2 production rates, introduced by the presence of the conditions that 

present a statistically significant effect on growth: ■ 1% (v/v) 1-Butanol; ■ 0.2% (v/v) Furfural; and 

■ 0.5% (v/v) 5-HMF. 

 

As it is possible to observe in Figure 3.3, S288c and CA11 showed a similar effect on CO2 

production rates decrease in the presence of 1-butanol, furfural and 5-HMF. The higher decline 

was verified under 0.5% (v/v) 5-HMF – about 3-fold reduction change -, followed by 0.2% (v/v) 

furfural and finally 1% (v/v) 1-butanol - 2.9- and 1.6-fold reduction changes. PE-2 verified the higher 

reduction under 0.2% (v/v) furfural, which was similar to S288c and CA11, followed by the 

reduction in the presence of 0.5% (v/v) 5-HMF and finally by 1% (v/v) 1-butanol - about 2-fold 

reduction changes. 

Some studies have been performed regarding the furan derivatives effect in fermentation process, 

especially in bio-ethanol production using lignocellulosic raw materials. Furfural and 5-HMF are 

known to compete for NADH, interfering with cell glycolysis, during regeneration of NAD+ [96]. 

Taherzadeh et al. (2000) found that furfural has a more severe inhibitory effect in yeasts cells than 

5-HMF [338], and Almeida et al. (2007) proved that it is also present in lower levels in the 

fermentation medium (e.g. in VHG medium) [87]. These authors also observed that the tolerance 

mechanism of furans leads to the increased availability of the NADPH and NADH levels in the cell, 

mainly produced by the pentose phosphate pathway (PPP). These are the cofactors used by 
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NADPH-dependent alcohol dehydrogenase and NADH-dependent alcohol dehydrogenase to reduce 

HMF and furfural, respectively. So, the tolerance mechanism of these molecules depends on the 

availability of both free NADPH and NADH [339]. An increased activity of PPP might also mediate 

the protection and repairing of furans induced damage in cells and many NADPH- and NADH-

dependent enzymes are responsible for the cellular defence mechanisms against various stresses 

[340]. 

In this study, the lower negative effect in CO2 production rates, which leads to the higher tolerance 

capacity, of PE-2 under 5-HMF suggests that this strain might have increased PPP activity and 

thus, higher levels of NADPH which can be used for furans reduction in the medium. This 

improved tolerance highlights its higher ability to be used in bio-ethanol production through 

lignocellulosic raw materials. Although furfural and 5-HMF are some of the inhibitory compounds 

most commonly found in lignocellulosic hydrolysates, a variety of other inhibitors may also be 

present in the industrial medium, according to acid concentrations, temperature and other 

conditions used for hydrolysis, which might affect yeasts metabolism [341]. 

Several studies were already performed in this context, where PE-2 showed a high-quality 

performance under VHG fermentation conditions, which introduce increased concentrations of 

saccharides and inhibitory compounds, as well as to higher concentrations of the final ethanol 

produced [88, 336]. Also different approaches have been used in order to improve its fermenting 

capacity under harsh conditions [333].  

The effect of 1-butanol in the CO2 production rates of the three strains is very similar, and the 

significant effect can be mainly explained by the strongest ability of this molecule to permeate 

and/or interact with the cellular membrane [118, 119]. It can induce the loss of the cells ability to 

maintain the internal pH (due to the increased proton permeability of the cytoplasmatic 

membrane), the inhibition of the membrane ATPase [120, 121], the loss of intracellular molecules, 

as proteins, RNA and ATP (as the fluidity of the membrane increases) [110] and finally the 

obstruction of glucose uptake [120]. 

 



74 PHENOTYPIC AND PHYSIOLOGICAL RESPONSES TO INDUCED STRESS CONDITIONS 

 

 
CASTRO CC | 2013 

 

3.3.2 Multiway principal component analysis (MPCA)  

MPCA methodology was applied to the unfolded X matrix, leading to the physiological parameters 

representing the stress adaptation behavior of the three strains to each induced condition, and the 

resulting scores and loadings are presented in Figure 3.4. In this figure, scores concern to samples 

(represented as symbols with three replicates) distributed through the PC1 versus PC2 space while 

loadings are represented by the arrows. Two relevant orthogonal decompositions were found to 

explain 77.5% of the physiological data variability (55.5% PC1, 22.0% PC2). According to the 

relevant decomposition PC1 presented in Figure 3.4, the physiological response to the induced 

fermentation conditions of the laboratorial strain – S288c (black symbols) – is distinct from the 

industrial strains – CA11 (blue symbols) and PE-2 (green symbols). On the other hand, the 

distribution of samples through PC2 emphasizes the physiological differences between 

fermentations performed in the presence of 1.0% (v/v) 1-butanol (+), 0.2% (v/v) furfural (∇) and 

0.5% (v/v) 5-HMF (□) compared to control and in the presence of 1% (v/v) ethanol (∆), isopropanol 

(×) and tert-Amyl alcohol (◊), suggesting that both groups trigger different stress response 

mechanisms to yeasts. 

The distribution of loadings (variables) through the PC1, in Figure 3.4, evidences the increased 

contribution of glucose, ethanol and acetic acid concentrations for differences between S288c and 

the industrial strains CA11 and PE-2, which in turn are most influenced by biomass, CO2 and 

glycerol production kinetics. In PC1 it is also evident that the presence of 1-butanol induced the 

production of higher concentrations of acetic acid, mainly by S288c. In PC2, the presence of 

furfural and 5-HMF and 1-butanol lead to an increased production of glycerol, higher accumulation 

of glucose in the fermentation medium and lower concentrations of ethanol and CO2 produced by 

the three strains tested. Under these fermentation conditions, the higher accumulation of glucose 

in the medium occurs when using the S288c. 

Acetic acid is an important end-product of energy metabolism [342], and its enhanced production 

entails the occurrence of an increased production of its precursor acetyl-CoA and energy to survive 

to unfavourable conditions [343]. In the presence of 1-butanol, an overproduction of acetic acid 

and a higher accumulation of glucose are evident, mainly during the lag phase (T0 to T2). This fact 

confirms the enlarged levels of toxicity for S288c, suggesting that it is affecting the glycolytic 

pathway, which begins with glucose consumption. In S. cerevisiae, two main routes are known to 

produce acetyl-CoA, namely, pyruvate breakdown and β-oxidation of fatty acids [342]. So, in this 
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context, as pyruvate production by glycolysis is being limited by the presence of such stress, it is 

suggested that the acetyl-CoA factor can be produced by the fatty acids metabolism [343]. 

The increased accumulation of glucose in the fermentation medium using S288c in relation to 

CA11 and PE-2, under the same conditions, highlights the higher susceptibility of S288c to the 

external toxic and inhibitory conditions. Effectively, CA11 and PE-2 have been used in some 

research works on VHG fermentation conditions, where they are exposed to high concentrations of 

saccharides and inhibitory compounds, as well as to higher concentrations of the final ethanol 

produced, both revealing increased capacity to ferment under such harsh conditions [88, 336]. 

On the other hand, S288c is a laboratory strain obtained by genetic crosses, completely sequenced 

and is used as a reference strain being therefore more susceptible to stressful conditions [324].  

The increased concentrations of extracellular glycerol produced in response to the presence of 1-

butanol, furfural and 5-HMF, mainly by CA11 and PE-2, suggests the increment of the glycerol-3-

phosphate dehydrogenase activity [344]. For these two strains, the production of extracellular 

glycerol seems to occur in order to equilibrate the redox balance and regenerate reduced 

nicotinamide adenine dinucleotide (NADH) associated with the production of biomass [344, 345], 

which is also increasing. 

The presence of 1% (v/v) ethanol, isopropanol and tert-Amyl alcohol molecules in fermentations 

does not introduce drastic changes in the fermentation medium of the three strains tested, as the 

three yeasts were able to produce the main end-products, ethanol (E) and CO2 (C), within 

fermentations. This suggests that the glycolytic pathway, through which these products are 

produced, was not affected by the presence of 1% (v/v) ethanol, isopropanol and tert-Amyl alcohol 

molecules at the concentrations tested. 
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Figure 3.4 Biplot of MPCA scores (symbols) and loadings (arrows), using the three replicates of physiological 

measurements of S288c (black), CA11 (blue) and PE-2 (green) strains under: ο - Control; ∆ 1% (v/v) 

ethanol; + 1% (v/v) 1-butanol; × - 1% (v/v) isopropanol; ◊ - 1% (v/v) tert-Amyl alcohol; ∇ 0.2% (v/v) furfural; 

and □ 0.5% (v/v) 5-HMF. Loadings correspond to variables measured: acetic acid (A), biomass (B), CO2 (C), 

glucose (D), ethanol (E) and glycerol (F) in time 0 to 5. 

 

3.3.3 Intracellular metabolites analysis 

Intracellular metabolites were measured at the end of the fermentation processes under all the 

environmental conditions tested. In Figure 3.5, the intracellular trehalose concentrations of each 

strain under the different fermentation conditions, normalized to the dried yeast cell mass, are 

presented. According to this figure it is possible to observe that the industrial flocculent strain CA11 

revealed higher levels of trehalose (6.53 to 34.65 mg/gDY) when compared with PE-2 and S288c, 

for all the induced conditions. The higher concentration was obtained in the presence of 1.0% (v/v) 

ethanol. The presence of 1.0% (v/v) ethanol, 1-butanol and isopropanol induced an increased 

production of intracellular trehalose by CA11, when compared to the control. Different authors 

have shown that contents of intracellular trehalose in flocculent yeasts are directly related to its 

tolerance to toxic conditions, such as the presence of ethanol [7, 346]. 
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Trehalose content in S288c and PE-2 cells was lower than in CA11, and ranged between 0.14 and 

9.65 mg/gDY and 0.02 to 2.48 mg/gDY, respectively. Still, the levels of trehalose in PE-2 were much 

lower than in S288c.  

The higher levels of trehalose for the S288c strain were obtained in the presence of 1.0% (v/v) 

ethanol, 0.2% (v/v) furfural, and 0.5% (v/v) 5-HMF, whereas for the PE-2 were in the presence 

1.0% (v/v) 1-butanol (2.48 mg/gDY) and for 0.5% (v/v) 5-HMF (1.82 mg/gDY).  

It was already reported that the presence of alcohols in the fermentation medium induces the 

production of reactive oxygen species (ROS), which can react with and damage complex cellular 

molecules, including lipids, proteins, and nucleic acids [316, 347, 348]. Mitochondria electron 

chain, is the major intracellular source of ROS, namely superoxide anion and hydrogen peroxide 

[348]. When exposed to oxidative conditions, one of the most important targets for oxygen-derived 

free radicals, known as reactive oxygen species (ROS), is the membrane phospholipids. This is 

mainly because of the increased levels of unsaturated fatty acids and the high solubility of 

molecular oxygen in hydrophobic membranes relative to aqueous environments [316]. So, the 

sensitivity to both heat and oxidative stress was dependent on membrane lipid composition [347]. 

According to some authors [349, 350], trehalose is involved in the equilibrium of yeasts membrane 

and may also be accumulated during exponential growth and used as a reserve sugar under 

starvation. The production of trehalose within the fermentation process was found to be also 

related with the protection from lipid peroxidation, during the oxidative stress, being very important 

in scavenging ROS, similarly to ascorbate, flavonoids and glutathione [316]. 

As it was referred in Section 3.3.1, pentose phosphate pathway (PPP) seems to have a relevant 

function in furfural and HMF tolerance, as it regenerates the co-factors needed to reduce the furan-

derivates to less-inhibitory molecules [340]. Gorsich et al. (2006) showed that an over-expression 

of the first PPP enzyme, namely ZWF1, can commit glucose 6-phosphate to the PPP (to produce D-

6-phospho-glucono- -lactone), as opposed to other pathways, such as glycolysis or trehalose 

synthesis [339]. 

Taking into consideration these studies and the results obtained, in the presence of ethanol, 1-

butanol and isopropanol (hydroxyl functional group-containing molecules), CA11 produces higher 

levels of trehalose for the survival of yeast cells and to reduce lipid peroxidation by free ROS. In 

S288c and PE-2 fermentations, the higher levels (but much lower than in CA11) of trehalose 
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produced under furfural and 5-HMF suggested that the activity of ZWF1 protein is decreased under 

these conditions. 

 

 

Figure 3.5 Intracellular metabolites at the end of fermentation processes: A – Trehalose; B – Glycerol using 

■ S288c, ■ CA11 and ■ PE-2. 

 

Based on the intracellular glycerol measurements presented in Figure 3.5B, it is possible to 

observe an increase of internal glycerol content for the strain CA11 when compared to S288c and 

PE-2. Also, for the CA11, 1.0% (v/v) 1-butanol, 0.5% (v/v) 5-HMF and 0.2% (v/v) furfural, revealed 

higher internal glycerol content values. These results confirm also that the presence of these three 

molecules induces cell membrane composition changes [92-94, 118, 119], influencing the activity 
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of the transporters proteins responsible for the regulation of the intra and extracellular osmotic 

pressure, thus controlling the by-product production and accumulation in the intracellular and 

extracellular media [351]. 

 

3.3.4 Stability of yeast flocculation under stress conditions 

The flocculation phenotype of yeast cells entails some advantages when compared with non-

flocculating yeasts used in biotechnological processes, mainly the possibility of reusing cells for 

extended periods of time, the easiness of separating cells from the liquid phase and/or the 

minimization of the contamination risk [126]. In this study, flocs formed by CA11 in control 

fermentation, appear to be bigger than in the presence of stress, suggesting that the oxidative 

conditions induced weakened the forces involved in the flocculation phenomena, resulting, in some 

cases, in the loss of the ability to form flocs [2]. In order to quantify the effect of stress in the 

flocculation properties of CA11 strains, the sedimentation capacity was determined under the 

different oxidative stresses, as displayed in Figure 3.6. 

 

Figure 3.6 Sedimentation capacity of CA11 cells in YPDb under: (♦) control, (■) 1.0% (v/v) ethanol, (▲) 

1.0% (v/v) 1-butanol, (×) 1.0% (v/v) isopropanol, (+) 1.0% (v/v) tert-Amyl alcohol, (●) 0.2% (v/v) furfural, (-) 

0.5% (v/v) 5-HMF. 

 

As it is possible to observe in Figure 3.6, the different induced stresses originated distinct 

sedimentation behaviors. Enhanced sedimentation profiles were found in the control and under 
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1.0% (v/v) ethanol and isopropanol, suggesting that these conditions favour the flocculation of 

yeasts cells. CA11 has a natural flocculent phenotype [352] that is preserved under favourable 

environmental conditions; the addition of ethanol confirms the results that indicate its positive 

effect on flocculation leading to the reduction on cell-cell electrostatic repulsion, improving the cell 

interaction and consequently enhancing flocculation [353-356]. Also, the presence of isopropanol 

was identified as influencing the phylamentous growth of yeast cells [71] and its addition to the 

fermentation media did not change the flocculation phenotype [356].  

Furthermore, the presence of 1.0% (v/v) tert-Amyl alcohol somehow affects the cell wall 

composition and interferes in the yeast flocculation profile as an adaptive response [2]. Finally, a 

distinct behavior was observed for CA11 strain under 1, 0.2 and 0.5% (v/v) 1-butanol, furfural and 

5-HMF, situations where a high percentage of cells in suspension - 70, 80 and 100% respectively – 

is observed. This observation was more representative under 0.5% (v/v) 5-HMF, where cells 

remained suspended in the fermentation medium. Changes in sedimentation profiles of CA11 in 

the presence of 1-butanol, furfural and 5-HMF suggest that these interfere with the recognition 

mechanisms of cell surface proteins (called “adhesins” or “flocculins”), and thus affect the 

flocculation phenotype [127]. 

So, as it was observed an overproduction of glycerol under 1.0, 0.2 and 0.5% (v/v) of 1-butanol, 

furfural and 5-HMF, it is suggested that a direct relation between glycerol production and 

flocculation inhibition for the CA11 yeast strain might occur and thus with the CO2 production rates. 

Under toxic conditions, yeasts enable their defence mechanism producing more glycerol and 

inhibiting flocculation [357, 358]. These results indicate that mechanisms used by CA11 as a 

response to the stress conditions leads to the production of both trehalose and glycerol within the 

fermentation process, increasing its chances of survival. 

 

3.3.5 Flocculation classification using partial least squares logistic regression 

In order to better understand changes on the flocculation phenotype of CA11, according to the 

physiological measurements, partial least squares logistic regression (PLS-LOG) was used. The M’ 

matrix, unfolded from the X tensor as TS × V (where TS correspond to samples took at the different 

fermentation times and V to the physiological parameters measured at each time), was used for 

predicting the flocculation phenotype defined in the Y matrix. In Figure 3.7 the PLS-LOG model 
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results are presented, leading to the model scores (Figure 3.7A) and coefficients (Figure 3.7B). In 

Figure 3.7A, it is possible to confirm the different behavior of the CA11 yeast strain under different 

stress conditions. Differences found in the sedimentation profiles of this strain under each induced 

condition, presented in Figure 3.7 and discussed above in Section 3.3.4, can be predicted by the 

PLS-LOG model with a high correlation value (R2= 0.994, p-value < 0.001). This result indicates 

that changes occurring in the physiological response of CA11 under the different conditions can 

predict the flocculation profile of this strain under each condition. This can be seen in Figure 3.7A, 

where the capacity to flocculate is discriminated through the PC1, where fermentations conditions 

that induced an inhibition of the fermentation profile (presence of 1-butanol, furfural and 5-HMF) 

and those where this phenotype was not affected, are grouped in two different groups. 

In Figure 3.7B, it is possible to observe that the variables that are positively correlated with the 

flocculation profile are the biomass production and the extracellular ethanol. On the other hand, 

the extracellular* CO2 (b), glucose (c), glycerol (e) and acetic acid (f), and the intracellular** glycerol 

(g) and trehalose (h) appeared correlated with the inhibition of cells flocculation. Between these, 

intracellular glycerol and extracellular acetic acid showed to have higher weight in the phenotype 

changes. 

The negative effect of glucose, concerning to its higher accumulation in the fermentation medium, 

under 1-butanol, furfural and 5-HMF indicates that yeast cells are not able to metabolize glucose to 

pyruvate through the glycolytic pathway, suggesting that this via is being inhibited by the external 

conditions. So, under these conditions, a decrease of the energy supply (needed for yeast cells 

growth, adaptation and survival), can be occurring. The depletion of the energy supply can 

therefore be offset by the use of acetyl-CoA to produced acetic acid or to be used in the TCA cycle 

in aerobic respiration to produce both energy and electron carriers. The first mechanism underlies 

the higher production of acetic acid by CA11 (and S288c, mainly in the presence of 1% (v/v) 1-

butanol), while the second will provide the generation of energy (ATP) and nicotinamide adenine 

dinucleotide (NAD+), which triggers the glycolytic pathway [3]. 

 

 



82 PHENOTYPIC AND PHYSIOLOGICAL RESPONSES TO INDUCED STRESS CONDITIONS 

 

 
CASTRO CC | 2013 

 

 

Figure 3.7 Partial least squares logistic regression model results: A – Scores of CA11 (A) strain under: (ο) – 

control, (Δ) - 1% (v/v) ethanol, (+) - 1% (v/v) 1-butanol, (×) - 1% (v/v) isopropanol, (◊) - 1% (v/v) tert-Amyl 

alcohol, (∇) 0.2% (v/v) furfural, (□) 0.5% (v/v) 5-HMF; and B – Coefficients (variables) weight in flocculation 

phenotype: (a) – biomass, (b) extracellular CO2; (c) extracellular glucose, (d) extracellular ethanol, (e) 

extracellular glycerol, (f) extracellular acetic acid, (g) intracellular glycerol; (h) intracellular trehalose. 

 

So, the higher toxic and inhibitory levels introduced by the presence of 1-butanol, furfural and 5-

HMF, lead to decreased energy availability and to increased production of acetic acid, which 

causes pH changes in the medium. According to these conditions, energy supply and pH 

modifications seem to directly affect the flocculation expression. On one hand, as flocculation is an 

energetic-dependent process that requires the presence of a residual external energy source [88], 

the maintenance of the flocculation profile depends on the energetic availability. On the other hand, 

unfavorable pH can lead to a reversible denaturation of the flocculins [359], the specific cell 

surface proteins, capable of binding directly to manose residues present on the wall of adjacent 

yeast cells, and mediate the flocculation mechanism [360]. 
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The flocculation phenotype is also influenced by the production of trehalose under 1-butanol, 

furfural and 5-HMF. This metabolite is known to play an important function in cells protection, 

maintaining the structural integrity of the cytoplasm under stress conditions [132, 133], such as 

freeze, heat, dehydratation, ethanol, osmotic and oxidative stress [27, 361-363]. In this context, 

the higher production of trehalose seems to be an adaptation of yeasts cells against the external 

conditions induced. 

Finally, the higher production of intracellular glycerol can be triggered by the excess of NADH in the 

medium [317], as well as by the existence of a high external osmotic pressure, playing an 

important role in the osmoregulation of yeast cells, balancing the osmotic stress of the yeast 

membranes [88]. The increased production of glycerol under these conditions impairs the 

flocculation expression, which is highly influenced by the carbon source metabolism [355, 364]. 

 

3.4 CONCLUSIONS 

The understanding of the dynamics of fermentation processes and mechanisms underlying the 

comprehension of cells adaptation and responses to different environmental conditions is an issue 

that needs to be clarified. In the present work, three different S. cerevisiae strains, a laboratorial 

strain (S288c) and two industrial strains (CA11 and PE-2), were exposed to different oxidative and 

inhibitory conditions in batch fermentations. Physiological and phenotypic parameters were 

measured and analysed for each condition. Therefore, different chemometric tools, namely MPCA 

and PLS-LOG, were used to both characterize the physiological behavior of three different strains in 

batch fermentations under different fermentation conditions, and predict the flocculation feature of 

CA11, based on the physiological changes response of the yeast under those conditions.  

The presence of stress molecules through the fermentation processes triggers different stress 

responses in yeasts strains, interfering with the enzymatic activity of the glycolytic pathway and 

biomass production. 

CA11 and PE-2 were found to be the most robust strains, adapted to resist and survive to the 

harsh environmental conditions induced. Higher fermentation rates were found when using the two 

industrial strains, compared to S288c, even in the presence of the most stressful substances, as 1-

butanol, furfural and 5-HMF. In addition to the decrease of the CO2 production rates, the individual 

measurements of the physiological changes showed that these three molecules enhanced the 
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production of intracellular trehalose in PE-2 and S288c and intracellular glycerol by the three 

strains, also inducing the inhibition of the flocculation of CA11. 

MPCA allowed characterizing the different behavior of S288c, which showed a decreased ability to 

resist to the unfavourable environmental conditions, comparing to CA11 and PE-2. In addition, the 

use of PLS-LOG allowed to classify and predict the flocculation profile changes in CA11, according 

to the fermentations conditions. It was found a correlation between the inhibition of the flocculation 

capacity and an overproduction of extracellular acetic acid and intracellular glycerol.  

The use of both chemometric tools provided an increased information about S. cerevisiae strains 

physiological and phenotypic responses. These results encourage their application to better explore 

the metabolic changes occurring on yeast fermentation as a result of changes occurring/being 

introduced in the fermentation conditions, namely the presence of inhibitory compounds. 

 



 

 

 

 

 

 

 

CHAPTER 4 

4. CLASSIFICATION AND PREDICTION OF METABOLIC 

BEHAVIOR OF YEASTS UNDER INDUCED STRESS 

CONDITIONS  

 

Saccharomyces cerevisiae can undergo different phenotypic, morphological and metabolic or 

physiological changes, according to environmental conditions, as a way of adapting to harsh growth 

conditions. The way that different yeast strains respond to the external conditions is generally 

different, depending on yeasts genomic information. Therefore, the understanding of cells behavior 

is of great importance for fermentations monitoring and to provide an external control of the 

process, inducing cells to grow in a particular state or to produce a specific end-product. 

In the present work, multivariate methodologies including relevant principal component analysis 

(RPCA) and partial least squares logistic regression (PLS-LOG) were used for exploratory data 

analysis and classification. Using these methodologies, it was possible to classify and predict the 

metabolic behavior of two industrial S. cerevisiae strains, CA11 and PE-2, under different induced 

toxic and inhibitory stresses, namely 1-butanol, furfural and 5-hydroxymethyl-furfural (5-HMF). 

The results showed that the cells adaptation response is dependent on the stress molecule used. 

According to the RPCA results, while CA11 fermentations were characterized by the production of 

ethanol, isovaleric acid and isoamyl acetate, PE-2 fermentations led to the production of more 

aromatic compounds, such as esters - phenylethyl acetate, ethyl hexanoate, ethyl octanoate and 

ethyl dodecanoate. The higher levels of aromatic compounds in PE-2 fermentations indicate that 

this strain is less susceptible to the stress effect of induced toxic and inhibitory conditions. 
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PLS-LOG models allowed the prediction of the metabolic behavior of both strains during the 

fermentations, showing a prediction capacity (R2) higher than 0.90 (p < 0.0001) for all tested 

conditions. The presence of 1-butanol induced the production of esters ethyl acetate and isoamyl 

acetate (and its precursor, 3-methyl-1-butanol), as well as butyric acid. The production of the last 

one seems to indicate that the tested S. cerevisiae strains are capable of reducing 1-butanol to 

butyric acid, which suggests the feasibility of using these both strains in bio-butanol production 

systems. 

Finally, it was found that these yeasts can metabolize furfural to produce furfuryl alcohol, and both 

furfural and 5-HMF induced the production and accumulation of fatty acids (such as hexanoic and 

octanoic acid), increasing the medium toxicity and inducing the inhibition of the fermentation 

process. 

 

 

 

 

 

 

 

 

 

The information presented in this Chapter was adapted from: 

Castro CC et al.,  Classification and prediction of Saccharomyces cerevisiae strains behavior under 

induced stress conditions based on target extracellular metabolites profile (To be submitted). 
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4.1 INTRODUCTION 

Fermentation process involves the production of important compounds, that can result from 

chemical components of musts or from the different mechanisms involved in the production 

process [365], and are responsible for the quality and character of the final product [4, 5]. During 

this process, yeasts cells can be subjected to different stress environments, namely osmotic 

pressure, oxidative and/or inhibitory stresses, which can be introduced either by the fermentation 

conditions used or by the high concentration of fermentation end-products [71]. Such harsh 

conditions represent significant obstacles to yeasts performance, leading to metabolic, molecular 

and transcriptomic changes as a response to the environmental conditions that influence yeasts 

growth [366]. In bio-ethanol and/or bio-butanol production processes, yeasts can be exposed to 

inhibitory molecules, such as furfural and 5-HMF, that can be introduced by the substrates pre-

treatments [336], and have been associated to the inhibition of important enzymes, namely 

pyruvate and aldehyde dehydrogenases i in the glycolytic pathway, causing a reduction of the ATP 

synthesis and DNA damages in some cases [87, 95-98]. Also, the end product toxicity represents a 

limiting factor for the development of effective production processes, once it might affect cell 

membranes, cellular pH and nutrient transport processes [92-94], as well as, the inhibition of the 

membrane ATPase [120, 121], the loss of intracellular molecules, as proteins, RNA and ATP [110] 

and finally the obstruction of glucose uptake [120].  

Thus, highly efficient industrial fermentation processes depend not only on the operational 

conditions and medium composition, but also require a suitable selection of yeast strains, able to 

withstand systems conditions [367].  

Metabolome analysis involves the identification and quantification of metabolites from a single 

organism [160]. Compared to genomics, transcriptomics and proteomics, metabolomics is the 

most straightforward representation of the physiological status of a biological system, as 

metabolites are more closely linked to the phenotype of an organism [368, 369]. Different 

approaches have been published for monitoring metabolome changes within the fermentation 

systems comprising approaches as metabolite target analysis, metabolite profiling, metabolite 

fingerprinting, metabolite footprinting and flux analysis [208]. Metabolite footprinting or exo-

metabolome is related to a completely non-invasive approach for extracellular metabolites 

measuring [185]. Several advantages have been identified on the measurement of extracellular 

instead of intracellular metabolites. These include the lower time-consuming for metabolites 
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extraction; the enhanced reproducibility on the quantification of metabolites; the higher 

concentration of metabolites that avoid some limitations on the simultaneous detection of large 

numbers of metabolites, and the improved information about different biochemical processes 

taking place in the fermentation media, such as the degradation of complex substrates [141]. Gas 

chromatography (GC) is one of the most used analytical separation techniques for extracellular 

metabolites identification and quantification [30, 32, 370], that can be coupled with different 

detectors, such as flame ionization detector (FID) or mass spectrometry (MS) for an accurate 

measurement of the involved metabolites. 

Multivariate data analysis (MVDA) is a strategy that can be used to assign biological or chemical 

meaning to dynamic systems based on the metabolomics data exploration. This includes data 

exploration methodologies, such as relevant principal component analysis (RPCA) [281, 371], and 

classification and prediction algorithms, such as partial least squares for discriminant analysis 

(PLS-DA) [305, 372]. In metabolomics RPCA is used to maximize the variance between samples by 

detecting important variables or metabolites statistically relevant on each principal component, that 

most contribute to data-structure [281]. PLS-DA is used to maximize the co-variance between to 

independent data-sets, allowing to identify the relevant metabolites for a specific phenotype, as well 

as to set up for a mathematical relationship for predicting the values of one or more output 

metabolites [373, 374]. 

In the present work, both MVDA strategies were applied to exo-metabolomic data matrix, 

assembling extracellular metabolites acquired using HPLC, GC-FID and GC-MS analytical 

techniques during batch fermentations. These fermentations were performed using two industrial 

Saccharomyces cerevisiae strains, CA11 and PE-2, isolated from “cachaça” and bio-ethanol 

production in Brazil, respectively. Both strains can tolerate up to 17% (v/v) ethanol [88], and the 

effects on yeasts physiology induced by the presence of ethanol at high concentrations have been 

reported for many years [375]. Here, the two strains were exposed to three different stress 

conditions, induced by the presence of 1.0 % (v/v) butanol, 0.2 % (v/v) furfural and 0.5 % (v/v) 5-

HMF. Control fermentations, in the absence of stress conditions were also performed. 

The use of statistical tools to understand and predict the biochemical behavior of yeasts cells, 

under different fermentation conditions, based on the extracellular metabolites measurement was 

the main objective of this study. This methodology can be later used as a tool for selecting more 

robust strains for industrial processes application as well as to understand metabolic pathways 



CHAPTER 4  89 

 

CASTRO CC | 2013 

preferentially activated by yeasts, which culminates in a different metabolic profile through each 

fermentation conditions. 

 

4.1.1 MATERIAL AND METHODS 

4.1.2 Yeasts and fermentation process 

Two industrial S. cerevisiae yeasts strains were used, CA11, a flocculent strain isolated from 

“cachaça” fermentation process [328], and PE-2, isolated from Brazilian bio-ethanol production 

[329]. Both strains were obtained from the microbiological collection of the IBB – Institute for 

Biotechnology and Bioengineering at the University of Minho.  

Yeasts were incubated in YPD broth (YPDb) medium (1.0 % (w/v) yeast extract, 2 % (w/v) bacto-

peptone and 2 % (w/v) glucose - Sigma Aldrich - ref. Y1375) and after 12 h at 30 ºC were 

aseptically collected and pitched at about 1.0×106 cells/mL (as described previously in Sub-section 

3.2.1) to 50 mL of YPDb in Erlenmeyer flasks (100 mL) fitted with perforated rubber stoppers 

enclosing glycerol-locks for anaerobic conditions preserving [324]. In this study, in order to 

evaluate the metabolic response of yeasts exposed to toxic molecules, the stress substances were 

added to the YPDb. These include 1.0 % (v/v) 1-butanol (≥ 99.0%, Sigma Aldrich, USA), 0.2 % (v/v) 

furfural (98.0%, Sigma Aldrich, USA) and 0.5 % (v/v) 5-HMF (99.0%, Sigma Aldrich, USA). Control 

fermentations were also performed, using the two strains in the absence of stress. 

Fermentations lasted for 24 h, in the presence and absence of stress conditions at 30 ºC, and 

were monitored by weight loss (proportional to CO2 production) [88]. Samples were taken for 

fermentation metabolites measurement using HPLC, Gas Chromatography - Flame Ionization 

Detector (GC-FID) and Gas Chromatography - Mass Spectrometry (GC-MS) analytical techniques. 

 

4.1.3 Analytical methods 

Different analytical technologies were used to characterize extracellular metabolic changes 

occurring within batch fermentations. Glucose, ethanol, glycerol and acetic acid concentrations 

were obtained by HPLC as described previously in Subsection 3.2.2. The major volatile fraction, 

including acetaldehyde, ethyl acetate, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol 
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and 2-phenylethanol, was measured by GC-FID and the minor volatile fraction was measured by 

GC-MS and includes isoamyl acetate, ethyl hexanoate, ethyl octanoate, isobutyric acid, ethyl 

dodecanoate, butyric acid, furfuryl alcohol, isovaleric acid, 2-phenylethyl acetate, benzene ethanol, 

hexanoic acid, guaiacol, octanoic acid and decanoic acid. 

 

4.1.4 Gas Chromatography – Flame Ionization Detector (GC-FID) 

Samples taken during fermentations were filtered (2 μm) and 50 μL of the internal standard (4-

nonanol) were added to 5 mL of sample. The volatile fraction semi-quantitative analysis was 

performed using a flame ionization detector (FID) associated with gas chromatography (GC). A 

Chrompack CP-9000 gas chromatograph equipped with a split/splitless injector and a flame 

ionization detector (FID) with a capillary column, coated with CP-Wax 52 CB (50 m × 0.25 mm i.d., 

0.2 µm film thickness, Chrompack), was used. Injector and detector temperatures were both set to 

250 ºC. The oven temperature was held at 40 ºC, for 5 min, then programmed to rise from 40 ºC 

to 235 ºC, at 3 ºC/min, and then finally programmed from 235 ºC to 255 ºC, at 5 ºC/min. The 

carrier gas was Helium 55 (Praxair) at 103 kPa and the split vent was set to 13 mL /min. Each 3 

µL extract was injected in splitless mode (for 15 s). Quantification of volatiles, as 4-nonanol 

equivalents, was performed by comparing retention indexes with those of pure standard 

compounds using Varian MS Workstation version 6.6 [376]. 

 

4.1.5 Gas Chromatography – Mass Spectrometry (GC-MS) 

Volatile fraction of samples taken during fermentation was firstly extracted with dichloromethane 

and subsequently analyzed by GC-MS, using a Varian 3400 chromatograph and an ion-trap mass 

spectrometer (Varian Saturn II). 1 µl sample was injected in a capillary column coated with CP-Wax 

52 CB (50 m × 0.25 mm i.d., 0.2 µm film thickness, Chrompack). The temperature of the injector 

ranged from 20 ºC to 250 ºC, at 180 ºC/min. The oven temperature was held at 60 ºC, for 5 min, 

then programmed to rise from 60 ºC to 250 ºC, at 3ºC/min, then held for 20 min at 250 ºC and 

finally programmed to go from 250 ºC to 255 ºC at 1 ºC/min. The carrier gas was Helium at 103 

kPa. The detector was set to electronic impact mode (70 eV), with an acquisition range from m/z 

29 to m/z 360, and an acquisition rate of 610 ms per scan. The identification of volatiles was 
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performed using the software Saturn version 5.2 (Varian), by comparing each mass spectra with 

those of pure standard compounds at each retention time. All the metabolites were quantified as 4-

nonanol equivalents [376]. 

 

4.1.6 Exploratory metabolomics data analysis using relevant principal component analysis 

Relevant principal component analysis (RPCA) is a very common methodology for important effects 

detection in data, by reducing the dimensionality of a dataset. These effects can be detected and 

explored by samples position on the samples space (scores analysis), by variables 

correspondences inside each principal component (loadings analysis) and also by variance 

contribution (eigen values) [377]. RPCA allows the identification of statistically significant loadings 

on each relevant principal component providing a better interpretation on how the different 

variables affect the metabolomics data variability [281]. 

Metabolites concentrations of samples corresponding to different fermentation conditions were 

organized in a data matrix X (n×m), where n corresponds to samples and m to chemical 

compounds (variables), and RPCA was applied. A large part of the structure and variability present 

in this metabolic original data set can therefore be explained by the resulting reduced and 

decorrelated principal components (PC), according to the chemical information contained in 

fermentation samples, allowing to explore its variability and different chemical behaviors during 

fermentations. 

 

4.1.7 Fermentations classification using partial least squares regression 

Partial least squares regression (PLSR) is a prognostic two-block regression method based on 

estimated latent variables and applies to the synchronized analysis of two data sets of the same 

objects [373]. Partial least squares logistic regression (PLS-LOG) is an extension of the PLSR and 

enables the classification of the multivariate space directions by fitting a regular PLS model 

between the X matrix and an artificial Y matrix (that encodes class memberships by a set of 

variables) providing discriminant directions with well separated observations, according to class 

membership. In PLS-LOG, the logistical or logit regression determines the impact of each 

fermentation condition to predict the membership of the extracellular metabolic changes, 
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determining the probability of the presence of each stress conditions in the fermentation medium, 

according to the footprinting metabolome. In this work, PLS-LOG was used to predict metabolic 

changes occurring within fermentations, according to the external conditions using CA11 and PE-2 

yeast strains. 

 

4.2 RESULTS AND DISCUSSION  

4.2.1 Classification of yeasts fermentation metabolism under different stress conditions 

Major and minor extracellular metabolites were measured within YPDb batch fermentations, using 

CA11 and PE-2, both industrial S. cerevisiae strains, under control fermentations and in the 

presence of 1% (v/v) 1-butanol, 0.2% (v/v) furfural and 0.5% (v/v) 5-HMF. The non-volatile fraction 

of the extracellular medium was quantified by HPLC and includes glucose, ethanol, glycerol and 

acetic acid, whereas the volatile fraction was measured by GC-FID and GC-MS and includes higher 

alcohols, sort- and medium-chain fatty acids (MCFA), ethyl and acetate esters, and guaiacol. 

Relevant principal component analysis (RPCA) was applied to a X (n,m) matrix, including the m 

variables - extracellular metabolites measured - within the n samples - taken throughout the 

different fermentations time-course. In metabolomics analysis, 5000-fold differences in 

concentrations for different metabolites can be found [270]. As these differences are not 

proportional to the biological relevance of these metabolites, it was important to scale the data set, 

when performing the RPCA analysis. Scaling is an approach that divides each variable by a factor, 

adjusting the differences in fold differences between the metabolites by converting the data into 

concentrations relative to the scaling factor. In this work, the measure factor used lead to the 

variance of each variable within all samples, as it is showed in Equation 4.1, where    corresponds 

to each variable value,    is the mean value of each variable and    , the internal stardard for 

each variable. An important aspect of scaling is that it results in the inflation of small values, that 

can have an undesirable side effect as the influence of the measurement error, that is usually large 

for small values, is increased as well [270]. 
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Equation 4.1 

Figure 4.1 presents the RPCA scores and loadings of CA11 and PE-2 extracellular metabolic 

profiles. Scores distribution through the two principal components (PC), PC1 and PC2, provided an 

enlarged view of the relevant metabolic variability, as these decompositions showed the higher 

discriminant capacity. The scores plot from RPCA analysis of CA11 and PE-2 totalized 47.7 % of 

the metabolic information variance with discriminant power of 32.3 % PC1 and 13.4% PC2. 

According to Figure 4.1, samples were distributed within PC1 as a function of fermentations time-

course (from T0 to T5) using both yeast strains, in control and in the presence of each induced 

condition, underlining the metabolic changes occurring during the fermentation progress. Also, it is 

possible to observe that the running of the fermentation processes of CA11 or PE-2, based on the 

extracellular metabolites measurements differed from each other. The RPCA loadings (grey arrows 

and numbers in Figure 4.1) discriminating samples throughout the first principal component (PC1), 

showed that in the beginning of the fermentation processes there was a high concentration of 

glucose (1) in the medium which was being consumed to produce distinct metabolites along the 

fermentation progress. In the absence of stress (black symbols in the figure), it was observed the 

production of 2-phenylethanol (15) and acetaldehyde (3), mainly by PE-2. From the exponential 

phase ahead (T2 to T5), CA11 fermentations lead to the production of ethanol (11), isovaleric acid 

(7) and isoamyl acetate (19) while PE-2 produced mainly aromatic esters as phenylethyl acetate 

(20) and the ethyl esters – ethyl hexanoate (C6:0) (21), ethyl octanoate (C8:0) (22) and ethyl 

dodecanoate (C12:0) (23) – predominantly in the control fermentations (black symbols), and also 

glycerol (2), acetic acid (4), 2-methyl-1-butanol (13), 3-methyl-1-butanol (14), 1-propanol (12), 

decanoic acid (10), furfuryl alcohol (16) and guaiacol (24) in the presence of furfural (green 

symbols) and 5-HMF (red symbols). 
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Figure 4.1 Scores and loadings resulting from relevant principal component analysis applied to extracellular 

matrix using CA11 ▲ and PE-2 ■ yeast strains. Scores correspond to samples took within the 

fermentations time-course (T0 to T5) under: control (black symbols), butanol (blue symbols), furfural (green 

symbols), 5-HMF (red symbols); and loadings represented by the arrows correspond to the measure 

variables: 1 – glucose; 2 – glycerol; 3 – acetaldehyde; 4 – acetic acid; 5 – butyric acid; 6 – isobutyric acid; 

7 – isovaleric acid; 8 – hexanoic acid; 9 - octanoic acid; 10 - decanoic acid; 11 – ethanol; 12 – 1-propanol; 

13 - 2-methyl-1-butanol; 14 - 3-methyl-1-butanol; 15 - 2-phenylethanol; 16 – furfuryl alcohol; 17 - benzyl 

alcohol; 18 – ethyl acetate; 19 – 2- phenylethyl acetate; 20 - isoamyl acetate; 21 - ethyl hexanoate; 22 - 

ethyl octanoate; 23 - ethyl dodecanoate; 24 – guaiacol. 

 

Samples distribution throughout the PC2 discriminates fermentations performed under the 

different induced conditions, namely the control (black symbols), in the presence of 1% (v/v) 1-

butanol (blue symbols), 0.2% (v/v) furfural (green symbols) and 0.5% (v/v) 5-HMF (red symbols), 

emphasizing the metabolic differences found under each fermentation condition using both strains. 

Samples dispersion along the PC2 also highlighted the higher deviation of the metabolic behavior 

of both yeasts in the presence of 1% (v/v) 1-butanol (blue), comparing to the control (black 
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symbols). In the presence of 1-butanol, the metabolic changes undergone by both strains were 

similar, and a higher predominance of ethyl acetate (18) was observed in the beginning of the 

exponential phase, and until the end of the fermentation processes, the production of acids, such 

as butyric acid (5), isobutyric acid (6), hexanoic acid (9) and isovaleric acid (8) was enhanced.  

PE-2 is an isolate from bio-ethanol distilleries, and is one of the most successful strains used by 

several industries in Brazil, generating about 10% of the world bio-ethanol supply [378]. In VHG 

fermentations, this strain exhibited an increased fermentation performance, able to produce an 

ethanol titre of 19.2% (v/v), whereas with CA11 the slowest fermentation amongst different 

industrial strains was observed together with an incomplete fermentation [324]. CA11 is an isolate 

from “cachaça” fermentation processes and comparing to PE-2, it was found to be more adapted 

to produce “cachaça” as it presented higher amounts of 1,3-butanediol and lower amounts of 

acetaldehyde and it does not generate propanol [379]. RPCA loadings presented in Figure 4.1 are 

in agreement with these results, as CA11 seems to be characterized by the production of ethyl 

acetate (18), mainly, the presence of 1-butanol, and PE-2, in general, by the production of 

acetaldehyde (3), 1-propanol (12) and acetic acid (4). 

Other studies investigated the use of both strains for wines production, namely raspberry wines 

[380], where both showed a decreased ability to produce volatile aromatic compounds, as ethyl 

esters, comparing to other strains typically used in wine, “cachaça”, and bio-ethanol production. 

The production of these metabolites by yeasts during fermentations, significantly contributes to the 

“fruity” flavors of wines [3]. Although, according to the fermentation conditions used in this study, 

PE-2 showed to be more adapted to produce phenylethyl acetate (20) and other ethyl esters – 

C6:0 (21), C8:0 (22) and C12:0 (23), while CA11 is characterized by higher production of ethyl 

acetate, mainly in the presence of 1-butanol. According to Verstrepen et al. (2003) [381], esters 

are synthesized from a fusel alcohol and an active fatty acid (acyl-CoA or acetyl-CoA). Ester 

synthase is the enzyme that catalyses this reaction and the ester production rate is determined by 

the concentration of available substrates and the total enzymatic activity. So, any factor, such as 

the introduction of toxic and inhibitory conditions in the medium as in this study, affecting yeasts 

metabolism and/or ester synthase gene activity (e.g. ATF1), affects the ester synthesis rate. 

Under the fermentation conditions induced, PE-2 was also more able to produce higher alcohols, 

such as 2-phenylethanol (15), 1-propanol (12), amyl alcohols – 2-methyl-1butanol (13) and 3-

methyl-1-butanol (14) - and furfuryl alcohol (16) in the presence of furfural. The higher alcohols 
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production during fermentation could result from keto acid produced either catabolically, involving 

degradation of an amino acid via the so-called Ehrlich pathway [4], or anabolically via the 

biosynthetic route from the carbon source [382].  

CA11 also enhanced the production of acids, especially in the presence of 1-butanol. In wines, the 

presence of high concentrations of acids may negatively influence their qualities because of the 

aroma descriptors that include “cheese” and “sweaty” from hexanoic acid (C6:0) (8) and “rancid” 

and “harsh” from octanoic acid (C8:0) (9) [3]. In the presence of 1-butanol, the production of 

butyric and isobutyric acids was also enhanced. The presence of these acids could lead to the 

inhibition and arrest of fermentation, which ultimately blocked the complete transformation of 

sugars present in the must [383]. 

In this context, differences found on the higher alcohols and aromatic esters production between 

PE-2 and CA11 suggest that CA11 is more susceptible to the induced stresses, as it showed 

decreased prevalence of those metabolites, and the introduction of 1-butanol induced a wide 

different metabolic behavior for both strains.  

One way of understanding the effect of the presence of each stress molecule on the metabolic 

profile of each S. cerevisiae strain is the use of partial least squares logistic regression (PLS-LOG). 

 

4.2.2 Metabolic footprinting prediction using partial least squares logistic regression  

Partial least squares logistic regression (PLS-LOG) methodology was used to understand the 

influence of each yeast strain or fermentation condition in the weight of each variable linked to 

fermentations behavior. Generally, this methodology imposes a correlation between two 

independent data matrices, which in this case concern to the X matrix, the metabolic footprinting 

information (samples vs metabolites), already used in RPCA in Section 4.2.1, and a Y matrix, with 

the quality information about the presence or absence of each stress in the fermentation medium 

(samples vs variables) [305]. Samples correspond to the sampling time of each fermentation; 

metabolites consist in the extracellular metabolites measured using the different analytical 

methodologies; and variables correspond to the different stress conditions used in fermentations: 

control, 1 % (v/v) 1-butanol, 0.2 % (v/v) furfural and 0.5 % (v/v) 5-HMF. In Table 4.1 it is presented 

the summary of the PLS-LOG models prediction, which is linked to the capacity of predicting the 

metabolic changes, according to the external conditions imposed using the two different S. 
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cerevisiae strains. According to Table 4.1, high correlation indices were found for the different 

fermentation conditions tested. This suggests that the metabolic behavior of each strain was 

directly correlated to the impact of the induced fermentation conditions.  

Table 4.1 Prediction capacity of PLS-LOG models of the metabolic behavior based on the footprinting 

characterization (*** p-value < 0.0001) 

Fermentation condition Prediction capacity (R2) 

Control 0.921 *** 

1% (v/v) 1-butanol 0.952 *** 

0.2% (v/v) furfural 0.957 *** 

0.5% (v/v) 5-HMF 0.901 *** 

 

The way how the toxic and inhibitory environment influences the metabolic behavior can be 

understood by the scores and coefficients of the PLS-LOG models. In Figure 4.2, the scores (Figure 

4.2 A) and coefficients (Figure 4.2 B) allow the understanding of the effect of each induced stress 

condition in the production (positive correlation) or the consumption (negative correlation) of the 

extracellular metabolites measured. 

The scores plots resulting from PLS-LOG models, allow to observe that samples are clustered in 

the same distint group, in Figure 4.2A, which can explain the higher prediction capacity observed 

in Table 4.1. The impact of the presence of each toxic and inhibitory condition in the medium, 

namely, 1-butanol, furfural, and 5-HMF (Figure 4.2), in the metabolic behavior of CA11 and PE-2, 

was explored by the PLS-LOG models coefficients, presented in Figure 4.2B. 

According to PLS-LOG coefficients of the model predicting the metabolic behavior of both strains in 

the presence of 1-butanol, it is possible to observe that the production of ethyl acetate (18), butyric 

acid (5), 3-methyl-1-butanol (14) and isoamyls acetate (19) was enhanced (positive weight) while 

the opposite occurred in the production of phenylethyl acetate (20), furfuryl alcohol (16) (negative 

weight). Acetate esters production by S. cerevisiae yeasts during fermentation is dependent of 

three enzymes, namely acetyltransferase, ethanol acetyltransferase and isoamyls alcohol 

acetyltransferase [3] or an ester synthase that produces acetate esters from ethanol and the 

respective acids [384]. Nordström (1961) [317] demonstrated that ethyl acetate production can be 

produced as an energy-requirement metabolic process. The formation or consumption of acetyl-
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CoA is known to affect ethyl acetate synthesis [385]. So, according to these possibilities, it was 

suggested that in response to the increased toxicity introduced by 1-butanol, both strains use the 

acetyl-CoA factor, which can be produced by the fatty acids metabolism [343], for the production of 

these acetate esters. This can also explain the increased effect on the production of 3-methyl-1-

butanol (isoamyls acohols), as it is the isoamyl acetate precursor [386]. Finally, it has been 

previously shown that butyric acid could be produced either by Clostridium 

saccharoperbutylacetonicum N1-4 fermentation [387] or by the biotransformation of butanol by 

Acetobacter aceti [388], which suggests that S. cerevisiae CA11 and PE-2 might have this ability 

which reveals that it could be interesting to explore both strains in the production of bio-butanol 

production. 

According to the coefficients obtained from the PLS-LOG model coupled with the metabolic 

information under the presence of 0.2% (v/v) furfural (Figure 4.2 B2), it is possible to observe that 

this condition affects positively the production of furfuryl alcohol (16) and hexanoic acid (8) and 

negatively the production of guaiacol (24) and octanoic acid (9). Furfuryl alcohol is the result of the 

furfural reduction, which was already correlated with the vital need for overcoming the toxic effects 

of furfural, a reaction that strongly demands for NADH and so, it can result in insufficient ATP 

generation to sustain cells growth [389]. The presence of hexanoic acid indicated that this is not 

being converted to the respective ester [314, 365]. 

In 5-HMF fermentations using both industrial strains (Figure 4.2 B3), it can be observed that the 

production of 2-phenylethyl acetate (20) and fatty acids – hexanoic (8) and octanoic (9) acids – 

was enhanced. 5-HMF is known to inhibit some specific enzymes (alcohol dehydrogenase, pyruvate 

dehydrogenase and aldehydes dehydrogenase) as well as the glycolysis (either enzyme and/or 

cofactors), and so, it interferes with the energetic balance for yeasts growth. Under these 

circumstances, as a stress response adaptation, yeasts synthesized acetate esters, such as 2-

phenylethyl acetate and accumulated fatty acids. The increased accumulation of fatty acids is 

known to induces fermentation inhibition [390], by providing an enhanced toxicity in the medium, 

linked to a decreased membrane integrity [391, 392]. 
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Figure 4.2 Partial least squares logistic regression models: A – scores; B – coefficients; for predicting the 

metabolic behavior of yeasts under: 1 – 1% (v/v) 1-butanol; 2 – 0.2% (v/v) furfural; and 3 – 0.5% (v/v) 5-

HMF. Coefficients bars in B correspond to: 1 – glucose; 2 – glycerol; 3 – acetaldehyde; 4 – acetic acid; 5 – 

butyric acid; 6 – isobutyric acid; 7 – isovaleric acid; 8 – hexanoic acid; 9 - octanoic acid; 10 - decanoic acid; 

11 – ethanol; 12 – 1-propanol; 13 - 2-methyl-1-butanol; 14 - 3-methyl-1-butanol; 15 - 2-phenylethanol; 16 – 

furfuryl alcohol; 17 - benzyl alcohol; 18 – ethyl acetate; 19 – 2- phenylethyl acetate; 20 - isoamyl acetate; 

21 - ethyl hexanoate; 22 - ethyl octanoate; 23 - ethyl dodecanoate; 24 – guaiacol. 
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4.3 CONCLUSIONS 

The way of how cells adapt and respond to different environmental conditions in the fermentation 

process is a crucial step for the fermentation process manipulation and monitoring. In the present 

work, the footprinting metabolic behavior of two industrial strains, CA11 and PE-2 in the presence 

of 1-butanol, furfural and 5-HMF, was evaluated and classified using multivariate tools, namely, 

relevant principal component analysis and partial least squares logistic regression.  

Yeast strains presented different metabolic information, which can be accurately predicted by 

applying the logistic regression, and while CA11 guided the fermentation process for the production 

of carboxylic acids in the medium, PE-2 promoted mainly the production of aromatic compounds, 

including higher alcohols and esters. The increased capacity of PE-2 for producing more aromatic 

compounds under the same conditions of CA11 suggested a higher robustness of PE-2.  

In the presence of 1-butanol, the metabolic adaptation showed to be very distinct when compared 

to the response to the furan derivates. However, the capacity of both strains to produce butyric 

acid from 1-butanol, encourages both strains to be used and possibly engineered for bio-butanol 

production. 

The understanding of how cells behave under specific conditions in terms of phenotypic, 

morphological and metabolic changes or physiological parameters is crucial for fermentation 

process monitoring and to a possible external control of the process by inducing cells to grow in a 

particular rate, as well as to produce a specific end-product of fermentation. 

 



 

 

 

 

 

 

 

CHAPTER 5 

5. EVALUATION OF SACCHAROMYCES CEREVISIAE 

OXIDATIVE RESPONSE USING ANALYTICAL TOOLS 

 

This Chapter is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism 

in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. 

Chemometrics tools, namely relevant principal component analysis (RPCA) and unfolded partial 

least squares (U-PLS) were applied to this data matrix, in order to increase the knowledge about 

metabolites synthesized as response to the perturbation induced. So, a bioanalytical pipeline, 

which allows for biological systems fingerprinting and sample classification by combining 

electrochemical features with biochemical background is proposed. To achieve this, alcoholic 

fermentations of a minimal medium supplemented with phenolic acids, were evaluated daily during 

11 days, for electrochemical profile, phenolic acids and the volatile fermentation fraction, using 

cyclic voltammetry, HPLC-DAD and HS-SPME/GC-MS (target and non-target approaches), 

respectively. It was found that acetic acid, 2-phenylethanol and isoamyl acetate are compounds 

with a significative contribution for samples metabolic variability and the electrochemical features 

demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end, 

a similar pattern to normal wines. Moreover, Saccharomyces cerevisiae had the capacity of 

producing chlorogenic acid in the supplemented medium fermentation from simple precursors 

present in the minimal medium. 
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5.1 INTRODUCTION 

Fermentation is an often used method for preservation. Alcoholic fermentation concerns to the 

conversion of grape juice sugars, namely glucose and fructose, to ethanol and carbon dioxide by 

wine yeasts [3]. Thus, a product with a high ethanol content immediately restricts the possibility of 

deterioration by other microorganisms, as well as lower pH and changes in redox potential [393]. 

In this context, alcoholic fermentation contributes to the resistance of the beverage to microbial 

spoilage [394]. Wine oxidation mechanism on the other hand, represents different challenges for 

wine-makers. The resistance of wines to oxidation is influenced by their composition, their exposure 

to oxygen and the antioxidants-containing concentrations [168]. Phenolic compounds are 

antioxidant compounds, known to be related to the wine oxidation capacity [168]. These are 

currently of great interest in the wine industry, as a result of their health benefits and radical 

scavenging properties [395]. 

The understanding of yeasts behavior within fermentations under oxidative conditions can be 

assessed using different analytical detectors, such as, electrochemistry and mass spectrometry 

methods. Combining the information obtained from both detectors seems to be an advantage as it 

will be possible to correlate metabolic, chemical and electrochemical responses providing tools to 

better understand the complexity of the overall system. 

Cyclic voltammetry can be used for electroactive activity scanning. A voltammogram provides 

information about the type of antioxidants present, as well as quantitative information about the 

likelihood of oxidation of particular substances [166] enabling the understanding of how these 

compounds are metabolized and changed during fermentation. 

Key volatile metabolites can be identified and quantified using a Head-Space/Solid-Phase-Micro-

Extraction/Gas-Chromatography-Mass-Spectrometry (HS-SPME/GC-MS) technique by directly 

integrating chromatogram peaks area (namely target mode), or by a non-targeted methodology, an 

unbiased approach, towards understanding the overall biological system [32, 396]. The non-

targeted approach allows a faster metabolic overview, avoiding the time-consuming need for any 

prior assignment of chemical classification of the molecular structure for hundreds of datasets 

[17]. 
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Studying S. cerevisiae metabolism during fermentation is effectively a process of taking a series of 

snapshots of the metabolism at different stages of a very dynamic process [210], where some 

fermentation pathways are being activated, while other are being down-regulated. 

In this study, the question of how yeast metabolism affects the concentration of phenolic 

compounds was addressed and monitored indirectly and directly, using cyclic voltammetry and 

HPLC/DAD/MS detection, respectively. In addition, the effect of the phenolic acids on the aromatic 

profile of the beverage was explored using HS-SPME/GC-MS analysis (Figure 5.1), conducted using 

both non-target and target approaches. The information gathered by the different detectors used, 

was then categorized using statistical methods and structured in terms of similarities and 

differences between samples, allowing the biological information interpretation and the oxidation 

resistance interpretation. 

 

 

Figure 5.1 Schematic representation of the pipeline presented in this study. 

 

5.2 MATERIAL AND METHODS 

5.2.1 Minimal medium preparation protocol 

Figure 5.2 presents the minimal medium preparation protocol for all fermentations studied. For 

this purpose, 3 liters of a synthetic grape juice (SGJ) was prepared and adjusted as follows. (i) 

addition of yeast (Control) and (ii) and (iii) addition of yeast and phenolic acids (Replica 1 and 

Replica 2). 
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Figure 5.2 Methodology used for fermentation media preparation: SGJ - Synthetic grape juice; A – Control: 

fermentation in the absence of phenolic acids (900 mL); B - Replica 1 (900 mL); and C - Replica 2 (900 

mL): fermentations with phenolic acids supplemented medium. 

 

5.2.2 Synthetic grape juice 

A synthetic grape juice (SGJ), a less complex and more reproducible matrix, was made according 

to the procedure described by Ciani and Ferraro [397]. SGJ was produced by combination of three 

aqueous solutions, prepared and sterilized separately. Solution 1: 110 g/L D-glucose (99.5%, 

Sigma), 100 g/L D-fructose (99.0%, Sigma), 10 mg/L ergosterol (95%, Sigma-Aldrich), 0.1% (v/v) 

Tween 80 (for synthesis, Merck); Solution 2: 6.0 g/L L-(+) tartaric acid (99.5%, Merck), 3.0 g/L L-(-

) malic acid (99.5%, Fluka), 0.5 g/L citric acid (99.5%, Sigma-Aldrich); Solution 3: 1.7 g/L Yeast 

Nitrogen Base (Bacto Difco), 2.0 g/L Casamino acids (Bacto Difco), 0.2 g/L anhydrous calcium 

chloride (99.5%, Merck), 0.8 g/L L-arginine hydrochloride (98%, Sigma), 1.0 g/L L-(-) proline (99%, 

Sigma), 0.1 g/L L-(-) tryptophan (98%, Sigma), 0.1 g/L phenylalanine (98%, Sigma) and 0.1 g/L L-

tyrosine (98%, Sigma). 

Solutions 2 and 3 were adjusted to pH 3.5 with NaOH (2M) and HCl (1M), before sterilizing. SGJ 

was then added to Control (Figure 5.2A), Replica 1 (Figure 5.2B) and Replica 2 (Figure 5.2C). 

 

5.2.3 Phenolic acids addition 

The following phenolic acids were added to Replica 1 and Replica 2 (Figure 5.2B and C) before 

addition of the yeast: hydroxybenzoic acids - gallic acid monohydrate (99%, Sigma-Aldrich), 

protocatechuic acid (99%, Sigma- Aldrich), vanillic acid (97%, Sigma-Aldrich) - and hydroxycinnamic 
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acids - caffeic acid (99%, Sigma-Aldrich), para-coumaric acid (98%, Sigma-Aldrich) and ferulic acid 

(99%, Sigma-Aldrich). The final concentration of each phenolic acid was 15 mg/L each. 

 

5.2.4 Yeast addition 

Saccharomyces cerevisiae PYCC 4653 strain (Portuguese Yeast Culture Collection) was used for 

alcoholic fermentation in the Control, Replica 1 and Replica 2 (Figure 5.2A, B and C). Yeast 

cultures were previously grown in Yeast extract-Malt extract (YM) medium for a minimum of two 

days at 30 ºC in an orbital incubator, then collected after centrifugation (9000 rpm, 15 minutes, 

25 ºC), and re-suspended in Ringer solution before addition to the fermentation medium. 

The yeasts cells were pitched at about 1.0×106 colony-forming unit (CFU)/mL into the culture 

medium, adjusted by microscopic enumeration with a cell-counting hematocytometer (Neubauer 

chamber; Merck) to start the fermentation. Fermentations of control and supplemented medium 

were carried out at 18 ºC in 1 litre sterile Schott flasks equipped with cotton-plugs after filling with 

900 mL of fermentation medium (Figure 5.2). The low temperature was chosen to simulate the 

white wine fermentation [398]. Alcoholic fermentations were monitored for 11 days, until the viable 

counts of yeast cells had fallen below 1.0×106 CFU/mL.  

Samples were taken and analyzed daily, for 11 days, by HS-SPME / GC-MS for metabolic changes, 

by cyclic voltammetry for electrochemical changes, and by HPLC - DAD for quantification of specific 

antioxidants. Residual sugars and ethanol were analyzed by HPLC - RI and used as fermentation 

control parameters. 

 

5.2.5 Cyclic voltammetry analysis 

Experiments were performed using a potentiostat (microAutolab Type III with an Autolab Faraday 

Cage) and voltammograms were obtained with a scan rate of 100 mV with a set potential of 2.4 

mV, between -0.2 V to 1.2 V. The working electrode was a 3 mm Glassy Carbon disk in 

combination with a Metrohm tipholder, cleaned by polishing with 3 μm alumina powder between 

acquisitions. A saturated calomel electrode was used as a reference electrode in conjunction with a 
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platinum counter electrode. Each acquisition required 12 mL of undiluted sample. Voltammograms 

were treated by General Purpose Electrochemical System (GPES) 4.9 software. 

 

5.2.6 HPLC-DAD analysis – Quantification of phenolic acids and para-chlorogenic acid 

A Beckman model 126 quaternary solvent pump system, equipped with System 32 Karat 5.0 

software and a 168 rapid scanning, UV-visible photodiode array detector, was used. The absorption 

spectra were recorded between 270 and 550 nm. Stationary Phase: Chromolith Performance RP-

18e (100 x 4.6 mm) (Merck, Germany). Mobile Phase: Solvent A: acetonitrile/water (5:95 v/v) 

(Merck pure grade and pure water) with 0.2% TFA (Sigma-Aldrich, Germany). Solvent B: acetonitrile 

(100%) (Merck pure grade) with 0.2% of TFA; flow rate = 3 mL/minute. The following gradient was 

employed: 0-2 minutes (0% B); 2-6 minutes (10% B); 6-10 minutes (20% B); 10-12 minutes (0% B); 

post time of 3 minutes. Each run took 15 minutes to complete, and all relevant compounds had 

eluted by 8 minutes. Hydroxybenzoic and hydroxycinnamic acids were detected at 280 and 320 

nm, respectively. Along with these six phenolic acids (added to the medium preparation protocol) 

para-chlorogenic acid was also detected. Retention times were as follows: gallic acid (0.8 min); 

protocatechuic acid (1.2 min); vanillic acid (3.0 min); caffeic acid (3.5 min); para-coumaric acid 

(5.3 min); ferulic acid (6.2 min). Identification: Phenolics were identified by comparison with pure, 

authentic, commercially available standards’ retention times and UV-visible photodiode array 

spectra. 

 

5.2.7 HPLC - RI analysis - Quantification of residual sugars and ethanol 

A Beckman Model 126 quaternary solvent pump system equipped with an autosampler and a RI 

detector was employed. The acquisition was done using 32 Karat 5.0 software. Stationary-phase: 

Aminex hpx-87H (300 x 7.8mm) from Bio-Rad. Mobile-phase: sulphuric acid (2.5mM); flow rate = 

0.6 mL/minute. 
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5.2.8 LC-MS analysis – Detection of chlorogenic acid  

The chromatographic system was consisted of a Prostar 210 LC pump (Varian, CA, USA) coupled 

with a Varian 1200 triple quadrupole mass spectrometer (Varian, CA, USA) with electrospray 

ionization. A 5 μm C18 column (4.6mmx100mm, Merck) was used for the separation at a flow 

rate of 0.4 mL/min. The separation was performed by gradient elution (eluent A, water with 0.1% 

formic acid; eluent B, 100% methanol) in 33 minutes. For MS/MS fragmentation, argon atoms 

were used (pressure 1.20 mtorr; collision energy of 15 V). Data were acquired by Varian LC-MS 

1200L Workstation. LC and MS-MS were established by ESI-LC/MS under negative ion mode. 

Structural identification of chlorogenic acid (MW = 354; [M-H] = 353(191); RT = 15.82 min] was 

performed by comparison of the retention time and mass spectra of the phenolic standard with the 

supplemented medium [399]. 

 

5.2.9 Gas-Chromatography analysis 

Head Space - Solid Phase Micro Extraction (HS - SPME) 

Volatile compound analyses using the analytical SPME technique were performed according to 

Ferreira and Guedes [400]. The used fiber was coated with a divinylbenzene / carboxen / 

polydimethylsiloxane (DVB / CAR / PDMS), 50/30 μm (Supelco, Bellefonte, Pa., USA). For each 

SPME analysis, 5 mL of sample was placed in a vial with 20 mL capacity together with a small 

stirring magnet, and stirred at 1300 rpm, spiked with an internal standard (IS) (20 μL of 

methanolic solution of 3-octanol, 46.3 mg/L) while immersed in a water-bath at 36 ºC. The SPME 

needle then pierced the septum and the fiber was extended through the needle to expose the 

stationary phase with the head-space of the sample for 5 minutes. Afterwards, it was removed from 

the vial and inserted into the injection port of the gas chromatograph for 5 minutes. The extracted 

chemicals were thermally desorbed, at 220 ºC, and transferred directly to the analytical column. 

Fibers were cleaned before each micro-extraction process to prevent contamination by inserting the 

fiber in the auxiliary injection port at 220 ºC for 30 minutes. 
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Mass spectrometry analysis 

Samples were analyzed using a Varian CP-3800 gas chromatograph (Walnut Creek, CA, USA) 

equipped with a Varian Saturn 2000 mass selective detector and Saturn GC/MS workstation 

software version 5.51.14. The column used was a STABILWAX-DA (60 m x 0.25 mm, 0.25 μm) 

fused silica (Restek, Bellefonte, PA, USA). The injector port was heated to 220 ºC. The oven 

temperature was 40 ºC (for 1 minute), then increased at 2 ºC / minute to 220 ºC. The carrier gas 

was Helium (Gasin, Portugal), at 1 mL/minute at constant flow. All mass spectra were   acquired 

in the electron impact (EI) mode with the Ion Trap detector set as follows: transfer line, manifold 

and trap temperatures 170, 60 and 150 ºC, respectively. The mass range was 33 m/z to 350 

m/z, with a scan rate of 6 scan/s and without solvent delay. The emission current was 50 μA, and 

the electron multiplier was adjusted according to the auto-tune procedure. The maximum ionization 

time was 25.000 μs with an ionization storage level of 35 m/z with a pre-scan time of 100 μs. The 

analysis was performed in Full Scan mode. 

Two different approaches were used to analyse mass chromatograms: target and non-target 

approaches.  

 

5.2.10 Multivariate analysis 

In the non-target approach, the raw chromatograms were imported to MetAlignTM [38] for spectral 

alignment and differentiation. The optimization of the software parameters was performed taking 

into account the need to preserve the original compounds features after preprocessing. The 

settings used in the preprocessing software are presented in Table 5.1. At the end of the alignment 

of dataset, the Excel compatible output matrix was obtained and subjected to multivariate analysis 

techniques, namely, relevant principle component analysis (RPCA) [281] and partial least squares 

regression (PLSR) [305]. All programming and statistical analyses were performed using R (R-

Project R, http://www.r-project.org/). 

The RPCA algorithm is a blind and non-supervised method by which samples are grouped together, 

and relevant features, discriminating between the samples in the time course, can be captured 

[401]. Time-course fermentation metabolic direction can be observed in relevant PC’s scores and 

interpreted by using the relevant PC’s loadings. These indicate the fragments and compounds that 

http://www.r-project.org/
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are formed and consumed during the fermentation process, as well as, measuring the contribution 

of them in the different fermentations. Chromatograms were normalized by the internal standard 

(3-octanol) by mean scaling and division by standard deviation for the assignment of the same 

degree of importance to the preprocessing resulting metabolites. It is important to note that, the 

normalization can be considered an artefact for data interpretation as it is attributed the same 

degree of importance to the true signal and to noise, and thus, metabolites which are considered to 

be important to explain samples metabolic profile in each fermentation time can correspond not to 

valid compounds but to noisy compounds. 

Table 5.1 MetAlignTM preprocessing optimized parameters 

MetAlignTM Part Parameter Value 

A - Baseline and noise 

elimination parameters 

retention begin (Scan.nr) 262 

retention end (Scan.nr) 4347 

maximum amplitude 10000 

peak slope factor (xNoise) 1 

peak threshold factor (xNoise) 2 

peak threshold (Abs.Value) 10 

average peak width 10 

B - Scaling and aligning 

data sets 

begin 1st region (Scan.Nr / Max.Shift) 261 / 20 

end 1st region (Scan.Nr / Max.Shift) 4347 / 20 

pre-align processing iterative 

maximum shift per 100 scans 35 

min factor (xNoise) (1st iteration / last iteration): 3 / 2 

min number of masses (1st iteration / last iteration) 8 / 3 

group 1 

 

The mass spectra features of each volatile compound were validated using two methods: 1) target 

features by retention time correspondence; and 2) correlation between features documented in the 

NIST 98 MS library. 

PLSR was mainly used to determine metabolic co-expression between known and/or unknown 

compounds present in GC-MS chromatograms. PLSR decomposes the co-variance matrix between 

the sample chromatogram and supervised metabolites matrix to develop a linear relationship 

between them, using only the projections that maximize the correlation between the two datasets. 
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Thus, co-expression between supervised metabolites and all metabolites present in a GC-MS 

chromatogram can be studied by analyzing the PLS coefficients. Therefore, the amount of 

metabolites obtained by direct peak width integration in the supervised target methodology can be 

plotted against the overall folded matrix, obtained from the non-target approach, for classification 

and validation purposes. In this case, we used the unfold PLSR technique (U-PLS) [307, 308]. The 

aligned chromatograms form a tri-linear tensor that can be unfolded into a single matrix. U-PLS 

follows the same algorithms of PLSR [401], maximizing the unfold chromatogram co-variance 

matrix, to obtain the U-PLS. After U-PLS algorithm application, peaks and fragments highly 

correlated to the supervised metabolites can be visualized as a chromatogram, where positively 

correlated peaks are co-expressed with the reference compounds and the negatively correlated 

peaks are inversely correlated. This allows for the analysis and validation of compounds 

corresponding to the holistic approach that are being consumed or produced in the fermentation 

through time. 

A set of compounds, including the identified as the most contributory (presented in the loadings 

plot) for samples differentiation and dispersion through the RPCA scores plot, as well as other 

known compounds that participate with those in certain pathways, were identified in a target mode. 

This was done by comparison with mass spectra, obtained from the samples, with the retention 

times of pure commercially available standards injected using the same conditions, and by 

comparing the Kovats indices and the mass spectra present in the NIST 98 MS library. These 

selected compounds were then normalized to the internal standard, in a selected ion current 

mode. Ions selected were respectively, for (IS) 3-octanol (99%, Sigma) m/z = 83; 2-phenylethanol 

(98%, Sigma-Aldrich) m/z = 91; phenylacetaldehyde (90%, Sigma-Aldrich) m/z = 91; isoamyl 

acetate (95%, Sigma-Aldrich) m/z = 43; isoamyl alcohol (98%, Sigma-Aldrich) m/z = 55; acetic 

acid (99.5%, Sigma) m/z = 43; 2-methoxy-4-vinylphenol (98%, Sigma) m/z = 150. Results from the 

target approach were used to compare and validate other key compounds obtained in the non-

target approach, and the combination of both approaches allows obtaining a valid interpretation of 

the overall process. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Fermentation performance 

The effect of phenolic acids supplementation in yeast growth and the fermentation performance 

were studied during alcoholic fermentations using a control (in the absence of phenolic acids) 

against a supplemented (with phenolic acids) medium, as it is presented in Figure 5.3. Each 

fermentation was monitored for 11 days, and the kinetics of its control parameters (fructose, 

glucose and viable plate counts) were recorded. Comparing the kinetics of monitoring parameters 

of both control and supplemented fermentations, no statistically differences were found between 

them (p < 0.05). The maximum viable cell density of S. cerevisiae obtained reached around 107 

CFU/mL from 106 CFU/mL inocula, as expected in this SGJ fermentations [402]. Similar viable 

plate count behavior in the control and supplemented fermentations indicates that the addition of 

phenolic acids does not inhibit yeast growth and fermentation performance, not affecting fructose 

or glucose consumption, also. 

 

Figure 5.3 Fermentation monitoring kinetic parameters in both control (■) and supplemented (♦) medium: A 

- glucose concentrations / (g/L); B - fructose concentrations / (g/L); and C - cells concentrations / (log10 

CFU/mL). 
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5.3.2 Electrochemical analysis 

Cyclic voltammetry was used for electroactive activity scanning providing a holistic vision of the 

entire fermentation process, which later should be tentatively understood and validated with 

selected molecules by the HPLC - DAD analysis. The oxidation curves from both control (dashed 

line) and supplemented medium (full line) are represented in Figure 5.4, at the beginning - T0 

(Figure 5.4A), and at the end - T11 (Figure 5.4B) of the fermentation process. 

 

 

Figure 5.4 Electrochemical signals of control (dashed line) and supplemented (full line) fermentations in: A - 

the beginning of the fermentation process (T0); and B - the end of the fermentation process (T11). 

 

In Figure 5.4 it is possible to observe different electrochemical signals between the control and the 

supplemented media (dashed and full lines, respectively), as well as different profiles in the 

beginning and end of the fermentation processes (Figure 5.4A and Figure 5.4B, respectively) as a 

result of a higher concentration of electro-active compounds in the beginning of the fermentation 

process. Supplemented media voltammograms (full line) display peaks at lower potentials (0.4 to 

0.8 V) which can be reasonably assumed to be due to the added phenolic compounds (as the 

control voltammogram does not show this deformation in this potential range). Precise 

identification of these compounds, related to each peak’s position, cannot be ascertained, 

nevertheless, their structure influences the anodic peak position, as it has been previously reported 

in the literature [32] .Using the compound’s structure and the evidence from published studies, it 

can be tentatively assumed that, in potential range (0.4 to 0.8 V), gallic acid has the lowest formal 



114 EVALUATION OF SACCHAROMYCES CEREVISIAE OXIDATIVE RESPONSE USING ANALYTICAL TOOLS 
 

 

CASTRO CC | 2013 

potential, followed by caffeic and protocatechuic acids, ferulic and vanillic acids, and para-coumaric 

acid [32]. The higher number of hydroxyl substituents present on the benzene ring decreases the 

formal potential of the phenolic compound [403]. Gallic acid, a benzoic acid derivative with 3 

available hydroxy groups, is therefore easily oxidized [166, 404]. In the same way, caffeic and 

protocatechuic acids have an easily oxidizable ortho-diphenol group which makes them more easily 

oxidizable than a phenolic acid with an isolated phenol group like para-coumaric acid. The other 

phenolics which have significantly higher formal potentials (ferulic and vanillic acids) lacked an 

ortho-diphenol which is dependent on oxidation of an isolated phenol group adjacent to a methoxy 

group. These compounds are therefore expected to be less active as antioxidants where reducing 

ability is the key requirement. The oxidation of these phenolics, which could be due to processes 

involving one or two electrons [405] produced broad peaks and is largely irreversible [166]. The 

type of electro-active compounds changed during fermentation (T0 to T11), as indicated by the 

voltammograms (Figure 5.4A, and Figure 5.4B). Voltammograms clearly show a decrease in the 

amplitude of the broad band at approximately 1 V. Conversely, one broad band at 0.8 V is brought 

about by fermentation, indicating that a change in the overall resistance to oxidation does indeed 

occur during alcoholic fermentation and shows a pattern similar to that of normal wines [168]. It 

must be remembered that our medium is of a considerably minimal nature, and that it is 

interesting that such a medium produces the same type of electro-active substances as natural 

must. 

 

5.3.3 HPLC - DAD analysis 

Concurrent with the electrochemical study, the kinetics of the added phenolic acids to the 

supplemented media were quantified and monitored using HPLC – DAD, and are presented in 

Figure 5.5. By observing phenolic acids kinetics (Figure 5.5) it was possible to detect that phenolic 

acids most affected by fermentation were para-coumaric (■) and ferulic acids (♦) (Figure 5.5A). In 

fact, it is known that during the fermentation process, para-coumaric and ferulic acids can be used 

for 4-vinylphenol and to 2-methoxy-4-vinylphenol (4-vinylguaiacol) or vanillic acid formation, 

respectively [3, 406, 407]. In fact, the final concentration of the ferulic acid is lower than the 

vanillic acid. The phenolic acids presented in Figure 5.5B and C were not largely changed during 

the fermentation time-course. Protocatechuic acid (♦) concentration (Figure 5.5B) suffers a small 

decrease at the beginning of alcoholic fermentation, but thereafter remains constant until the end 
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of the time-course sampling time. Caffeic (■) (Figure 5.5B), gallic (♦) and vanillic (■) (Figure 5.5C) 

acids did not show any significant change in concentration throughout the fermentation. Besides 

the study of the added phenolic compounds, one compound of particular interest was found 

increasing in both control and supplemented media, after 4 days of alcoholic fermentation, which 

growth pattern, in control medium, is shown in Figure 5.5D.  

 

Figure 5.5 Phenolic acids kinetics during the supplemented fermentation process: A - para-coumaric (■) 

and ferulic (♦); B - caffeic (■) and protocatechuic (♦); C - vanillic (■) and gallic (♦); D - unknown compound 

(♦). 

 

Attempts were made to further identify this unknown compound, and it was found to have the 

same retention time as the standard for chlorogenic acid. These results were confirmed by LC-MS 

analyses (results not shown). The discovery of chlorogenic acid in the control medium was 

unexpected as S. cerevisiae is not a known producer of any phenolic acids. This is of particular 

interest, because its presence in the control medium suggests that S. cerevisiae has the ability to 

produce antioxidants “de novo” from simple precursors such as sugars and amino acids. 

Chlorogenic acid is the condensation product of quinic and caffeic acids and furthermore, it is a 
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product of an intermediate in aromatic acid biosynthesis and a late intermediate of phenol 

biosynthesis [408]. While it is not documented that yeast produces this acid, Saccharomyces 

cerevisiae does contain some of the enzymes and certain pathways used by plants for its 

production. Saccharomyces cerevisiae perform aromatic acid de novo biosynthesis via the 

Shikimate pathway [406], creating a possible pathway for production of quinic acid. Furthermore, 

the exploration of the Saccharomyces Genome Database (SGD) shows that the yeast contains the 

PAL gene (phenylalanine ammonia lyase, ENZYME: 4.3.1.5), which encodes the enzyme needed to 

catalyze the deamination of phenylalanine to trans- cinnamate and ammonia. These results clearly 

indicate that more research and more exhaustive study can be necessary to validate and 

understand the reasons for production of chlorogenic acid during alcoholic fermentation. 

 

5.3.4 Metabolomic analysis 

In addition to the electrochemical changes, it is known that during the fermentation of wine, 

different biological processes occur which lead to different organoleptic characteristics of the final 

product, depending on the conditions of the fermentation medium [3]. In this context, it seems 

noticeable that through the interpretation of the holistic view that can be provided by the non-target 

analysis of the overall process as well as the kinetics of individual compounds of interest in target 

mode, it may be possible to understand the metabolic phenomena concomitant with assimilation 

or processing of phenolic compounds added the fermentation medium. 

After the chromatograms preprocessing using the MetAlignTM software [38], the resulting dataset 

was subjected to a non-supervised approach for classifying the metabolic information. This 

included the RPCA analysis, which was used to impose a statistical structure on the pre-processed 

HS-SPME/GC-MS obtained dataset. Figure 5.6 presents the samples scores Gabriel plot, where 

Principal Component 1 (PC1) and Principal Component 2 (PC2) have a discriminated power of 

67.14% and 10.82%, respectively, totalizing approx. 78% of the chemical information explanation. 

Samples distribution in the PC1 vs PC2 space presented in Figure 5.6, shows similar features of 

the control fermentation samples (Grcsc) compared to the supplemented media - Replica 1 (Grsc1) 

and 2 (Grsc2). PC1 is the most relevant component and is the result of the variable time during the 

fermentation process, as samples distributed in the PC1 axis space have a time-dependence. This 
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demonstrates that the metabolic profile is changing over time, during the fermentation process in 

all media.  

 

Figure 5.6 Scores plot resulting from Principal Component Analysis method: PC1 and PC2. 

 

The interpretation of the metabolic information that differentiates samples throughout the 

fermentation can be done analysing the loadings of the singular value decomposition analysis, 

represented in Figure 5.6 and described in Table 5.2. Peaks reported in Figure 5.7 correspond to 

those who must contribute to samples distribution throughout the PC1 axis (xx axis), in this case, 

were identified as isoamyl acetate, acetic acid and 2-phenylethanol (Figure 5.7b, Figure 5.7e and 

Figure 5.7g, respectively), which kinetics can be found in the target approach (Figure 5.9). Peaks 

labelled in Figure 5.7a, Figure 5.7c, Figure 5.7d and Figure 5.7f, were tentatively identified as 

unknown compounds, and more efforts should be done in order to interpret the results. In fact, the 

most laborious task linked to the non-target approach is the identification step, usually by searching 

the NIST library and by direct comparison after injection of standards [400]. In this work, as the 

main objective is to present a tool to provide an enlarged view of the overall system, we did not 

carry out a detailed identification and quantification of all the metabolites. 
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Figure 5.7 Loadings plot corresponding to the PC1, resulting from Principal Component Analysis method 

(the annotation of the highlighted fragments is presented in Table 5.2). 

 

Table 5.2 Tentative identification of the loadings plot fragments corresponding to the first principal 

component resulting from principal component analysis method 

Label Peak No Scan No m/z Tentative identification 

(a) 349 389 46 (1); 73 (0.19); 92 (0. 09); 47 (0.05) Unknown 

(b) 980 724 43(1); 55(0.54); 70(0.45); 41(0.24) Isoamyl acetate 

(c) 1203 975 39(1); 41(0.94); 70(0.88) Unknown 

(d) 2076 1661 41(1); 173(0.82); 57(0.68); 56(0.52) Unknown 

(e) 2220 1712 43(1); 45(0.78); 60(0.32); 61(0.09) Acetic acid 

(f) 3101 2256 41(1); 201(0.98); 60(0.35); 44(0.25) Unknown 

(g) 4468 2983 91(1); 92(0.63); 122(0.22) 2-Phenylethanol 
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Partial least squares regression (PLSR) was also used to determine metabolic correlations between 

2-phenylethanol and all peaks obtained in the GC-MS chromatograms. 2-phenylethanol 

fermentation kinetic obtained by direct peak-width integration in the target approach was plotted 

against the data matrix resulting from MetAlignTM preprocessing in the non-target approach, for 

classification purposes. This metabolite was arbitrarily selected, as the main purpose is to show 

that besides being possible the characterization of the system holistically, the statistical tools used 

in this pipeline may also be crucial in understanding the correlations, then co-expressions, of 

interesting metabolites, which can be correlated with the phenolic acids kinetics, during the 

fermentation process. 

Figure 5.8 shows the resulting display of U-PLS coefficients of the model performed using 2-

phenylethanol amounts, and higher coefficients correspond to the most correlated scans with 2-

phenylethanol. The image map colour (blue to red scale) of the point determines the magnitude of 

correlation, being higher for red. In Figure 5.8, it is possible to observe that 2-phenylethanol is 

strongly correlated with 2-phenylethanol (scan 2983) (Figure 5.8a), acetic acid (scan 1712) (Figure 

5.8b), 2,3-dihydro-3,5,dihydroxy-6-methyl-4(H)-pyran-4-one (scan 3802) (Figure 5.8c) and 5-

hydroxymethyl-furfural (scan 4292) (Figure 5.8d), which means that the kinetics of production of 

each compound is similar during the fermentation process. The assignment of scan numbers to 

their corresponding compounds was facilitated by the target approach, which identified a set of 

metabolites associated with alcoholic fermentation, and validated their mass spectral profiles. 

Using this classification method, and after the identification process, new information about 

metabolic pathways may be revealed. 
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Figure 5.8 Partial least squares regression resulting coefficients correlations with 2-phenylethanol 

throughout the fermentation process: (a) 2-phenylethanol (scan 2983); (b) acetic acid (scan 1712); (c) 2,3-

dihydro-3,5,dihydroxy-6-methyl-4(H)-pyran-4-one (scan 3802); and (d) 5-hydroxymethyl-furfural (scan 4292). 
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The evolution throughout fermentation of some secondary metabolites, including those identified as 

the most contributory for the explanation of the fermentation progress, is presented in Figure 5.9. 

Higher alcohols and esters, including 2-phenylethanol and isoamyl acetate, and those known to be 

correlated with them (phenylacetaldehyde and isoamyl alcohol), as well as the acetic acid were 

identified and quantified during the fermentation process. The fermentation kinetics of each 

metabolite in both the supplemented and control media showed to be statistically similar (p<0.05).  

 

Figure 5.9 Target analysis of some volatile metabolites kinetics found to be important for samples 

dispersion in the scores plan and some known to be correlated with those in both control (■) and 

supplemented (♦) medium: A - 2-phenylethanol; B - phenylacetaldehyde; C - isoamyl acetate; D - isoamyl 

alcohol; E - acetic acid; F - 2-metoxy-4-vinylphenol. 
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So, in Figure 5.9 A, it is possible to observe a greater increase of the 2-phenylethanol until the 8th 

day of the process. The production of this fusel alcohol is mainly associated with the phenylalanine 

degradation by the Ehrlich pathway [4, 5], where phenylacetaldehyde is an intermediary compound 

(being consumed as is produced, as it is presented in Figure 5.9B).  

Comparing both 2-phenylethanol and phenylacetaldehyde kinetics, it is possible to confirm their 

relationship as when the concentration of phenylacetaldehyde decreases to zero the concentration 

of 2-phenylethanol no longer increases. This also suggests that phenylalanine, initially added to the 

SGJ, was totally converted into 2-phenylethanol during the fermentation processes by S. cerevisiae 

after 8 days of fermentation. 

The synthesis of isoamyl acetate (Figure 5.9C) by S. cerevisiae is catalyzed by a group of enzymes 

called alcohol acetyltransferase (AAT) by utilizing higher alcohols, in this case the isoamyl alcohol 

(Figure 5.9D), and acetyl-CoA (resulting from pyruvate metabolism) as substrates [3]. The amount 

of isoamyl acetate and isoamyl alcohol appears to increase throughout the control and 

supplemented fermentation processes. This means that as isoamyl alcohol is being produced, S. 

cerevisiae provides the conductive and continuous condition for the production of isoamyl acetate. 

As isoamyl alcohol is the result of L-leucine degradation by the Ehrlich pathway [4, 5], this is also 

suggested that this amino acid is present in both fermentation media throughout the fermentation 

processes. 

Acetic acid is also a normal end product of the alcoholic fermentation [3, 409], and its 

concentration seems to increase until the 8th day of both fermentation processes, decreasing from 

then onwards until the end of fermentation (Figure 5.9E). In this case, as glucose is constantly 

consumed (Figure 5.3A) for formation of the end products (i.e. ethanol, glycerol, and acetic acid), 

the final decreasing of the acetic acid amount could be due to a residual substrate concentration 

available. Comparing 2-methoxy-4-vinylphenol kinetics in both the supplemented and control 

fermentations (Figure 5.9F), it is possible to verify different behaviors between them. In the 

supplemented media, the amount of this volatile phenol also increases until the 8th day; however, 

in the control fermentation there was no evidence of 2-methoxy-4-vinylphenol production. These 

kinetic differences in control and supplemented fermentations, lead us to suggest that the addition 

of phenolic acids are significantly affected the primary metabolism or rate of production of 

secondary metabolites. As it was discussed, 2-methoxy-4-vinylphenol is the result of ferulic acid 

metabolism, one of the added phenolic acids [3, 406]. 
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5.4 CONCLUSIONS 

In this work, the influence of the S. cerevisiae strain (PYCC 4653) metabolism on the antioxidant 

capacity of a synthetic wine was evaluated. The variation of the phenolic acids content within the 

fermentation process was determined by HPLC-DAD and the redox-potential was measured by 

cyclic voltammetry. A higher concentration of electro-active compounds was found in the beginning 

of the fermentation process. According to the voltammograms information, the fermentation 

process introduces a variation of the electro-active compounds leading to an overall resistance to 

oxidation, within time-course. The synthetic medium shows a pattern similar antioxidant capacity to 

that of normal wines. 

The non-target bioanalytical pipeline combining the electrochemical features with the metabolic 

information allowed to understand that the electrochemical features representing the redox-

potential changes throughout the alcoholic fermentation process is somehow accompanied with 

the production of some metabolites, such as 2-phenythanol, acetic acid and isoamyl acetate. Also, 

the use of the classification methodology called U-PLS allowed to find out metabolites, which 

kinetics are well correlated with 2-phenylethanol, which include the acetic acid, 2,3-dihydro-

3,5,dihydroxy-6-methyl-4(H)-pyran-4-one and 5-hydroxymethyl-furfural. Moreover, S. cerevisiae had 

the capacity of producing chlorogenic acid in the supplemented medium fermentation from simple 

precursors present in the minimal medium 

In this work, the combination of information from different detectors, including cyclic voltammetry, 

liquid and gas chromatography in this work, revealed exciting prospects to explore and gather the 

maximum information regarding complex systems, such as real must fermentation. 





 

 

 

 

 

 

 

CHAPTER 6 

6. X-METABOLOMICS: HIGH-THROUGHPUT 

METABOLOMICS PIPELINE APPLIED TO PORT WINE 

FORCED AGING PROCESS 

 

Metabolomics aims at gathering the maximum amount of metabolic information for a total 

interpretation of biological systems. In this Chapter, a process analytical technology pipeline, 

combining gas chromatography – mass spectrometry data preprocessing with multivariate 

analysis, is presented. This pipeline is integrated in a metabolomics in-house platform called X-

Metabolomics, which was demonstrated by application to a Port wine “forced aging” process under 

different oxygen saturation regimes at 60 ºC, in order to characterize the overall biological process.  

It was found that extreme “forced aging” conditions promote the occurrence of undesirable 

chemical reactions by production of dioxane and dioxolane isomers, furfural and 5-

hydroxymethylfurfural, which affect the quality of the final product through the degradation of the 

wine aromatic profile, color and taste. Also, were found high kinetical correlations between these 

key metabolites with benzaldehyde, sotolon, and many other metabolites that contribute for the 

final aromatic profile of the Port wine. The use of the kinetical correlations in time-dependent 

processes as wine aging can further contribute to biological or chemical systems monitoring, new 

biomarkers discovery and metabolic network investigations. 
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6.1 INTRODUCTION 

Metabolomics is a recent “omics” field and is based on  biology science devoted to identify 

phenotypes, the connectivity that relates their constituents and the dynamical response to 

perturbations, as well as the relationships with the rest of the cellular molecular machinery, at the 

regulatory levels such as genomics, transcriptomics and proteomics [28]. 

The study of such complex matrix on a chemical composition perspective can be described as 

being multi-scale, i.e. several orders of magnitude (ppm-ppt) and multivariate, i.e. large diversity of 

chemical substances, and constitutes an extremely challenging problem being the main goal to 

obtain a comprehensive profile of the molecular biology machinery and biochemistry. Ideally it 

would require a true “omic sensor”, i.e., with an unlimited linear zone of response and sensitive to 

all substances resulting in a global picture of the bioprocess [410]. 

A high-throughput metabolomic chromatography systems consists in hardware (analytical 

equipment) and software (signal processing, data storage and multivariate analysis), which are 

becoming a trend in modern biotechnology [212]. The most common chromatographic platforms 

for metabolomics include gas chromatography – mass spectrometry (GC-MS), liquid 

chromatography – mass spectrometry (LC-MS), capillary electrophoresis – mass spectrometry (CE-

MS), high performance liquid chromatography – diode array detection (HPLC-DAD) and nuclear 

magnetic resonance (NMR), all of which can be brought together for a wide screening of natural 

metabolites in complex biological samples. These methods become more appealing to systems 

biology and molecular biology when the screening is subjected to signal processing, turning 

chromatography into a high-throughput system capable of extracting peaks by an automated 

technique, which start to reveal a holistic view of the metabolism [139]. 

GC-MS is specially suited for the study of yeast volatile metabolites [12, 370]. These important in 

fundamental biological functions, such as signalling and precursors of biochemical pathways, as 

well as in the formation of aroma from wines that result from fermentation and aging, either in 

barrels or bottles. Several hundreds of compounds can be captured by GC-MS, and each 

compound produces a unique mass spectral fingerprint, which is afterwards used for metabolites 

recognition and quantification [12]. Classical mass spectroscopy is highly laborious and a 

significant amount of time is necessary for peak analysis, fingerprint recognition, identification and 

quantification by an analyst, that makes scientific discovery or holistic characterization impractical 
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[256]. In this context nontargeted methodologies are extremely important, with an unbiased 

approach, toward understanding the biological system [32, 137, 396]. Chromatography enables 

physico-chemical deconvolution of the complex matrix components during the analytical process 

originating a pattern, that is, a chromatogram. Although it allows samples classification based on 

the different patterns, it is important to relate that there are inherent variations in the 

chromatographic process, mainly related to the retention time (peak shifts) and baseline drifts 

[232]. Therefore, in order to use GC-MS data on a high-throughput base, those issues must be 

focused on the preprocessing data handling prior to multivariate analysis [256]. In that regard, 

attempts at the automatic processing of chromatograms have been developed, including 

preprocessing tools, such as: noise filtering, baseline correction, peak detection, alignment, 

identification and normalization algorithms [18, 38, 232]. 

Several pieces of commercial or free software based on metabolomic raw data preprocessing, peak 

detection and/or quantification have been developed in the last years - msInspect [411], MZmine 

[239], MetAlignTM [38], OpenMS [241], XCMS [18], SpecArray [412], XAlign [413], MassUntangler 

[414], MathDAMP [244], MetaboliteDetector [245] - and some from instrument companies -  

Waters MarkerLynx, ThermoFisher SIEVE, Agilent MassHunter, Applied BiosystemsMarkerView, 

Shimadzu Profiler AM + and LECO ChromaTOF [12]. More recently, bioinformatics web 

applications namely MeltDB [415], TICL [416], MetaboAnalyst [248] and MetabolomeExpress 

Project [417] have also emerged, focused on the biological interpretation via multivariate 

explorative and statistical analysis of preprocessed datasets. Furthermore, some of these software 

programs also include metabolomic data integration with transcriptomics, proteomics and/or 

genomics databases [415] - KEGG [258-260], BRENDA [263], MetaCyc [261] - or metabolomic 

databases - NIST [267] and SDBS [268]. 

In this Chapter, X-Metabolomics, a new software metabolomic pipeline is presented and applied to 

a Port wine data set. X-Metabolomics concerns in a stepwise approach for data handling and data 

processing, which combines different sources of algorithms consolidated on a tool, providing 

metabolites screening, quantification, and biological interpretation for a better understanding of 

biological systems It can be used as a diagnostic tool for high-throughput data supervision and 

validation, allowing the biological interpretation, providing the analysis of compounds expression 

and co-expression in the overall network. This pipeline can be used as a multidisciplinary tool, as it 

can be useful for: i) bioanalytics - to obtain the metabolic matrix of compounds and possibly 
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explore de-novo interesting compounds and increase the number of known molecules or metabolic 

pathways; ii) bioengineers - to understand and monitor the biological system, as well as to 

reconstruct the metabolic network of the system; and iii) bioinformatics - to create and improve 

preprocessing tools for preserving the integrity of various compounds features.  

The main goal of the application of the X-Metabolomics pipeline to a Port wine forced aging case 

study, is to evaluate the impact of the presence of oxygen and higher temperature during the 

“forced aging” of a Port wine matrix, using the bioanalytical pipeline developed. Port wine aging 

process is an extremely complex chemical process that has been extensively studied by our 

research group [1, 72, 73], where several chemical mechanisms take place and are responsible 

for differences in sensory perception affecting final product quality. The study of such matrix 

involves the use of both chromatographic signal preprocessing and MVA methodologies, together 

with the exploration of candidate metabolites expression and co-expression within the overall aging 

process (see Figure 6.1). Candidate metabolites correspond to MVA model variables, candidate to 

explain specific pathways of the metabolism that have chemical meaning and can be used for 

understanding the overall process. The co-expression of a candidate metabolite constitutes a 

powerful feature, enabling the study of potential interconnections between the candidates formation 

and consequently allowing further research for overlapping/connections between chemical and/or 

biochemical mechanisms. In this context, the global high-throughput pipeline methodology provides 

increased rate of metabolites identification involved in the chemical process contributing to further 

build the metabolic network of the overall process. 

 

6.2 X-METABOLOMICS WORKFLOW 

X-Metabolomics was designed for aiding metabolomics research, providing a useful laboratory 

pipeline for real-time GC-MS diagnosis. The pipeline is based on R statistical programming 

environment and Tcl/Tk X-window graphical user interface. The X-Metabolomics native processing 

pipeline works as follows: Preprocessing: i) chromatograms import (directly or selected samples), 

peaks extraction and alignment; or ii) direct importation of resulting data set from other 

preprocessing software; Post-processing: i) supervised filtering; ii) fragments classification; iii) 

multivariate statistics for data interpretation and classification; iv) building the identification and 
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composition tables; and v) compounds co-expression and expression in time-course (see Figure 

6.2). The data-handling software configurations must be specified on a configurations text file. 

 

 

Figure 6.1 High-throughput pipeline methodology for GC-MS data processing: A - GC-MS data preprocessing; 

B - Multivariate Analysis; C - Candidate metabolites identification; D - Temporal relationships of candidate 

metabolites for process contextualization. 

 

6.2.1 Data import 

The native preprocessing of X-Metabolomics is based on the XCMS methodology [18] and includes 

feature extraction, peaks grouping and scan alignment. However, it is also possible to import 

preprocessed data from other sources, such as MZmine [239] or MetAlignTM [38], as it supports 

other open file formats (netCDF, ASCII, mzXML) (see Figure 6.2). 

 

6.2.2 Preprocessing 

GC-MS chromatograms preprocessing can be performed using XCMS methodology [18], which is 

originally implemented, MZmine [239] or MetAlignTM [38], and then proceed with the X-

Metabolomics post-processing. Whatever the preprocessing software in use, the input parameters 

should be optimized as it is important to preserve the original compounds features for further 

analysis [137]. The optimization settings for each preprocessing software can be either instrument 
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dependent and so, constant for all the chromatograms of the data set, or less objective, 

distinguishing the real chromatographic peaks versus noise or window sizes in which peaks in two 

chromatograms are considered the same [418]. The optimization of the preprocessing parameters 

must be performed taking into account both the preservation of the integrity of a particular set of 

volatiles features (used for preprocessing supervision) and the maximum of total extracted scans. 

For these reasons, the optimization of the settings is, usually, performed in a data-driven mode, 

being re-set until both assumptions are satisfied. In this context this is the starting point from which 

biological and biochemical processes understanding is made. 

 

 

Figure 6.2 Implementation steps of X-Metabolomics, the in-house developed pipeline for high-throughput 

metabolomics. 

 

There is no consensus about the benchmarking criteria which should be used for comparing the 

quality of algorithms applicable at different steps of preprocessing [232]. For peak detection step, 

F-factor, which is a combination of recall and precision, was used by Tautenhahn et al. (2008) 

[233] and Lange et al (2008) [38] used the same methodology for the alignment step, while Koh et 

al. (2010) [39] used the comparison of R2 and Q2 values and prediction accuracy of ordinary 

partial least squares for discriminant analysis (OPLS-DA) models. 
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During the preprocessing, peaks found to represent the same scan across samples, based on 

similar retention times, are placed into groups, i.e., by performing retention time correction by 

interpolation with a fitting function (linear or β-spline), the final matrix M (m,n) is obtained, where n 

is the fragment number and m the sample (Figure 6.3). The nonlinear retention time alignment 

process is performed by identifying groups of peaks (a master peak list) to use as standard, and 

then the retention time deviation of each sample according to the standard is calculated in an 

iterative mode and peaks are aligned using the non-linear warping. The M matrix is further used in 

post-processing and therefore for exploring the time-course kinetics and co-expression of 

compounds providing the system interpretation. 

 

 

Figure 6.3 Retention time correction between all samples chromatograms. 

 

6.2.3 Post-processing 

The matrix resulting from the preprocessing methodologies, which includes the extracted peaks, 

must be filtered and the summary of the resulting metabolites features and samples information 

can be reached in the identification and composition tables, respectively. The final composition 

table is therefore explored using multivariate analysis (MVA), where samples and metabolites 

features can be classified using relevant principal component analysis (RPCA). Also, it is possible to 

determine metabolites expression and co-expression throughout the process, as well as, to predict 

compounds kinetics using Partial Least Squares Regression (PLSR) algorithm. 
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Candidate peaks filtering 

Two different methodologies are implemented for peaks filtering after preprocessing. These include 

the threshold filtering and the supervised filtering using hierarchical cluster analysis (HCA) [17]. 

The threshold filtering applies a maximum threshold value leading to peaks intensity present in 

chromatograms and so, peaks which intensity is above the defined threshold are excluded. This 

methodology allows eliminating peaks that might be saturated in the matrix [419], ensuring that 

only peaks with a linear behavior are therefore used. On the other hand, the HCA allows the 

selection / deletion of groups of candidate metabolites, which features are grouped in each branch 

of the dendrogram, according to features correlations. HCA is a supervised filtering, which allows to 

explore candidate metabolites clustered in the same branch and select the interesting candidates, 

eliminating those known as contaminants, coming from organic solvent, glass ware or detectors 

artifacts, and ion complexes formed [420]. The filtering step can reduce the detection or false 

positive features [232], in order to undertake an accurate identification of candidate metabolites 

involved in the process. In X-Metabolomics pipeline, each cluster can be individually explored to 

further understand compounds expression and co-expression over time, as well as, metabolic 

pathways contextualization. 

 

Relevant principal component analysis 

MVA involves the use of mathematical and statistical tools to extract the information from complex 

datasets (e.g. GC–MS datasets) [421], considering the system as a multi-dimensional comparison 

of the different chemical information present in the sample [396]. Relevant principal component 

analysis (RPCA) [422] is a non-supervised methodology that determines relevant orthogonal 

decompositions of the information able to discriminate between samples (scores), and variables 

(loadings), that provide relevant interpretation of significant variables (or metabolites) on each 

principal component [422].  

The Diagnostic plot (Q statistics vs Hotelling T2) is performed because not all features in the 

metabolic matrix (resulting from the preprocessing algorithm) preserve the same quality after data 

decomposition into relevant principal components [286]. In these cases, their reconstruction is 

statistically impossible, and their metabolic information is widely different from the average. Q 

statistics (square prediction error) is determined to assess the feature extraction quality, and the 
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line crossing the Q axis correspond to the statistic confidence interval (Qα) determined using the 

average and standard deviation of Q at a level of significance of α = 0.05. Samples above Qα do 

not represent robust feature extractions [423]. On the other hand, Hotelling T2 measures the 

distance to the center of the data. The line crossing the Hotelling T2 axis corresponds to the upper 

confidence interval of the distribution, determined at a level of significance of α = 0.05. Samples 

above the Tα2 are considered to present significantly different features [286, 424]. The 

determination of the Q statistic confidence interval (Qα) limits the Q values above which features 

are not robust. 

The use of both scores, Hotteling T2 and Q statistics – namely diagnostic plot - and the contribution 

plot for the identification of variables responsible for a specific behavior/observation being outside 

the normal operation conditions is quite common [291, 425, 426]. 

In X-Metabolomics it is also possible to explore peaks present in the contribution or the loadings 

plots, and when selecting each peak, the fingerprint/feature of the selected molecule is 

reconstructed, as in the example presented in Figure 6.4. As such it allows the molecules 

identification, by comparing their mass spectra with databases [267] and the Kovats index.  

 

 

Figure 6.4 Exploration of peaks included in Contribution plot of a given sample.  
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Metabolites expression through time-course and co-expression 

X-Metabolomics produces both the identification and quantification tables. The identification table 

is produced by imposing the minimum number of fragments, from the original feature, necessary 

for compounds identification (3 or more) and performing the Sinkhorn factorization for checking 

peak consistency among samples [257, 427]. Only identifiable and coherent peaks which hold the 

same mass fingerprint among all samples build up the identification table. Data in this table is 

presented for each candidate compound with corresponding normalized fragments intensity for 

identification. The composition table includes compounds concentrations obtained directly by linear 

relation to the internal standard for each sample, taking into account the maximum intensity of one 

m/z channel.  

Using the composition table, the time-expression of each molecule can be explored throughout the 

biological process or through the samples that we are interested in. The way that the composition 

table is determined is that by the maximum intensity of one m/z channel, which makes the 

interpretation less sensitive, and obviously leads to variations of the preprocessed expression when 

compared to the raw data expression of each molecule. However, the interest in the time-

expression is to explore not the exact concentration value in each sample but the tendency of the 

molecule concentration through samples, which makes this methodology acceptable for our 

purposes. 

The use of temporal correlations between metabolites is essential to understand the overall 

metabolism in terms of degradation, production or control cycles within the process. These 

correlations can be used for selecting candidate metabolites, interesting to be studied and 

identified. So, the co-expression of compounds is obtained by Pearson's correlation coefficient 

[428] of the composition table. Correlations can further be analyzed in time-course expression, for 

the correct diagnosis and interpretation of temporal relationships. 

 

Partial least squares regression (PLSR) 

PLSR is a statistical tool useful to predict a set of dependent variables from a very large set of 

independent variables [305]. This methodology is also included in X-Metabolomics pipeline, and 

can be used for predicting the metabolites statistically associated to a given molecule kinetic in the 

overall process.  
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6.3 CASE STUDY 

6.3.1 Wine material and treatments 

Young Port wine characterized by a pH = 3.4,  2.5 mg/L of dissolved oxygen, 17 mg/L of free SO2, 

150 g/L of reducing sugars and 20.5% (v/v) alcohol made on the year of the experiment (without 

any oak contact) was used in this experiment.  

Different oxygen treatments were introduced: 0 (P#_NoO2), 1 (P#_1inj), 2 (P#_2inj) and 5 

(P#_5inj) saturations in glass vessels filled with 500 mL of Port wine. Oxygen saturation was 

obtained by stirring each sample vigorously for about 1 hour until an oxygen concentration of about 

8 to 9 mg/L was reached. This was performed in a laminar flow chamber under UV light to prevent 

microbial contamination. Oxygen injections were measured with a WTW 340 Oxygen Probe [400], 

during 18 weeks (‘P1’ to ‘P18’) of storage at 60 ºC in a temperature controlled incubator, and 

discrete samples were obtained heuristically for each oxygen regime and further analyzed by GC-

MS (see section 2.4 GC-MS analysis, for specifications). 

The forced aging experiment [167, 400] was implemented to simulate the typical oxidation aroma 

of Port wine by promoting chemical changes on wine composition. Samples were supplemented 

with different oxygen regimes and kept at high temperatures (60 ºC). Although those extreme 

conditions are not representative of real aging process, they were selected in order to be able to 

reproduce in the laboratory on a reasonable time the aging process, in spite of the risk of 

promoting other chemical reactions which would not occur in the normal process. The length of the 

duration for the forced aged protocol was sensory-driven. In fact, at each sampling point, samples 

were submitted to sensory analysis in order to validate that the product was still perceived as Port 

wine and it was observed that after 18 weeks it not accepted as such. 

 

6.3.2 Chemicals 

All chemicals employed were of analytical grade: anhydrous sodium sulphate (HPLC grade) (Merck, 

Darmstadt, Germany), dichloromethane (Lab Scan, Sowinskiego, Gliwice), 3-octanol (97%) (Sigma-

Aldrich, USA), cis- and trans-5-hydroxy-2-methyl-1,3-dioxane (> 99.0%, Sigma-Aldrich, USA), cis- 
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and trans-4-hydroxymethyl-2-methyl-1,3-dioxolane (> 99.0%, Sigma-Aldrich, USA), benzaldehyde (> 

98.0%, Sigma-Aldrich, USA), furfural (> 97.0%, Sigma-Aldrich, USA), 5-hydroxymethylfurfural (5-

HMF) (> 98.0%, Sigma-Aldrich, USA); and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (> 99.0%, Sigma-

Aldrich, USA). 

 

6.3.3 Volatiles extraction 

A liquid-liquid extraction was performed to extract the volatile fraction from each sample. The 

procedure used was as follows: 5 g of anhydrous sodium sulphate and 50 µL of internal standard - 

3-octanol - were added to 50 mL of sample and were extracted twice with 5 mL of dichloromethane 

using a magnetic stir bar for 5 minutes per extraction, 2 mL of the resulting organic phase were 

concentrated under a nitrogen stream 4 times [400]. 

 

6.3.4 GC-MS analysis 

The forced aging experimental protocol was performed in duplicate for practical reason and some 

samples were analyzed by GC-MS on the replicate trial. These GC-MS targeted analysis were used 

as a crosscheck procedure on the evaluation and validation of both metabolites features 

preservation after the preprocessing methodology and the kinetics of each metabolite.  

Discrete sample extracts were analyzed using a Varian CP-3800 gas chromatograph (USA) 

equipped with a Varian Saturn 2000 mass selective detector (USA) and a Saturn GC/MS 

workstation software version 5.51. The column used was STABILWAX-DA (60 m x 0.25 mm, 0.25 

µm) fused silica (Restek, USA). The injector port was heated to 220 °C. The split vent was opened 

after 30 sec. The carrier gas was Helium C-60 (Gasin, Portugal) at 1 mL/min, constant flow. The 

oven temperature was 40 °C (for 1 min), then increased at 2 °C/min to 220 °C and held for 30 

min. All mass spectra were acquired in the electron impact (EI) mode. The ion trap detector was 

set as follows: The transfer line, manifold and trap temperatures were respectively 230, 45 and 

170 ºC. The mass range was 33 to 350 m/z, with a scan rate of 6 scan/sec. The emission current 

was 50 µA, and the electron multiplier was set in relative mode to auto-tune procedure. The 
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maximum ionization time was 25,000 µsec, with an ionization storage level of 35 m/z. The 

injection volume was 1 µL and the analysis was performed in Full Scan mode. 

 

6.3.5 GC-MS data preprocessing  

GC-MS ion-trap raw chromatograms were converted to text format (*.txt) using MASSTransitTM 

(Version 3.0, Palisade Corporation) and imported to MetAlignTM software. This preprocessing 

software was used for baseline correction, accurate mass calculation, data smoothing and noise 

reduction, followed by a spectral alignment of the GC-MS data [38]. Aligned chromatograms matrix 

was imported to the X-Metabolomics pipeline, and was subjected to multivariate analysis and the 

identification and quantification tables were built for further obtain the expression and co-

expression of candidate molecules within the “forced aging” Port wine process.  

 

6.3.6 Multivariate analysis (MVA) 

After RPCA performing, the diagnostic and contribution plots were used together for the selection of 

samples standing out of the latent model according to their metabolic characteristics, in response 

to the external conditions imposed, and to analyze variables/candidate metabolites, to be 

responsible for these differences during the Port wine “forced aging” process.  

 

6.3.7 Metabolites identification and quantification 

Both the identification and composition tables are constructed in X-Metabolomics, using the aligned 

matrix (*.csv) derived from MetAlignTM preprocessing software [38]. These tables allow identifying 

variables, that is, candidate metabolites which are responsible for the deviations of samples in the 

diagnostic plot. 

The identification table was built using the discrimination of the m/z channels and the 

corresponding normalized intensity in each scan. This was executed by imposing the minimum 

number of fragments, from the original feature, necessary for compounds identification (3 or more) 

and performing the Sinkhorn factorization for checking peak consistency among samples [257, 
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427]. Only identifiable and coherent peaks which hold the same mass fingerprint, among all 

samples build up the identification table, are used for a correct identification of molecules by 

comparing their fingerprint with databases [267]. 

The composition table was built using compounds concentrations obtained directly by linear 

relation to the internal standard for each sample (in this case, 3-octanol), taking into account the 

maximum intensity of one m/z channel. 

 

6.3.8 Metabolites kinetics and co-expression in time-course 

The temporal variations and/or interactions between metabolites reproduce the cellular dynamics 

about the chemical or biochemical systems in response to the environmental conditions. The 

kinetics or time-expression of each candidate molecule was directly obtained from the composition 

table, which was determined by the maximum intensity of one m/z channel. This fact can make 

the interpretation less sensitive, leading to variations of the preprocessed expression when 

compared to the raw data expression of each molecule. However, the main interest in the time-

expression is to explore the tendency of the molecule concentration through samples. 

The co-expression of compounds is obtained by Pearson's correlation coefficient [429] of the 

composition table. Correlations between the kinetics of candidates and a key metabolite, known to 

be involved in a specific chemical phenomenon in the process, are displayed in a heatmap 

(performed in R-Project 2.15.0), in a color range from white-to-red, which correspond to 

correlations between 0.8 ≤ R2 ≤ 1. Thus, clusters from the heatmap can be used for interpretation 

of temporal relationships of candidate metabolites allowing process contextualization, identification 

of the involved metabolites and metabolic network reconstruction [28]. 

 

6.4 RESULTS AND DISCUSSION 

6.4.1 Robustness of GC-MS preprocessing using MetAlignTM 

Due to multi-scale nature of Port wine chromatograms matrix, operational parameters of MetAlignTM 

[38] preprocessing software tool, need to be optimized in order to provide simultaneous extraction 
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of high and low concentration compounds. The optimization was performed according to the 

analytical equipment characteristics, and taking into account the preservation of the original 

features of a sub-set of volatiles. Volatiles were selected to monitor the impact of the different 

algebraic treatments in each metabolite spectra fingerprint within data processing. The criteria for 

metabolites selection were: (i) volatiles recognized as products of oxidation, Maillard reaction 

products and combination of both; (ii) substances present at different scales (i.e. ppm-ppt) and 

simultaneously acquired on the same analytical run.  

The selected volatiles were: the heterocyclic acetals of glycerol – dioxolane 1 and dioxolane 2 

(isomers cis- and trans-4-hydroxymethyl-2-methyl-1,3-dioxolane) - the furanic aldehydes: furfural, 5-

HMF and phenylacetaldehyde, a Strecker aldehyde [430], dependent of oxygen and temperature 

during aging. 

The original features of each metabolite were compared with the preprocessed resulting features in 

order to ensure the validity of the preprocessing methodology. Table 6.1 presents the correlation 

coefficients between features of both raw data and MetAlignTM [38]. These features can be used as 

a validation index for the preprocessing software tool preserving the original chromatographic 

features. The high correlation coefficients (R2) are presented in Table 6.1, indicating the 

preprocessing parameters used to maintain the integrity of the overall matrix in the forced aging of 

Port wine. As consequence, the features of the selected compounds with different magnitudes 

(ppm-ppt) were preserved, showing the strength of the preprocessed matrix which can be used for 

understanding chemical compound interaction in the Port wine “forced aging” process.  

 

Table 6.1 Correlation coefficients between raw and MetAlignTM
 data features using quantifier ion of 

the selected metabolites: (a) Quantifier ion; (b) Normalized value 

Metabolite (b) m/z (a) R2 
Dioxolane 1 103 0.9242 

Dioxolane 2 103 0.9200 

Furfural 95 0.9700 

5-HMF 97 0.7120 

Phenylacetaldehyde 91 0.9564 
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6.4.2 Multivariate analysis (MVA) 

Performing the RPCA to the MetAlignTM [38] final matrix, four relevant orthogonal decompositions 

were found to explain a total of 63.2% of the chromatographic data variability (22.3% PC1, 21.3% 

PC2, 11.7% PC3 and 7.9% PC4).  The most relevant components for capturing samples variability 

within the oxidation under each oxygen saturation regime are PC1 and PC2. According to both 

relevant decompositions, samples are distributed through the components as a function of the 

oxidation process occurring in the Port wine, which induces chemical composition changes in 

samples (Figure 6.5). Chemical differences occurring in the beginning of the “forced aging” 

process are less representative than those taking place in the final weeks (samples closest to week 

18 – “P18”) of the oxidation process as samples corresponding to these times are spread through 

the PC2 and PC1, respectively and the variability of the chemical information is higher in PC1. So, 

it can be stated that the complexity of the chemical profile of the resulting Port wine made under 

the different oxygen saturation regimes at high temperature increases during the maturation 

process leading to the production of compounds of during the storage time. 

 

Figure 6.5 Scores resulting from relevant principal component analysis. 
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6.4.3 Diagnostic and Contribution Plots – Selection of candidate molecules 

To understand the role of dissolved-oxygen regime and high temperatures during Port wine “forced 

aging” process, the selection of candidate metabolites was performed by employing diagnostic (Q 

statistics and Hotelling T2) and contribution plots, which are presented in Figure 6.6 and Figure 

6.7, respectively [425] [431, 432]. According to the Diagnostic plot in Figure 6.6, sample P18_5inj 

is above the Qα, which means that the reconstruction of its metabolic information is statistically 

impossible. 

In practice, P18_5inj was exposed to extreme conditions (high temperature, 60ºC, under a 

saturation regime of 5 injections of O2) for 18 weeks, and its sensorial analysis highlights an 

unconformity of its chemical profile comparing to other samples recognized as Port wine. So, as 

the chemical information of the sample reflects the impact of the extreme conditions during 

storage, and it cannot be accepted as a normal Port wine, this was used as a control for monitoring 

the aging process of these wines. 

 

Figure 6.6 Diagnostic plot (Hotteling T
2

-Q statistics) of Multivariate Analysis model. 
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In contribution plot of Figure 6.7 are visible the candidate variables/scans (1 to 14) representing 

metabolites that mostly explain chemical differences from the latent model. These candidates 

addresses the chemical quality of the final Port wine in the presence of the higher levels of oxygen 

after 18 weeks of “forced aging” at high temperature (60ºC). The contextualization of these 

candidate molecules through the different chemical pathways involved in the “forced aging” of Port 

wine entails their correct identification according to each mass spectra fingerprint, being essential 

for further comprehension of the temporal relationships with the entire matrix hich constitutes the 

aromatic profile of the Port wine samples. 

 

Figure 6.7 Contribution plot of sample “P18_5inj” with relevant candidate scans highlighted. 

 

6.4.4 Candidate metabolites identification and time-expression  

In the present pipeline methodology, mass spectra features from the candidate metabolites 

selected in the contribution plot are validated by i) crosschecking their presence in the raw data; ii) 

comparing their features with those present in NIST 98 MS library [267] and; iii) time-expression of 

each metabolite throughout the maturation process under each condition.  
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The mass spectra (MS) fingerprints of the highlighted metabolites of Figure 6.7 were built using the 

identification table from the data matrix resulting from MetAlignTM preprocessing and were used for 

tentatively identifying the key metabolites [m/z (%)] that mostly influence the Port wine aging 

process. MS features of metabolites tentatively identified as unknown are presented: 1 – 3-methyl-

1-butanol; 2 – unknown: unkn_1 [(100); 43 (67); 55(15); 88 (7); 59 (7)] – Scan 1274 ; 3 – 

unknown: unkn_2 [(100); 43 (21); 91 (13); 119 (12); 75 (5); 59 (5)] – Scan 1403; 4 – unknown: 

unkn_3 [43 (100); 115 (46); 55 (41); 45 (30); 59 (29); 73 (21); 39 (21); 67 (19)] – Scan 1629; 5 

– furfural; 6 – dioxane isomer; 7 – dioxolane isomer; 8 – unknown: unkn_4 [73 (100); 45 (33); 91 

(15); 43 (14); 55 (7); 74 (6); 57 (4)] – Scan 1959; 9 - unknown: unkn_5 [(100); 93 (91); 59 (90); 

45 (83); 121 (80); 136 (70)] – Scan 2216; 10 – 2-phenylethanol; 11 – diethyl malate; 12 – 

diethyl tartrate; 13 – monoethyl succinate; 14 – 5-HMF. 

The presence of furfural, dioxane and dioxolane isomers within the “forced aging” of Port wine is 

indicative of the occurrence of wine oxidation during the process, as it was reported by [73] and 

[167]. According to time-course kinetics of furfural and dioxane isomer, presented in Figure 6.8A 

and Figure 6.8 B, respectively, concentrations of both metabolites increase during “forced aging”. 

Furfural and 5-hydroxymethylfurfural are derived from carbohydrate dehydration followed by 

cyclation in Maillard-type systems and are generally correlated to wine browning during aging 

[433]. It is also evident that higher concentrations of oxygen during the maturation process induce 

higher production of this heterocyclic acetal (Figure 6.8B) and so, the formation of these off-flavors 

is due to the oxidative degradation of the wine [24].  

 

Figure 6.8 Time-course kinetics of the highlighted candidate metabolites: A - furfural; B - cis- and trans-5-

hydroxy-2-methyl-1,3-dioxane; (×) No O2; (♦) 1 Injection O2; (■) 2 Injection O2; (▲) 5 Injection O2. 
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The presence of 2-phenylethanol and 3-methyl-1-butanol at high concentrations is mainly due to 

the occurrence of the ethanol fermentation and widely contribute to the aromatic profile of Port 

wine [4, 5]. Another noteworthy result is the high impact of diethyl esters (diethyl tartrate and 

diethyl malate) as well as the monoethyl succinate in the Port wine ‘forced’ aging, which concerns 

to the extended esterification reactions occurring through the process [434].  

So, according to the chemical background of sample “P18_5inj”, translated with the variables or 

candidate metabolites identified in the contribution plot, it is possible to analyze that the presence 

of such extreme conditions (18 weeks of storage under the highest oxygen saturation regime 

studied) induces the occurrence of redox mechanisms which are closely associated to the 

“oxidative spoilage” of the wine during the maturation storage [167]. This mechanism, and thus 

the presence of the candidate molecules identified, is in most cases associated with the loss of the 

original Port wine aromas, the development of unpleasant aromas as well as with changes in the 

Port wine color or taste [73]. For these reasons, it is possible to consider that “P18_5inj” sample 

is not representative of a typical aged Port wine by the conventional aging process, since the 

chemical composition evidences the occurrence of deterioration mechanisms inherent to the aging 

process occurring under drastic conditions. 

Furthermore, regarding the correlation between candidate molecules kinetics over time is an 

innovative approach that allows increasing the knowledge of the overall process, providing the co-

expression, enhancing time-course relationships of the highlighted metabolites and other relevant 

molecules. The co-expression between compounds allows a kinetical comparison enabling 

correlations discovery between them, facilitating “mechanistic contextualization”. 

 

6.4.5 Candidate metabolites co-expression 

Dioxane isomer, was reported to be one of the indicators of the Port wine aging [73], it was used to 

understand the co-expression of other compounds present in the overall metabolites matrix. 

The exploration of dioxane kinetical correlations, allows understanding its temporal relationships 

with other metabolites for further contextualize them within a chemical phenomenon that can be 

being activated through the process, which is essential for further metabolic network 

reconstruction. 
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Scans corresponding to metabolites with correlation coefficients similar or higher than 0.8 (R2 ≥ 

0.8) according to dioxane isomer are present in the heatmap of Figure 6.9. Features from scans 

included in the heatmap of Figure 6.9 were also tentatively identified, by supervising with the raw-

data chromatogram features and also by comparing the mass feature with NIST 98 MS library 

[267], and using the time-expression of scans discriminated in the heatmap. 

So, according to Figure 6.8, it was found that the production of dioxane isomer, is highly correlated 

with the production of dioxolane isomers – dioxolane 1 (R2 = 0.98), dioxolane 2 (R2 = 0.99), 

benzaldehyde (R2 = 0.89) and sotolon (R2 = 0.81). The high correlations between these compounds 

is in agreement with the reported bibliography, as all these metabolites are known to be related 

with the Port wine aging process [1, 72, 73]. Dioxane isomer production is a result of the 

condensation reaction between glycerol and acetaldehyde under the low pH during wine aging 

[435]. 

 

Figure 6.9 Heatmap matrix correlations (0.8 ≤ R2 ≤ 1 corresponding to white to red range colors) with 

dioxane isomer. 
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6.5 CONCLUSIONS 

This research presented a metabolic pipeline methodology, implemented in the in-house platform 

X-Metabolomics, which allows identifying metabolites involved in dynamic processes in a high-

throughput mode. This pipeline enables the elucidation about the network reaction mechanisms 

and pathways relationships, starting with a set of known compounds clustered together according 

to their kinetical correlations and representing a specific chemical pathway. 

Applying the present pipeline to a Port wine “forced aging” process, furfural and dioxane isomer 

were found to be key molecules involved in the process, which production is relevant for the quality 

of the Port wine. Moreover, dioxane isomer production is highly correlated with dioxolane isomers, 

dioxane isomer, benzaldehyde and sotolon production, which have been already reported in other 

studies, as being result of physical and chemical changes occurring over the wine aging process.  

Temporal relationships between well known compounds and the matrix chromatograms, it was 

possible to understand potential interconnections between the candidates metabolites formation. 

Future researches of connections between chemical and/or biochemical mechanisms would 

provide further information about pathways and their reconstruction. 

This study revealed several advantages leading to the use of the metabolomics pipeline 

methodology, encouraging also its application in different research fields, as it provides a greater, 

faster and reliable understanding of biological or chemical processes occurring through time-

course. 





 

 

 

 

 

 

 

CHAPTER 7 

7. GENERAL CONCLUSIONS AND FINAL REMARKS 

 

This chapter presents the concluding remarks and the main outcomes of this thesis.  
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7.1 GENERAL CONCLUSIONS 

In this thesis, the potential of technometric approaches, combining chemometric and bioinformatic 

methodologies, was explored in the characterization, classification and prediction of physiological, 

phenotypic and metabolic changes as an adaptation response of different strains of 

Saccharomyces cerevisiae to environmental conditions. Methodologies used for data 

characterization include relevant principal component analysis (RPCA) and multi-way principal 

component analysis (MPCA), whereas for prediction and classification the methodologies used 

were unfolded partial least squares (U-PLS) and partial least squares logistic regression (PLS-LOG). 

The combined effect of distinct variables (measured using HPLC, GC-FID, GC-MS and cyclic 

voltammetry) explored by multivariate data analysis, allowed enhancing the knowledge about 

chemical and biochemical dynamics in biotechnological processes. 

It was found that the physiological, phenotypic and metabolic responses of three different strains of 

S. cerevisiae (S288c, CA11 and PE-2) triggered by the presence of toxic molecules, such as 1-

butanol, are different from those obtained in the presence of inhibitory molecules, as furfural and 

5-HMF. PE-2 was found to be the most robust strain, able to resist under toxic and inhibitory 

conditions in YPDb batch fermentations. The flocculation profile of CA11 was also found to be 

correlated with the production of glycerol and trehalose, as well as with acetic acid, as a response 

to the induced stress conditions. The use of chemometric tools, such as RPCA and PLS-LOG, 

proved to be extremely suitable in the characterization, classification, and prediction of 

physiological, phenotypic and metabolic responses of S. cerevisiae. 

In synthetic wine fermentations, it was found that changes occurring in the electro-active 

compounds variations in the medium are linked to antioxidant capacity response of S. cerevisiae 

PYCC 4653, which induced also metabolic changes. The use of the bioanalytical pipeline 

combining the electrochemical signal with the target and non-target metabolomics, using 

multivariate analysis strategies, allowed to understand that the antioxidant capacity variations were 

accompanied by the production of important metabolites, such as 2-phenylethanol, acetic acid and 

isoamyl acetate. The use of the prediction methodology called U-PLSR allowed to find out 

metabolites, which kinetics were well correlated with the production of 2-phenylethanol within the 

fermentation, such as, acetic acid, 2,3-dihydro-3,5,dihydroxy-6-methyl-4(H)-pyran-4-one and 5-
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HMF. It was also found that S. cerevisiae was able to produce chlorogenic acid in synthetic 

medium. 

In order to increase the capacity of gathering the maximum metabolic information about a 

biological system, by exploring the complexity of a given biochemical process, a metabolomics 

pipeline for high-throughput data analysis was developed. Bioinformatic and chemometric tools 

were integrated in a new software, X-Metabolomics, developed during this thesis, which was built 

for increasing the information of metabolic changes occurring in response to environmental 

conditions.  

The pipeline was applied to Port wine, and kinetics of known metabolites and candidate 

metabolites were found. Temporal relationships between well-known metabolites and the entire 

matrix, allowed to understand potential interconnections between the candidates metabolites 

formation. Future researches of connections between chemical and/or biochemical mechanisms 

would provide chemical responses according to the interest on a specific process.  

The increment provided by the application of this pipeline in metabolites identification, encourages 

its application in different research fields, as it provides a greater, faster and reliable understanding 

of biological or chemical processes along time.  

In sum, this thesis revealed the suitability of technometrics approaches, including different 

chemometrics and bioinformatics tools, for the monitorization and characterization of yeasts behavior 

during fermentation. The increment of the pipeline in the candidate metabolites identification 

encourages the application of this approach in different research fields, as they provide a greater, faster 

and reliable understanding of biological or chemical changes occurring on biotechnological processes. 

 

7.2 SUGGESTIONS FOR FUTURE WORK 

This thesis is inserted in the pioneer area of developing methods, sensors and software for the 

holistic monitoring of biological systems. Although this work allowed to validate the suitability of 

technometric approaches, combining different methodologies, for monitoring yeasts behavior as an 

adaptation to the environmental conditions within fermentations, there are still some hurdles that 

are necessary to solve, which include: 
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 The use of control systems for monitoring fermentations “at-line”, that provide rapid and 

accurate responses about the metabolic and physiological behavior of cells inside 

bioreactors. These systems could provide sampling representativeness and miniaturization 

of fermentative reactors for high-throughput screening; 

 The use of different smaller size sensors, with better separation columns and ionization 

control, as well as, faster scan methods; 

 Development of improved analytical methods for compounds extraction, contaminants 

detection and minimization, providing enhanced time/space resolution and sample size; 

 The development simplified, generalized and robust methods for chromatograms 

processing. None of state-of-the-art approaches are fully optimized for automatic 

processing of chromatograms without analytical chemist supervision. Significant errors 

occur in peak extraction, correct alignment, deconvolution and the accurate identification 

of compounds. Furthermore, as mass spectroscopy technologies and methods are very 

diverse, software has been dedicated directly to just some standard applications, and even 

so, these are complicated to operate and to optimize processing variables; 

 Development of new methodologies, especially in the integration of time-course data with 

pattern recognition and pathway networks reconstruction, so that, the underlying 

biochemistry present in high-throughput data can be correctly put into the biological 

context and not as a pure classification study. 
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