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ABSTRACT 

Cancer represents a public health problem worldwide due to the high incidence, prevalence 

and mortality in the human population, mainly in developed countries. Adoption of a cancer-

associated lifestyle and population aging are considered as the main reasons for the increase in the 

burden of cancer. Early diagnosis is important since treatment is most effective. The difficulty of 

diagnosing cancer patients at an early stage of the disease may lead to lower rates of successful 

treatment, so new diagnostic tools are required. Currently, diagnoses of many types of cancers 

include only non-invasive examinations and biopsies. 

Cancer diagnosis can be very sensitive if based on molecular features, but the lack of 

molecular tools makes the cancer understanding at this level a difficult task. Elucidating the 

molecular features of specific tumors can increase our knowledge about the mechanisms 

underlying disease development and progression. 

In this work, cell-based systematic evolution of ligands by exponential enrichment (Cell-

SELEX) was used as an approach to evolve aptamers capable of specifically discriminate between 

human breast carcinoma MDA-MB-435 cells and mouse embryonic fibroblast 3T3 cells, used as 

non-target cells.  

The selected aptamers were characterized taking into account their primary sequences and 

homologies between them; the conserved domains of secondary structures were also analyzed. Two 

different sequences, selected against a different breast cancer cell lines, and presenting near 100% 

homology were used as a comparison when the sequences that target MDA-MB-435 were used.  

Then, the carbodiimide methodology was utilized for the conjugation of amine labeled 

aptamer with silica particles. For the characterization of this ligation, the colorimetric method was 

used. 

Binding assays were performed using FAM (Fluorescein Amidite) aptamer and aptamer-

functionalized silica particles. For the aptamer 1A selected for breast cancer cell line MDA-MB-435 

results were promising. Hybridization seems to occur with the breast cancer cells visible under 

microscope or flow cytometry. For the negative control cell line no fluorescence was detected.  

Unlike, the aptamer 2A did not exhibit fluorescence when incubated with target cells. 

This could indicate that aptamer 1A have a good affinity and selectivity to discriminate 

markers in the cell surface meaning a successful Cell-SELEX for the cell lines in study. 
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SUMÁRIO 

O cancro representa um problema de saúde pública em todo o Mundo devido à sua alta 

incidência, prevalência e mortalidade na população, principalmente em países desenvolvidos.  

A adoção de um estilo de vida de risco e o envelhecimento são consideradas as principais 

razões para o aumento da incidência do cancro. Um diagnóstico precoce é muito importante para um 

tratamento mais eficaz. A dificuldade de diagnóstico de um paciente com cancro numa fase inicial da 

doença pode levar a menores taxas de sucesso do tratamento, por isso novas ferramentas de 

diagnóstico são necessários. Atualmente, o diagnóstico dos vários tipos de cancro incluem exames não 

invasivos e biópsias. 

O diagnóstico do cancro pode ser muito sensível se baseado em características moleculares, 

mas a falta de ferramentas moleculares faz com que a compreensão do cancro a este nível seja uma 

tarefa difícil. A elucidação das características moleculares de tumores específicos pode aumentar o 

nosso conhecimento acerca de mecanismos subjacentes ao desenvolvimento e progressão da doença. 

Neste trabalho foi utilizado o Cell-SELEX para selecionar aptamers capazes de especificamente 

discriminar entre células do carcinoma da mama humano MDA-MB-435 e fibroblastos embrionários de 

rato 3T3 como células não alvo.  

Os aptamers selecionados foram caracterizados tendo em conta as suas sequências primárias 

e as homologias entre elas; também as regiões conservadas das estruturas secundárias foram 

analisadas. Duas sequências diferentes, selecionadas para uma linha de cancro de mama diferente e 

apresentando uma homologia de quase 100% foram usadas como comparação onde as sequências 

com o alvo MDA-MB-435 forem usadas. 

Depois, a metodologia de carbodiimide foi utilizada para a conjugação do aptamer marcado 

com partículas de sílica. Para a caracterização desta ligação, um método colorimétrico foi utilizado. 

Os ensaios de ligação foram feitos utilizando o aptamer marcado com FAM e as partículas de 

sílica funcionalizadas com o aptamer. Para o aptamer 1A selecionado para a linha celular MDA-MB-435 

os resultados foram promissores. Parece ocorrer hibridização com as células de cancro da mama 

visíveis quer por microscopia quer por citometria. Para a linha celular de controlo nenhuma 

fluorescência foi detetada. Ao contrário, o aptamer 2A não apresentou nenhuma fluorescência quando 

incubado com as células alvo. 

Isto pode indicar que o aptamer 1A tem uma boa afinidade e seletividade para descriminar 

marcadores na superfície das células o que significa um Cell-SELEX bem-sucedido para as linhas 

celulares em estudo. 
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MOTIVATION AND AIM OF THE PROJECT 

Breast cancer is a major public health issue worldwide. It is the second leading cause of 

cancer death in women, surpassed only by lung cancer. Prognosis and survival rates for this type of 

cancer differ significantly depending on the cancer stage, type, treatment and geographical location 

of the patient.  

The overall cost for the treatment of patients with breast cancer increases with the more 

advanced stages of the disease. Therefore, diagnosis of breast cancer at earlier stages is beneficial 

to the patient and reduces the financial burden associated with treatment. Currently, the diagnosis 

of breast cancer combines non-invasive examinations, such as mammography, ultrasound or 

magnetic resonance imaging (MRI) and biopsy tests.  

Significant progress has been made in both the detection and treatment of this type of 

cancer during the last decades; nevertheless it still remains one of the leading causes of death. 

Early diagnosis and timely treatment have been considered to be the most effective forms to 

improve survival rate. However, despite the diagnostic improvements, the detection of breast cancer 

in early stages is still a great challenge. The main drawback is the lack of current molecular contrast 

agents, which can disclose the presence of early stage malignancies, tracking cell migration, 

monitoring surgical and pharmacological response. 

The aptamers discovery, particularly those selected for binding tumor markers or cancer 

cells, may offer an excellent solution for cancer early diagnosis and therapy. Aptamer-based 

diagnostic exhibits a desired selectivity, affinity and specificity, but also shows some distinguished 

advantages, such as the ability of passing through some barriers and the ease of molecular 

modification and design.  

For these reasons, the aim of the work presented in this thesis consists in using an iterative 

selection–amplification process known Cell-SELEX methodology to select and identify a panel of new 

aptamers that, when tested in vitro, are capable of recognizing specifically breast cancer cells. The 

selection experiment will be targeted against the MDA-MB-435 breast carcinoma cell line. 

Furthermore, the generated aptamers will be equipped and optimized with fluorescent properties, in 

order to enable their use for diagnosis purposes. 
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In the last decade, major efforts towards a fast development of anti-cancer therapies have 

been conducted  (Forbes, 2010; Shankar and Pillai, 2011), however many challenges remain and 

there is still no clear and defined solution to diagnose and treat cancer (Rodrigues and Kluskens, 

2011). Most cancers are diagnosed in a late stage thus with reduced treatment effectiveness. This 

clinical outcome could be greatly improved with an early diagnosis (Shangguan et al., 2008). This is 

particularly important in breast cancer that is the most common cancer in women worldwide. It is 

estimated that more than 1.6 million new cases of breast cancer occurred among women 

worldwide in 2010. It is also the main cause of death for women globally (Forouzanfar et al., 2011). 

Cancer cells lead to alterations in the expression of key proteins that result not only in 

different behaviors of the diseased cells, but also in alterations of the cells at the molecular and 

morphological levels. Traditionally, cancers are diagnosed mainly based on the morphology and 

anatomy of tumor cells or tissues using techniques such as MRI, computed tomography and 

positron emission tomography (Kang et al., 2009). However, these morphological characteristics 

are difficult to be used if an early diagnosis is envisaged, or if one aims to assess the complex 

molecular modifications that lead to cancer proliferation. Cancer diagnosis can be extremely 

specific and highly sensitive if based on molecular features (Shangguan et al., 2006). In this sense, 

aptamers could serve as an attractive new diagnostic tool.   

 

1.1. Aptamers 

Aptamers are oligonucleotides, such as ribonucleic acid (RNA) and single-strand 

deoxyribonucleic acid (ssDNA), or peptide molecules that can specifically recognize and tightly bind 

with high affinity a broad variety of targets that range from small ions, single molecules to proteins, 

and even whole cells (Bunka and Stockley, 2006; Stoltenburg et al., 2007). The oligonucleotide 

aptamers are 20–80 base pair long which are folded into distinct three-dimensional conformations 

due to several intramolecular interactions (Kanwar et al., 2011). Based on their three-dimensional 

structures, the aptamer-target binding occurs due to their specific and complex shape characterized 

by loops, hairpins, stems, bulges, pseudoknots, triplexes, or quadruplexes (Figure 1.1) (Stoltenburg 

et al., 2007). This connection results from structure compatibility, stacking of aromatic rings, van 

der Waals and electrostatic interactions, and hydrogen bonding, or from a combination of these 

effects (Strehlitz et al., 2012). 
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The use of antibodies as the most popular and conventional class of molecules for molecular 

recognition in a broad range of applications has been around for a long time. Aptamers have 

become attractive molecules in diagnostics and therapeutics rivaling and, in some cases, 

surpassing antibodies, because these molecules can overcome some of the weaknesses of 

antibodies (Han et al., 2010).   

The high stability of aptamers is one of its best characteristics. Aptamers are more robust at 

elevated temperatures and the thermal denaturation of aptamers is a reversible process. Indeed, 

they maintain their structures over repeated cycles of denaturation/renaturation (Song et al., 2012). 

Aptamers have the ability of easily recovering their native conformation and can bind to targets after 

re-annealing, whilst antibodies easily undergo irreversible denaturation (Mascini, 2008). Additionally, 

they are stable to long-term storage and can be transported at ambient temperature. 

Once selected, aptamers can be synthesized in great amounts with great accuracy and 

reproducibility via a chemical reaction, which is more cost-effective than the production of 

antibodies. Furthermore, compared to antibodies, aptamers can be more easily modified using 

chemical methods in order to increase their stability and nuclease resistance, for instance through 

the incorporation of electrochemical probes, fluorophores or quenchers (Song et al., 2012). At 

precise locations, several reporter molecules such as fluorescein and biotin can be attached to 

aptamers.  

Another interesting feature is the aptamer’s low immunogenicity. Aptamers appear to be 

moderately immunogenic and toxic, because nucleic acids are typically recognized by the human 

immune system as non-foreign agents (Song et al., 2012). Moreover, their small size enables the 

reduction of steric hindrance and increase of the surface coverage during immobilization, and 

present better tissue penetration as compared to antibodies (Ferreira et al., 2007). 

Aptamers can thus be considered as a valid alternative to antibodies and can be regarded as 

promising substitutes to antibodies in bioassay-related fields. Furthermore, aptamers have been 

Figure 1.1 - Schematic representation of the functionality of aptamers (Adapted from (Stoltenburg et al., 2007)).. 
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applied in the study of the mechanisms of interaction with proteins, to find highly efficient and 

specific inhibitors of proteins, to generate new drugs or targeted delivery systems, or to identify 

different target molecules for diagnostic purposes (Kulbachinskiy, 2007). Also, by directly blocking 

protein functions or inhibiting protein-protein interactions, such as receptor-ligand interactions, and 

thus functioning as antagonists, various aptamers have been pointed as promising therapeutic 

agents for several diseases, including cancer (Zhou and Rossi, 2009). Extraordinary progress has 

been achieved by linking cell-internalizing aptamers that recognize cell-specific receptors of a target 

cell with other molecules of interest (anti-cancer drugs, toxins, siRNA), hence promoting specific 

cellular uptake via receptor-mediated endocytosis (Hu et al., 2012). 

Since aptamers can be selected against almost any target, the possible diagnostic and 

therapeutic applications range far and wide. The versatility of aptamers is reflected in the fact that 

there are very few life science research areas to which aptamers cannot be applied (Dua et al., 

2011; Famulok and Mayer, 2011; Song et al., 2012; Stoltenburg et al., 2007). 

  

1.1.1. Aptamer Selection 

The identification of rare nucleic acid sequences with unique properties from very large 

random sequence oligonucleotide libraries was first described in 1990 (Ellington and Szostak, 

1990; Tuerk and Gold, 1990). These aptamers can be selected by combinatorial chemistry 

techniques called SELEX (Systematic Evolution of Ligands by Exponential Enrichment) or Cell-

SELEX. 

 

Aptamer selection by SELEX 

The SELEX technology is widely applied as an in vitro selection method to evolve aptamers 

with new functionalities. This technology is a combinatorial chemistry technique for producing either 

ssDNA or RNA oligonucleotides that specifically bind to a target ligand or ligands (Tuerk and Gold, 

1990). 

Many aptamers have been generated against a diversity of targets, including small 

compounds to large multi-domain proteins (Stoltenburg et al., 2007). Although SELEX is normally 

carried out using highly purified target molecules, complex heterogeneous targets can also be used 

for the generation of specific aptamers (Ohuchi, 2012).   

http://en.wikipedia.org/wiki/Combinatorial_chemistry
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Aptamer selection by Cell-SELEX 

Aptamers that specifically target proteins on the cell surface or specific cancer cell types, 

even when the biomarker is not known, can also be generated using a slightly different 

methodology. Selection can be pursued through Cell-SELEX, which is a molecular tool for cell 

studies, including cancer. Cell-SELEX is becoming an emerging methodology in which live cells are 

used to select aptamers for target recognition, without the requirement of prior knowledge of the 

target (Jiang et al., 2003). In this methodology, oligonucleotides can potentially link to any molecule 

exposed in the cell surface (Zhang et al., 2010b). 

The experimental procedure of the Cell-SELEX methodology is schematized in Figure 1.2. 

 

 

Figure 1.2 - Schematic drawing of the Cell-SELEX methodology. Aptamers are selected through selection 

cycles comprising three steps: selection, counter selection and amplification (Adapted from (Avci-Adali et al., 2008)). 

 

To generate aptamers that specifically target cancer cells, a library of ssDNA is required 

(Shangguan et al., 2006). This library consists of millions different sequences of ssDNA.  

First, the ssDNA pool is incubated with the target cells. After washing, the DNA strands 

bound to the target cell surface are collected and afterwards are incubated with the negative control 

cells. These negative control cells are usually normal cells (non-cancer cells). The DNA sequences 

able to bind the negative control cells are discarded. This step is very important because several 

proteins on cancer cell surfaces are also expressed by normal cells and therefore, any aptamer 
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binding to them will not be specific for the cancer cells. The remaining sequences are then kept and 

amplified for the following round of selection. When the selected pool is sufficiently enriched, the 

Polymerase Chain Reaction (PCR) product of the evolved pool is cloned and sequenced for aptamer 

identification (Zhang et al., 2010).Typically, approximately 10 to 20 rounds of Cell-SELEX are 

needed to isolate aptamers with the highest affinity and selectivity to the target cells (Fang and Tan, 

2010; Kunii et al., 2011; Ye et al., 2012). 

A large number of aptamer probes have been successfully chosen from Cell-SELEX for 

different types of cancer cells. Sefah and collaborators (Sefah et al., 2009) found one aptamer that 

showed important selectivity to the target acute myeloid leukemia cell line and that could identify 

the target cells within a complex mixture of normal bone marrow aspirates. In addition, a series of 

aptamers that bind to two types of ovarian cancer cells, namely against ovarian clear cell 

adenocarcinomas and ovarian serous adenocarcinomas, has been selected (Van Simaeys et al., 

2010).  

Recently, a DNA aptamer that recognizes SBC3, an adherent small cell lung cancer (SCLC) 

cell line, was selected using Cell-SELEX. The aptamer can be a potential and useful SBC3-specific 

marker since this cell line does not express the common biomarker pro-GRP that is commonly used 

to diagnose SCLC (Kunii et al., 2011).  

The Cell-SELEX methodology has been successfully used to raise aptamers against many 

other types of cancer (Jiménez et al., 2012; Sefah et al., 2010a; Zhang et al., 2012a). 

 

1.1.2. Aptamers modification 

Although aptamers are exceptional agents, there are some issues that have to be solved to 

enable their use in practical applications. One problem is that aptamers are susceptible to nuclease 

degradation. This issue is more relevant for RNA aptamers, because these molecules are less stable 

to hydrolysis whenever in contact with biological fluids (Lee et al., 2010). To overcome this hurdle, 

some chemical modifications can be done to increase the biostability of the chosen aptamers. Also, 

changes can be introduced to optimize binding parameters to the target or relevant molecules. The 

two essential regions with increased susceptibility are the phosphodiester backbone and the 5′ and 

3′-termini. 

Some altered oligonucleotides can be incorporated within the aptamer, either during or after 

selection, for improved stability. Several chemical modifications introduced in the selection step 
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include 2’-fluoro pyrimidines and 2’-amino pyrimidines. Certain modified nucleotide triphosphates, 

especially 2’-O-modified pyrimidines, can also be competently incorporated into the aptamer by T7 

RNA polymerases. It is very important to incorporate these modified nucleotides during the selection 

process, since they can ultimately affect aptamer binding affinity and folding.  

After selection, further modifications as the chemical incorporation of 2’-O-methyl ribose 

purines and pyrimidines can be performed. However, it is important to notice that post-selection 

modifications can negatively affect the aptamer activity, so additional alterations must be first tested  

(Lee et al., 2010; Ni and Castanares, 2011). 

Other important modifications, such as the use of Locked-Nucleic Acids (LNAs) modified RNA 

nucleotides, hold an important promise to stabilize aptamers, because of their increased 

thermostability and brilliant mismatch discrimination when hybridized with DNA or RNA. Moreover, 

they are resistant to degradation by nucleases (Stoltenburg et al., 2007). 

Furthermore, some nanomaterials can protect the oligonucleotides from nuclease digestion 

and competently deliver them into cells, further improving the possibility of aptamers for 

intracellular imaging (Aravind et al., 2012a, 2012b; Bagalkot et al., 2007; Lee et al., 2010; Li et al., 

2012). 

In addition to modifications towards the improvement of nuclease stability, other chemical 

alterations can be used, such as polyethylene glycol (PEG) for reduced systemic clearance rates 

and prolonged circulation half-life in vivo (Aravind et al. 2012a; Stoltenburg et al. 2007). 

Figure 1.3 presents an overview on the modifications that can be incorporated during the 

selection step of the Cell-SELEX methodology. 

2.  

3. Figure 1.3 – Different types of chemical modifications (Taken from (Blank and Blind, 2005)).  
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1.1.3. Aptamers applications 

Aptamers have attracted the attention of many scientists, because they not only possess all 

the advantages of the antibodies, but they also have unique merits. With these considerations, it is 

easy to understand the use of aptamers in almost every aspect of molecular biology and biosensing, 

particularly wherever antibodies have been traditionally used. Furthermore, aptamers can be used 

for both basic research and clinical purposes as macromolecular drugs. 

 

Aptamers as therapeutic agents 

Therapeutic agents are typically small organic molecules that fit into slits on the surface of 

their target macromolecule, forming an intricate network of stabilizing interactions (Tu et al., 2005; 

Varghese et al., 1995). Aptamers can fill the roles of many therapeutic agents. These molecules can 

also fit into crevices on macromolecules and can fold to form slits into which prominent parts of the 

target protein can link. This enhances the number of contacts made with the target, permitting 

aptamers to form more specific interactions than other smaller molecules (Bunka and Stockley, 

2006). These aspects can greatly increase the potential therapeutic usage of aptamers.  

Since aptamers can be virtually selected against any target, their mode of action is strongly 

dependent on their target. In most cases, the aptamer-target binding inhibits its biological activity, 

due to the interference with the enzymatic catalytic site, or to the ligand-receptor recognition sites, 

or possibly to the induction of allosteric effects with subsequent loss of function (Missailidis and 

Hardy, 2009; Ulrich and Wrenger, 2009). Due to this ability to promote the target loss of function, 

aptamers have found a niche in virtually every area of pathology, including virology (Proske et al., 

2005), vaccine production (Becker and Becker, 2006; Lee et al., 2006), oncology (Pestourie et al., 

2005) and parasitology (Adler et al., 2008; Missailidis and Perkins, 2007). 

Up to now, aptamer commercialization is limited to only one aptamer-based drug receiving 

Food and Drug Administration (FDA) approval (Ng et al., 2006), however their uniqueness 

constitutes a great promise to the medical field. Table 1.1 highlights the current development of 

aptamers used for therapeutic purposes and their clinical study status. 
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Table 1.1 - Current aptamers in various stages of clinical development. 

Aptamer 
(Company) 

Aptamer 
type 

Target Phase Clinical Application References 

Pegaptanib 
(Pfizer/Eyetech) 

RNA VEGF 
Phase 

II 
Macular 

degeneration 
(Chakravarthy et al., 2006; Gragoudas 

et al., 2004; Ng et al., 2006) 
AS1411 

(Antisoma) 
DNA Nucleotin 

Phase 
II 

Acute Myeloid 
Leukemia 

(Bates et al., 2009; Mongelard and 
Bouvet, 2010; Teng et al., 2007) 

REG1 (Regado 
Biosciences) 

RNA 
Coagulatio
n Factor IX 

Phase 
II 

Coronary Artery 
Disease 

(Becker and Chan, 2009; Chan et al., 
2008) 

ARC1779 
(Archemix) 

DNA vWF 
Phase 

II 
Purpura, Thrombotic 
Thrombocytopenic 

(Diener et al., 2009; Gilbert et al., 
2007) 

NU172 (ARCA 
biopharma) 

DNA Thrombin 
Phase 

II 
Heart Disease (Waters et al.,2009) 

NOX-A12 
(NOXXON 
Pharma) 

RNA CXCL12 
Phase 

I 
Hematopoietic Stem 
Cell Transplantation 

(Sayyed et al., 2009) 

NOX-E36 
(NOXXON 
Pharma 

RNA CCL2 
Phase 

I 
Type 2 Diabetes 

Mellitus 
(Kulkarni et al., 2009; Maasch et al., 

2008) 

ARC1905 
(Ophthotech) 

RNA C5 
Phase 

I 
Age-Related Macular 

Degeneration 
(Goebl et al., 2007) 

E10030 
(Ophthotech) 

DNA PDGF 
Phase 

II 
Age-Related Macular 

Degeneration 
http://clinicaltrials.gov/show/NCT0108

9517 

 

Aptamers can be developed to adjust to specific pathological or physiological conditions such 

as pH or specific factors to the target, such as cells, during the in vitro selection process, thus 

making them stable for in vivo usage. 

 

Delivery of therapeutic aptamers  

Therapeutic targets can be divided into two main classes; extracellular targets, such as 

invading viruses and intracellular targets, such as transcription factors. 

Aptamers to extracellular targets can be administered subcutaneously or intravenously. 

Pharmacokinetic studies in humans corroborate that RNAs delivered by these routes are promptly 

spread throughout the body and taken up by cells in an easy way (Sandberg et al., 2000). The 

aptamers can be made in their stable functional state and injected directly into the patient. 

Nevertheless, RNA clearance and degradation is unavoidable, and repeated administration is 

necessary until treatment is complete. Delivery of aptamers to intracellular targets has been 

achieved mainly by its expression from viral-based vector systems or by its incorporation into 

liposome vesicles (Bunka and Stockley, 2006). 

http://clinicaltrials.gov/show/NCT01089517
http://clinicaltrials.gov/show/NCT01089517
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Liposomes are the most well-reported and successful drug-delivery systems (Cao et al., 

2009; Kang et al., 2010; Mann and Bhavane, 2011). They have been shown to increase the 

residence time of aptamers in the bloodstream (Willis et al., 1998). Previous efforts on liposomal 

drug delivery have focused on developing long-circulating liposomes that target tumor tissues 

(Maeda et al., 2000). 

Although aptamers have been very effective in vitro, most of them cannot be taken up by 

cells without external assistance. Naturally, internalization ability is central for the application of 

aptamers in vivo, particularly in targeted drug delivery. 

Targeted drug delivery is principally significant in cancer treatment as many anti-cancer drugs 

are non-specific and highly toxic to both normal and cancer cells (Tan et al., 2011), thus yielding 

global systemic toxicity with only a modest improvement in patient survival.  

One example of the relevance of the aptamers in the delivery of drug molecules to treat 

cancer was described by Chu and co-workers (Chu et al. 2006). The aptamer anti-PSMA conjugated 

with the recombinant plant toxin gelonin can be used to deliver the toxin to specific prostate cancer 

cells that overexpress the biomarker PSMA. Aptamer-toxin conjugates show potency of at least 600 

fold higher than cells that do not express PSMA. As suggested by the results, the aptamers can be 

very useful for target specific treatment in cancer. 

Figure 1.4 gives a schematic overview of an aptamer conjugated with nanoparticle for 

delivery of drugs in cancer treatment. 

 

 

Figure 1.4 - Aptamer conjugated nanoparticle for delivery of drugs to treat cancer (Taken from (Stalin and 

Dineshkumar, 2012)). 
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Aptamers for Diagnostic Assays 

Another biomedical application of aptamers is in the diagnosis of diseases given their high 

affinity and specific nature against their target molecules as previously mentioned. 

For diagnostic purposes, the aptamer should recognize and bind to a specific target, while for 

therapeutic uses the aptamer should be in addition a function-blocking compound and be capable 

to directly interrupt the disease process (Cerchia et al., 2002). 

Aptamers have the ability to differentiate tumor from normal cells by identifying molecular 

level differences, and they can even distinguish cancer cells by stage of development, by type or by 

patient profile. These differences have a great importance in aiding the understanding of the 

biological processes and mechanisms of disease development (Guo et al., 2008; Medley et al., 

2011; Shangguan et al., 2006) 

Shangguan and co-workers (Shangguan et al., 2006) reported a methodology for the 

identification of molecular signatures, also called biomarkers (biological molecules that are 

indicators of physiologic state and also of alteration during a disease process) on the surface of 

targeted cells using the differences at the molecular level among two different types of cells. Several 

aptamers have been generated for the particular recognition of leukemia cells. The chosen 

aptamers can specifically identify target leukemia cells mixed with human bone marrow, and can 

also recognize cancer cells strictly related to the target cell line in real clinical specimens. 

As previously mentioned, based on molecular differences of unknown membrane proteins 

present on diseased cells compared with normal cells, aptamers can be used to selectively identify 

different types of cells. Thus, it is expected that new biomarkers can be found as long as the 

aptamers target protein can be identified (Ye et al., 2012). The new biomarkers discovery not only 

leads to a better understanding of the disease processes and mechanisms involved, but also is of 

great clinical value for early detection and fast treatment. 

 

Other applications 

The aptamers may also be used for a variety of applications which have not yet been 

described. Protein purification is one of them. Purification of natural forms of proteins can be 

reached with aptamers using fewer steps and with high affinity for the protein comparing with the 

conventional protein purification methods that involve the modification of targeting protein with tags. 
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The subsequent tag-cleavage steps can frequently affect the folding, structure, capability and so on 

(Kanoatov et al., 2011). 

The recognition of proteins with great affinity and selectivity by aptamers allows the 

detection of proteins immobilized on a membrane. Gold and co-workers (Bock et al., 2004) have 

established an aptamer-based microarray permitting immobilized aptamers to be cross-linked with 

target protein. The microarray system recognizes a broad range of proteins at several 

concentrations. 

Combating infectious agents is another application in which aptamers are widely used. This 

type of molecules can be used as target-specific anti-infectious agents. They can selectively disrupt 

membrane functions or inhibit a crucial protein (Dey et al., 2005; Misono and Kumar, 2005). 

 

1.2. Nanoparticles 

Bionanotechnology is defined by its ability to work at the molecular level, combining rules of 

physics and biological materials, chemistry and genetics to create synthetic structures. The result is 

the generation of a highly functional world of biosensors, microchips, molecular ‘switches’, and 

others, all developed in ways that permit these structures to self-assemble. On the other hand, 

disease diagnosis and treatment progresses are dependent on the understanding of biochemical 

processes. As previously mentioned, diseases can be recognized based on anomalies at the 

molecular level and the treatments are designed based on activities in quite low dimensions. 

Therefore, the use of research tools with dimensions near to the molecular level would be ideal to 

better understand the mechanisms involved in the processes (Tan et al., 2004).These tools can be 

nanoparticles (NPs), nanoprobes, or other nanomaterials in small dimensions. 

NPs hold great potential because of their high surface-to-volume ratio, unique optical qualities 

and other size-dependent properties. NPs show also exceptional physical features as particle 

aggregation, electrical and heat conductivities; and chemical qualities. When combined with surface 

modifications these properties provide probes for highly selective bioassays (Liu, 2006). 

NPs are able to enhance binding affinity and increase the signal strength, multivalent 

binding, instead of single-aptamer binding, thereby NPs will greatly help detection (Lee et al., 2010; 

Zhang et al., 2010a). Signal transduction elements are accountable for converting molecular 

recognition events into detectable signals such as color, fluorescence, electrochemical signals and 

magnetic resonance image changes (Chiu and Huang, 2009). 



CHAPTER 1 
INTRODUCTION 

 

14 

The incorporation into NPs of functional aptamers has become a new field that aims at 

providing novel hybrid sensing systems (sensors) for molecular recognition. This new combination 

has produced several types of sensors for sensitive and selective detection. Sensors are devices that 

respond to chemical or physical stimuli and generate a measurable signal. A sensor requires at 

least two steps to work properly: target recognition and signal transduction. The target recognition 

element can be any biological or chemical entity like proteins, peptides or aptamers (Lee et al., 

2010). The development of general methods to convert the highly specific molecular recognition 

between aptamers and their targets into detectable signals is highly desirable. Conjugation of 

aptamers with nanomaterials can be the ideal solution.  

In the latest years, with the development of the nanotechnology field, some NPs have been 

designed and currently play central roles in many fields. Some NPs, such as fluorescent silica 

nanoparticles, quantum dots, polymeric nanoparticles, magnetic nanoparticles, metallic 

nanoparticles among others, can be functionalized with desired biomolecules to form probes for 

sensitive bioassays and also constitute signal transduction elements commonly used (Figure 1.5) 

(Chan, 1998; Chiu and Huang, 2009; Herr et al., 2006; Jayasena, 1999; Tan et al., 2004; Tombelli 

et al., 2005; Zhang et al.. 2010a). 

 

Figure 1.5 – Multifunctional nanoparticle. The nanoparticle ‘corona’ can be functionalized with hydrophilic 

polymers, targeting molecules, therapeutic drugs and image contrast agents (Taken from (McNeil, 2005)). 
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1.2.1. Quantum dots  

Quantum dots (QDs) are representative fluorescent nanoparticle probes with increasing 

research interest and are one type of fluorescent NPs-based sensors with several unique optical 

properties (Alivisatos, 1996). QDs are ultra-small (usually 1–10 nm in diameter), bright (20 times 

brighter than most organic fluorophores) and highly photostable (Zrazhevskiy et al., 2010). Their 

high resistance to photobleaching and their brightness make them appealing for cellular and tissue 

imaging (Medintz et al., 2005). 

However, these NPs present some drawbacks. QDs are difficult to fabricate and the 

chemistry involved in their surface modification is still under investigation (Medintz et al., 2005; 

Zrazhevskiy et al., 2010). Despite recent progress, much work still needs to be done to achieve 

reproducible and robust surface functionalization and also to develop flexible bioconjugation 

techniques, yet the superiority of QDs over other fluorescent labels for certain biological applications 

still makes them one of the most interesting fluorescent probes. 

By combining the excellent fluorescence properties of QDs with the high affinity and 

specificity of aptamers, Cui and co-workers (Cui et al., 2011) constructed a QD–aptamer probe that 

specifically recognizes and labels the influenza A virus. This QD labeling technique provides a new 

strategy for labeling virus particles for virus detection and imaging. QDs conjugated to PSMA 

aptamer A9 was shown to selectively label PSMA-positive cells, while showing minimum binding to 

the PSMA-negative cell line in culture (Chu et al., 2006b). 

 

1.2.2. Gold nanoparticles 

Regarding gold NPs, it is well known that this material has uncommon optical and electronic 

properties, biological compatibility, high stability, controllable morphology and size dispersion, as 

well as an easy surface functionalization (Sperling et al., 2008; Yang et al., 2011). There are many 

reports in the literature that refer the use of aptamer-gold hybrids. For example, Huang and 

collaborators (Huang et al., 2005) developed a specific system for platelet-derived growth factors 

(PDGFs) and platelet-derived growth factor receptors (PDGFR) that uses gold NPs altered with an 

aptamer that is specific to PDGFs and used them to detect PDGFs. The same authors (Huang et al., 

2009) further showed the potential use of aptamers conjugated with gold NPs for breast cancer cell 

detection. Their results suggest that the aptamer bioconjugated NPs may be suitable for use in 

breast cancer therapy. 
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1.2.3. Magnetic nanoparticles 

The majority of magnetic nanoparticle systems use inorganic nanocrystals as their magnetic 

cores. These NPs exhibit two important features, namely specificity and magnetism. As such, they 

can interact with an external magnetic field and are ideal media for the manipulation of biological 

materials, the targeted delivery of therapeutic compounds (Dobson, 2006) and for hyperthermia 

treatment (Hergt et al., 2006).  

Aptamer-functionalized magnetic NPs have been used for small molecule and protein 

detection. Yigit and co-workers (Yigit et al., 2007) assembled superparamagnetic iron oxide NPs and 

aptamers for the detection of human R-thrombin protein. 

 

1.2.4. Polymers 

A wide variety of polymer carriers have been designed for use as drug transporters. The 

polymer can be of synthetic or natural source and self-assembled or synthetically cross-linked. 

Chemical structures like polylactic acid (PLA), PEG, poly(lactate-glycolate) (PLGA) and poly 

(hydroxyethyl starch) (HES) constitute the most common polymer types used in the design of 

therapeutic bioconjugates (Hermanson, 2008). Some of them have been used to carry only a 

chemotherapeutic agent without a targeting molecule while others have incorporated affinity binding 

agents to gain specificity for the particular cell or tissue type being targeted.  

The purpose of polymer coupling is to modify the properties of the attached drug or 

biomolecule in vivo in order to make it more soluble or to protect it from renal filtration, thus 

promoting their persistence in circulation (Fishburn, 2008). In other cases, the objective is to link 

multiple copies of the drug to one bioconjugated and thus gain additional therapeutic efficacy at the 

targeted tumor or tissue. 

Conjugation to synthetic polymers such as PEG or PLA is frequently used in order to improve 

the performance of aptamers as therapeutic agents (Farokhzad et al., 2004). 
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1.2.5. Silica particles 

In bioanalysis, silica has a widespread use in biosensors and biochips. Silica can be 

synthesized to prepare NPs and is governed by the chemical properties of the surface, which are 

based on the silanols and siloxane (Spange, 2000). 

Silica NPs are considered to be non-toxic delivery carriers for controlled release of numerous 

therapeutic and imaging agents in biological applications. These particles are often an exceptional 

choice for drug delivery among the inorganic nanoparticles mainly due to their high stability, rigidity, 

uniform and tunable pore sizes, biocompatibility, chemical versatility, optical transparency, high 

surface areas, large pore volumes, controllable surface functionalization and resistance to microbial 

attacks (Yang, 2011). Additionally, these particles are amenable to surface modification with a 

diversity of organic functionalities, such as amines, thiols, carboxylic acids, alkoxy groups, and 

aromatic groups resulting in highly useful organic–inorganic hybrid materials (Descalzo et al., 2006; 

Klajn et al., 2010) which are considered to be promising nanocarriers for targeted drug delivery. 

The flexibility and versatility of silica in synthesis procedures, as well as in surface 

modifications offers a great advantage to the use of this material in bioanalysis.  

Cai and co-workers  (Cai et al., 2012) develop three effective probes of aptamer-conjugated  

silica NPs for human breast carcinoma MCF-7 cells successful labeling. 

 

Synthesis and Characterization 

Silica based NPs can be prepared through a wide variety of techniques. There are two 

general ways. The first is the Stöber method (Figure 1.6-A) (Stöber et al., 1968). Basically, this 

method consists in silica alkoxide precursor hydrolysis in a mixture of ethanol and aqueous 

ammonium hydroxide. During hydrolysis, silica particles with nanometer sizes are produced 

(Shibata et al., 1997).  

The second method that can be used is the reverse or water–in-oil microemulsion (Figure 

1.6-B) (Santra et al., 2001; Zhao et al., 2003). This method is a robust and efficient way to prepare 

NPs. Furthermore, it is based on the formation of a stable dispersion of two immiscible fluids (water 

and oil). The system is stabilized by an added surfactant. These three main components make up 

the main reaction mixture: water, surfactant, and oil (Tan et al., 2004).  
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Figure 1.6 - Methods for synthesizing silica nanoparticles. (A) The Stöber method. TEM micrograph shows 125 nm silica 

nanoparticles. (B) The reverse phase microemulsion. TEM micrograph shows 37 nm silica nanoparticles. The scale bars 

represents 200 nm (Taken from (Taylor-Pashow et al., 2010)). 

The characterization of NPs is important to elucidate the mechanism of nanoparticle 

formation and also to validate the synthesis protocols. Normally, particle characterization includes 

the measurement of particle size, surface charge, surface functionality, and optical and spectral 

features. NPs can be evaluated by their size using transmission electron microscopy (TEM) or 

scanning electron microscopy (SEM). 

 

Dye-Doped Silica NPs 

Silica-based NPs are currently used in many areas because they enable unique applications 

in bioanalysis and bioseparation. A large number of dye molecules can be incorporated inside a 

single silica particle producing a highly amplified optical signal compared with a single dye molecule 

(Tan et al., 2004).  

If used correctly, dye-doped silica NPs can provide a great improvement in analytical 

sensitivity. These nanoparticles contain a large amount of dye molecules trapped inside a silica 

matrix, and they exhibit an extraordinary signaling strength signal. More than 10000 dye molecules 

are assumed to be doped inside a 60 nm nanoparticle (Wang et al., 2006). 

Moreover, the silica matrix serves as an effective barrier limiting the effect of the outside 

environment on the fluorescent dye contained in the NPs, thus both photobleaching and 

photodegradation phenomena that often affect conventional dyes can be minimized (Cai et al., 
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2012). The great photostability makes these NPs suitable for uses where high intensity or prolonged 

excitations are needed. ´ 

The silica chemistry flexibility providing versatile routes for surface modification, as well as 

the aforementioned brightness and fluorescence photostability over time makes the dye-doped silica 

a great promise for various biological applications.  

 

1.3. Bioconjugation methodologies  

Every conjugation process involves the reaction of one functional group with another. The 

creation of bioconjugated reagents with selectively or spontaneously reactive functional groups 

creates the basis for crosslinking of target molecules (Hermanson, 2008). Covalent bioconjugation 

strategies are more employed than physical adsorption methodology’s in order to avoid non-specific 

adsorption and desorption of the NPs on the biomolecule surface towards a more effective control 

of the biological moieties (Bae et al., 2012). 

Regarding the silica NPs and taking into consideration the versatility of Si chemistry, various 

reactive functional groups such as amines, thiols and carboxyls, are often introduced by attachment 

to additional silica coating layers for use as linker molecules, which can provide reaction sites for 

bioconjugation. The use of additional silica coating that contains suitable functional groups is known 

as post-coating. These surface modifications enable silica NPs to be conjugated with a large variety 

of biological molecules such as proteins, enzymes, aptamers, antibodies, among others, through 

standard conjugation protocols. (Tan et al., 2004).The chemical methods for immobilization of 

aptamers are all based on methodologies already developed for immobilization of DNA and other 

biomolecules (Balamurugan et al., 2008). 

 

1.3.1. Carbodiimide Chemistry 

A rapid and easy conjugation methodology of biomolecules to NPs surfaces is based on the 

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) / N-hydroxysuccinimide (NHS) 

activation of the carboxylic acid groups on particle surfaces followed by reaction with amino groups 

of the biomolecule (Figure 1.7 and Figure1.8-A).  
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Figure 1.7 - Sulfo-NHS plus EDC crosslinking reaction scheme. Carboxyl to amine crosslinking using the EDC and sulfo-

NHS. Addition of Sulfo-NHS to EDC reactions (bottom-most pathway) increases efficiency and enables NP (1) to be 

activated (Taken from (http://www.piercenet.com/product/nhs-sulfo-nhs)). 

EDC and other carbodiimides are zero-length crosslinkers; and can cause direct crosslink of 

carboxylates (–COOH) to primary amines (–NH2) without becoming part of the final crosslink 

between target molecules. EDC reacts with the -COOH group and activates it to form an active O-

acylisourea intermediate, allowing it to be coupled to the amino group in the reaction mixture. An 

EDC by-product is released as a soluble urea derivative after displacement by the nucleophile. 

The O-acylisourea intermediate is unstable in aqueous solutions and the failure to react with 

an amine results in hydrolysis of the intermediate, regeneration of the carboxyls and the release of 

an N-unsubstituted urea.  

NHS or its analog Sulfo-NHS is often included in EDC-coupling protocols to improve 

efficiency. EDC couples NHS to carboxyls, resulting in an NHS-activated site on a molecule 

(Nakajima and Ikada, 1995; Staros et al., 1986). 

 

1.3.2. Disulfide-coupling chemistry 

 In chemistry, a disulfide bond is a covalent bond normally derived by the coupling of 

two thiol groups (Figure 1.8-B). The disulfide-coupling chemistry has been used for the 

immobilization of oligonucleotides onto silica NPs (Hilliard et al., 2002), whereby these particles are 

silanized with 3-mercaptopropyltrimethoxysilane. The reaction permits the conjugation of the thiol-

http://www.piercenet.com/product/nhs-sulfo-nhs
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Thiol
http://en.wikipedia.org/wiki/Functional_group
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modified silica NPs to the disulfide-modified oligonucleotides. These disulfide-modified 

oligonucleotides are then directly linked to the silane-activated silica surface (Bae et al., 2012). 

 

1.3.3. Maleimide–thiol coupling 

 An effective methodology for the coupling of proteins, antibodies, aptamers or other 

biomolecules to particle surfaces is based on the reaction of maleimide functionalized particles with 

thiolated biomolecules (Figure 1.8-C) (DeNardo et al., 2005; Natarajan et al., 2008). This method 

leads to an ideal orientation of the immobilized biomolecules and conserves their biological 

functionality in a high level (Grüttner et al., 2007).  

 

1.3.4. Click Reactions 

 The concept of click-chemistry consists of ‘spring-load’-like chemical reactions that occur in 

a spontaneous way and with high selectivity and yield between stable functional groups (Figure 1.8-

D) (Kolb et al., 2001). Perhaps, the most normal example of such reactions is the one occurring 

between alkyne and azide moieties (Rostovtsev et al., 2002). 

  The selective reaction of terminal alkyne groups on silica NPs surface with azide groups of 

biomolecules leads to a covalent conjugation by triazole formation in aqueous solution (Bae et al., 

2012). 

1.3.5. Non-covalent chemistry 

 Apart from covalent conjugation chemistry, affinity-based systems found in nature have 

attracted increasing attention during the last years. Probably the most well-known and well-reported 

example of receptor-ligand for the binding of DNA to nanoparticles is the avidin–biotin system 

(Figure 1.8-E) (Green, 1975; Wilchek and Bayer, 1988). 

 The strong bond and specificity of the avidin-biotin system has allowed it usage for a vast 

number of applications (Sperling and Parak, 2010). 
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Figure 1.8 – Bioconjugation strategies for attachment of biomolecules to the surface of NPs (Taken from (Bae 

et al., 2012)). 

 

Common to all chemical surface modification schemes involving functional groups that are 

present on the NP surface is that they predominantly depend on the ligand or surface coating, and 

not on the actual inorganic core material. Therefore, provided that the NPs are stable under the 

reaction condition, identical chemical routes for functionalization are apply for gold nanoparticles, 

quantum dots or magnetic particles, as well as for silica NPs. 

 

Accurate and sensitive diagnosis is very important in the early stages of tumor in order to 

ease the choice of effective therapeutic pathways and improve clinical outcomes. However, the 

detection of malignant cells needs probes able of differentiating the exclusive features of target cells 

at the molecular level.  Aptamers have appeared as a powerful class of ligands for specific 

biomolecular targeting. In parallel, the development of NPs as aptamer bioconjugates has enhanced 

the interest of using aptamer-nanoparticle conjugates as potential diagnostic vehicle. By joining 

such NPs with cancer-related aptamers, a novel class of bioconjugates is emerging. 
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2.1. Cell-SELEX 

2.1.1. Cell Lines and Buffers 

The cell lines used for aptamer selection and counter-selection were MDA-MB-435S (human 

breast carcinoma) (Figure 2.1-A1, 2.1-A2) and 3T3 (mouse embryonic fibroblast) (Figure 2.1-B1, 

2.1-B2) respectively. Both cell lines were kindly supplied by IPATIMUP, Portugal.  

  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Cell lines used to perform Cell-SELEX. (A1) and (A2) represent low and high density respectively 

of MDA-MB-435S cells. (B1) and (B2) represent 3T3 cell line with respectively low and high confluence. The imaging of 

cells was performed with an inverted microscope Leica DMIL (Scale bar 100 µm). 

Culture reagents were all supplied by Biochrom, except where mentioned otherwise. Both cell 

lines were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% (v/v) 

Fetal Bovine Serum (FBS) and 1% (v/v) of penicillin-streptomycin on tissue culture treated flasks. 

Cells were incubated at 37°C and 5% CO2 humid atmosphere (Hera Cell incubator). Sub-

culturing was done when cell confluence reached approximately 80% and was typically sub-cultured 

at a 1:2 or 1:3 flask ratio. Phosphate Buffered Saline (PBS 1x: 137 mM Sodium Choride [Panreac], 

10 mM Sodium Phospate Dibasic [Scharlau], 2.7 mM Potassium Chloride (AppliChem) and 

Potassium Phosphate Monobaisic [Riedel de Haën]) at pH=7.4 was used to wash cells and trypsin-

Ethylenediaminetetraacetic acid (EDTA) was added to detach adherent cells before sub-culturing. 

During the selection (section 2.1.5), cells were washed before and after incubation with wash 

buffer (WB), that were composed by DMEM supplemented with 10% (v/v) of FBS and 1% (v/v) of 

antibiotic. Binding buffer (BB) used for selection was the same of WB in first cycle of Cell-SELEX. In 

A1
1 

A2
1 

B2
1 

B1
1 

http://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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second cycle to fifth the WB was complemented with more 10% (v/v) of FBS. From the fifth cycle, 

to the mixture was added 20% (v/v) of FBS. The increased amount of FBS was to eliminate 

nonspecific binding. 

 

2.1.2. Cell-SELEX library and primers 

Table 2.1 presents the details on the DNA library and primers that were used for Cell-SELEX. 

These were all purchased from Integrated DNA Technologies (IDT), except for the first three (#1, #2, 

#3) that were supplied by Invitrogen. All synthesized oligonucleotides were provided as purified by 

high-performance liquid chromatography (HPLC), except for the DNA library that was desalted. The 

DNA oligonucleotide library contains a 25 nt (nucleotide) central random region flanked by primer 

binding regions. 

Table 2.1 – DNA library and primers information summary. 

ID Name Sequence (5´- end start) 
Temperature Melting  

(Tm)ºC 

#1 Library 

TGGGCACTATTTATATCAAC 
MIN 

61.4ºC 
MEAN 
70.2ºC 

MAX    
78ºC (N25) 

AATGTCGTTGGTGGCCC 

#2 
Primer 
Forward  
39mer 

CCCGACACCCGCGGATCCATGGGCACTAT
TTATATCAAC 

70ºC 

#3 
Primer 
Reverse 
44mer 

CGCGGATCCTAATACGACTCACTATAGGGG
CCACCAACGACATT 

68.5ºC 

#4 
Primer 
Forward 
20mer 

TGGGCACTATTTATATCAAC 47.2ºC 

#5 
Primer 
Reverse  
17mer 

GGGCCACCAACGACATT 55.9ºC 

#6 
FAM-Primer  

Forward 
20mer 

FAM-TGGGCACTATTTATATCAAC 47.2ºC 

#7 
NH2-Primer 

Forward 
20mer 

NH2-(C6)-TGGGCACTATTTATATCAAC 47.2ºC 

#8 

Primer 
Reverse–

biotin  
17mer 

GGGCCACCAACGACATT-biotin 55.9ºC 

#9 
M13 Forward  

16mer 
GTAAAACGACGGCCAG 50.7ºC 
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ID Name Sequence (5´- end start) 
Temperature Melting  

(Tm)ºC 

#10 
M13 Reverse  

17mer 
CAGGAAACAGCTATGAC 

47ºC 
 

 

2.1.3. Gel electrophoresis experiments 

DNA electrophoresis was carried out to check the DNA yield and purity after PCR 

amplification, as well as to confirm the integrity and handling of the samples under study. The 

agarose gels (Nzytech), typically 3%, were prepared in 1X Tris-acetate-EDTA (TAE) buffer (TAE 50X: 

2 M Tris-Hcl [Fisher Scientific], 1 M Acetic Acid [Fisher Scientific] and 0.05 M EDTA [Fisher 

Scientific] pH=8.5). The electrophoresis was typically carried out at 80 V for 60 min. Samples were 

loaded with 50% glycerol (Fisher Scientific). The gels were observed using ChemiDoc XRS (Bio-Rad). 

 

2.1.4. Cell Viability 

The dye exclusion test is used to determine the number of viable cells present in a cell 

suspension. It is based on the principle that live cells possess intact cell membranes that exclude 

certain dyes, such as trypan blue (Strober, 2001).  

The trypsinization/trypsin neutralization protocol was followed. A 1:1 dilution of the cell 

suspension was prepared in trypan blue (Gibco). About 10 µL of 0.4% Trypan blue solution was 

added and combined with 10 µL of cell suspension (Figure 2.2). To ensure a uniform cell 

suspension, it was pipetted up and down several times and then allowed to stand for 10 min. 

 

 

Figure 2.2 – Load a chamber with a mixture of cell suspension and trypan blue. 



CHAPTER 2 
MATERIALS AND METHODS 

28 

A small amount of trypan blue cell suspension was transferred to the Neubauer chamber 

(Boeco) by carefully touching the cover slip at its edge with the pipette tip and allowing each 

chamber to fill by capillary action.  

The number of cells (viable and total) was determined. When there were too many or too few 

cells to count, the procedure was repeated either diluting or concentrating the original suspension 

as appropriate. 

Each square of the Neubauer chamber (with coverslip in place) represents a total volume of 

0.1 mm3. Since 1 cm3 is equivalent to 1 mL, the subsequent cell concentration per mL (and the 

total number of cells) was determined using the following formulas: 

 

 %Cell Viability = 
Total  iable Cells   nstained 

Total Cells   iable  ead 
      

 Viable Cells/mL = A erage  iable cell count per s uare    ilution  actor     4 

 Average viable cell count per square = 
Total number of  iable cells in   s uares

  s uares
 

 Dilution Factor = 
Total  olume   olume of sample    olume of diluting li uid 

 olume of sample
 

 Total viable cells/Sample =  iable
Cells

m 
  The original  olume of  the cell sample 

 

2.1.5. In Vitro Cell-SELEX Procedure 

In this study, MDA-MB-435 cells were used as the target cell line and 3T3 cells for the 

counter-selection steps.  

When cells reached approximately 80% confluence, they were detached using trypsin-EDTA. 

After detachment, cells were transferred to a centrifuge tube and were centrifuged at 200 x g. The 

pellet was collected and resuspended in DMEM.  

A Neubauer chamber was used to determine the concentration and volume of cells to use in 

each round of Cell-SELEX, as explained in section 2.1.4. In the initial round of selection, 1x106 

cells/mL of MDA-MB-435 and 5x106 cells/mL of 3T3 were used. In the following rounds, the 

number was reduced to 1x105 cells/mL of MDA-MB-435 and 5x105 cells/mL of 3T3.  

About 10 nmol of the DNA library was added to BB in a total of 500 µL, mixed and heated at 

95°C for 5 min for denaturation and snap-cooled on ice for 10 min. Then, 500 µL was added to 

the cell suspension. The mixture was incubated at 4ºC for 1 h. After incubation, the cells were 

centrifuged (Eppendorf Centrifuge 5418) at 220 x g for 5 min at 4ºC. The supernatant, containing 
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unbound sequences, was removed and the cell pellet was resuspended in 500 µL of WB. The 

washing procedure was repeated three times at the same conditions. Next, the cell pellet was 

suspended in 300 µL of BB, heated at 95°C for 10 min, centrifuged at 11000 x g for 5 min and 

the supernatant containing eluted DNA was collected.  

The total volume of elution was incubated with negative cells for 1h at 4ºC. After incubation, 

the suspension was centrifuged. The supernatant containing eluted DNA was collected. 

The recovered sequences were amplified by PCR using the primers previously described in 

Table 2.1 (#2 e #3).  The PCR was performed on a Bio Rad MyCycler Termal Cycler and all 

reagents were purchased from Kapa Biosystems. 

The amplification was performed under the conditions described in Table 2.2. Amplifications 

were carried out using an initial denaturation step at 95ºC for 5 min, proceeded by 30 cycles with 

95ºC for 30 s, 65ºC (the annealing temperature is 5ºC lower than the melting temperature (Tm) of 

the primer set) for 30 s and 72ºC for 30 s, followed by a final extension for 5 min at 72ºC. After the 

PCR finished, the size (LIBRARY + PRIMER forward + PRIMER reverse = 108 base pair (bp)) was 

confirmed by an agarose gel as described in section 2.1.3. 

 

Table 2.2 – Parameters used for amplification of sequences of Cell-SELEX. 

Components 
50 µl 

Reaction 
Final 

Concentration 

Template DNA 10.0 
 

KAPA Taq DNA Polymerase 0.2 1 U 

10X Buffer B 5.0 1 X 

10 mM dNTP 1.0 200 µM 

20 µM Forward Primer 0.2 0.08 µM 

20 µM Reverse Primer 0.2 0.08 µM 

PCR-grade water (Up to 50 µL) 33.4 N/A 

 

On the following rounds, the DNA obtained from PCR was resuspended in lower volumes of 

BB (2nd-5th rounds=400 µL, 6th-10th rounds =200 µL) and the number of washes was increased (2nd-

5th rounds =3 washes, 6th-10th rounds =5 washes). The rest of the experimental protocol remained the 

same. 

Using these conditions, the Cell-SELEX was stopped after the tenth round. 
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2.1.6. Aptamer Cloning 

The PCR product from 10th Cell-SELEX round was purified by ethanol precipitation. First, 50 

µL of 3 M sodium acetate (Fischer Scientific) and 150 µL of cold absolute ethanol (Fischer 

Scientific) were added. DNA was recovered by centrifugation at 11000 x g for 5 min. Supernatant 

was removed with care and DNA was washed with 500 µL of 70% (v/v) ethanol to eliminate the 

excess of salt from the pellet. The pellet was dried overnight and resuspended in 50 µL of sterile 

water. 

The purified, recovered DNA was then amplified. The cycling parameters used were similar to 

those used previously. A 7 min extension step at 72°C after the last cycle was included to ensure 

that all PCR products are at full length and that the 3’ is adenylated. Ta  polymerase has a non-

template-dependent terminal transferase activity that adds a single deoxyadenosine (A) to the 3´ 

ends of PCR products.  

The linearized vector (Figure 2.3) supplied in this kit has single, overhanging 3´ 

deoxythymidine (T) residues. This allows PCR inserts to ligate efficiently with the vector. At this 

point, the PCR product was ready for TOPO Cloning (Invitrogen) and transformation into the 

competent Escherichia coli. 

 

Figure 2.3 – Map of the features of PCRTM 4-TOPO. 

About 4 µL of fresh PCR product was mixed with 1 µL of salt solution (provided with kit) and 

1 µL of TOPO vector to a final volume of 6 µL. The reaction was gently incubated for 20 min at 

room temperature (25ºC) and then cooled on ice. After this, 4 µL of the TOPO Cloning reaction was 

added into a vial of competent cells and mixed gently. Next, the reaction was incubated on ice for 

15 min and placed at 42°C for 30 s without shaking (heat shock). The tubes were immediately 
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transferred to ice and 250 µL of room temperature SOC medium (supplied with kit) was added, 

followed by incubation at 200 rpm at 37ºC for 1 h. 

After incubation, 50 µL was plated onto Luria Broth (LB) (Liofilchem) plates with kanamycin 

(Applichem) with a final concentration of 50 µg/mL. The cells incubation was carried out overnight 

at 37ºC. 

A colony PCR was done to verify if the insert was present. This technique can be used for 

rapid confirmation of the insertion of the desired DNA in the plasmid. The primers used generate a 

PCR product of known size and the colonies that show amplification of the expected size are likely 

to contain the correct DNA sequence. 

The colonies were picked from the culture plate and were placed into PCR tubes with 50 µL 

of LB medium supplemented with 50 µg/mL of kanamycin. Subsequently, the tubes were 

incubated at 37ºC for 1 h. The cells solution was slightly dense. About 1 µL of this sample was 

added to the PCR mixture. The amplification parameters were similar to those previously described 

(Table 2.2). 

Finally, the insert presence with the proper length was confirmed by analyzing the PCR 

product on an agarose gel, as described in section 2.1.3. 

 

2.1.7. Plasmid DNA extraction 

A small number of colonies were picked and inoculated into LB media supplemented with 50 

µg/mL kanamycin and incubated overnight at 37°C at 200 rpm. Cultures were purified according 

to manufacturer protocol (GRS Plasmid Purification Kit). It provides an efficient and fast method for 

the purification of high quality plasmid DNA from cultured bacterial cells.  

A 6 mL LB culture was centrifuged at 11000 x g for 1 min. The supernatant was discarded. 

The pellet was lysed and plasmid DNA was liberated from the E. coli host cells by the addition of 

200 µL SDS/alkaline solution. This mixture was incubated at room temperature until lysis had 

completed. 

The resulting lysate was neutralized by the addition of 300 µL of neutralization solution. This 

solution creates the appropriate conditions for binding of plasmid DNA to the glass fiber matrix. 

Precipitated protein, genomic DNA and cell debris were then pelleted by a centrifugation step of 

11000 x g for 5 min. The supernatant was loaded onto the glass fiber matrix and the flow-through 

was discarded. 
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Contaminations like salts, metabolites and soluble macromolecular cellular components were 

removed by simple washing with an ethanol solution. Pure plasmid DNA was finally eluted with 50 

µL under low ionic strength conditions with slightly alkaline buffer Tris-EDTA (TE) (5 mM Tris/HCl, 

pH 8.5).  

After these extraction steps, a DNA gel electrophoresis was performed as described in section 

2.1.3. The plasmid concentrations were determined using Nanodrop 1000 (Thermo Scientific). 

 

2.1.8. Aptamer Sequencing  

Two primers, M13 forward and M13 reverse described in Table 2.1 (#9 and #10) were 

used to sequence the insert. The higher concentrations of purified plasmid samples were sent for 

small scale sequencing (Macrogen). The pre-mixed DNA and primer sample (10 µL total volume) 

were prepared using 5 µL of template DNA with a concentration of 50 ng/µL and 5 µL of primer 

with 5 pmole/µL. 

 

2.1.9. DNA folding Predictions 

The secondary structures of the single-stranded DNA aptamers were predicted using mfold 

software (http://mfold.rna.albany.edu). The abbreviated name, 'mfold web server', describes a 

number of closely related software applications available online for the prediction of the secondary 

structure of single stranded nucleic acids. The objective of this web server is to provide easy access 

to DNA folding and hybridization software. 

After the sequence(s) insertion on the online version of this software, mfold provides the 

calculated energy matrices that determine all optimal and suboptimal secondary structures for the 

folded nucleic acid molecule.  

The salt conditions used by default in the in silico analysis of the sequences were 155.306 

mM [Na+] and 0.813 mM [Mg2+]. These values correspond to the salt concentrations present in the 

medium DMEM supplemented with 10% (v/v) of FBS and 1% (v/v) of antibiotic that was used in 

the selection steps. The percentage range from the minimum free energy was set to 5.  

 

 

 

http://mfold.rna.albany.edu/
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2.2. Bioconjugation Methodology 

2.2.1. Chemicals and Buffers 

Fluorescent silica particles (Micromod) with -COOH groups on the surface were used for the 

aptamer coupling. The fluorescent silica particles are mono-disperse and non-porous with a size of 

70 nm and a density of 2.0 g/cm³. The particles emit green fluorescence upon an excitation of 485 

nm and an emission of 510 nm. 

The reagents EDC (Sigma Aldrich) and sulfo-NHS (Sigma Aldrich) in the buffer 2-(N-

morpholino) ethanesulfonic acid (MES) (Fisher Scientific) were used to the coupling reaction. 

Glycine (AppliChem) in PBS (pH=7.4) was used to block free carboxylates. 

 

2.2.2. DNA labeling and strands separation 

For the functionalization of silica with -COOH groups in the surface with aptamer it is 

necessary to link a primary amine to DNA. So for amine labeling, the vector needed first to be 

linearized and then amplified with the correct primers.  

Before using the vector combined with the specific aptamer, it was digested using the 

enzyme EcoRI (New England Biolabs) (Figure 2.3). The linear DNA has free ends, because both 

strands have been cut. Closed (circular) DNA templates are amplified slightly less efficiently than 

linear ones.  

After a successful linearization, an amplification using the primers #7 and #8 listed in Table 

2.1 was performed, using the PCR conditions in Table 2.2. This amplification is needed to link a 

primary amine to the sense strand and biotin to the antisense strand to allows strands separation. 

Successful labeling was confirmed by running an agarose gel with conditions described in section 

2.1.3. 

As after PCR amplification, the product was in double strand and the product required to link 

silica particle should be in ssDNA, columns of streptavidin (GE Healthcare) were used. These 

columns enable the strong binding between the immobilized streptavidin to biotinylated substances. 

The protocol provided by the manufacturer was for proteins purification so some modifications were 

implemented where the principle basis was the same but the elution was performed using NaOH to 

denature the strands (Sefah et al., 2010b).  
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The interaction between biotin-streptavidin is very strong. To the column reusable, this 

interaction needs to be broken. It could be dissociated using sterile water together with gentle 

heating to 70ºC for few seconds (Holmberg et al., 2005). In this paper they referred that no 

detectable contamination was found from the previous biotinylated product of each round, or any 

decrease in binding capacity in the subsequent rounds of use after 4 regenerations of the same 

bead was observable. 

The streptavidin columns were reused 4 times using this methodology. 

 

2.2.3. Bioconjugation  

The carbodiimide methodology is one possible approach of aptamer conjugation to silica 

particles surface and guarantees therefore good immobilization reproducibility. It is based on 

EDC/NHS activation of the –COOH groups on particle surfaces followed by reaction with amino 

groups of the aptamer (Figure 2.4). 

 

Figure 2.4 – Schematization of silica functionalization with NH2-aptamer. 

The conjugation reaction was carried out in different ratios of aptamer:silica and were 

dependent in the quantities of DNA obtained after the purification using the columns. When higher 

quantities of DNA were obtained higher ratios could be tested. 

About 40 µL of silica NPs (1 mg) was washed with 0.5 M MES buffer and centrifuged at 

11000 x g. Particles were then resuspended in 500 µL of same buffer. To activate the particle 

surface 1 mg of EDC and 2.5 mg of Sulfo-NHS. These mixtures were incubated 1 h at room 

temperature under gentle shaking. 
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The activated particles were washed with PBS (pH=7.4), centrifuged at 11000 x g and the 

NH2-aptamer was added. Several concentrations of aptamer and the appropriate controls to validate 

the method were tested. The mixture was then incubated for 4 h at room temperature under gentle 

shaking. 

Afterwards, particles were washed twice with PBS and resuspended in the same buffer with 

30 mM of glycine for 60 min to block free carboxylates. 

Aptamer-conjugated nanoparticles were purified performing two washes with PBS, then 

resuspended in PBS with 0.01% (w/v) of sodium azide (Sigma Aldrich) and finally stored at 4ºC for 

further analysis  

   

2.2.4. Ligation Characterization 

Spectrophotometry 

For nucleic acid detection, one of the most common methods is the measurement of 

solution absorbance at 260 nm, using the absorption maximum of nucleic acids at this UV 

wavelength. In a spectrophotometer, a sample is exposed to ultraviolet light at 260 nm, and the 

light that passes through the sample is measured. The more light absorbed by the sample, the 

higher the nucleic acid concentration (Sambrook et al., 1989). 

After coupling, the presence of DNA linked to the silica was evaluated by measuring the 

Optical Density (OD) at 260 nm in a spectrophotometer (Jasco V-560). 

 

Dynamic Light Scattering and zeta potential measurements 

The aptamer-silica were collected and diluted to 1 mL. The particle size distribution was 

measured by dynamic light scattering (DLS) at 25ºC in PBS pH=7.4. The intensity-weighted mean 

value was recorded as the average of three independent measurements. The surface charge (zeta 

potential in mV) of the aptamer silica nanoprobe in PBS was measured at 25ºC. All DLS and zeta 

potential measurements were carried out using Zetasizer equipment (Nano-ZS, Malvern 

Instruments). Statistical analysis was performed using GraphPad Prism 6. One-way ANOVA was 

used for statistical comparisons. 

 

http://en.wikipedia.org/wiki/Spectrophotometer
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Colorimetric Method 

A fluorescent method based on propidium iodide (PI) (Molecular Probes) was used to detect 

the aptamer bound to the silica NPs’ surface. PI binds to  NA by intercalating between the 

nucleotide bases with little or no sequence preference, and with a stoichiometry of one dye per 4–5 

base pairs of DNA. It is important to notice that PI also binds to RNA, and therefore an RNase 

treatment is required to avoid misreadings. When bound to nucleic acids, the fluorescence 

excitation maximum for PI is 535 nm, while the emission maximum is 617 nm (Figure 2.5). 

 

Figure 2.5 - Fluorescence excitation and emission profiles of propidium iodide bound to dsDNA. 

 

Briefly, several concentrations of dsDNA were incubated with 1.5 mM of PI and RNase with a 

final concentration in solution of 1 µg/mL and 10 µg/mL respectively.  

After 30 min of incubation, the relationship between fluorescence intensity of each sample 

and the aptamer concentration was recorded using a fluorometer (JASCO FP6200).  

Quantitative aptamer detection on the silica particles was performed using the 

abovementioned procedure, except that the aptamer was changed to aptamer-NPs. Therefore, the 

detection of aptamers on the NPs was performed by monitoring fluorescence intensity at 617nm 

with the excitation at 535 nm. The number of immobilized aptamer molecules on the NPs was 

quantitatively determined from the regression equation. 

 

2.3. Binding assays 

2.3.1. Cell lines  

Two cancer cell lines were used for the recognition and 3T3 cells were used as the control.  
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2.3.2. Chemicals and Buffers 

The solution of 4% (w/v) paraformaldehyde was freshly prepared. To 1 L, 800 mL of 1X PBS 

was added and heated while stirring at approximately 60ºC. Afterwards, 40 g of paraformaldehyde 

powder (Panreac) was added to the heated PBS solution. NaOH (1 M) was added until the 

paraformaldehyde powder dissolved.  

Once the paraformaldehyde was dissolved the solution was cooled, filtered and the volume of 

the solution was adjusted to 1 L. The pH was verified using pH strips and adjusted to pH=7.4, using 

1 M HCl (Fisher Scientific) when necessary. The solution was aliquoted and frozen. 

 

2.3.3. In Vitro Studies  

Before performing the studies in vitro with the selected cell lines, the resulting dsDNA were 

boiled at 95ºC for 5 min and flash cooled in ice for 5 min. For tests at 37ºC, it was cooled to this 

temperature. The resulting ssDNA aptamers were used for downstream assays.  

For the binding methodology, the higher aptamer concentration, conjugated with silica (as 

described in section 2.2.3) and free aptamer labeled with the fluorophore FAM, were tested. To 

label the aptamer with FAM, PCR amplification was done using primer #3 and # 6, as shown in 

Table 2.1, following the conditions described in Table 2.2. Successful labeling was confirmed by 

running an agarose gel as described in section 2.1.3. Free silica particles, non-labeled aptamer and 

untreated cells were used as controls. 

For the cell recognition experiments, an amount of about 40 000 cells/cm2 was cultured 

one day prior to the experiments until they were in the logarithmic phase. The number of cells was 

calculated following the procedure described in section 2.1.4 (Chen et al., 2008; Farokhzad et al., 

2004). 

Fluorescence Microscopy 

The cell lines were cultured until the cover rate on the 24-well plate reached 70-90% 

confluence. The cells were cultured on glass slides in each well. 

On the day of the experiment, the medium was removed and cells were washed two times 

with pre-warmed 100 µL of 1X PBS, followed by incubation with pre-warmed DMEM supplemented 

with 10% (v/v) of FBS and 1% (v/v) of antibiotic for 30 min, before the addition of the aptamer. 

Afterwards, 60 pmol of aptamer was added in 200 µL of supplemented DMEM and the mixture was 
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incubated. Two temperatures were tested, 4ºC and 37ºC, at two different incubation times, 1 h and 

4 h.  

The cells were washed three times with PBS to remove superfluous probes (the ones that did 

not bind). Finally, cells were fixed with 4% paraformaldehyde for 20 min, followed by a washing step 

with 100 µL of PBS (Figure 2.6) (Chen et al., 2008; Farokhzad et al., 2004; Shangguan et al., 

2006).  

Each coverslip was inverted onto a slide. After these procedures, the cells were ready for 

fluorescence microscopic observation (OLYMPUS BX51). Only the results for the selection 

conditions are presented, 1 hour at 4ºC and all the experiments were repeated twice. 

 

Flow Cytometry 

To determine aptamers selectivity and specificity, flow cytometry was used for binding 

assays.  

The cancer cell lineages were cultured until the cover rate on the 24-well plate reached 70-

90% confluence.  

On the day of the experiment, the medium was removed and cells were washed twice with 

pre-warmed 100 µL of 1X PBS, followed by incubation with pre-warmed DMEM supplemented with 

10% (v/v) of FBS and 1% (v/v) of antibiotic for 30 min, before the addition of the aptamer. 

About 60 pmol of FAM labeled aptamer and silica functionalized with aptamer was incubated 

with cell lines in 200 µL of supplemented DMEM and placed on ice for 1h (only the conditions of 

aptamer selection were tested). Unbound aptamers were removed by washing three times with 200 

µL PBS. The pellets with the bound sequences were resuspended in 500 µL of PBS. The 

fluorescence was determined with a flow cytometer (Beckman Coulter Inc.) by counting at least 

30,000 single cells per sample. The data were analyzed with FlowJo Analysis Software (Tree Star, 

Inc.).  

Figure 2.6 - Schematization of the binding methodology. 

http://intranet.deb.uminho.pt/labs/Lab_Imagem/application/main.aspx?equip=5


 

39 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

RESULTS AND DISCUSSION 

 

 

 



 

40 

3. RESULTS AND DISCUSSION  



  CHAPTER 3 
   RESULTS AND DISCUSSION 

41 

3.1. Cell-SELEX 

Cell-SELEX was used for the selection using MDA-MB-435 as positive breast cancer cell 

lines and 3T3 as negative cell lines. A 62 nt ssDNA library with 25 random bases flanked by a 

20 nt and a 17 nt primer site sequence was subjected to the Cell -SELEX procedure (Figure 

3.1). The library was first incubated with the MDA-MB-435 cell line to allow the binding of the 

DNA sequences to target cells. Sequences that either did not bind, or only bound weakly to 

the target cell surface after harsh washing conditions, were discarded. Cycle by cycle the 

stringency was increased in order to get aptamers with the highest affinity and selectivity. 

Sequences that bound strongest to the cells were retained and then eluted by hea ting. 

 
 

Figure 3.1 – Aptamer Random Region of 25 nt flanked by the primer sites. 

The eluted DNA pool was next allowed to incubate with 3T3 cells for counter -selection. 

The introduction of counter selection provides the opportunity to remove aptamers recognizing 

common surface markers, while at the same time it allows the enrichment of aptamers 

recognizing target cell-specific markers. The DNA pool collected after each round (Figure 3.1) 

of selection was amplified by PCR for the next-round selection and the correct size was 

confirmed by an agarose gel.  

It was established by several papers that after around 10 rounds of selection, the 

enriched pool should have a considerable increase in affinity for the target cells compared to 

the initial DNA library (Blank et al., 2001; Guo et al., 2008; Mayer et al., 2010; Meyer et al., 

2013). Therefore, in the current work we decided to conduct 10 selection cycles.  

Following completion of the selection process, the DNA pool was inserted into the 

plasmid vector pCRTM4-TOPO (Figure 3.2). 

 

 

 

 

 



CHAPTER 3 
RESULTS AND DISCUSSION 

42 

 

 

 

 

 

 

 

 

Figure 3.2 - Map of pCR™4-TOPO and the sequence of aptamer inserted in the Cloning Site. Colony PCR with 

the primers #2 and #3.  

To confirm aptamer insertion in pCR™4-TOPO vector, a colony PCR with the primers #2 

and #3 listed in Table 2.1 was done and the positive clones were sequenced. Figure 3.3-A 

represents the vector and Figure 3.3-B the fragment after colony PCR. 

  

          A B 

Figure 3.3 – Analysis of PCR-amplified aptamer insertion into pCR TM4-TOPO by colony PCR. (A) The pCR™4-TOPO 

vector and (B) Colony PCR result to confirm the 108 bp. Agarose gel of 1% and 3% respectively. Legend: L1 - 

Ladder de DNA 1kb (New England Biolabs); L2 – Ladder 100 bp DNA (SOLIS BIODYNE). 

Sixteen random positive clones were sequenced. The sequences are presented in Table 3.1. 
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Table 3.1 – Selected aptamer sequences after 10 selection cycles. Only the random region is depicted.  

Potential Aptamer ID Sequences (random region) 5´- end start 

#1 GTCGTGGAGTCAACAAACAAGACAC (25-mer) 

#2 TGTCGGTTGTGCGCCTACCGCCTGG (25-mer) 

#3 CGCCTTGTCTTGTACCGTGGAGCAG (25-mer) 

#4 TTGGCTTTTCTTGGATGATGGACGT (25-mer) 

#5 TTGAGACGTTAGGCGTCATAAGGGT (25-mer) 

#6 CCTTTAGGAGCGTCTTTAAGAGCAG (25-mer) 

#7 CGGT (4-mer) 

#8 GAGC (4-mer) 

#9 CTG (3-mer) 

#10 GTTATGC (7-mer) 

#11 ATGGTAGGGTGTTTACGCGAGGGGG (25-mer) 

#12 ATTTCACTTTAGCTTTTGTCCGTTC (25-mer) 

#13 TTTGAACCCCATCCTTGTTACTGT (24-mer) 

#14 TTCCTGCACTGTAGTGACTTGCGT (24-mer) 

#15 AGTGACGGGTCAGTATCGTGGGGTG (25-mer) 

#16 CC (2-mer) 

 

This Cell-SELEX began with a library containing a randomized part of 25 nts, so it is 

expected that all aptamers have a random region this length. Normally, the random region 

defines the length of the selected aptamer (Jiménez et al., 2012; Kunii et al., 2011; Sefah et 

al., 2009; Shangguan et al., 2008). In a first analysis of the obtained sequences, only nine 

aptamers (bold) have the same length as the random region of initial library of 25 nts. The 

fact that a desalted library was used, and not a HPLC or SDS-PAGE-purified one, could be one 

explanation for the sequences #13 and #14 have a 24 instead 25 nts. Another explication 

could be an unspecific ligation of the primers in a different site, thus leading to shorter 

sequences. Nucleotide deletions introduced during PCR could be another reason and as many 

PCR amplifications were done, the probability is greater.  

The sequences #7, #8, #9, #10 and #26 are not considered aptamers. The TOPO 

cloning probably use incorrect fragments instead the aptamer sequence. These artifacts could 

be achieved because of mispriming or contaminating template.  

After that, sequence alignments were performed, in order to assess the complexity of 

the selected aptamer pool and to group together aptamer clones with homologous sequences 
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(Table 3.2) (Bing et al., 2010). These alignments were performed only for sequences that have 

25 nts. These results were obtained using a Fortran code. There is a great  amount of 

sequence alignment software that can be used for pairwise sequence alignment, but most of 

them perform global alignments. A global alignment aligns two or more sequences from the 

beginning to the end, and "forces" the alignment to span the entire length of all query 

sequences. A global alignment should only be used on sequences that share significant 

similarity over most of their extents, which is not the case of the aptamers selected 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Table 3.2 – Sequence alignment for 2 aptamers. 

Aptamer 1 vs Aptamer 2 Bases Homology %Homology 

#11 vs #15 A--G--GGGT---TA-----GGG-G 48% 

#3 vs #6 C---T-G----GT------GAGCAG 44% 

#1 vs #11 -T-GT-G-GT----A--C-AG---- 40% 

#4 vs #5 TTG-----T---G--T-AT----GT 40% 

#5 vs #12 -T---AC-TTAG---T--T--G--- 40% 

#3 vs #11 ----T-G--T--T--CG-G--G--G 36% 

#5 vs #11 -TG--A-G-T---------A-GGG- 36% 

#12 vs #15 A-T------T---T-T-GT--G-T- 36% 

#1 vs #15 ---G--G-GTCA--A-----G---- 32% 

#2 vs #15 -GT-----GT--G--T---G----G 32% 

#4 vs #11 -TGG-------T--A-G---G--G- 32% 

#5 vs #6 -----A-G---G-C-T-A--AG--- 32% 

#5 vs #15 -------G-T--G--TC-T--GG-- 32% 

#6 vs #12 --TT-A-----G--TTT----G--- 32% 

#6 vs #15 --T---GG--C----T---G-G--G 32% 

#1 vs #6 ----T-G---C--C----A---CA- 28% 

#2 vs #3 -G-C---T-T----C----G----G 28% 

#2 vs #4 T-----TT----G--T---G---G- 28% 

#2 vs #5 T---G----T--GC-T-------G- 28% 

#4 vs #15 ---G--------G-AT--TGG---- 28% 

#6 vs #11 ----TAGG----T--------G--G 28% 

#1 vs #2 -----G--GT---C--AC------- 24% 

#1 vs #3 --C-T-G--T------------CA- 24% 

#1 vs #4 -T-G----------A-----GAC-- 24% 

#2 vs #11 --------GTG------C-----GG 24% 

#2 vs #12 --T----T-T-----T----C-T-- 24% 

#3 vs #4 -----T-T--T-----G--G--C-- 24% 

#3 vs #15 -G----G--T---------G-G--G 24% 

#4 vs #12 -T--C--TT------T--T------ 24% 

#11 vs #12 AT---A---T---T-------G--- 24% 

http://en.wikipedia.org/wiki/Sequence_alignment
http://blast.ncbi.nlm.nih.gov/Blast.cgi)
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Aptamer 1 vs Aptamer 2 Bases Homology %Homology 

#2 vs #6 --T----------C-T---G----G 20% 

#1 vs #5 -T-------T---C-----A----- 16% 

#3 vs #5 ---------T-G--------AG--- 16% 

#3 vs #12 -------T-T-G---------G--- 16% 

#4 vs #6 ---------------T-A-G--C-- 16% 

#1 vs #12 -T-------T--------------C 12% 

 

At the end of Cell-SELEX process, normally the sequences are aligned into families according 

sequence homology when the members in each family differ in few numbers of bases (Sefah et al., 

2010a; Van Simaeys et al., 2010). It was assumed that sequences in the same family should bind 

to the same target with same secondary structure. Aptamers in three different families bind to three 

different targets (Shangguan et al., 2007). 

The objective of this work was practically the same; find identical sequences and identify 

those more repeated in the selected pool. This software enables the find of identical sequences. If 

many consensuses were obtained, they were then grouped into families. The aptamer that appears 

more times in each family was used for further tests.  

As relatively few aptamers were sequenced it is difficult to group them in families. 

Nevertheless, for the 16 sequenced aptamers the best result is a sequence homology of 48% 

between aptamer #11 and #15 corresponding in less than half of the sequence (Figure 3.2). When 

the rest of the aptamers is analyzed, homology becomes increasingly lower, until 12% between 

aptamer #1 and #12, which only have 3 equal bases in common at the same position. 

The program gives the possibility to perform a comparison between more than two 

sequences at the same time. Comparing results between 3 sequences (Table A.1) the best result 

obtained is a sequence consensus of 6 bases corresponding to 24% between aptamer #1, #11 and 

#15. For 4 sequences in comparison (Table A.2), the best is 3 bases in common for aptamer #1, 

#11, #4 and #15, which corresponds to 12% of homology. The great majority do not even have a 

single base consensus. 

The choice of the cell lines to be used largely depends on the purpose of the selection. The 

purpose of this work was to select aptamers that can differentiate between cancer cells and normal 

cells. It is very likely that the great distance between the positive and negative cell line (one is 

human and another is mouse cell line) affects the aptamer selection. Maybe the common surface 

markers are so distant that it was difficult to eliminate them. This could be one important 
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explanation for the different aptamers recovered and the low amount of sequence homology that 

could be found among them. The use of another negative lineage more related as MCF10-A which 

is a mammary epithelial cell may probably increase the similarity between the recovered aptamers.  

The DNA pool collected after each round of selection was amplified by PCR. Symmetrical 

PCR generates dsDNA that was used for the next round of selection. However, the strands of PCR 

product should be separated in order to obtain the wanted ssDNA for the next round. In order to 

separate the strands, a PCR must be performed with forward primer and the reverse biotinylated 

primer to amplify dsDNA. The presence of biotin enables binding to streptavidin-coated beads 

(Sefah et al., 2010b). Then, the sense ssDNA are separated from the biotin and are recovered to 

continue the selection process. This could be another explication for the problems observed with the 

different sequences of aptamers. In the protocol used, after PCR amplification the desired strand 

was not separated from the undesired (antisense) one and the Cell-SELEX continued in the 

presence of undesired sequences which may had caused problems in the process of aptamer 

selection. 

In the current work, 10 cycles of selection were done. The enrichment of the selection pools 

was not monitored. The limit of 10 cycles was established without knowing if this cycle is 

considered the optimal cycle to select the best aptamers with the highest affinity and selectivity for 

the cancer cell line. Binding assays should have been carried out after each cycle and under the 

same conditions, allowing us to compare results. This could be also important to explain the 

unsuccessful aptamers consensus found. 

The nine aptamer sequences (in bold in Table 3.1) plus the sequences with 24 nucleotides 

(#13 and #14) were further analyzed, in order to obtain relevant structures for binding, such as 

stems, loops, hairpins or bulges (Table 3.3 and Table A.3). In Table 3.3 are presented only the 

secondary structures of aptamers with the highest homology that were used for further assays. 

The aptamers were selected at 4ºC but it is interesting to predict their secondary structure at 

37ºC to ascertain their potential for in vivo applications to further verify their binding ability under 

such conditions. 

 

 

 

http://muthuswamylab.cshl.edu/protocols/MCF10A%20culture.pdf
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Table 3.3 - Predicted aptamer secondary structures by in silico analysis with the software mfold. Only the structure(s) 

with the lowest free energy (dG) are presented. The fixed sequences of PCR primers are indicated in lowercase letters. 

The random region is represented in uppercase letters and is marked in black rectangular area. 

 

4ºC 37ºC 

Aptamer #11 (3 potential structures) 

 
dG= - 26.82 kcal/mol 

Aptamer #11 (3 potential structures) 

 
dG= - 8.96 kcal/mol 

Aptamer #15 (1 potential structure) 

 
dG= - 25.79 kcal/mol 

Aptamer #15 (3 potential structures) 

 
dG= - 6.16 kcal/mol 
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The secondary structure of small nucleic acid molecules is largely determined by strong, local 

interactions such as hydrogen bonds and base stacking. Summing the free energy (thermodynamic 

state function that we can use as an indicator of whether or not a process in a system will occur 

spontaneously) for such interactions provides an approximation for the stability of a given structure. 

Often for any given sequence several alternative secondary structures are predicted within a relative 

small range of free energies. The knowledge of functional secondary structures can have a 

significant impact on optimizing desired properties. 

It is well known that the secondary structure of DNA aptamers can change under varying 

temperatures, explaining why some aptamers lose their binding ability at 37ºC (Zhang et al., 

2012a). As temperature rises, the free energy will decrease and the reaction will become more 

spontaneous. With higher temperature, the entropy increases (increasing disorder) making the 

system more negative, then the energy necessary is lower when compared with low temperatures. 

This can be observed for the free energies of all aptamers selected at 4ºC and 37ºC (Table 3.3 and 

Table A.3). They are significantly lower at higher temperatures, so less stable. The lower the Gibbs 

energy, the more stable the structure. 

 In relation to the secondary structure, the majority of loops were lost when the temperature 

was raised. If the bonds were broken, this means that the hydrogen bridges are no longer there. 

When the temperature was increased, the link was broken and with the breaking of the stems, the 

loops also disappear. The loops themselves are not formed alone; they are formed because the 

stems are formed. 

When examined at 4ºC, which is the temperature used for the selection steps, the aptamer 

free energies are quite similar. Aptamer #2 and #11 are the ones that have the lowest free energy. 

For 4ºC, aptamer #1 has two loops at the bottom that completely disappear in the secondary 

structure at 37ºC. The same happens with aptamer #3, #4, #5, #11 and so on.  

Aptamer binding properties are a function of both sequence and structure.  

In these secondary structure patterns, only the aptamer #1 and #5 contain a loop (the first 

with 11 nts and the last with 7 nts) that are linked by a stem (forming a hairpin) with 2 to 4 bps 

length, respectively. Then this structure is maintained by another loop and the rest of the aptamer 

sequences fold into different structures. The primary sequences of the hairpin structure of these 

secondary structure segments were very different as possible to observe in the sequence alignments 

in Table 3.2 and in the secondary structures in Table 3.3 and A.3. The structures formed by these 
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aptamers could be responsible for binding to the target molecule, however further investigation and 

more sequenced aptamers were still needed. 

Bing and coworkers (Bing et al., 2010) compared the secondary structures of all sequenced 

aptamers against streptavidin and a conservative bulge-hairpin structure section was found. 

Nevertheless, the primary sequences of this bulge-hairpin were very different as presented for the 

aptamers #1 and #5. 

The remaining aptamers normally are folded into several different structures. Usually appears 

between 2 or 3 loops and have single strand regions. 

The conser ed se uence motif ‘AGCAG’ locates at loop sections in aptamer #3 and #6, 

which appears to be significant for binding to the target. The conser ed ‘TCTTG’ se uence shows up 

in loop sections in aptamer #3 and #4 showing also importance for the binding. When shortening 

this conser ed se uence to ‘TCTT’, it appears in a loop section of two additional aptamers, #6 and 

#14, indicating its potential relevance in recognizing breast cancer cells MDA-MB-435. 

The se uence ‘TTT’ and ‘CTT’ appears again in loop sections in aptamers #4, #11, #12, and 

#13 and #3, #4, #6 and #12 respectively. Further studies were important to ascertain the 

importance of all of these conserved domains. 

These characterizations based on primary sequences and secondary structures are 

important, but the aptamers should have been characterized taking into consideration their binding 

capabilities and dissociation constants (Kd). The Kd is an important parameter for characterizing 

aptamer binding to the target.  

 

3.2. Bioconjugation Methodology 

One possible method of conjugation of aptamers to silica surface is based in EDC/NHS 

activation of the carboxylic acid groups on particle surfaces followed by reaction with amino groups 

of the aptamer (section 2.2.3). For this purpose, aptamers need to be labeled with amino groups to 

guarantee that the linkage is achieved. 

The aptamers consensus were expected to be higher, but assuming that the sequences that 

present higher homology (Table 3.2) are binding to a receptor marker in the MDA-MB-435 cells 

surface, they will be further used to test their ability to identify the target cells. 

Two other sequences, selected using a different breast cancer cell line, and presenting a 

homology near 100%, were also used in this work for comparison purposes. 
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From this point on, MDA-MB-435 cells will be referred to as cancer cell line 1. The other 

breast cancer cell line used will be named cancer cell line 2. Aptamer 1A and 1B will be the 

designations of the aptamers selected against cancer cell line 1 and aptamer 2A and 2B to those 

selected against cancer cell line 2.  

For a successful amine labeling of the aptamer, the vector was linearized and then amplified 

by PCR using the correct primers. This amplification is needed to link a primary amine enabling 

silica coupling. Figure 3.4-A represents the plasmid with the desired aptamer sequence in a linear 

form. Figure 3.4-B represents the dsDNA labeled with an amine group after PCR amplification with 

62 nts. 

  

        A B 

Figure 3.4 - (A) Plasmid Linearized using the enzyme EcoRI and (B) the amine label after PCR amplification. Legend: 

L1- Ladder de DNA 1kb (SOLIS BIODYNE); L2 – Ladder Low Molecular Weight (New England Biolabs). 

 

After the PCR amplification to obtain labeled DNA, the sense strand of the double stranded 

product was separated from the antisense strand by using the streptavidin columns. These columns 

allow binding the biotin/biotinylated substances, thus enabling the separation of sense labeled with 

NH2 from biotinylated antisense ssDNA by denaturation and affinity purification with streptavidin-

coated Sepharose beads. 

During the purification procedure with these columns, a large percentage of DNA was lost. 

After using the columns, the obtained yield of ssDNA was generally around 30 ng/µL. Despite the 

low yields of ssDNA recovered, it was further used to functionalize the silica particles. 

After the DNA labeling and further purification, the ssDNA could be coupled to the silica 

particles. The protocol used to for coupling is described in section 2.2.3, with the small alteration 

that the silica activation pH was changed to obtain a good silica functionalization with aptamer. The 

activation reaction with EDC and Sulfo-NHS is most efficient at pH=4.5-7; however, the reaction of 
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Sulfo-NHS activated aptamer with primary amines is most efficient at pH=7-8 (Grabarek and 

Gergely, 1990). For best results, the first reaction was performed in MES buffer for a wider range of 

pH=5-9, then exchanged for PBS at pH=7.4 immediately before performing the reaction to the 

amine aptamer.  

For the first ligation, the result was evaluated measuring the absorbance at 260 nm (section 

2.2.4). All the supernatant was collected for absorbance measurement. The immobilization was 

determined based on the absorbance difference at 260 nm between the DNA solution before and 

after immobilization (Li et al., 2012). 

Based on this principle, the aptamer attached to the particle and the recovered aptamer 

(after incubation) in supernatant were quantified. Figure 3.5-A represents the amount of aptamer 2A 

attached to a silica particle and Figure 3.5-B illustrates the quantity of aptamer 2A collected in the 

supernatant. 
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Figure 3.5 – Concentration of the aptamer recovered from the reaction conducted with aptamer 2A testing 

several ratios of DNA:Particle at pH=9. (A) Concentration of aptamer that was linked to the particle and (B) 

Concentration of aptamer recovered after the ligation. The control represents a sequence not labeled with amine that 

was incubated in the same way. Results are presented as Mean ± SD and represent 3 independent experiments. 

The control used in this experiment (Figure 3.5) is the aptamer functionalized with silica but 

not labeled with the amine group. In this case, the covalent ligation was not expected to occur. 

Therefore, the aptamer amount quantified in this sample should be much lower in the silica 

functionalized with DNA and much higher in the supernatant. The results show that in this 

condition, the amount of DNA used was practically the same as the condition 180:1, i.e. the higher 

amount of DNA per particle.  
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Changing the ratio DNA:Particle seems to did not improve binding. The ratio 9:1 and 36:1 

present an equal amount of aptamer detected but the latter has four times more DNA added to the 

solution of particles. The same happens for the ratio 90:1 and 180:1; i.e. doubling the amount of 

DNA added did not represent more ligated. This could mean that there is a coupling limit to the 

silica particle independent of the amount of aptamer provided, the availability of the particles was 

always the same. Another possible explanation could be that the methodology used to quantify the 

aptamer was not very accurate. Despite being a relatively simple methodology, it suffers from low 

sensitivity and interference from nucleotides and single-stranded nucleic acids. Furthermore, 

compounds commonly used in the preparation of nucleic acids absorb at 260 nm can lead to 

abnormally high quantitation levels. Furthermore, the availability of the particles may also be 

independent of the aptamer amount, since we do not know the amount of reactive groups we have 

per particle.  

As Figure 3.5-B shows, the amount of DNA recovered in the supernatant was practically the 

same for all the conditions. Comparing the amount of DNA recovered in the supernatant to all ratios 

DNA:Particle, it represents around 3-, 4-fold the DNA effectively linked to silica particle, indicating 

that  the coupling yield is very low. 

Some reasons may be pointed out to explain the obtained results. Limiting/hindering the 

conjugation the pH of reaction could not be the best and the method for the detection of aptamer 

conjugation may not be very accurate. 

Based on these results, it was decided to abandon the above mentioned methodology and to 

alternatively use zeta potential. For the following assays, zeta potential measurements were 

performed to determine if  NA was attached to the particles or not. This methodology doesn’t allow 

us to determine how much DNA is linked to the silica particle. This assay enables only the 

qualitative determination of the DNA-particle conjugation, if DNA was linked or not. 

Zeta potential depends not only on the particle surface, but also on its environment. It can be 

influenced by ionic strength of the medium or small changes in the pH (Prow et al., 2005).  

In these measurements it was expected to obtain a negative zeta potential for the silica 

particles (before DNA conjugation), that would become increasingly more negatively charged as 

DNA was conjugated on the particle surface (Chen et al., 2008; Li et al., 2012). Figure 3.6-A 

illustrates the zeta potential values obtained for aptamer 2A, and Figure 3.6-B the potential zeta for 

aptamer 2B. 
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Figure 3.6 – Zeta Potential of the aptamer recovered from the reaction testing several ratio DNA:Particle at 

pH=7.8 for (A) aptamer 2A and (B) aptamer 2B. The last column represents the zeta potential of the particle not 

functionalized (control). Results are presented as Mean ± SD and represent 3 independent experiments. 

Analyzing Figure 3.6, for each studied aptamer no significant differences could be found 

between the particle apparently coupled to DNA aptamer and the particle without functionalization. 

For aptamer 2A, at a DNA:Particle ratio of 36:1, there is a residual difference but is the only ratio 

that seems to have higher zeta potential than the control. For the remaining ratios evaluated, the 

zeta potential is lower than the particle itself, for which a higher zeta potential was expected if 

effectively the particle was functionalized with aptamer. 

For the aptamer 2B, the zeta potential seems to be lower when compared with the zeta 

potential of ligation with a ratio of 18:1. Nevertheless, for the other conditions tested the zeta 

potential of the non-functionalized silica particle was higher. 

In this case, a straightforward comparison is not possible since these results only 

demonstrate in a qualitative way the attachment (conjugation). If the aptamer bound maximally to 

the particle, the zeta potential should be approximately the same, regardless of the amount of initial 

DNA added.  

Cai and co-workers (Cai et al., 2012) describe very similar particles to those in study and 

recorded a zeta potential of -20.3 mV. Compared to our results obtained for aptamer 2A, it can be 

seen that they are very similar. However, when compared to the results for aptamer 2B, the zeta 

potential is practically twice as high. These values could be explained by the pH influence on the 

zeta potential measurements. A zeta potential value on its own without an associated pH is a 

virtually meaningless number. If the pH of a particle in suspension with a negative zeta potential is 

increased, then the particles will tend to acquire a more negative charge. If acid is then added to 



CHAPTER 3 
RESULTS AND DISCUSSION 

54 

this suspension a point will be reached where the negative charge is neutralized (Ragbhu Babu and 

Ragaranjan, 2012). As the pH of the reaction is 7.8, it is possible that the particles acquire more 

negative charge, thus explaining the increased zeta potential comparing with the values reported by 

Cai and co-workers.  

Again, with zeta potential measurements different results were obtained from what we 

expected, namely a significant decrease in the zeta potential of the silica functionalized with 

aptamers compared to silica itself. A possible explanation could be the absence of ligation between 

aptamer and particle. On the other hand, perhaps the methodology was not the most appropriate to 

evaluate conjugation explained by noted above, the changes of the surface caused for the pH. 

Possibly, the columns were not providing an adequate separation of the strands. The columns were 

several times reutilized so probability the columns were degraded and were not effective to the 

strands separation.  

The zeta potential methodology was decided to change. To evaluate the effective ligation DLS 

technique was used to determine the size distribution profile of the silica particles (Figure 3.7-A, 3.7-

B) (Zhang et al., 2010a, 2012b). The advantage of this technique is that the material can be 

measured in any buffer of choice. With this benefit, it is not necessary to take in consideration the 

constraints of pH and ionic strength. 
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Figure 3.7 – Size measurement of the aptamer recovered from the reaction testing several ratios of 

DNA:Particle at pH=5 for (A) aptamer 2A and (B) aptamer 2B. The last column represents the size of the particle not 

functionalized (control). Results are presented as Mean ± SD and represent 3 independent experiments. 

It was expected that the silica functionalized with DNA had a larger size than the control. This 

can be confirmed in Figure 3.7 for all the conditions tested. However, this increase in the 

functionalized particle size would imply that there should not exist a difference between ratios 
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DNA:Particle because, as in the previous methodology, the analysis of the attachment was made 

just to check if DNA was linked or not. Regardless of the number of DNA molecules linked to the 

silica particle, the size should be the same. 

These differences between the conditions tested could be explained by the distinct 

conformations that DNA molecules can adopt when linked to silica (Figure 3.8). 

 

A B C 

Figure 3.8 - Possible conformations of DNA molecules hybridized to the surface of silica NPs (A) to (C). (Taken from 

(Gagnon et al., 2008)). 

Another possible explanation could be that the small particles in use (60 nm) may easily 

aggregate. The size often obtained could be caused by the existence of agglomerated particles and 

not by the DNA linked to particles. This method to qualitatively confirm DNA linkage to the particle 

was therefore also discarded. 

 To definitively eliminate all the problems that may hamper the binding of DNA aptamers to 

the particles it was decided not to use the streptavidin columns. Besides the low yield of ssDNA 

recovered and the great losses of DNA during the column separations, they do not give a 100% 

certainty that the process of denaturation is effective and if we are dealing only with ssDNA.  

Therefore, it was decided to use a colorimetric method that allowed the detection of dsDNA. 

The particles in use have natural fluorescence. The colorimetric method was chosen in order to not 

affect in any way the measurement of DNA attached to the particle. 

As referred to in (section 2.2.4) several concentrations of dsDNA were incubated with PI. A 

relationship between fluorescence and amount of aptamer (picomol) defines the calibration curve 

necessary to find out how DNA is linked to the particle. Figure 3.9 represents the calibration curves 

for aptamer 1A, 1B, 2A and 2B. 

 



CHAPTER 3 
RESULTS AND DISCUSSION 

56 

0 50 100 150

0

20

40

60

80

100

y=0.8882x+5.4434

r2=0.9598

n(picomol)

M
e
a
n
 F

lu
o
re

sc
e
n
c
e
 (

R
L
U

)

 

A1 

0 50 100 150

0

50

100

150

y=1.1636x+8.7152

r2=0.9574

n(picomol)

M
e
a
n
 F

lu
o
re

sc
e
n
c
e
 (

R
L
U

)

 

A2 

0 50 100 150

0

50

100

150

y=1.0091x+6.1533

r2=0.9811

n(picomol)

M
e
a
n
 F

lu
o
re

sc
e
n
c
e
 (

R
L
U

)

 

B1 

0 50 100 150

0

50

100

150

r2=0.9886

y=1.0806x+4.7642

n(picomol)

M
e
a
n
 F

lu
o
re

sc
e
n
c
e
 (

R
L
U

)

 

B2 

Figure 3.9 – Calibration curves for fluorescence versus aptamer amounts for (A1) aptamer 1A , (A2) aptamer 1B, (B1) 

aptamer 2A and (B2) aptamer 2B.  

Initially, several concentrations of aptamer were tested. After detecting the fluorescence, it 

was not possible to obtain a calibration curve that had a linear trend. Thus, it was found that 

fluorescence is, typically, directly proportional (linear) to the concentration; however, there are some 

factors that affect this linear relationship. For example, when the concentration is too high, light 

cannot pass through the sample to cause excitation; thus very high concentrations can have very 

low fluorescence (Kubista et al., 1994; Tohda et al., 2001). 

With this information it was decided to lower the concentrations thus achieving the 

calibration curves with linear trends. 

The calibration curves (Figure 3.9) show a good linear relationship between mean 

fluorescence and DNA number of moles. The proportions of variability of the data sets are all similar 

and above 0.95, which is considered a good value.  

The number of immobilized aptamer molecules on the silica particles can be quantitatively 

determined from the regression equation of the aptamer. 
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Figure 3.10-A1 and 3.10-A2 illustrate the results for DNA attachment to particle for aptamer 

1A and 1B, and Figure 3.10-B1 and 3.10-B2 the DNA ligation to particle results for aptamer 2A and 

2B. 

 

 

 

 

 

 

    A1         A2 

 

 

 

 

 

 

 

    B1                    B2    

Figure 3.10 – Comparison of available initial DNA and DNA linked to silica at pH=5 for (A1) aptamer 1A, (A2) 

aptamer 1B, (B1) aptamer 2A and (B2) aptamer 2B. Results are presented as Mean ± SD and represent 2 independent 

experiments. 

Figure 3.10 illustrates the comparison between the initial number of DNA molecules available 

per particle and the molecules of DNA per particle after the functionalization.  

In the first view, these results seem to corroborate what was previously discussed. After an 

analysis of the spectrophotometry results in Figure 3.5, it was concluded that the silica particles 

probably had a coupling limit. Regardless of the quantity of aptamer added the silica, the total 

amount of DNA bound was practically the same for all conditions tested. Observing these last 

results the conclusion was the same.  

These ratios correspond to an average, which means that possibly in the same sample some 

particles have a lot of DNA molecules while others may only have a few. Probably, when more DNA 

was added, some particles attached to the majority of the DNA molecules, where other particles did 
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not bind to DNA, whereas when less DNA was added, the particles could have an equal distribution 

of DNA for all the particles. In both situations the average could perfectly be the same. 

It seems that some DNA was effectively linked to silica. The appropriate controls were 

performed to validate this methodology. The particles without NH2-label present lower fluorescence 

when compared with the results shown in Figure 3.10. 

Some experiments were important to confirm that there is no fluorescence competition 

between the particle and dye. These assays were performed after silica particle functionalization 

with aptamers using the same conditions as those tested before (Figure 3.10). 

It is important to know whether only DNA coupled to particle was measured and to exclude 

any kind of interference. 
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Figure 3.11 – Interaction between particle and dye for the same wavelength (excitation: 535 nm and 

emission: 617 nm) for (A) aptamer 1A and (B) aptamer 2A. Results are presented as Mean ± SD and represent 2 

independent experiments. 

As can be observed in Figure 3.11, the control fluorescence (particle functionalized with DNA 

without amine group labeled) is lower than the DNA labeled attached to particle proving the 

successful coupling. 

To conclude, it is important to say that the fluctuations in the results could be explained by 

the protocol used, namely the steps regarding the particle washing. After centrifugation, the 

supernatant was pipetted out. Some functionalized particles with aptamer that are in suspension 

and not in the ‘pellet’ may be discarded as well. Howe er, the nanoparticles can be separated from 

unbound biomolecules using other, more suitable methodologies, such dialysis or filtration. 
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3.3. Binding Assays 

To assess the selectivity and affinity of the selected aptamers, binding assays were performed 

using the cancer cell lines under study. For these assays, the aptamers were used either labeled 

with FAM or conjugated with the silica particles. 

In order to label DNA with FAM, PCR amplification was used. After PCR, both formulations 

were in dsDNA form, so a denaturation process was performed to obtain ssDNA as required for the 

binding assays. 

To evaluate the possible losses of fluorescence for DNA labeled with FAM, a comparative 

graphic between unlabeled aptamer, FAM aptamer and FAM aptamer after denaturation was 

performed (Figure 3.12). 
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Figure 3.12 –Evaluation of fluorescence loss for different conditions for aptamer 1A and aptamer 2A. 

Effectively a fluorescence decrease is notorious. Despite the obvious decrease, the aptamers 

1A and 2A were used for the following assays. Since the selection of these two aptamers took place 

at 4ºC, the binding assays with the target cell lines were performed at this temperature but also at 

37ºC. The binding assays at 37°C were performed to verify the stability of aptamer binding to its 

target.   

Unfortunately, the results for 37ºC, both for 1 and 4 h, were not good for any aptamer 

obtaining low-to-no fluorescence. This may be an indication that the aptamer suffers structural 

changes with the temperature increasing, removing their ability to bind the cell target. Also, it 

means that some modifications would be necessary to keep the aptamer stable and able to 

recognize the target for assays at physiological conditions or in vivo studies. However, further testing 

would be required.  
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For binding assays at 4ºC, for 4 h, the cells start to detach and no microscopic images could 

be obtained.  

For aptamer 1A, two types of probes were tested. For probe 1, corresponding to the silica 

particles linked to the aptamer, only the major ratio DNA:Particle, 20:1 was tested. Probe 2 

corresponds to FAM-aptamer. Two controls were performed: Control 1 represents the silica particles 

and control 2 represents the unlabeled aptamer. Only the results obtained for the selection 

conditions are presented, 1 h at 4ºC.  

Figure 3.13 represents the binding of probe 1 and 2 with the 2 controls, against cancer cell 

line 1.  
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Figure 3.13 – Microscopy images of breast cancer cell line 1 for aptamer 1A. (A)  probe 1; (B)  probe 2; (C)  

control group 1; (D)  control group 2. Images 1) represent bright field and Images 2) represent fluorescence image 

(scale bar represents 100 µm).  

Analyzing the images, the probe 1 (Figure 3.13-A1, 3.13-A2) seems to slightly hybridize with 

breast cancer cells mainly located at the bottom. This could be a good result because the aptamer 

could be recognizing specific markers on the cells surface, indicating that Cell-SELEX was 

successfully carried out.  

Considering the results for control 1 (Figure 3.13-C1 and 3.13-C2), the silica functionalized 

with aptamer seems to appear in the entire microscope image less bound to the cells. Effectively, it 

is only necessary to confirm whether or not the aptamer recognizes the 3T3 cells, to be able to say 

that the aptamer is selective and has affinity only for breast cancer cell line 1. 

As can be observed in Figure 3.13-B1 and 3.13-B2 the FAM aptamer appears to bind weakly 

to cells located mainly on the bottom of image. As expected, in Figure 3.13-D1 and 3.13-D2 any 

fluorescence occurs. 

In order to verify whether the selected aptamers are specifically binding to breast cancer cell 

lines, the same assay was performed against the counter selection cell line used during Cell-SELEX. 

Figure 3.14 shows the binding assays for probe 1 and 2 for 3T3 cells. 

 

  

D2

1 

1

A1
1 

A2
1 

D1

1 

1



CHAPTER 3 
RESULTS AND DISCUSSION 

62 

  

Figure 3.14 - Microscopy images of control cell line 3T3 for aptamer 1A. (A)  probe 1; (B)  probe 2. Images 1) 

represent bright field and Images 2) represent fluorescence image (scale bar represents 100 µm). 

As can be seen for probe 1 (Figure 3.14-A1, 3.14-A2) and probe 2 (Figure 3.14-B1, 3.14-B2) 

no hybridization with cells occurred. The fluorescence image for probe 1 (Figure 3.14-A2) shows a 

little green spot but this does not represent hybridization with any cell. This could be associated to a 

dirty sample or corresponds to a drop. 

According to these results it was possible to identify and independently validate aptamer 1A 

with affinity for cell surface markers present on the surface of breast cancer cell line 1. These 

findings indicate that Cell-SELEX was able to evolve aptamers that recognize changes in cell surface 

macromolecules. Furthermore, it is important to notice that 3T3 cells are considered non-

tumorigenic. As we are talking about completely different cell lines, what the aptamer is detecting 

are differences at the cell surface between breast cancer cell line 1 and 3T3. This not means that 

the aptamer distinguishes the tumorigenic from non-tumorigenic cells. This distinction was possible 

with tumorigenic and non-tumorigenic cells at the same lineage. 

In summary, from these results it is possible to infer the successful Cell-SELEX, but not to 

suggest their probable use as diagnostic probes. The affinity of selected aptamers could be a result 

of the stringent conditions in the later rounds of selection, which removed aptamer candidates that 

were weakly bound to their targets. In order to clearly demonstrate the potential of aptamer 1A as 

molecular probes for cancer cell line 1 recognition flow cytometry assays were performed (Figure 

3.15). 
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A 

 

B 

Figure 3.15 – Flow cytometry binding assay histograms for aptamer. (A) Comparison between Target (Blue), Probe 2 

(Red) and Probe 1 (Green). (B) Comparison between Control 2 (Black) and Probe 2 (Red). 

Comparing the fluorescence of probe 1 and probe 2 with the target, a high fluorescence 

increase can be observed. This enhancement was notorious for both probes 1 and 2 but mainly for 

the latter, confirming the microscope pictures presented in Figure 3.13-A2, 3.13-B2. The Figure 

3.15-B shows the fluorescence increase for FAM-aptamer when compared with the unlabeled 

aptamer. 

Figure 3.16 represents the fluorescence images of samples used for cytometry assays for 

probe 1.  
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Figure 3.16 - Microscopy images of breast cancer cell line 1 for aptamer 1A. (A) Target: (B) and (C) probe 1. 

Images 1) represent bright field and Images 2) represent fluorescence image. The scale bar for (A) and (C) represents 

200 µm. The scale bar for (B) represents 400 µm.  

Microscope images of Figure 3.16-B2 and 3.16-C2 show a significant fluorescence compared 

to Figure 3.16-A2. The bright spots could represent the aptamer ligation to a specific marker in the 

cell surface. These results demonstrate the selectivity and affinity of the aptamer 1A for breast 

cancer cell line 1. Furthermore, probe 1 allowed confirming that silica particles were efficiently 

functionalized with aptamers. 

However, several assays are still needed to confirm these findings, including tests with 

different tumor cell lines to distinguish cancer types and subtypes; and assays conducted at 37ºC 

to validate the aptamer 1A effectiveness. 

For aptamer 2A selected from cancer cell line 2, two types of probes were tested. Probe 3 

corresponds to the silica particles functionalized with aptamer 2A. To perform this study, the higher 

ratio DNA:Particle, 20:1, was tested. Probe 4 represents the FAM-labeled aptamer 2A. A control was 

used to prove effectiveness. Control 3 represents the non-labeled aptamer. The control where silica 

particles alone are used was not performed for this aptamer. Figure 3.17 represents the binding of 

probes 3, probe 4 and control 3 against cancer cell line 2.  
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Figure 3.17 -Microscopy images of breast cancer cell line 2 for aptamer 2A. (A)  probe 3; (B)  probe 4; (C) control group 

3. Images 1) represent bright field and Images 2) represent fluorescence image (scale bar represents 100 µm). 

 The results obtained for aptamer 2A against breast cancer cell line 2 were different from the 

previous results. For probe 3 (Figure 3.17-A1, 3.17-A2) and probe 4 (Figure 3.17-B1, 3.17-B2) no 

hybridization with cells was verified. The green spots are probably caused by dirty samples since 

there are no visible cells (bright field) in the location of fluorescent spots (fluorescent image). 

As expected, no fluorescence was detected for control 3 (Figure 3.17-C1, 3.17-C2).  

These results seem to indicate that this aptamer 2A is not selective for breast cancer cell 

lineage 2 since it does not recognize the target cell line.  

Despite these results, probe 3 and 4 were still used to perform assays with counter selection 

cell line (Figure 3.18). 
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Figure 3.18 - Microscopy images of control cell line 3T3 for aptamer 2A. (A)  probe 3; (B)  probe 4; 1) 

represent bright field and Images 2) represent fluorescence image (scale bar represents 100 µm). 

As expected, the aptamer 2A does not hybridize with counter selection lineage when using 

probe 3 (Figure 3.18-A1, 3.18-A2) or probe 4 (Figure 3.18-B1, 3.18-B2). 

Results for probe 3 indicate that the probe most likely failed to hybridize since no DNA is 

bound to silica. However, this is highly unlikely, since the protocol was the same used for the 

aptamer 1A. Probably, the problem is the affinity of the aptamer 2A. 

In order to further confirm the results obtained, a flow cytometry assay was performed 

(Figure 3.19). 

 

Figure 3.19 - Flow cytometry binding assay histograms for aptamer 2A. (A) Comparison between Target 

(Blue), Probe 4 (Red) and Probe 3 (Green). (B) Comparison between Control 2 (Black) and Probe 4 (Red). 

The cytometry results (Figure 3.19-A) demonstrate that probe 3 has a slightly higher 

fluorescence than the target sample but was not visible in microscope images. Insufficient cell wash 

could explain the results. Probe 4 shows no fluorescence in comparison with the target, in 

agreement with fluorescence pictures 
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In Figure 3.19-B the fluorescence results for probe 4 and control 3 were the same, 

confirming the low/inexistent affinity of aptamer 2A for breast cancer cell lineage 2 according to the 

previous images. 

The overall results show that aptamer 1A and aptamer 2A have different behaviors. Aptamer 

1A appears to have affinity and selectivity for breast cancer cell line 1 which could mean a 

successful Cell-SELEX in the enrichment of aptamers that recognize target cell surface markers. 

Controls 1 and 2 show the effectiveness of this aptamer, validated with the appropriated controls 

and proved by the microscope images and cytometry for breast cancer cell line 1. To assess the 

possible affinity of this aptamer to discriminate between several breast cancer cell lines and other 

types of cells, competition assays for multiple targets could also be performed. 

Aptamer 2A had very different results. It does not recognize the cells of breast cancer lineage 

2 when using probe 3 or probe 4 meaning a Cell-SELEX inefficient for the recognition markers in the 

surface of breast cancer cell line 2. 

The characterization of the results of the Cell-SELEX herein implemented (section 3.1) were 

not very good. The characterization in terms of sequence homology has the best result near 50%. 

Because of this, two other aptamers, 2A and 2B were used as comparison since these presented a 

homology of almost 100%. 

It can be stated that aptamer characterization based on sequence homologies per se is not 

enough. Although aptamer 2A and 2B present higher homology it was proved that the first do not 

specifically recognize cancer line 2. It is important to mention the absence of data on dissociation 

constants and binding activity as referred in section 3.1. It is also imperative to acknowledge the 

lack of an important negative control. The FAM labeled unselected ssDNA library should have been 

used to determine nonspecific binding. 

It is generally known that some fluorescent dyes suffer from severe photobleaching when 

used for biological applications. To investigate whether silica particles can increase resistance to 

photobleaching, an assay was performed to compare FAM-aptamer (Figure 3.20) and silica 

aptamer (Figure 3.21).    
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Figure 3.20 - Photostability of labeled FAM aptamer 1A . The fluorescent images were acquired at (A) 0 s, (B) 

60 s, (C) 2 min, (D) 10 min (scale bar represents 100 µm).  

 

 

 

 

 

 

 

 
Figure 3.21 - Photostability of aptamer 1A conjugated with silica particles .The fluorescent images were 

acquired at (A) 0 s, (B) 60 s, (C) 2 min, (D) 10 min (scale bar represents 100 µm). 

The fluorescent images were acquired at 0 s, 60 s, 2 min and 10 min. As shown in Figure 

3.20 the fluorescence of FAM was bleached quickly. After 60 s of irradiation a notorious reduction 

in fluorescence was verified. Ten minutes later no fluorescence was observed.   

The silica particles, compared with the common organic dye FAM, display a dramatically 

increased photostability. The green signals were clearly distinguishable to the naked eye, even after 

intense irradiation for 10 min. The silica particles in study contain a high amount of covalently 

bound fluorescence dye in the silica matrix. As the fluorescence dye was entrapped in the matrix 

probably the quenching is lower what increases the photobleaching resistance. 
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The experimental work was performed under the goal of selecting a panel of new aptamers 

capable of recognizing breast cancer cells using an iterative method, Cell-SELEX. The selection was 

targeted against the MDA-MB-435 breast carcinoma cell line and using 3T3 mouse embryonic 

fibroblast lineage as counter selection. 

After 10 rounds of selection, selected aptamers were characterized according to their 

sequence homology and secondary structure looking for similarities. 

The aptamers were then effectively functionalized in silica particles using the carbodiimide 

methodology. A colorimetric method was used for characterizing the ligation taking into account the 

intercalating DNA bases. 

FAM-labeled aptamers or aptamers conjugated with fluorescent silica nanoparticles were 

tested in order to assess their binding affinity to target and non-target cells. For aptamer 1A, a faint 

hybridization of the aptamer seems to occur and the results were validated for the respective 

controls. For aptamer validation, several assays are still needed, namely tests with different breast 

cancer cell lines to distinguish cancer types and subtypes; and assays conducted at 37ºC to 

validate it effectiveness. For the aptamer 2A no binding to the cells was verified, contradicting the 

expected results based on homology. It can be concluded that aptamers characterization based on 

their homologies per se is not enough. The aptamer with higher homology did not show affinity or 

specificity for the cancer cell line used as target. A deepest characterization for all the aptamer pool 

may also be performed.  

This means that for probe 1A a successful Cell-SELEX was implemented and the silica 

functionalization with aptamers was well achieved. However, further characterizations and 

modifications of either Cell-SELEX or ligation are still need. 

Several modifications could be made to the cell-SELEX experimental setup including 

separation of DNA strands in order to use ssDNA in each round of selection; the monitoring of the 

selection pool enrichment in order to select the aptamers with the highest affinity and selectivity. To 

study the aptamer binding to the target, a characterization based in binding capabilities and 

dissociation constants is also important. A closer cell line should also be chosen for the counter-

selection, to obtain more selective aptamers. The greater the distance between target and non-target 

cells, the higher interference in the aptamer selection is expected. The use of another negative cell 

line such as MCF10-A, could be more indicated. 

A better characterization of silica-aptamer ligation is also important to elucidate the 

mechanism of functionalization with respect to their photostability, size, surface charge, surface 
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functionality, optical and spectral features, and morphology providing a feedback that can then be 

shaped to improve the ligation experimental setup. 

In conclusion, the present study demonstrates the usefulness of Cell-SELEX for selecting 

aptamers that can specifically recognize cancer cells. If some improvements, as the ones referred 

above, are implemented in the Cell-SELEX, panels of aptamers evolved against different cancer cell 

lines to distinguish cancer types could be used to relate diagnosis and prognosis. Since aptamers 

specific for a variety of molecular markers in the biological systems can be obtained through Cell-

SELEX, in conjugation with the silica particles or another type of NP can be potentially applied to 

many other imaging systems capable of specifically binding to various target cells.  
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Table A.1 - Sequence alignment for 3 aptamers. 

Aptamer 1 vs Aptamer 2 vs Aptamer 3 Bases Homology Homology 

#1 vs #11 vs #15 ---G--G-GT----A-----G---- 24% 

#3 vs #6 vs #11 ----T-G-----T--------G--G 20% 

#1 vs #3 vs #6 ----T-G---------------CA- 16% 

#1 vs #4 vs #11 -T-G----------A-----G---- 16% 

#2 vs #3 vs #15 -G-------T---------G----G 16% 

#2 vs #4 vs #5 T-----------G--T-------G- 16% 

#2 vs #6 vs #15 --T------------T---G----G 16% 

#3 vs #6 vs #15 ------G------------G-G--G 16% 

#3 vs #11 vs #15 ------G--T-----------G--G 16% 

#4 vs #5 vs #12 -T------T------T--T------ 16% 

#5 vs #6 vs #12 -----A-----G---T-----G--- 16% 

#5 vs #11 vs #12 -T---A---T-----------G--- 16% 

#5 vs #11 vs #15 -------G-T-----------GG-- 16% 

#5 vs #12 vs #15 ---------T-----T--T--G--- 16% 

#6 vs #11 vs #15 ------GG-------------G--G 16% 

#11 vs #12 vs #15 A--------T---T-------G--- 16% 

#1 vs #2 vs #11 --------GT-------C------- 12% 

#1 vs #3 vs #11 ----T-G--T--------------- 12% 

#1 vs #4 vs #15 ---G----------A-----G---- 12% 

#1 vs #5 vs #11 -T-------T---------A----- 12% 

#2 vs #4 vs #15 ------------G--T---G----- 12% 

#2 vs #5 vs #15 ---------T--G--T--------- 12% 

#2 vs #11 vs #15 --------GT--------------G 12% 

#2 vs #12 vs #15 --T------T-----T--------- 12% 

#3 vs #5 vs #6 -----------G--------AG--- 12% 

#3 vs #5 vs #12 ---------T-G---------G--- 12% 

#4 vs #5 vs #11 -TG--------------------G- 12% 

#4 vs #5 vs #15 ------------G--T--T------ 12% 

#4 vs #11 vs #15 ---G----------A-----G---- 12% 

#5 vs #6 vs #11 -----A-G-------------G--- 12% 

#5 vs #6 vs #15 -------G-------T-----G--- 12% 

#6 vs #12 vs #15 --T------------T-----G--- 12% 

#1 vs #2 vs #5 ---------T---C----------- 8% 

#1 vs #2 vs #15 --------GT--------------- 8% 

#1 vs #3 vs #15 ------G--T--------------- 8% 

#1 vs #5 vs #12 -T-------T--------------- 8% 

#1 vs #6 vs #11 ----T-G------------------ 8% 

#1 vs #6 vs #15 ------G---C-------------- 8% 

#1 vs #11 vs #12 -T-------T--------------- 8% 

#2 vs #3 vs #4 -------T-----------G----- 8% 

#2 vs #3 vs #6 -------------------G----G 8% 

#2 vs #3 vs #11 ---------T--------------G 8% 
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Aptamer 1 vs Aptamer 2 vs Aptamer 3 Bases Homology Homology 

#2 vs #3 vs #12 -------T-T--------------- 8% 

#2 vs #4 vs #6 ---------------T---G----- 8% 

#2 vs #4 vs #12 -------T-------T--------- 8% 

#2 vs #5 vs #6 -------------C-T--------- 8% 

#2 vs #5 vs #11 ---------T-------------G- 8% 

#2 vs #5 vs #12 ---------T-----T--------- 8% 

#2 vs #6 vs #12 --T------------T--------- 8% 

#3 vs #4 vs #6 -------------------G--C-- 8% 

#3 vs #5 vs #11 ---------T-----------G--- 8% 

#3 vs #5 vs #15 ---------T-----------G--- 8% 

#3 vs #6 vs #12 -----------G---------G--- 8% 

#3 vs #11 vs #12 ---------T-----------G--- 8% 

#3 vs #12 vs #15 ---------T-----------G--- 8% 

#4 vs #5 vs #6 ---------------T-A------- 8% 

#4 vs #6 vs #15 ---------------T---G----- 8% 

#4 vs #12 vs #15 ---------------T--T------ 8% 

#6 vs #11 vs #12 -----A---------------G--- 8% 

#1 vs #2 vs #3 ---------T--------------- 4% 

#1 vs #2 vs #6 -------------C----------- 4% 

#1 vs #2 vs #12 ---------T--------------- 4% 

#1 vs #3 vs #4 ----------------------C-- 4% 

#1 vs #3 vs #5 ---------T--------------- 4% 

#1 vs #3 vs #12 ---------T--------------- 4% 

#1 vs #4 vs #5 -T----------------------- 4% 

#1 vs #4 vs #6 ----------------------C-- 4% 

#1 vs #4 vs #12 -T----------------------- 4% 

#1 vs #5 vs #6 -------------C----------- 4% 

#1 vs #5 vs #15 ---------T--------------- 4% 

#1 vs #12 vs #15 ---------T--------------- 4% 

#2 vs #3 vs #5 ---------T--------------- 4% 

#2 vs #4 vs #11 -----------------------G- 4% 

#2 vs #6 vs #11 ------------------------G 4% 

#2 vs #11 vs #12 ---------T--------------- 4% 

#3 vs #4 vs #11 ----------------G-------- 4% 

#3 vs #4 vs #12 -------T----------------- 4% 

#3 vs #4 vs #15 -------------------G----- 4% 

#4 vs #6 vs #12 ---------------T--------- 4% 

#4 vs #11 vs #12 -T----------------------- 4% 

#1 vs #2 vs #4 ------------------------- 0% 

#1 vs #6 vs #12 ------------------------- 0% 

#3 vs #4 vs #5 ------------------------- 0% 

#4 vs #6 vs #11 ------------------------- 0% 
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Table A.2 - Sequence alignment for 4 aptamers. 

Aptamer 1 vs Aptamer 2 vs Aptamer 3 vs Aptamer 4 Bases Homology Homology 

#1 vs #4 vs #11 vs #15 ---G----------A-----G---- 12% 

#1 vs #2 vs #11 vs #15 --------GT--------------- 8% 

#1 vs #3 vs #6 vs #11 ----T-G------------------ 8% 

#1 vs #3 vs #11 vs #15 ------G--T--------------- 8% 

#1 vs #2 vs #3 vs #5 ---------T--------------- 4% 

#1 vs #2 vs #3 vs #11 ---------T--------------- 4% 

#1 vs #2 vs #3 vs #12 ---------T--------------- 4% 

#1 vs #2 vs #3 vs #15 ---------T--------------- 4% 

#1 vs #2 vs #5 vs #6 -------------C----------- 4% 

#1 vs #2 vs #5 vs #11 ---------T--------------- 4% 

#1 vs #2 vs #5 vs #12 ---------T--------------- 4% 

#1 vs #2 vs #5 vs #15 ---------T--------------- 4% 

#1 vs #2 vs #11 vs #12 ---------T--------------- 4% 

#1 vs #2 vs #12 vs #15 ---------T--------------- 4% 

#1 vs #3 vs #4 vs #6 ----------------------C-- 4% 

#1 vs #3 vs #5 vs #11 ---------T--------------- 4% 

#1 vs #3 vs #5 vs #12 ---------T--------------- 4% 

#1 vs #3 vs #5 vs #15 ---------T--------------- 4% 

#1 vs #3 vs #6 vs #15 ------G------------------ 4% 

#1 vs #3 vs #11 vs #12 ---------T--------------- 4% 

#1 vs #3 vs #12 vs #15 ---------T--------------- 4% 

#1 vs #4 vs #5 vs #11 -T----------------------- 4% 

#1 vs #4 vs #5 vs #12 -T----------------------- 4% 

#1 vs #4 vs #11 vs #12 -T----------------------- 4% 

#1 vs #2 vs #3 vs #4 ------------------------- 0% 

#1 vs #2 vs #3 vs #6 ------------------------- 0% 

#1 vs #2 vs #4 vs #5 ------------------------- 0% 

#1 vs #2 vs #4 vs #6 ------------------------- 0% 

#1 vs #2 vs #4 vs #11 ------------------------- 0% 

#1 vs #2 vs #4 vs #12 ------------------------- 0% 

#1 vs #2 vs #4 vs #15 ------------------------- 0% 

#1 vs #2 vs #6 vs #11 ------------------------- 0% 

#1 vs #2 vs #6 vs #12 ------------------------- 0% 

#1 vs #2 vs #6 vs #15 ------------------------- 0% 

#1 vs #3 vs #4 vs #5 ------------------------- 0% 

#1 vs #3 vs #4 vs #11 ------------------------- 0% 

#1 vs #3 vs #4 vs #12 ------------------------- 0% 

#1 vs #3 vs #4 vs #15 ------------------------- 0% 

#1 vs #3 vs #5 vs #6 ------------------------- 0% 

#1 vs #3 vs #6 vs #12 ------------------------- 0% 

#1 vs #4 vs #5 vs #6 ------------------------- 0% 

#1 vs #4 vs #5 vs #15 ------------------------- 0% 

#1 vs #4 vs #6 vs #11 ------------------------- 0% 
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Aptamer 1 vs Aptamer 2 vs Aptamer 3 vs Aptamer 4 Bases Homology Homology 

#1 vs #4 vs #6 vs #12 ------------------------- 0% 

#1 vs #4 vs #6 vs #15 ------------------------- 0% 

#1 vs #4 vs #12 vs #15 ------------------------- 0% 

 

 

Table A.3- Predicted aptamer secondary structures by in silico analysis with the software mfold. Only the 

structure(s) with the lowest free energy (dG) are presented. The fixed sequences of PCR primers are indicated in 

lowercase letters. The random region is represented in uppercase letters and is marked in black rectangular area. 

4ºC 37ºC 
Aptamer #1 (3 potential structures) 

 
dG= - 22.05 kcal/mol 

Aptamer #1 (3 potential structures) 

dG= - 6.57 kcal/mol 
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4ºC 37ºC 

Aptamer #2 (10 potential structures) 

dG= - 27.50 kcal/mol 

Aptamer #2 (4 potential structures) 

 
dG= - 8.95 kcal/mol 

Aptamer #3 (3 potential structures) 

dG= - 23.10 kcal/mol 

Aptamer #3 (6 potential structures) 

dG= - 6.38 kcal/mol 
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4ºC 37ºC 

Aptamer #4 (8 potential structures) 

 
dG= - 19.98 kcal/mol 

Aptamer #4 (3 potential structures) 

 
dG= - 5.80 kcal/mol 

Aptamer #5 (10 potential structures) 

 
dG= - 23.16 kcal/mol 

Aptamer #5 (2 potential structures) 

dG= - 7.48 kcal/mol 
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4ºC 37ºC 

Aptamer #6 (7 potential structures) 

 
dG= - 21.18 kcal/mol 

Aptamer #6 (7 potential structures) 

 
dG= - 7.82 kcal/mol 

Aptamer #12 (2 potential structures) 

dG= - 19.20 kcal/mol 

Aptamer #12 (3 potential structures) 

dG= - 6.35 kcal/mol 
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4ºC 37ºC 
Aptamer #13 (4 potential structures) 

dG= - 19.48 kcal/mol 

Aptamer #13 (4 potential structures) 

dG= - 4.98 kcal/mol 

Aptamer #14 (9 potential structures) 

 
dG= - 20.03 kcal/mol 

Aptamer #14 (6 potential structures) 

 
dG= - 5.40 kcal/mol 
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