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The microtubule-associated protein tau is a principal component of neurofibril-

lary tangles, and has been identified as a key molecule in Alzheimer’s disease

and other tauopathies. However, it is unknown how a protein that is primarily

located in axons is involved in a disease that is believed to have a synaptic origin.

To investigate a possible synaptic function of tau, we studied synaptic plasticity

in the hippocampus and found a selective deficit in long-term depression (LTD)

in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi

knockdown of tau in vitro. We found that the induction of LTD is associated

with the glycogen synthase kinase-3-mediated phosphorylation of tau. These

observations demonstrate that tau has a critical physiological function in LTD.
1. Introduction
The microtubule-associated protein ‘tau’ (MAPT) gene is located on chromosome

17 and consists of 16 exons [1]. Alternative splicing leads to six isoforms of tau, all

of which contain an amino-terminal projection domain and carboxy-terminal with

microtubule-binding repeats [2]. Tau contains several critical serine and threonine

residues, the phosphorylation of which regulates its binding affinity for micro-

tubules [3,4]. It is believed that through this binding, tau has major roles in

stabilizing microtubules [5]. During neuronal development, tau expression is

increased in response to nerve growth factor [6], and subsequently enriched in

axons, a process that is required for maintaining axon morphology [7]. The

extent to which tau may have additional functions unrelated to axonal microtubule

stabilization, however, is not known.
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Tauopathies, such as Alzheimer’s disease (AD), are character-

ized by widespread accumulation of hyperphosphorylated

tau. Once hyperphosphorylated, tau is known to accumulate in

somatodendritic compartments and forms the core component

of neurofibrillary tangles (NFTs) [8]. It is generally believed that

hyperphosphorylation of tau is the critical step in causing it to

be missorted from the axon to dendrites, where it interferes

with neuronal function [9]. Associated with this accumula-

tion, there is a loss of synapses and eventually neurons [10,11].

However, the mechanism by which this occurs is unknown.

Increasing evidence suggests that in AD, synaptic dys-

function may initiate the cascades that result in cognitive

impairment and neurodegeneration. For example, it is well

established that oligomeric forms of b-amyloid (Ab) induce

a rapid alteration in synaptic plasticity, the process widely

believed to underlie learning and memory in the brain [12].

More specifically, Ab causes inhibition of long-term poten-

tiation (LTP) and enhancement of long-term depression

(LTD) in the hippocampus [13]. LTD involves the removal

of AMPA receptors (AMPARs) from synapses leading to a

reduction in synaptic efficiency, and can also result in the

shrinkage and elimination of synapses [14]. Therefore, a shift

in favour of LTD may lead to neurodegeneration. That such pro-

cesses may be causally related to neurodegeneration in AD is

suggested by the finding that key molecules that are associated

with this disorder, such as glycogen synthase kinase (GSK)-3b

and caspase-3, are required for the induction of LTD in the hip-

pocampus [15–18] and mediate the Ab inhibition of LTP [19].

Interestingly, recent evidence has shown that Ab inhibition of

LTP is absent in the tau knockout (KO) mouse [20]. These

data, together with the observation that GSK-3b directly phos-

phorylates tau [15,18], suggest that tau may be a downstream

effector of GSK-3b in LTD. Therefore, we decided to examine

the role of tau in LTD in the hippocampus.

In this study, we found that in tau KO mice there is a loss

of LTD, whereas LTP is not affected. Furthermore, knock-

down of tau in hippocampal slices resulted in a complete

loss of LTD in the absence of any direct discernible effects

on synaptic transmission. We found that LTD was associated

with the phosphorylation of tau by GSK-3b [18]. Collectively,

these data suggest that tau phosphorylation is an essential

component of LTD.
2. Results
(a) Long-term depression is absent in MAPTþ/ – and

MAPT – / – mice
The physiological role of tau in the hippocampus was initially

investigated using tau KO mice. We compared long-term synap-

tic plasticity in adult (7–11 months old) MAPTþ/þ, MAPTþ/ –

and MAPT –/– mice. Because the tau kinase GSK-3b is required

for LTD in the hippocampus [17], the primary focus of our inves-

tigation was on this form of synaptic plasticity. Field excitatory

postsynaptic potentials (fEPSPs) were evoked in area CA1

of anaesthetized mice in response to electrical stimulation

of the ipsilateral Schaffer collateral–commissural pathway.

We found no differences in synaptic transmission between

MAPTþ/þ, MAPTþ/– and MAPT –/– mice, as assessed using

input–output curves (figure 1a), and we observed no significant

differences in paired-pulse facilitation over a range of inter-

stimulus intervals (figure 1b). However, we found that while
LTD could be readily induced in adult MAPTþ/þ mice, it

was completely absent in MAPTþ/– and MAPT –/– mice

(figure 1c). By contrast, similar levels of LTP were observed in

the three genotypes (figure 1d). Therefore, tau is specifically

required for LTD in the hippocampus in vivo.

Next, we investigated LTD in acute brain slices from

young (14- to 17-day-old) mice. Consistent with the obser-

vations in vivo, LTD was absent in slices prepared from

MAPT2/2 mice but was readily induced in slices obtained

from MAPTþ/þ mice (figure 2a). We also investigated LTD

induced by a brief application of NMDA (25 mM, 3 min)

and found a specific deficit in slices from the MAPT – / –

mice (figure 2b). These results show that the LTD deficit

in MAPT – / – mice is apparent early in development and

therefore is not directly associated with ageing.

(b) Knockdown of tau by shRNA prevents long-term
depression induction

In these experiments, tau was absent or reduced throughout

the life of the animals, potentially leading to developmental

complications. Therefore, to investigate more directly whether

tau is involved in the LTD process, we used an shRNA probe

against rat tau and studied synaptic function in rat hippocam-

pal organotypic slice cultures (figure 3). To study the effects

of tau knockdown on synaptic transmission, simultaneous

recordings of excitatory postsynaptic currents (EPSCs) were

performed from tau-shRNA transfected and neighbouring

untransfected neurons. There were no significant differences

in AMPAR- and NMDA receptor (NMDAR)-mediated EPSCs

(EPSCA and EPSCN, respectively) between tau-shRNA trans-

fected cells and neighbouring untransfected neurons (EPSCA

in transfected cells, 252+12 pA; EPSCA in untransfected

cells, 253+18 pA, n ¼ 15 pairs, p . 0.05; EPSCN in transfected

cells, 256+16 pA; EPSCN in untransfected cells, 268+12 pA,

n ¼ 15 pairs, p . 0.05; figure 3a). We next investigated whether

tau-shRNA had any effect on LTD. Consistent with the LTD

experiments in MAPTþ/ – and MAPT –/ – mice, tau-shRNA

blocked LTD, whereas LTD was routinely induced in simul-

taneously recorded, neighbouring untransfected cells (tau-

shRNA transfected: 92+3% of baseline; untransfected: 63+
7%, n ¼ 5, p , 0.05, tau-shRNA versus control; figure 3b).

The block of LTD was a specific consequence of the knockdown

of endogenous tau, because expression of a non-effective,

scrambled tau-shRNA had no effect on LTD (61+7%, n ¼ 5,

p . 0.05, compared with control, figure 3c). Furthermore,

the tau-shRNA-mediated LTD deficit was rescued by co-

expression of human tau (60+4%, n ¼ 5, p . 0.05, compared

with control, figure 3d), which was resistant to knockdown

(rat tau-shRNA selectively reduces the expression of rat tau

but has no effect on human tau; data not shown). These find-

ings are consistent with our KO studies, confirming that tau

is required for LTD induction. Taken together, our data show

that tau is required for LTD across two species (rats and

mice) and in both juvenile and adult tissue.

(c) Tau is found in the postsynaptic compartment
The finding that tau is required for LTD is surprising since

LTD is generally considered to be mediated postsynaptically,

via the synaptic removal of AMPARs, whereas tau is present

primarily in axons. One possibility is that LTD causes the

redistribution of tau to dendritic shafts and/or spines. An
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alternative possibility is that a small proportion of tau is nor-

mally expressed in a postsynaptic compartment and it is

specifically this fraction that is involved in LTD. We explored

the latter possibility in two ways. First, we used immunogold

electron microscopy (EM) and compared the labelling of

tissue from MAPTþ/þ and MAPT – / – mice (figure 4a). We

could detect some immunoreactivity within dendritic spines

of the MAPTþ/þ, but not MAPT – / – , mice. Second, we

probed for the presence of tau, and another microtubule-

associated protein (MAP2), in microsome/organelle (P3),

cytoplasmic (S3) and synaptosomal (LP1) fractions prepared

from the hippocampus of MAPTþ/þ mice (figure 4b). As

expected, tau and MAP2 were recovered in the P3 fraction

and to a lesser extent in the S3 fraction. However, tau was

additionally detected in the LP1 fraction. Thus, a proportion

of tau is localized at a postsynaptic site where it could, in

principle, function directly in LTD.

Because GSK-3b is a major tau kinase [15,18,21] and is

activated during LTD [17], this seemed a likely candidate to

mediate the physiological phosphorylation of tau. We hypoth-

esized that the GSK-3b mediated phosphorylation of tau could

be an important regulator of LTD. If this is indeed the case, then

a prediction is that the induction of LTD should be associated

with an increase in the phosphorylation of tau. To investigate

this, we delivered low-frequency stimulation (LFS) and

measured the phosphorylation status of tau in the CA1 micro-

dissected dendritic region of rat hippocampal slices (figure 4c).

We observed a dramatic increase in the phosphorylation of tau
using PHF-1 ( p , 0.01, n ¼ 4, figure 4d,e), an antibody that

recognizes phosphorylation at residues Ser396 and Ser404

[22], but observed no difference following LFS in the total
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levels of tau using Tau-5 ( p . 0.05, n ¼ 4, figure 4d,f ), a phos-

phorylation-independent anti-tau antibody [23]. We next

tested whether the phosphorylation of tau was due to

activation of GSK-3 during LTD by applying a highly selec-

tive GSK-3b inhibitor, CT-99021, during LFS (figure 4d). This

treatment eliminated the increase in tau phosphorylation

(figure 4d,e), while having no effect on the total levels of

tau (assessed using Tau-5; figure 4d,f ). Collectively, these

data demonstrate that LFS leads to the phosphorylation of

tau in a GSK-3b-dependent manner, further supporting

the idea that this phosphorylation event has a key role in the

induction of LTD.
3. Discussion
In this study, we have provided several lines of complementary

evidence to suggest that tau is important for LTD in the
hippocampus. First, we have shown that LTD at CA1 synapses

in vivo is not detectable in mice in which tau is absent or its

expression levels are reduced. Second, we found that LTD

was absent in slices acutely prepared from juvenile hippocam-

pal tissues of MAPT2/2 mice. Third, we have demonstrated

that knockdown of tau completely blocks LTD in organoty-

pic-cultured slices. Fourth, we have shown that LFS used to

elicit physiological LTD leads to enhanced phosphorylation of

tau at the PHF-1 epitope, via a GSK-3b-dependent mechanism.

It is widely believed that tau, under normal conditions, is pri-

marily involved in stabilizing microtubules in axons, and that

the dysregulation of this function somehow leads to neuronal

pathology [24]. The most prevalent form of such dysregulation

occurs through the hyperphosphorylation of tau, which is

involved in the generation of NFTs and plays a key role in

neurodegenerative conditions such as AD [25]. Hyperpho-

sphorylated tau is missorted to somatodendrites instead of

axons, where it is known to accumulate [26–28]. Such missorting

is assumed to contribute to neuronal pathology, because it pos-

itions tau where it can interfere directly with synaptic function.

How tau becomes missorted is not known.

An alternative possibility is that some tau is normally

present at synapses and it is this tau that is specifically associ-

ated with the neuropathology. Indeed, emerging evidence

suggests that tau may be present in dendrites even in the

absence of tauopathy [29] and that it could regulate interactions

between scaffolding proteins and signalling pathways in the

postsynaptic density (PSD) [30]. Furthermore, the localization

of tau within the postsynaptic complex can be affected by

NMDAR activation [31]. This raises an important question as

to what the physiological function of tau in dendrites might

be. Here, we have found, using both tau KO mice and RNAi

in organotypic slices prepared from rats, that tau is required

for LTD. This role is likely to be specific, because we found

no evidence that tau is required for maintaining normal synap-

tic transmission or for LTP. Previous work [9,32] has shown

that overexpression of tau may lead to inhibition of LTP.

Based on the present findings, we propose that this may be

because excess activation of tau induces a chronic form of

LTD that is manifest as an impairment in LTP.

We also found that LFS, a physiological LTD induction

protocol, resulted in the phosphorylation of tau and that

this was dependent on GSK-3. Thus, tau is most probably a

physiological substrate of GSK-3b during LTD. The next

key question concerns the physiological downstream effec-

tors of tau during LTD. At present, we can only speculate

on this issue. Because tau is a microtuble-associated pro-

tein, and because microtubules may be involved in LTD

[33], it is possible that tau is involved in the regulation of

LTD-dependent microtubule dynamics.

Tau can be divided into a projection domain (towards the

N-terminus, encompassing an acidic region and a proline-

rich region) and a microtubule-binding domain (towards the

C-terminus, including the microtubule-binding repeat region)

[34], each having specific roles in the regulation of tau function

[35,36]. Within these domains exist multiple regulatory sites of

phosphorylation on serine/threonine residues. Our findings

suggest a role in LTD for serine residues within the PHF

epitope (Ser396/404). Consistent with our findings, Mondra-

gon-Rodriguez et al. [31] recently reported a facilitation of

Ser396/404 phosphorylation following NMDA treatment. Cri-

tically, Ser396/404 residues can both be phosphorylated by

GSK-3b [37,38], an enzyme that is required for the induction
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(left panel; 4-month-old) and MAPT2/2 (right panel; 4-month-old) mice. Arrow shows synaptic density and arrowheads indicate tau. JM (rabbit polyclonal anti-tau
antibody) and 10 nm gold particle conjugated secondary antibody gave positive signals in MAPTþ/þ but not in MAPT2/2 mouse tissue. (b) Hippocampus of
MAPTþ/þ mouse (4 months old) was fractionated into a microsome/organelle fraction (P3), a cytoplasmic fraction (S3) and a PSD-95-rich fraction (LP1). MAP2
was mostly distributed in the P3 fraction. In comparison, tau (detected using Tau-5) was present in all fractions. (c) Schematic diagram of the microdissection procedure
to separate the rat P24 – 28 CA1 somatic and dendritic regions. Western blotting shows strong expression of NeuN in the somatic region and of GluA2 in the dendritic
region. Tau-5 blotting shows expression of tau in both the somatic and dendritic regions. (d ) LFS causes an increase in phosphorylation of tau on Ser396/404 (PHF-1
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of Tau-5 expression, normalized to b-actin, in the presence and absence of CT-99021 (CTR versus LFS, p . 0.05; LFS versus LFSþCT, p . 0.05). Mann – Whitney
non-parametric test was performed to identify changes in statistical significance. (Online version in colour.)
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of LTD [17]. However, it was unknown which, if any, of the

potential GSK-3b phosphorylation sites on tau are phosphory-

lated during the physiological activation of this kinase. Our

finding that phosphorylation of Ser396/404 following LFS is

prevented by CT-99021 demonstrates that GSK-3b is upstream

of tau in LTD and that this particular phosphorylation event

probably has a physiological function.
4. Conclusion
We have shown that tau is required for NMDAR-dependent

LTD is the hippocampus. Our data suggest a model whereby
during LTD, activation of GSK-3b leads to phosphorylation

of tau and this promotes LTD.
5. Methods
(a) In vivo electrophysiology
Male C57/BL6J mice were used for all comparative KO experiments.

MAPT2/2 and MAPTþ/2 mice were maintained by backcrossing

with C57/BL6J mice. Mice were individually housed and kept on

a 12 h light/dark schedule. All mice had free access to food and

water. Each mouse was anaesthetized with 3% isoflurane–air mix-

ture, and fixed in a stereotaxic device (model 900, David Kopf

http://rstb.royalsocietypublishing.org/
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Instruments, USA). After exposing the skull, a bipolar-stimulating

electrode (two enamel-coated wires with 10 mm diameter and

200 kV impedance) was positioned into stratum radiatum of the

left hippocampal CA1 area (21.7 mm from bregma, 1.65 mm from

medial, 1.3 mm depth) and a mono-polar recording electrode

(0.5–1 MV) was placed 200 mm posterior to the stimulating

electrode. The animal was maintained anaesthetized (1.5% isoflur-

ane–air mixture) for at least 3 h (body temperature was kept at

368C). For the fEPSP measurements, the electrical signal was ampli-

fied 100 times (ER-1, Cygnus Technology, USA), digitized (Digidata

1321A, Axon Instruments, Foster City, CA, USA) and processed on a

computer. To induce LTP, 100 pulses at 100 Hz were applied three

times (at 180 s intervals), and to induce LTD, 900 pulses at 1 Hz

were delivered. The amplitude and slope of each recorded fEPSP

was measured by a custom application based on MATLAB (version

8, Mathworks Inc., CA, USA). fEPSPs were analysed only when the

maximal amplitude was over 1 mV, and the latency of the minimum

peak from stimulus was shorter than 7 ms. Experiments were

performed blindly.

(b) In vitro electrophysiology
For in vitro electrophysiology experiments, acute hippocampal

slices were obtained from P24 to P28 male Wistar rats or

MAPT2/2 and MAPTþ/2 mice. Animals were sacrificed by dis-

location of the neck and then decapitated. The brain was rapidly

removed and placed in ice-cold artificial cerebrospinal fluid

(aCSF) containing (in mM): NaCl 124, KCl 3, NaHCO3 26,

NaH2PO4 1.25, CaCl2 2, MgSO4 1 and D-glucose 10 (bubbled

with 95% O2/5% CO2). Transverse hippocampal slices (400 mm

thick) were prepared using a McIllwain tissue chopper (Mickle

Laboratory Engineering Co. Ltd., Gomshall, UK). Hippocampal

slices were stored in aCSF (20–258C) for 1–2 h before transfer-

ring to the recording chamber, in which they were submerged

in aCSF (308C) flowing at 2 ml min21. Extracellular field poten-

tials were recorded in the CA1 region using glass electrodes

containing NaCl (3 M). A stimulating electrode in CA2 was

used to evoke field EPSPs (constant voltage, 100 ms duration,

repeated at 30 s intervals). The slope of the evoked fEPSP was

measured and expressed relative to the normalized precondition-

ing baseline. Data were captured and analysed using WINLTP

(www.winltp.com). Experiments in which changes in the fibre

volley occurred were discarded.

(c) Hippocampal slice culture
Hippocampal slice cultures were prepared from 6- to 7-day-old

male Wistar rats, as previously described [19]. Whole-cell patch

clamp recordings of CA1 neurons transfected with shRNA plas-

mids were made 3–4 days following transfection. Using a

biolistic Gene Gun (BioRad, USA), neurons were transfected

with plasmids expressing shRNA against rat tau protein (OriGene

Technologies, MD, USA). A mixture of four different tau (0N/3R,

0N/4R, 1N/4R and 2N/4R) shRNA constructs (1 : 1 : 1 : 1, in

pGFP-V-RS vector) were used for tau silencing. A non-effective

scrambled sequence shRNA was used as a negative control against

tau-shRNA. EPSCs were recorded using a multi-clamp 700B

amplifier (Axon Instruments). Recordings were carried out in a sol-

ution containing (in mM): NaCl 119, KCl 2.5, CaCl2 4, MgCl2 4,

NaHCO3 26, NaH2PO4 1, glucose 11, picrotoxin 0.02 and 2-chlor-

oadenosine 0.01, gassed with 5% CO2/95% O2, at pH 7.4. To

induce LTD, 200 pulses at 1 Hz were delivered at a holding poten-

tial of 240 mV. AMPAR-mediated EPSC amplitude (EPSCA) was

determined as the peak EPSC amplitude at a holding potential

of 270 mV. NMDAR-mediated EPSC amplitude (EPSCN) was

determined 50–70 ms after the EPSCA peak at a holding potential

of þ40 mV. In some experiments, dual patch clamp recordings

were made simultaneously from a pair of neighbouring CA1 pyr-

amidal neurons, one transfected and the other untransfected.
n values indicate number of cells, each obtained from independent

slices. Error bars indicate s.e.m.

(d) Tau constructs
0N3R and 2N4R human tau cDNAs were framed in pEGFP-C1

host vectors (Clontech, Mountain View, CA, USA), and provided

by Drs R. Brandt (University of Ostanbrück, Germany) and

S. Lovestone (King’s College, UK).

(e) Immunogold electron microscopy
Under deep pentobarbital anaesthesia, animals were perfused

with 4% paraformaldehyde in 0.1 M cacodylate buffer (CB, pH

7.4). After further fixation of the brain at 48C overnight, 300-mm-

thick hippocampal slices were made. After incubation with block-

ing solution (5% normal goat serum in 0.1 M CB) for 1 h at room

temperature, the slices were incubated with primary anti-tau anti-

body, JM (rabbit, 1 : 300), at 48C for 2 days, followed by a secondary

anti-rabbit IgG conjugated with FITC-gold (goat, Nanoprobes, NY,

USA, 1 : 100) overnight. The slices were re-fixed with a mixture of

2.5% glutaraldehyde and 1% tannic acid at 48C overnight. The gold

signal enhancement procedure was performed according to

the manufacturer’s instruction (GoldEnhance-EM, Nanoprobes).

After the osmication of slices (1% OsO4–1.5% potassium

ferrocyanide in 0.1 M CB) at 48C for 10 min, the slices were

dehydrated, and embedded in epoxy resin. The stratum radiatum

of CA1 region was examined electron microscopically (JEM-

1200EX, JEOL, Japan) after metal-staining using uranium acetate

and lead citrate.

( f ) Subcellular fractionation
Partial subcellular fractionation was performed on mouse hippo-

campus basically according to a previous report [39]. Postnuclear

supernatant was subjected to centrifugation (12 500g), and divided

into the crude synaptosomal fraction and synaptosome-depleted

fraction. The crude synaptosomal fraction was further purified

by hypotonic lysis and centrifugation (25 000g), and the resul-

tant pellet was the PSD-95-rich synaptosome fraction (LP1). The

synaptosome-depleted fraction was further subjected to ultracen-

trifugation (100 000g), and separated to the microsome fraction

(P3) and cytoplasm fraction (S3). We used the following antibodies

for experiments: NeuN, mouse monoclonal (Millipore; 1 : 1000)

Tau-5, mouse monoclonal (Invitrogen; 1 : 500); PSD-95 (Millipore;

1 : 1000) and MAP2 (Millipore; 1 : 1000).

(g) Low-frequency stimulation, microdissection and
western blotting

Rat hippocampal slices from P24 to P28 were subjected to a standard

1 Hz, 900 pulses, LFS protocol (stimulation set at a predetermined

intensity; 70% of the maximal fEPSP amplitude voltage stimulation),

using a bipolar stimulation electrode, in the presence or absence of

CT-99021 (1 mM). The dendritic CA1 region was then immediately

dissected and snap frozen. Samples were lysed and SDS–PAGE

was performed as previously shown [19]. PHF1 monoclonal anti-

body (kindly provided by Dr Peter Davies) was used at 1 : 1000

for western blot. Optical densities of immunoreactive bands were

quantified using NIH IMAGEJ software (downloaded from http://

rsb.info.nih.gov/ij/). n indicates the number of independent

experiments from different animals.
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