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Tissue engineering and regenerative medicine (TERM) has caused a revolution
in present and future trends of medicine and surgery. In different tissues,
advanced TERM approaches bring new therapeutic possibilities in general
population as well as in young patients and high-level athletes, improving
restoration of biological functions and rehabilitation. The mainstream com-
ponents required to obtain a functional regeneration of tissues may include
biodegradable scaffolds, drugs or growth factors and different cell types
(either autologous or heterologous) that can be cultured in bioreactor systems
(in vitro) prior to implantation into the patient. Particularly in the ankle, which
is subject to many different injuries (e.g. acute, chronic, traumatic and degenera-
tive), there is still no definitive and feasible answer to ‘conventional” methods.
This review aims to provide current concepts of TERM applications to ankle inju-
ries under preclinical and /or clinical research applied to skin, tendon, bone and
cartilage problems. A particular attention has been given to biomaterial design
and scaffold processing with potential use in osteochondral ankle lesions.

1. Introduction: fundamentals of tissue engineering and
regenerative medicine

1.1. Tissue engineering and regenerative medicine surgical application
potential in several ankle tissues

In the anatomical ankle region, several tissues develop injuries/pathologies
with new emerging therapeutic possibilities arising from tissue engineering
and regenerative medicine (TERM) strategies.

Tissue engineering (TE) and related therapeutic strategies, which mimic the
mechanisms of tissue normal repair and regeneration, have been regarded as a
revolution in medical sciences [1]. As stated by Langer & Vacanti [1], TE is the
research field which combines the principles of engineering, and life and health
sciences with the development of biological functional substitutes. The aim is to
restore, defend (avoid disease progression) or improve the function of the
damaged tissue and/or organ.

Application of ankle TE strategies [2,3] can consider, by definition, three main
variables (figure 1): (i) tridimensional porous supports or scaffolds [4,5], (ii) cells
(differentiated or undifferentiated), and (iii) bioactive agents, i.e. physical stimulus
[6], and/or growth factors (GFs) [7,8]. Cells can be seeded and cultured onto a
structure or scaffold capable of supporting three-dimensional tissue formation
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skin, tendon and bone regeneration

problem: osteochondral defects of the talus

cells and GFs for cartilage regeneration

Figure 1. TERM applications on the ankle joint.

[9]. GFs can be used in the isolated form in injured tissue/
organ, as a “pool” of GFs or in association with scaffolds and/
or cells [10,11]. The use of bioreactors (dynamic systems) as a
way to improve the in vitro biological and mechanical proper-
ties of the TE constructs (cell-laden scaffolds) is also
advantageous, as it can allow one to overcome the limitation
of nutrients/metabolites diffusion observed in static cultures
[12]. On the other hand, regenerative medicine (RM) is a
broader concept which, besides that previously discussed for
TE, also considers the use of bioactive soluble molecules
[13,14], stem cell technologies [15,16], prolotherapy (i.e. inject-
able regenerative techniques) [17], genetic therapeutic
strategies [18], nanotechnologies and several medical devices.

The terms TE and RM can be used interchangeably, but
both fields have been globally referred to in association as
TERM [9,19].

In this review, an overview is given of the present appli-
cations in treatment of skin, tendon, bone and osteochondral
lesions in the ankle joint.

1.1.1. Applications of tissue engineering and regenerative

medicine strategies to skin repair

Cutaneous ulcers around the ankle, secondary to trauma,
vascular insufficiency or diabetes [20,21] are injuries that require
special attention mainly owing to low vascular supply, a
problem that is of great importance in poor subcutaneous
tissue areas.

Simplicity of application and affordable price are the
main reasons by which GFs have been widely applied for
treatment of different injuries in orthopaedics but also in

injectable biomaterials and scaffolds for
osteochondral tissue engineering

new clinical solution: TERM approaches

matrix-induced autologous chondrocyte and
stem cell implantation procedures

cardiovascular, plastic surgery and dentistry [22,23]. In a
body injury, platelets participate in the natural healing pro-
cess, being responsible for haemostasis and releasing of
bioproteins or GFs that are crucial to the wound-healing pro-
cess [22,24]. Platelet-rich plasma (PRP) can be harvested from
patients” own peripheral blood and after concentration it
becomes ready to be administered at the injury site [25].

Biodegradable biomaterials [21,26] have also been pro-
cessed as scaffolds and membranes as these systems can act
as drug delivery carriers (figure 2), while serving as a
three-dimensional template for supporting cell proliferation
and repair at the damaged site.

Bone morphogenetic proteins (BMPs) are members of the
human transforming growth factor-g (TGF-B) superfamily
and similarly to PRP have been demonstrated to have many
therapeutic possibilities [27,28]. However, BMPs still present
a considerably higher cost as compared with PRP. The biologi-
cal mechanism of action for BMPs has been demonstrated by
Urist [29]. BMP-2 and BMP-7 belong to TGF-B superfamily,
and BMP-1 is considered a metalloprotease. It is undeniable
the importance of these GFs in the field of tissue engineering,
owing to their effect in regeneration of body tissues, specially
bone and cartilage. More than 15 BMPs have been described,
and their specific characteristics and mechanism of action are
under investigation [28].

Tissue-engineered skin with allogeneic dermal fibroblasts
and epidermal keratinocytes [21] has been successfully used
in chronic wounds that fail to heal with standard wound
care. Allogeneic dermal products seem to have the necessary
cytokines for wound healing, presenting not only superior effec-
tive rate, but also reduced time of treatment. Yamada et al. [30]
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Figure 3. (a) Achilles tendon defect partial rupture identified in T2 MRI (arrow) and (b) endoscopic view of the defect.

proposed the use of a bilayered hyaluronan/atelocollagen
sponge seeded with fibroblasts for wound-healing (e.g. leg,
ankle or foot ulcers) applications. That work has shown the ben-
eficial effect of using cell-seeded scaffolds when treating ulcers
as it improved wound healing.

TERM approach using acellular dermal graft has also been
described [31]. This technique allies tissue-engineered matrices
to the cells and GFs present in the human recipient following
transplantation. Brigido [32] reported a clinical trial which
demonstrated that Graftjacket tissue matrix showed a statisti-
cally significant higher percentage of wound healing with
respect to wound, and it is more effective than sharp debride-
ment in this small case-control trial. The disadvantage of
allogeneic dermal products as compared to the acellular graft
is that they require multiple applications and can only be
applied to the treatment of superficial full thickness ulcers.

Another relevant issue is related to the treatment of infection
in this area. Using TERM technologies such as nanotechnology
[17,20,33] (e.g. micro- and nanoparticles or nanospheres devel-
oped as systems to deliver drugs in a controlled manner), it is
possible to increase simultaneously the delivery of antibiotics
at the damaged site and promote tissue repair [13].

1.1.2. Applications of tissue engineering and regenerative

medicine strategies to tendon repair
Another relevant group of injuries located in the ankle region is
the tendon lesions. Most tendons have the ability to heal after
injury, but the newly formed tissue is functionally different
from normal tendon. Achilles tendon pathologies (in their
several classifications) [34] have high impact in both high-level
athletes and the general population. Figure 3 shows a magnetic
resonance image (MRI) of a typical Achilles tendon partial

rupture. Tendon acute tears treatments are managed by direct
suturing techniques [35,36], and the most common form of heal-
ing is scar formation. Poor tissue vascularization explains the
slow healing rate and the observed scar tissue in the repaired
tendon. The latter can affect tissue functioning as scar tissue
results in adhesion formation, which disrupts tendons. Therefore,
it represents a higher risk of further damage [37-39]. All these
facts contribute to distorted motion and consequently reduced
life quality [40]. In the last few years, several TERM approaches
have been investigated with the promise of a more successful out-
come for patients, where acute tendon pathology and chronic
tendon ruptures have been diagnosed [41-43]. This can be
achieved by means of both inhibiting degeneration process
[44—-47] and helping to relieve pain [48].

Several GFs have been found to be useful in tendon wound
healing [40], like TGF-B [44], BMP, fibroblast growth factor
(FGF) [49] and insulin-like growth factor (IGF) [50]. All afore-
mentioned approaches using GFs proved to accelerate the
wound-healing process and strength of the repair. However,
depending on the concentration, half-time and applied tech-
nique, it can also promote undesired fibrosis, with excessive
disordered collagen deposition, i.e. the structural properties
are improved, but not the tissue functioning [44].

Several studies have reported that PRP has a positive effect
on proliferation and metabolism of human tenocytes, and thus
enhances tendon repair [22,51]. Meanwhile, the main problem
might be the standardization of the methods used in the clinical
setting, and concentration of platelets and GFs to be used. One
of the most challenging goals is related to the need for establish-
ing the optimal concentration, half-life and local of injection and
avoiding clearance of the PRP from lesion sites [48].

Tenocytes present low mitotic rate, which obviously influ-
ences any therapeutic approach. Particularly, in an attempt to
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Figure 4. Photograph of the gellan gum microparticles obtained by precipi-
tation in a phosphate buffered saline (pH 7.4) solution and possessing a size
between 500 and 2000 pm.

reverse/decelerate the degenerative process, controlled drug
delivery systems, such as micro- or nanoparticle proteins
or polymer-based systems [52,53], have been tried. Figure 4
illustrates gellan gum microparticles obtained by precipitation
in a phosphate buffer saline solution. Nanotechnology-based
approaches are promising when it is envisioned to stabilize
and to achieve a controlled release of a given therapeutic
agent at the defect site.

Several authors have proposed both acellular and cellular
silk fibroin-based scaffolds for ligament/tendon tissue
engineering with promising results, in vitro and in vivo
[54,55]. TERM approaches using a ligament/tendon with simi-
lar mechanical and functional characteristics as the native
tissue can prevent several complications associated with the
traditional methods. Scaffolds can be combined with stem
cells [15,49,56] or GF [22,24,49,51,57] in a in vivo approach (to
permit the self-regeneration of small tissue lesions) or used
alone [58-60] in an ex vivo approach, designed to produce
functional tissue that can be implanted in the body. The ideal
scaffold for tendon engineering must retain the basic structure
of the tendon, mimic native extracellular matrix (ECM) and
competence for cell seeding [61]. Reports on the use of several
scaffolds (e.g. silk fibroin [54], collagen [45,58], chitosan-based
[53] or poly(ethylene glycol) diacrylate hydrogel [62])
combined with adult mesenchymal stem cells (MSCs) demon-
strated that differentiation of MSCs into tenocyte-like cells can
occur in response to chemical factors, including BMPs, TGF-
and FGF [46,49].

1.1.3. Applications of tissue engineering and regenerative

medicine strategies to bone repair

Bone defects and bone reconstruction are, probably, two of
the most important issues in a TERM perspective, with
several proposals advanced over the years [7,29,53,62,63].
Some injuries in anatomic areas such as distal tibia, talus or
calcaneus, given their difficult irrigation and scarce soft
tissue protection, usually are difficult to consolidate. This is
a particularly critical problem in patients with a clinical
history of multiple surgical interventions [33].

Bone grafts can cover the basic requirements for bone
repair as they combine a scaffold, GFs and cells with osteo-
genic potential. Yet, the use of bone grafts is associated
with several complications, i.e. non-unions [64], incomplete

filling of the defect and late graft fracture [63]. Furthermore,
harvesting of autologous bone often results in donor site
morbidity, which may vary with the location site and the
applied technique [65].

Some technologies combining the use of GFs (namely
BMPs) [7,28,29], cells [16] and/or scaffolds [66,67], adapted
or not to a surgical intervention have achieved promising
results in cases where several previous surgeries have failed
systematically [3,33,68].

BMPs, specifically BMP-2, BMP-4 and BMP-7, have been
known for over a decade for inducing osteogenic cell differen-
tiation in vitro and in vivo [68]. The value of recombinant
human BMP-2 (rhBMP-2) has been evaluated in a prospective
study for treating open tibial shaft fractures [69]. A significant
reduction of a secondary intervention was observed in the
rhBMP-2 group as compared with the standard care group,
suggesting that the use of GFs could accelerate healing of
fractures and soft tissue, reduce hardware failure, and thus
re-operation owing to delayed healing/non-union. Still, there
are only few available GFs for clinical use in bone regeneration
besides BMP-2, BMP-7 and growth and differentiation factor-5
(GDEF-5) [70]. Recently, Kleinschmidt et al. [70] reported that the
use of a mutant GDF-5 (obtained by introducing BMP-2 resi-
dues into GDF-5) demonstrated enhanced osteogenesis and
long bone formation capacity [70]. When the use of GFs
alone is not recommended, as in the treatment of large bone
defects, stem cells and scaffolds are a very promising alterna-
tive to standard procedure. Stem cell-based TERM strategies
require three main steps: (i) cells are harvested, isolated and
expanded, (ii) scaffolds are seeded with the induced cells,
and (iii) cell-seeded scaffolds are re-implanted in vivo [68].
The aim of TERM is the substitution of the missing tissue
with the ex vivo tissue-engineered construct. There are several
reports [71,72] on the application of different scaffolds com-
bined with stem cells (mostly MSCs derived from bone
marrow or adipose tissue). These have shown favourable auto-
genous bone grafting and no donor site morbidity [68].
Scaffold choice is still under investigation in order to be stan-
dardized. Biodegradable synthetic polyesters [73], calcium
phosphate ceramics [74,75] and chitosan—alginate [76] are
some of the scaffolds that have proved to have significant
value in the treatment of bone defects.

Cancedda et al. [63] have provided relevant information
and new insights on the importance of scaffold architecture
towards enhancing de novo bone formation within scaffolds
in vivo.

Kokemueller et al. [77] have been also investigating the vas-
cularization of seeded scaffolds required for clinical application
in reconstructive cranio-maxillofacial surgery. The authors
reported that prefabrication of vascularized bioartificial bone
grafts in vivo might be an alternative to in vitro tissue engineer-
ing techniques as it presented minimal donor site morbidity
and no shape or volume limitations.

More recently, Nagata et al. [78] reported the use of cultured
autogenous periosteal cells (CAPCs) in alveolar bone regener-
ation. CAPCs were mixed with particulate autogenous bone
and PRP and grafted into the injury sites. Results have
shown that CAPC grafting enhances recruitment of both osteo-
blasts and osteoclasts, accompanied by angiogenesis and
leading to satisfactory bone regeneration.

Oliveira et al. [79] proposed the combination of nano-
technology tools and tissue engineering approaches for
pre-programming the fate of bone marrow stromal cells
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(BMSCs) towards promoting superior de novo bone formation.
The authors have shown that BMSCs cultured in vitro (figure 5)
with a dendron-like nanoparticles system that delivers
dexamethasone intracellularly, seeded onto starch—polyca-
prolactone (SPCL) scaffolds (figure 5a) and implanted
subcutaneously were able to differentiate and produce new
bone, in wvivo (figure 5c). That work clearly evidenced
the advantages of using intracellular tools, for example the
dendronized nanoparticles, for tuning stem cells in vivo.

2. Osteochondral ankle lesions

Osteochondral defects (OCDs) and osteoarthritis in lower
limb have a relevant socio-economic impact with significant
therapeutic investments and absence from work-related
costs [80,81]. OCDs are defined as lesions of any origin that
involve the articular surface and/or subchondral region,
thus affecting cartilage, bone or both [81]. Suggested causes
of ankle OCDs include local avascular necrosis, systemic vas-
culopathies, acute trauma, chronic microtrauma, endocrine or
metabolic factors, degenerative joint disease and genetic
predisposition [82].

Asymptomatic OCD patients can be treated non-
operatively, with rest, ice application and immobilization
or temporarily reduced weight bearing, even though this
management has shown relatively high rates of failure [83].

Symptomatic patients with OCDs should be treated surgi-
cally. The main aim is to promote re-vascularization of the
bone defect [84—86]. This goal is achieved applying three
principles [87]: (i) debridement and bone marrow stimula-
tion (e.g. microfracture, drilling and abrasion arthroplasty),
(ii) securing a lesion to the talar dome (e.g. fragment fixation,
retrograde drilling and bone grafting), and (iii) develop-
ment or replacement of hyaline cartilage (e.g. autologous
chondrocyte implantation (ACI), osteochondral autograft
transplantation (OAT), mosaicplasty and allografts) [88].

Articular hyaline cartilage is avascular and it has poor
regenerative capability [89,90]. When repair involves the for-
mation of fibrous cartilage, the newly formed tissue will lack
favourable biomechanical properties and it can fail [90]. There-
fore, the damaged tissue should be replaced with a tissue that
best resembles the native hyaline cartilage [81,88]. For this
reason, significant economic and scientific investments have
been made on TERM applications in the treatment and preven-
tion of cartilage defects and joint degradation [33]. Minimally
invasive methods that can facilitate their use have also attracted
much attention [81,88,91,92]. Besides, prolotherapy and arthro-

scopic/endoscopic  procedures have a lower risk

Figure 5. (a) Scanning electron microscopy image of MSCs seeded onto SPCL scaffolds and maintained in a standard osteogenic culture medium, after 14 days

of culturing. Microscopy images of histological sections (haematoxylin and eosin staining) of (b) SPCL scaffold controls and (c) MSCs/SPCL construct explants after
four weeks of implantation (Fischer rats subcutaneous model). Newly bone formed (NB), SPCL fibres (F) and fibrous tissue (FT).

of complications. These procedures facilitate and decrease
rehabilitation time, thus they help fight absence from work
and promote return to athletic activity [88,92]. TERM strate-
gies have been developed or adapted to promote this kind of
application/delivery [81,88,92].

2.1. Applications of tissue engineering and
regenerative medicine strategies to ankle

osteochondral lesions repair
2.1.1. Applications of isolated growth factors

Debridement and bone marrow stimulation have been used as
surgical approaches for partially destroying the calcified zone
that is often present in OCDs and to create multiple openings
into the subchondral bone [87,89]. As a consequence of these
interventions, intra-osseous blood vessels are disrupted, and
the release of GFs can lead to the formation of a fibrin clot
and fibro-cartilaginous tissue formation. These approaches
have proven to be one of the most effective treatments for
OCDs of the talus, especially in a small lesion (less than
6 mm), with minimal subchondral bone involvement [81,87].

Based on this surgical treatment, the use of isolated GFs in
the treatment of symptomatic OCDs has undergone a huge
expansion over the last few years [33]. In the body’s natural
response to injury, a complex healing process is initiated. Plate-
lets participate in this process, as they are responsible for
stopping bleeding and for haemostasis [22]. Once they are acti-
vated by mediators at the site of injury, they undertake
degranulation, releasing GFs that will help the wound-healing
process. Examples of these GFs are TGF-B, IGF-1 and IGF-2,
FGEF, all of which have been shown in experimental settings
to promote healing and the formation of the new tissue [8].

The short half-life of these proteins, the difficulty in keeping
them within the area of the defect and the low mitotic rate of
chondrocytes, among several other issues, make it hard or
even impossible to predict, from a theoretical perspective, the
complete repair of a chondral defect or OCD using this approach
[28]. Moreover, results available in the literature are contro-
versial, with some series reporting significant clinical or
symptomatic improvement [17,24], while other studies conclude
that there is not enough evidence to support their use with this
objective [8]. Two recent reports have used TGF-B, IGF-1 and
BMP-2 associated with scaffolds and have reported promising
results for the repair of OCDs and cartilages [93,94]. Although
the anabolic effect of these GFs cannot be questioned, as has
been demonstrated and confirmed in vitro and in vivo [95,96],
the original tissue replacement for fibrous tissue is commonly
observed in the neo-surface of the OCDs [2,94].
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It is consistently recognized that most of the published
studies have a low methodological quality in this matter, i.e.
besides the absence of uniform criteria in outcome assessment,
most of them also do not consider or not specify the different
GFs applied, their quantities, isolation methods, simultaneous
presence or absence of other proteins (e.g. metalloproteases) or
cells (e.g. leucocytes) [22,25,97]. It becomes obvious that the
improper early use of a promising technique will lead to
obstacles in its correct improvement which creates higher
resistance to its future application. However, tissue repair
and homeostasis depend on a multitude of factors (the
TERM triad) and should not be lightly simplified this way.
Research must still progress considerably to gain deeper
knowledge on the GFs application and their effects on different
tissues and clinical situations. Thus, GFs are probably not
expected to be a panacea, being able to solve all our problems
independently of the way they are produced, stabilized and
administered to the patient.

Besides the previously stated, one cannot ignore the
analgesic effects which simple platelet-derived GF methods
have shown in several clinical trials [8,22], particularly
among high-level athletes.

2.1.2. Applications of isolated cells

MSCs have demonstrated their high potential for clinical use
as therapeutic agents with several possible RM applica-
tions including orthopaedics and percutaneous (injectable)
techniques [98].

The rehabilitation of injured/degraded cartilage through
the degenerative process leading to osteoarthritis remains the
main challenge that clinicians and researchers have been
facing. Several researchers have tested the use of MSCs instead
of chondrocytes in the attempt to repair cartilage defects and
defend joint homeostasis [71,99,100].

MSCs have the capacity to modulate the immune
response of the individual and positively influence the micro-
environment of pluripotent cells already present in native
injured tissue. Through direct cell-to-cell interactions or by
secreting a number of different proteins, MSCs can promote
the endogenous regenerative mechanisms still present in an
arthritic joint [101].

Gene therapy with modified MSCs might increase this
therapeutic field in the near future [68,96,101]. Besides their
isolated application, MSCs’ chondrogenic differentiation can
be induced at the target tissue or in combination with an ade-
quate support scaffold [99]. This may obviate the limited
lifespan of chondrocytes that is an obstacle in the treatment
of large OCDs [102].

Another therapeutic possibility makes use of cultured
chondrocytes, which are expanded and finally implanted at
the defect site [103]. ACI is an alternative to OAT and it
involves harvesting a small amount of cartilage for chondro-
cyte isolation and culturing (in vitro), usually from a knee
ipsilateral to the ankle injury [87,88,103]. Cell-based tech-
niques have gained relevance in OCDs because, unlike
bone-marrow-stimulation methods, where fibrocartilage fills
the defect, cells can potentially induce regeneration and pro-
duce a ‘hyaline-like cartilage” [104]. Nevertheless, a recent
study [105] has shown that chondrocytes from the injured
zone in the ankle have poorer regenerative capacities as com-
pared with normal tissue, stating some reservations to their
use in the therapeutic field. Thus, it seems that the source
for harvesting cells should be a normal, healthy tissue,

requiring one additional surgical procedure and limited n

associated morbidity.

On the other hand, the differentiated cells are sensitive
and can present biochemical changes or diminished viability
during the processes of harvesting, culturing, expansion or
re-implantation in the defect zone [6].

The potential of ACI in the treatment of OCDs has been the
source of great enthusiasm since the study performed by Britt-
berg et al. [103]. After 3 years of follow-up, the transplants
restored considerable knee function in 14 of the 16 patients
with femoral defects. The treatment resulted in the formation
of new cartilage that was similar to normal cartilage in that
it had an abundance of type II collagen and metachromatically
stained matrix, similar as in original cartilage.

Still, despite several successes reported by the followers of
this technique [106], up to now there is no evidence-based
medicine to support their use, with no proven cost-effective
advantages as compared to ‘classic’ treatment options such
as microfractures or osteochondral grafting techniques
(OAT, mosaicplasty) [107-111].

Some advocate specific conditions for its use, for example
a defect area more than 4 cm? (factor predictor of a better out-
come with ACI), reinstating the existence of specific injury
and individual’s conditions which might play a determinant
role in outcome [112]. As aforementioned, gene therapy can
enhance the clinical application of differentiated cells as
stated by Orth ef al. [113]. That study demonstrated that
chondrocytes modified for higher co-expression of IGF-1
and FGF-2 hold an increased chondrogenic capacity in vivo.

2.1.3. Applications of biomaterials

Hyaline cartilage serves as a low-friction surface with high
wear resistance for weight-bearing joints. Unfortunately, it
possesses an avascular and alymphatic profile which limits
its autonomous regenerative capacity. The application of dif-
ferentiated cells in the clinic presents additional problems
such as cells’ tendency towards losing their differentiated
phenotype in a two-dimensional culture (e.g. chondrocytes)
and to differentiate towards a broblast-like phenotype [114].
To overcome this problem in the treatment of cartilage
lesions, different scaffolds have been developed for support-
ing cell adhesion, proliferation and maintenance of
phenotype in an effective manner [4,115].

Among the several scaffolds proposed in an attempt to
better fulfil the requirements of cartilage regeneration process,
there are substantial differences regarding the materials
chosen and their physical forms (i.e. fibers, meshes and gels).
Solid scaffolds provide a substrate on which cells can adhere,
whereas gel scaffolds physically entrap the cells [116]. The bio-
materials used can be classified as synthetic or natural.
Synthetic matrices present mechanical properties and degra-
dation rates more easily tuned as compared with that of
natural polymers, but some biocompatibility concerns might
be raised owing to their degradation products and potential
effect on native tissue and implanted cells. However, inno-
vations in chemistry and materials science have been
improving their biocompatibility [116]. Among the natural
and synthetic materials that have been investigated (e.g. gellan
gum, alginate, silk fibroin, chitosan, hydroxyapatite, collagen,
hyaluronic acid (HA), polyglycolic acid and polylactic acid)
[117], few have been used in ankle lesions, probably due to
the lack of studies in the field of ankle tissue regeneration.
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Figure 6. Photographs of gellan gum hydrogels: (a) single and (b) bilayered.

Table 1 [5,53,93,118-127,129,130,132-140,142-145,147-151]
summarizes the most important reports on polymers, ceramics
and composites that have been used as scaffolds for osteochon-
dral tissue regeneration.

Biomaterials including ceramics and polymers, such
as aragonite [148], silk fibroin [5,121] or tricalcium phos-
phate [149-151], are some of the most promising materials
for OCD regeneration, alone or alternatively blended with
other materials.

The application of an injectable biomaterial with bioadhesive
properties, for example gellan gum (figure 6a), for regeneration
of cartilage has been proposed for the first time by Oliveira
etal.[129]. The gellan gum hydrogel was shown to efficiently sus-
tain the delivery and growth of human articular chondrocytes
and support the deposition of a hyaline-like ECM [128], leading
to the formation of a functional cartilage. The use of biocompati-
ble gellan gum-based hydrogels (e.g. methacrylated gellan gum,
GG-MA) is also justified due to their many advantages such as
improved biostability, tuneable degradability, mechanical prop-
erties and bioadhesiveness [52,130,131]. The versatility of the
injectable gellan gum hydrogels and functionalized derivatives
allowed the development of ionic- and photo-cross-linked
GG-MA hydrogels, with improved mechanical properties for
in situ gelation, within seconds to a few minutes [152,153].
Besides being able to serve as carriers of GFs/drugs and/or
cells and promote ECM production, in another study [154],
GG-MA hydrogels have been shown to possibly enable the con-
trol of the neovascularization process. In other words, one can
use two different forms of gellan gum-based hydrogels to trans-
port different cells: (i) in a given zone, facilitate vascular ingrowth
(e.g. area to integrate in subchondral bone in a grade IV injury
according to International Cartilage Repair Society) and (ii) in
another area, prevent neovascularization and re-innervation by
the presence of the hydrogel itself while it can also transport
chondrocytes to the region that will replace hyaline cartilage
[154]. That important work brings new insights to mimicking
more precisely the native properties of tissue, because different
tissues require neovascularization for regeneration, as in others
vascularization and re-innervation is associated with pain and
degeneration [155]. In fact, one of the goals of TERM is, pre-
cisely, to maintain the human characteristics of the natural
tissue and so the knowledge of physiology of the original
tissue is crucial.

Another biomaterial that has been tested, including in
talar dome resurfacing, is collagen in its many presentations
[66]. Besides its biocompatibility and positive results for the
management of painful post-traumatic of the ankle joint,

cartilage-like layer
(2 wt% gellan gum)

bone-like layer
(2 wt% gellan gum + 20 wt%
hydroxyapatite)

the biomechanical properties and stability remains an issue
in several of its applications [66,118].

Hydrogel systems have been developed to obtain optimal
nutrient diffusion [40,49], connectivity with host matrix, ade-
quate biodegradability, solubility and mechanical properties
to facilitate the production and organization of the matrix
[14]. Several improvements have been achieved with several
former systems, but the ‘ideal” one remains to be established
[156]. One of the most studied hydrogels is based in HA. The
use of HA as adjuvant of microfractures surgical treatment
(i.e. bone-marrow-stimulation techniques) seems to improve
the results of microfractures alone, taking advantages of
HA'’s rheological properties [157].

Since a treatment that focuses exclusively on articular carti-
lage is likely to fail [90], it has been suggested that treatment
strategies should be designed with the entire osteochondral
unit (articular cartilage and subchondral bone) [90]. There-
fore, bilayered porous scaffolds with poly(lactide-co-glycolic)
(PLGA) seeded with BMSCs [137] or with GFs [138] were
reported to simultaneously regenerate cartilage and subchon-
dral bone of rabbit knee. Porous PLGA-calcium sulfate
biopolymer (TruFit by Smith and Nephew, London, UK) is
one of the most popular commercially available devices (prob-
ably the most clinically tested) [135,136], and it has been applied
from mono- to bilayered presentations (figure 7). Jiang ef al.
[135] observed bone formation in the osseous phase, with evi-
dent subchondral remodelling, as well as normal hyaline
cartilage, in a mini-pig model, when cell suspension (composed
of the harvested autogenous cartilage) was injected into the
chondral phase of the PLGA scaffold. More recently, this
device is also available in a shape adapted to the anteromedial
talar corner. However, there is still little evidence-based medical
data supporting its use in either acellular or cellular strategies,
besides the existence of some concerns with polyglycolic acid
biocompatibility [90,158].

In the field of ceramic polymers, hydroxyapatite is one of
the most used implant materials for medical applications
owing to its high biocompatibility [144]. It seems to be
the most appropriate ceramic material for cartilage tissue
engineering. However, owing to low strength and fracture
toughness of the material, new approaches have been reported
[147] in order to achieve a scaffold with the most suitable
properties for cartilage tissue engineering. Sotoudeh et al.
[147] reported that a composite of zirconia and hydroxyapatite
would be an effective scaffold for cartilage regeneration.

The use of bilayered scaffolds (figure 6b) that combine
different materials in the same implant constitutes a natural
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Figure 7. (a) Photograph of TruFit PLGA-based scaffold delivery device, (b) defect zone prepared to receive the plug and (c) arthroscopically implanted device to

resurface the defect preserving joint congruency.

evolution in OCD treatment, in an attempt to combine
favourable properties to both bone integration and cartilage
repair [124,159]. In fact, it has been shown that the hydroxy-
apatite layer permits adhesion and proliferation of MSCs and
osteogenic differentiation in vitro [124], while facilitating new
bone formation in vivo [72]. By its turn, the cartilage-like layer
is also able to support the adhesion of MSCs and can promote
chondrogenesis, in vitro.

Another important commercially available product is
MaioRegen (Fin-Ceramica SpA, Faenza, Italy) [146,160],
which is a trilayered scaffold for treatment of OCDs. The dee-
pest layer is composed of hydroxyapatite, the intermediate
layer is a mixture of type I collagen and hydroxyapatite
and the superficial layer consists of type I collagen only. In
a previous study performed in vitro and in vivo, Kon et al.
[145] obtained similar results when the scaffold was loaded
with autologous chondrocytes or when it was used alone.
The ability of the scaffold to induce OCD repair without
the seeding of autologous cells makes it very attractive [146].
Compearative studies with OAT, ACI and bone-marrow-stimu-
lation techniques are needed to establish the clinical outcome of
this procedure.

2.1.4. Applications of advanced tissue engineering and

regenerative medicine strategies

The requirement for full OCD repair has been approached
considering the heterogeneity of different tissues, different
components and layers (including subchondral bone plate
and different hyaline cartilage layers). This is also part of
the underlying principle for OAT. Although some attempts
have been made to overcome one of the most relevant pro-
blem of OAT [107], relevant morbidity related to donor
zone in knee-to-ankle transplantation has been demonstrated
[110,161]. Furthermore, other problems persist with these
techniques including graft’s source, achievement of joint con-
gruence and interface between graft plugs and between grafts
and native cartilage. It is generally accepted that the use of a
lower number of plugs is a predictor of a better mid- to
long-term outcome [107].

Table 2 [162-165] summarizes the most important clinical
studies related to TERM strategies for treatment of ankle
lesions. Those studies have tested two main biomaterials,
ie. collagen and hyaluronan-based scaffolds/membranes,
with matrix-induced ACI (MACI, Verigen, Leverkusen,
Germany) being the most used approach. This technique

can be considered as an evolution of conventional ACI and
it makes use of processed cells that are harvested and isolated
from the patient and expanded in vitro. Once grown, the
chondrocytes are seeded between layers of a bilayered col-
lagen scaffold in the operating room, prior to implantation
of cell-scaffold construct into the defect area.

The studies that have been reported demonstrate [119,121,
133,151] that combination of scaffolds and autologous cells
can enhance the regeneration outcome, using scores adopted
either by American Orthopaedic Foot and Ankle Society
(AOFAS) or Magnetic Resonance Observation of Cartilage
Repair Tissue (MOCART).

Cellular-based techniques, such as ACI and MACI, require a
two-stage operative procedure, where initial harvesting of car-
tilage is followed by culturing and subsequent implantation
of the cultured tissue. In fact, this issue has been considered
one of the major drawbacks of ACI. This has been the driving
force for the search for new treatment methods [166] and devel-
opment of novel and bioactive scaffolds, which can be easily
implanted and fixed, and best mimic the native tissue to be
repaired. The use of bilayered tridimensional porous scaffolds
enhanced by MSCs requires several years of preclinical research
[124]. Still, it remains a trend with high interest and investment
from the scientific community. The histological results are avail-
able only in animal studies, but are indeed very encouraging
[145]. Clinically, they have been applied up to now only in
the knee, but they may represent a solution for the repair of
deep OCDs even in the ankle [100,146]. The development
of the ideal scaffold has been performed in a stepwise manner
and is dependent on the knowledge gained in the last
few years, in what concerns the biomechanical and biological
properties of native tissues [5].

MSCs are emerging as a powerful tool for treatment of
cartilage lesions, thanks to their ability to differentiate into
various lineages [167]. In particular, the use of concentrated
bone marrow instead of chondrocytes, in order to provide
MSCs to be seeded onto the scaffold, has been recently intro-
duced in clinical practice as a one-step procedure for the
treatment of OCDs.

Giannini ef al. [163] described their experience with bone-
marrow-derived cells (BMDCs) implanted in talar dome focal
OCDs. Two types of scaffolds were tested. Both collagen
powder and hyaluronic acid membrane showed similar clinical
improvement at 2 years in AOFAS score and a good MRI.
Recently, the same group [168] compared the clinical outcome
in focal osteochondral monolateral talar dome lesions after

sz s o 05y 1 Bosuysandioposelorys [



3L0JIN0 [dIUIP BY} pue 31035 [HYIOW
U93MI3G UONeR[I ou sem 31ay] “siulod §'GL T 779 sem 31035
LHYOW UBBJ “UOIS3] 3y} JO 3ZIS 3y} Yym Jou Ing ‘sworduifs
J0 UoneINp 3y pue jualied 3y} Jo abe Yy YuM parejaLiod
s)nsa1 ay] ‘iood pue Jiej palel 1M 959¢ SealdYM ‘poob

pUB U3[[22X3 SE PAIRI UM U419 ‘21035 100JpUly SY4OY 03 Buipiodde

auoq [epuoydgns pue bejiued Jejndre

Jo uonesduahal ayy pamoys S|y ‘uonesado-1sod sywuow 6| 1y

*(06 01 7y wouy pabues ‘annesado-1sod seak 7) g/ pue (/8 03 9y

woyy pabues ‘annesado-1sod Jeak |) /7 01 (97 03 gy oy
pabues ‘aanesado-aid) 7'19 woy paseanul s103s 100Jpuly Sy40Y Y}

syuaiied ayy Jo auoq [eipuoydgns pue Jake] abejiued

U} JO UuoneIISaI 3yl pamoys S|y ‘dn-mojjo} s1eak g 1y “fiabins
3} JaYe syow 7 ‘€' + 876 03 G'0L + 7'99 W0l paseanul
21035 3y} ‘dnoih ppe duoinjeAy ayy uj ApAAdsaI ‘g6 F 868
pue g F 679 am uonesddo-1sod syuow Hz pue uonerado

-a1d Jo 21005 Sy40Y ueaw 3y ‘dnoib Japmod uabejjod ayy Joy

pawiio} sem 3bejiued ayi-auljeAy 1eys pajeanas aney sbujuress
[edibojoisiy “uedas abejiuie Joy suonesado snoiaaid 03 pue swuaiied
Jo 3be ay1 03 parejar Appuedyiubls asam synsal (eI “AjPAIDAdSA
YEL + G568 PUB F'EL + §'98 UM SAI0DS BY) ‘SyIuow 9¢

pue 7| WYY €Yl F TS Sem 21035 Sy{0y dAnesado-aid uesw sy}

awodIno

PIsN 313M SYUBWINIISUI JUSUISSISSE
SAWOIN0 Uil Jamo| (SOYY) Suoabing dipaedoyuiq Jo Awapedy
UBDURWY Y JO 3NPOL UL PUB 100} Y} JO J[BIS 10) Y}

pue 21035 SY40V “(144) X3pur uomduNy 1004 Y1 Jo 3npow Ajiqesip
pue uted 3y ‘3103s [YYIOW “dN[D 3y} Se UL Yum ‘s3jap

3y) ur pajueidwi pue aueiqwaw Uabe|j0d Yy 0JUI Pap3ads 1M
sa1OoIpuoyd painyny “abejiled Jo 159AIRY AU} SB [|3M S ‘S3JIP
3} UO JUBWIPLIGIP PUB UOIEN|AD BY 10} pasn sem Adodsoiyuy

"T'67 J0 3be ueaW Yum (S3J3p 6L JO [e10) B yum ‘gL = u) sjudned

Jue[eas unqy Jo Jake] e Jo doy

U0 13Jap 3y opur pasejd pue I sem yeib ay] “AW030a1s0 Jejod)jew
Inoyum ‘yoeosdde [PIP3LUOIAIUL 10 [RIFIR[0IDIUL [[BLUS © YIIM
pasodxa sem Jujof ay| ‘aueiquiaw Uabejjod 3y} 03Ul PAPaIS UM
sa1f0IpuoLd papuedxg UoIsa| Yy J0 JAPIO] AU} W) palsanley osje
sem abejiued pue ‘Adodsoiyuie apjue Aq paskjeue a1am spRP 3y} Jo

uoned0| pue 3zis 3y] ‘s1eak 0y Jo abe abesane yum (oL = u) swaned

..... e
alam saysodwod pue 36 uuqy yu-13j1ejd pue moiew duoq

UIM PaXIL Sem dueiquidw ueuoinjedy Jo Japmod uabejjod ay} ‘uay]
"PRIRIIUIUOD PUB PAISIAIRY SeAM MOLIBW U] “ISIL 1Y "Pasn auam
(LL-44VAH) dueiquaw ppe duoinjeAy pue (Japmogd ueisobuods)
Japmod uabe|jod aupiog “JuaWIRAN) 3y} Joj SHS/ueuoIn|eAy

pasn syuaned 6z pue ‘)5 uabejjod pasn (s7 = u) siualied

f1abins-1s0d supuow 9¢ pue 7|

1e pue ApAneIado-aid A0ds Sy4QY Aq palen|eAd M Sudney “dUS
uoIsa] 3y our pajuerdu Ajjedrdodsoiyue sem PnIIsUod ayy ‘dals
pu0I3s 3y} U “pjogeds ) yeibojedy uo painnd alam sayfroipuoy)
-abejiued 1santey 03 Adodsoayue apjue :unpadoid si “suoIs3| AWop

Je[ey dnewnen-sod ‘s1eaf 'L Jo abe ueaw e yum (9 = u) syualied

ainparoud

‘7L "9/apue

syiuow §g (Dyw) seuoopuoyd
dn-mojjo} snobojoine yum
ueaw/3pjue ployeds | adAy uabejjod
saufdo1puoyd snobojoine
sieaf 7 YlM 3ueIquRW
pue |/3pue pasake|iq |11/| 9dAy uabejj0
syuow 47 SIAWG Pa1esuDU
pue g| YNM Papeo| auelquiaw

sa1fr0ipuoyd snobojoine

syow 9¢
pue 7]/apjue

uewWINY YuMm papads
plogeds ) yeibojedy

dn-mojjoy
/edie Pajap

yeoidde
Judw)eal)/[eralewolq

[991]

b 10 Youny

[¥91]

10 Jo ez

[€91]
12
ujuueD

[791]
b 12
1uluUeID

LEMICIEIEY]

"3pjue ay1 Jo @)0/3beje> Jo 3| U saIpMS [P °Z 2|qel



Figure 8. (a) Per-operative photograph of Hemicap ankle implant after tibial osteotomy and control X-ray in (b) frontal and (c) lateral views at 1 year follow-up.

three different surgical approaches: (i) open first generation ACI,
(ii) arthroscopic Hyalograft C (Fidia Advanced Biopolymers Lab-
oratories, Padova, Italy) implantation, and (iii) arthroscopic
repair by BMDC implantation on a hyaluronic acid membrane.
Although similar pattern of improvement was found at 3 years
follow-up in all groups regarding collagen type II and pro-
teoglycan expression, BMDCs showed a marked reduction
in procedure morbidity and costs, demonstrating it to be a
one-step technique able to overcome most of the drawbacks of
previous techniques. Nearly complete integration of the regen-
erated tissue with the surrounding cartilage was demonstrated
in76% of the cases. In addition, histological analysis highlighted
the presence of all components of hyaline cartilage in repaired
tissue, which showed various degrees of remodelling.

Finally, Battaglia et al. [169] confirmed the good results
of BMDC transplantation, with 85% of good to excellent clinical
outcome, and demonstrated the ability to regenerate hyaline
cartilage but not the capability of osteogenesis in OCD repair.
In fact, regenerated mature bone was evident only in two
cases and in less than 8% of regenerated volume. It must
also be kept in mind that the phenotypic preservation of
chondrocytes and/or adequate manipulation of MSC differen-
tiation process in different tissues remain as challenging
unsolved issues. Chondrocytes are ‘fragile’ cells, exposed to
de-differentiation during laboratory manipulation (loss of orig-
inal phenotype) [59,68,111]. The differentiation of MSCs into
chondrocytes is a multi-factorial, complex target which requires,
in vitro, the contemplation of simulators of biophysical stimulus
present in normal tissues—bioreactors [26,135,136,158,170].
Both cell types remain under preclinical investigation and the
bench-to-bedside transfer is still an unclosed matter.

The treatment of different focal OCDs by means of using
autologous chondrocyte transplantation in tridimensional sup-
port scaffolds has been recently attempted [10,108,112,164].
Aiming to enhance this therapeutic strategy, the simultaneous
application of GFs has also been evaluated, attempting
to favour local environment for short-term integration and
promote differentiation [10,11].

A recent study comparing two commercially available
methods, (i) Hyalograft C (used by arthroscopic application)
and (ii) Chondro-Gide MACI (open surgery application), con-
cluded that both methods led to positive results, but the
method of application influenced short-term results [171].
Arthroscopic  application provide

seems to faster

rehabilitation, despite no significant differences being noted
at 2 years follow-up. The reported failure rate was globally
20% highlighting the need for improvement of both techniques.
The authors considered results as fair/good and recommended
consideration of these techniques when debridement and bone
marrow stimulation fail [171].

Gene therapy can provide some new answers to previously
described pitfalls and limitations, but it might raise a different
level of concern. The use of chondrocytes genetically transfected
to increase the expression of BMP-7 inoculated into a fibrin—col-
lagen scaffold provided better histological results as compared
with controls (rabbit model) [18].

TERM applications have not only been attempted in focal
defects but also in global joint degeneration, i.e. arthritis.
Joint replacement using biological tissue modified using
TERM principles to mimic osteochondral tissue has been
attempted [172]. In addition, the use of synthetic materials
(e.g. ceramics) enhanced by MSCs aiming at future applica-
tion in patients presently referred to fusion or total ankle
arthroplasty has been evaluated [173].

Concerning focal defects, a non-biological solution devel-
oped by van Dijk’s group [174] presented promising results
by means of contoured focal metallic replacement (figure 8),
despite the lack of mid- to long-term follow-up in larger series.

An important issue regarding the applications of
biomaterials is the implant-tissue interface. Because of the
geometric complexity of the ankle and the relative thickness
of its cartilage, the use of focal resurfacing implants to treat
talar OCDs, as well as biomaterials, presents challenges
with regard to implant/biomaterial design, selection and sur-
gical placement [175]. Considering the basic principles of
TERM, besides biological conditions, ankle biomechanics
must be taken into account [91] since it is a more congruent
joint compared with the knee [176]. A congruent joint surface,
for example the ankle, is usually covered with thinner hyaline
cartilage compared with incongruent ones that possess
thicker cartilage, for example in the knee. The diminishing
of articular congruence produces higher contact pressure
per joint area. Higher loss of congruence or malalignment
will lead to growing contact pressure with all its implications
[91,177,178]. Injured subchondral bone, as in OCDs, is less
effective in supporting the overlying cartilage, and this
might be one of the reasons explaining the greater difficulty
for cartilage repair in these situations [179,180].
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Becher et al. [181] measured contact stress redistribu-
tion in the human knee after implantation of a metallic
resurfacing cap, and reported elevated contact stresses associ-
ated with device implants. Also, Custers et al. [182] stated that
implants seem to cause considerable degeneration of the
directly articulating cartilage in the knee. In the case of bio-
materials, owing to their biocompatibility, integration into
the surrounding cartilage is usually observed [183]. This
way, the stress level changes on the joint are minor. However,
the size and shape of the OCDs must be taken into account, to
ensure that the biomaterial is as similar as possible, in order
to completely fulfil the injured area.

3. Final considerations

The appropriate treatment for OCD repair is still controversial.
The ideal technique would regenerate a tissue with biomechani-
cal properties similar to normal hyaline articular cartilage,
with reduced morbidity and costs. The excellent durability of
results obtained by ACI or MACI over time is well established
and contrasts sharply with the long-term results reported for
bone-marrow-stimulating techniques (such as abrasion, drilling
or microfractures).

A variety of biomaterials including polymers and ceramics
have been proposed for regeneration of the cartilage of OCDs,
and composite scaffolds (e.g. polymers combined with cer-
amics), especially if seeded with autologous cells and/or GFs,
seem to improve biomechanical results.

Up to now only a few clinical trials on ankle healing have
been described, whereas a scaffold approach to the treatment
of knee chondral lesions has been largely used in clinical practice,
with excellent or good clinical results largely documented in the
literature. New approaches must be considered to talus osteocon-
dral defects in order to improve restoration. Although there are
particularities of such area, other biomaterials with significant
results in knee OCDs may be applied to the ankle lesions.

TERM approaches are changing the paradigms of medicine
and surgical practice. However, the success of these technol-
ogies at present and in future demands deep knowledge of
native tissue biology and understanding of its repair mechan-
isms and response to injury, as well as the new biomaterials
under consideration. Basic rules of biology and other ‘basic
sciences’ (understanding basic only as fundamental, never as
simple) must be well known by all surgeons since only in this
way will they be able to understand, adapt and assist in the
development of this knowledge to clinical practice.

TERM approaches have proven efficacy in clinical cases
and problems which used selection criteria not previously
solved by ‘conventional’ therapeutic repair and/ or replacement
options. However, undiscriminating use of any promising tech-
nique is one of the most effective ways to impair or even block
its proper development.
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