
OCCUPATION TIME OF EXCLUSION PROCESSES
WITH CONDUCTANCES
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ABSTRACT. We obtain the fluctuations for the occupation time of one-dimensional
symmetric exclusion processes with speed change, where the transition rates (con-
ductances) are driven by a general function W. The approach does not require
sharp bounds on the spectral gap of the system nor the jump rates to be bounded
from above or below. We present some examples and for one of them, we observe
that the fluctuations of the current are trivial, but the fluctuations of the occupa-
tion time are given by a fractional Brownian Motion. This shows that, in general,
the fluctuations of the current and of the occupation time are not of same order.

1. INTRODUCTION

Occupation time is the usual nomenclature for the additive functional
∫ t

0 ηs(x)ds,
where ηs(x) denotes the occupation variable at the site x at the time s. Namely,
ηs(x) represents how many particles stand at the site x and at the time s for some
particle system {ηt : t ≥ 0}. In this paper, we are concerned with a standard
interacting particle system, the exclusion process. Succinctly, the exclusion process
consists in a system of random walks evolving on a lattice under the rule that a
particle can not jump to an already occupied site. This is the so-called exclusion
rule. Such model is of great importance in Probability and Statistical Mechanics
for several reasons. At the same time it has a simple interaction among particles
but its peculiarities allow to prove deep results which are shared by many other
models.

We consider here one-dimensional speed change exclusion processes. The dy-
namics of these process can be informally described as follows. A Poisson clock is
associated to each bond of the lattice, the parameter of which is given by a function
W of the position of the bond, in the same way as considered in [3, 4, 5, 6]. When
a clock rings the occupation variables at the bonds are exchanged. The system
is taken to start from the equilibrium state, which consists in a Bernoulli product
measure with constant parameter. Our main result is the derivation of a functional
central limit for the occupation time, when suitably re-scaled.

There is a vast literature on the fluctuations of the occupation time of symmetric
particle systems, see for instance [8, 13, 14] and references therein. In this paper
we follow the approach proposed in [8], which consists in replacing the occupa-
tion time functional by an additive functional of the density of particles. Then, as a
consequence of the Central Limit Theorem for the density of particles, we deduce
the corresponding result for the occupation time functional. We consider exclusion
processes with speed change for which the Central Limit Theorem for the density
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of particles has been derived [2]. Therefore, to complete our goals we just need
to justify the proper replacement of the aforementioned functionals. For that pur-
pose, we introduce what we call a Local Replacement which allows to substitute the
occupation time functional by an additive functional of the empirical average of
particles on a small macroscopic box. This Local Replacement avoids performing
a multi-scale analysis in order to derive a second order Boltzmann Gibbs Principle
as in [8]. More than that, we do not require sharp bounds on the spectral gap, nor
the boundedness of the jump rates of the system, as required in [8]. Therefore, our
results are true for a general class of exclusion processes, for which the methods of
[8] do not apply directly. On the other hand, our results are not as general as the
results of [8], since they only hold for the occupation time functional and no other
additive functional. We believe that our method can be extended to more general
dynamics than the exclusion constrain, but this is left for future work.

We present here some particular cases of interest. First, we consider porous me-
dia models which were analyzed in [9] and correspond to taking W as the identity
function. These models do not satisfy the spectral gap bound required in [8] but
with our method we obtain the fractional Brownian Motion ruling the fluctua-
tions of the occupation time. Second, we consider exclusion processes with a slow
bond which were analyzed in [5]. These models do not satisfy the boundedness
of the jump rates as required in [8], but our method also fits these models. We
remark that exclusion processes with a slow bond is an interesting example of a par-
ticle system for which the fluctuations of the current and the fluctuations of the
occupation time have completely different behaviors. This shows that, in general,
the fluctuations of the current and of the occupation time are not of same type.

This paper has the following outline. In Section 2 we define our models and
we state our main result, namely Theorem 2.2. In Section 3, we recall the hydro-
dynamic limit and the fluctuations of the density from [6] and [2], respectively. In
Section 4, we prove our main result. Section 5 is devoted to examples: porous me-
dia models and exclusion processes with a slow bond. In the Appendix we present
some technical lemmas.

2. THE MAIN RESULT

Denote by T = R/Z = [0, 1) the one-dimensional continuous torus, and by
Tn = Z/nZ = {0, . . . , n − 1} the one-dimensional discrete torus with n points.

Fix W : R → R a strictly increasing right continuous function with left limits
(càdlàg), periodic in the sense that, for all u ∈ R,

W(u + 1)− W(u) = W(1)− W(0). (2.1)

Consider the state space Ωn := {0, 1}Tn . The speed change exclusion process with
conductances is the Markov process {ηt : t ≥ 0} whose infinitesimal generator acts
on local functions f : Ωn → R as

(Ln f )(η) = ∑
x∈Tn

ξn
x,x+1 cx,x+1(η) [ f (ηx,x+1)− f (η)] ,

where ηx,x+1 is the configuration obtained from η by exchanging the occupation
variables η(x) and η(x + 1):

(ηx,x+1)(y) =

 η(x + 1), if y = x ,
η(x), if y = x + 1 ,
η(y), otherwise,

(2.2)
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the conductantes ξn
x,x+1 are given by

ξn
x,x+1 =

1
n
(
W
( x+1

n
)
− W

( x
n
))

and
cx,x+1(η) = 1 + b(η(x − 1) + η(x + 2)),

with b > −1/2. The motivation for the choice of the conductances given as the
inverse of the discrete derivative of W is explained in [6]. Under this choice the hy-
drodynamic limit can be obtained, the hydrodynamics being governed by a partial
differential equations, which depends on W, see [1, 2, 6].

We remark that due to the choice of the state space, in all the formulas above if
x = n − 1 then x + 1 = 0.

Throughout this paper, we assume the following technical condition on the
function W: for any n ∈ N and any small ε > 0, there exists a constant θ > 0
such that

1
εn

εn−1

∑
y=0

(
W
( y

n
)
− W(0)

)
∼ O(εθ), (2.3)

where f ∼ O(g) means that the function f is bounded from above by a constant
times the function g. Above, it is assumed that the constant θ does not depend on
n ∈ N.

To exemplify the assumption (2.3), if W is a θ-Hölder function in a neighbor-
hood of zero, then (2.3) is satisfied, since for any n ∈ N

1
εn

εn−1

∑
y=0

(
W
( y

n
)
− W(0)

)
≤ CW

εn

εn−1

∑
y=0

yθ

nθ
≤ CW

εn

εn−1

∑
y=0

εθ = CWεθ ,

where CW is the Hölder constant.
The dynamics of the process {ηt : t ≥ 0} can be informally described as follows.

At each bond {x, x + 1} of Tn, there is an exponential clock of parameter ξn
x,x+1, all

of them being independent. Suppose the configuration at the present is η. After a
ring of the clock at the bond {x, x + 1}, the occupation variables η(x) and η(x + 1)
are exchanged at rate cx,x+1(η).

We remark that the condition b > −1/2 is required to ensure that the system
is ergodic in the following sense. First, we notice that the dynamics introduced
above conserves the total number of particles. Therefore, the state space of the
process can be written as Ωn :=

∪n
k=0 Hn,k, where Hn,k denotes the hyperplane

of configurations in Ωn with k particles. The ergodicity property means that on
each hyperplane, with positive probability, we can reach any configuration in the
same hyperplane using the allowed jumps of the dynamics. For instance, if b =
−1/2 and for a configuration η having the sites x − 1, x, x + 2 occupied, and the
site x + 1 empty, then cx,x+1(η) = 1 + 2b = 0. Then, for this choice of b there
are blocked configurations, that is, configurations that do not evolve under the
dynamics. Therefore, the system is not ergodic, in the sense given above.

Also, it is well known that the Bernoulli product measures on Ωn with param-
eter ρ ∈ [0, 1], denoted by {νρ : 0 ≤ ρ ≤ 1}, are invariant for the dynamics
introduced above. Moreover, they are also reversible.

Fix T > 0 and ρ ∈ (0, 1). The trajectories of {ηt : t ≥ 0} live on the space
D([0, T], Ωn), that is, the path space of càdlàg trajectories with values in Ωn. For
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a measure νρ on Ωn, we denote by Pνρ the probability measure on D([0, T], Ωn)

induced by νρ and by {ηt : t ≥ 0} and we denote by Eρ the expectation with
respect to Pνρ .

Let C ([0, T], R) be the path space of continuous trajectories with values in R.

Definition 2.1. The occupation time of the origin is defined as the additive functional

Γn(t) :=
1

n3/2

∫ tn2

0
(ηs(0)− ρ) ds. (2.4)

The definition above has already the correct scaling in terms of n, in order to Γn(t)
have a non trivial limit when taking n to infinity. The occupation time at a site
x ∈ Tn is defined as above by replacing ηs(0) by ηs(x).

Our main result is the following

Theorem 2.2. (Fluctuations of the occupation time)
As n goes to infinity, the sequence of processes {Γn(t) : t ∈ [0, T]}n∈N converges in
distribution, with respect to the uniform topology of C ([0, T], R), to a Gaussian process
{Γ(t) : t ∈ [0, T]}.

Remark 2.3. We notice that the previous result also holds for the occupation time
of any site x ∈ Tn, by replacing condition (2.3) for

1
εn

x+εn−1

∑
y=x

(
W
( y

n
)
− W

( x
n
))

∼ O(εθ). (2.5)

For ease of notation we opt to present the result for x = 0.

3. SCALING LIMITS: HYDRODYNAMICS AND FLUCTUATIONS

In this section we review the hydrodynamic limit and the equilibrium fluctua-
tions of the density, for the models introduced above.

3.1. Hydrodynamic Limit. In words, the hydrodynamic limit consists in the anal-
ysis of the time evolution of the spatial density of particles. This spatial density of
particles is represented by the empirical measure process πn

t (η, du) := πn(ηt, du)
defined, for t ∈ [0, T], by

πn(ηt, du) = 1
n ∑

x∈Tn

ηtn2(x)δ x
n
(du) ∈ M ,

where δy is the Dirac measure concentrated on y ∈ T. Above, M denotes the
space of positive measures on T with total mass bounded by one, endowed with
the weak topology. To uniquely characterize the time evolution of the empirical
measure, some condition must be imposed on the starting measures. This is the
content of next definition.

Definition 3.1. A sequence of probability measures {µn}n∈N, where µn is a probability
measure on Ωn, is said to be associated to a profile ψ0 : T → [0, 1], if for every δ > 0 and
every continuous function H : T → R

lim
n→∞

µn

{
η ∈ Ωn :

∣∣∣ 1
n ∑

x∈Tn

H( x
n ) η(x)−

∫
T

H(u)ψ0(u)du
∣∣∣ > δ

}
= 0. (3.1)

In [6] it was proved that:
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Theorem 3.2. Fix a continuous profile ψ0 : T → [0, 1]. Let {µn}n≥1 be a sequence of
probability measures associated to ψ0. Then, for any t ∈ [0, T], for every δ > 0 and every
continuous function H : T → R, it holds that

lim
n→∞

Pµn

{
η. :

∣∣∣ 1
n ∑

x∈Tn

H( x
n ) ηtn2(x)−

∫
T

H(u)ψ(t, u)du
∣∣∣ > δ

}
= 0 ,

where ψ : [0, T]× T → R is the unique weak solution of{
∂tψ = LWψ ,
ψ(0, u) = ψ0(u) , ∀u ∈ Tn . (3.2)

The operator LW is defined in next subsection, as well as the notion of weak solution of
(3.2).

In order to state properly what is a weak solution of (3.2) we need to introduce
some definitions.

3.2. The operator LW . We detail here the operator LW : DW ⊂ L2(T) → L2(T).
We start by defining its domain DW . For that purpose, we consider W(dy) as the
measure on the continuous torus associated to the function W : R → R in the
usual way, or else, as the unique measure such that

W((a, b]) := W(b)− W(a) ∀ a, b ∈ T with a < b. (3.3)

Notice that the periodicity condition given in (2.1) guarantees that the measure
above is well defined.

The domain DW consists on the set of functions G in L2(T) such that

G(u) = a + b W(u) +
∫
(0,u]

( ∫ y

0
g(z) dz

)
W(dy), ∀ u ∈ T,

for some function g in L2(T) that satisfies∫ 1

0
g(z) dz = 0 and

∫
(0,1]

(
b +

∫ y

0
g(z) dz

)
W(dy) = 0.

The operator LW acts on G ∈ DW as LW G = g. An alternative definition of
the operator can be stated in the following way. Denote by ∂u the usual space
derivative and define the generalized derivative ∂W of a function G : T → R by

∂W G(u) = lim
ε→0

G(u + ε)− G(u)
W(u + ε)− W(u)

, (3.4)

when the above limit exists and is finite. Keeping this in mind, given G ∈ DW , we
have LW G(u) = ∂u∂W G(u), for all u ∈ T.

This operator LW is a Krein-Feller type operator (see e.g. [7] on the subject). In
[6], it was proved that LW satisfies the properties stated in the ensuing theorem.
Below ⟨⟨·, ·⟩⟩ denotes the inner product in L2(T) and ∥ · ∥ the corresponding norm.

Theorem 3.3. There exists an Hilbert space H 1
W compactly embedded in L2(T) such that

DW ⊂ H 1
W and LW can be extended to H 1

W such that the extension enjoys the following
properties:

(a) The domain H 1
W is dense in L2(T);

(b) The operator LW is self-adjoint and non-positive ⟨⟨H,−LW H⟩⟩ ≥ 0, for all H ∈
H 1

W ;
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(c) Let I be the identity operator. The operator I − LW : H 1
W → L2(T) is bijective

and DW is a core of it;
(d) The operator LW is dissipative, i.e., ∥µH − LW H∥ ≥ µ∥H∥ , for some µ > 0

and for all H ∈ H 1
W ;

(e) The eigenvalues of −LW form a countable set 0 = µ0 ≤ µ1 ≤ µ2 ≤ · · · with
limn→∞ µn = ∞, and all of them have finite multiplicity;

(f) There exists a complete orthonormal basis of L2(T) composed of eigenfunctions
φn of −LW associated to the eigenvalues µn.

In view of (a), (c) and (d), by the Hille-Yosida Theorem, LW is the generator of a strongly
continuous contraction semigroup in L2(T).

Finally, we state what is meant to be a weak solution to (3.2).

Definition 3.4. A bounded function ψ : [0, T]× T → R is said to be a weak solution
of the parabolic differential equation (3.2) if, for any t ∈ [0, T] and any H ∈ H 1

W , the
function ψ(t, ·) satisfies the integral equation∫

T
ψ(t, u)H(u) du −

∫
T

ψ(0, u)H(u) du −
∫ t

0

∫
T

ψ(s, u)LW H(u) du ds = 0.

3.3. Equilibrium fluctuations and the generalized Ornstein-Uhlenbeck process.
Following the ideas of [2], we define SW(T) =

∩∞
n=0 Sn, where Sn is the Hilbert

space obtained by completing the space DW with respect to the inner product
⟨·, ·⟩n given by

⟨ f , g⟩n =
∞

∑
k=1

(1 + µk)
2nk2n

∫
T

Pk f (u)Pkg(u)du, (3.5)

where Pk is the orthogonal projection on the linear space generated by the eigen-
function φk given in Theorem 3.3. Let S′

W(T) denote the dual space of SW(T), that
is, the space of the bounded linear functionals from SW(T) to R.

We define the density fluctuation field, which is an element of S′
W(T), as the

linear functional acting on functions H ∈ SW(T) as

Y n
t (H) =

1√
n ∑

x∈Tn

H
( x

n

)(
ηtn2(x)− ρ

)
. (3.6)

We will use the more compact notation η̄(x) to denote η(x)− ρ. The equilibrium
density fluctuations for these models was proved in Theorem 2.1 of [2] and is
stated as follows. Denote by D([0, T], S′

W(T)) the path space of càdlàg trajecto-
ries with values in S′

W(T).

Theorem 3.5. As n goes to infinity, the sequence {Y n
t : t ∈ [0, T]}n∈N converges, in the

Skorohod topology of D([0, T], S′
W(T)), to {Yt : t ∈ [0, T]} the generalized Ornstein-

Uhlenbeck process which is the stationary solution of the stochastic partial differential
equation given by

dYt = c̃ ′(ρ)LWYtdt +
√

2χ(ρ)c̃ ′(ρ)dBt, (3.7)

where χ(ρ) = ρ(1 − ρ), c̃ ′(ρ) = 1 + 2bρ and Bt is a S′
W(T)-valued Brownian motion

with quadratic variation given by

⟨B(H)⟩t = t
∫

T
(∂W H(x))2 W(dx).
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4. PROOF OF THEOREM 2.2

The proof of this theorem relies on two steps. First, we claim that the occupation
time is close to an additive functional of the density fluctuation field Y n

t , this is
what we called the Local Replacement. Second, we use Theorem 3.5 to prove that
the additive functional of the density fluctuation field Y n

t converges to a Gaussian
process. Before proving these two claims we develop some crucial estimates that
we need in due course.

4.1. The Local Replacement. For a function g ∈ L2(νρ), we denote by Dn(g) the
Dirichlet form of the function g, defined as: Dn(g) = −

∫
Ωn

g(η)Lng(η)νρ(dη).
An elementary computation shows that

Dn(g) = ∑
x∈Tn

ξn
x,x+1

2

∫
Ωn

cx,x+1(η)
(

g(ηx,x+1)− g(η)
)2

νρ(dη). (4.1)

Lemma 4.1 (Local Replacement).
For any ℓ ≥ 1, for any n ≥ 1 and t ∈ [0, T], it holds that

Eρ

[( ∫ t

0
{η̄sn2(0)− η̄ℓ

sn2(0)}ds
)2]

≤ 40 t
n2ℓ

C(ρ)
ℓ−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1
,

where

η̄ℓ
sn2(0) =

1
ℓ

ℓ−1

∑
y=0

η̄sn2(y)

and C(ρ) is a positive constant.

In order to prove the last lemma, we use the following result.

Lemma 4.2. For any ℓ ≥ 1, for any n ≥ 1, for any g ∈ L2(νρ) and for a constant A > 0,
it holds that∫

Ωn
{η̄(0)− η̄ℓ(0)}g(η)νρ(dη) ≤ A

2ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1

∫
Ωn

1
cz,z+1(η)

νρ(dη) +
1
A

Dn(g).

Proof. By the definition of the empirical average η̄ℓ(0), we can rewrite the integral
on the left hand side in the statement of the lemma as

1
ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

∫
Ωn

{η(z)− η(z + 1)}g(η)νρ(dη).

Writing the previous expression as twice its half and performing the change of
variables η 7→ ηz,z+1, for which the measure νρ is invariant, it equals to

1
2ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

∫
Ωn

(η(z)− η(z + 1))(g(η)− g(ηz,z+1))νρ(dη).

By the Cauchy-Schwarz inequality we bound the expression above by

1
2ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1

∫
Ωn

A
cz,z+1(η)

(η(z)− η(z + 1))2νρ(dη)

+
1
2ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

ξn
z,z+1

∫
Ωn

cz,z+1(η)

A
(g(η)− g(ηz,z+1))2νρ(dη).
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To finish the proof it is enough to recall (4.1). �

Proof of Lemma 4.1. By Proposition A1.6.1 of [12], we have that

Eρ

[( ∫ t

0
{η̄sn2(0)− η̄ℓ

sn2(0)}ds
)2]

≤ 20 t sup
g∈L2(νρ)

{
2
∫

Ωn
{η̄(0)− η̄ℓ(0)}g(η)νρ(dη)− n2Dn(g)

}

≤ 20 t sup
g∈L2(νρ)

{A
ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1

∫
Ωn

1
cz,z+1(η)

νρ(dη) +
2
A

Dn(g)− n2Dn(g)
}

.

In last inequality we used the previous lemma. Taking 1/A = n2 we get the bound

40 t
n2ℓ

ℓ−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1

∫
Ωn

1
cz,z+1(η)

νρ(dη).

To conclude it is enough to observe that∫
Ωn

1
cz,z+1(η)

νρ(dη) = (1 − ρ)2 +
2

1 + b
ρ(1 − ρ) +

1
1 + 2b

ρ2 := C(ρ). (4.2)

�

Corollary 4.3. For any ε > 0 and any t ∈ [0, T], it holds that

Eρ

[( ∫ t

0
{η̄sn2(0)− η̄εn

sn2(0)}ds
)2]

≤ 40 t
εn2 C(ρ)

εn−1

∑
y=0

(
W
( y

n
)
− W(0)

)
,

for a positive constant C(ρ).

Proof. This result is a consequence of Lemma 4.1 with ℓ = εn and the fact that
ξn

x,x+1 = 1
n(W( x+1

n )−W( x
n ))

so that

εn−1

∑
y=0

y−1

∑
z=0

1
ξn

z,z+1
≤ n

εn−1

∑
y=0

(
W
( y

n
)
− W(0)

)
.

�

Corollary 4.4. For any ε ≥ 0, for any n ≥ 1, for any W satisfying (2.3) for some θ > 0
and for any t ∈ [0, T], it holds that

Eρ

[(√
n
∫ t

0
{η̄sn2(0)− η̄εn

sn2(0)}ds
)2]

≤ 40 t C(ρ) εθ ,

for a positive constant C(ρ).

Proof. By the previous corollary, the expectation above is bounded from above by

40 t
εn

C(ρ)
εn−1

∑
y=0

(
W
( y

n
)
− W(0)

)
,

and by the assumption (2.3) last term is smaller than 40 t C(ρ) εθ , where C(ρ) is a
constant. �
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At this point we are able to use the Local Replacement in order to prove that
the occupation time is close to an additive functional of the density of particles.
For that purpose, for ε ∈ (0, 1) we denote by ιε the function y 7→ ε−11[0,ε](y). The
sequence {ιε ; ε ∈ (0, 1)} is therefore an approximation of the identity.

Proposition 4.5. Fix t > 0. For any ε ≥ 0 and for any n ≥ 1, it holds that

Eρ

[(
Γn(t)−

∫ t

0
Y n

s (ιε)ds
)2]

≤ Ctεθ , (4.3)

for a positive constant C.

Proof. Observe that

Γn(t)−
∫ t

0
Y n

s (ιε)ds =
1

n3/2

∫ tn2

0
η̄s(0)ds −

∫ t

0

1
ε
√

n

εn

∑
x=0

η̄sn2(x)ds

=
√

n
∫ t

0

(
η̄sn2(0)− η̄εn

sn2(0)
)

ds.

In the first equality we used the definitions of Γn(t) and Y n
s given, respectively,

in (2.4) and (3.6) and the definition of ιε given above. In the second equality, we
used a change of variables in the time integral. Now, it is enough to recall Corol-
lary 4.4 in order to finish the proof. �

4.2. The approximation in the SW(T) space. So far, we were able to show that
the occupation time is close to the additive functional of the density of particles
evaluated at the function ιε. We would like to invoke Theorem 3.5 in order to
assure the convergence of the density fluctuation field Y n

t to some process Yt, as
n tends to infinity. However, the function ιε does not belong to the space of test
functions SW(T), therefore, we can not apply directly the Theorem 3.5 to Y n

t (ιε).
To overcome this problem, we approximate first the function ιε by a sequence of
functions {ιkε}k∈N in the space of test functions SW(T). This is the content of the
next lemma.

Denote by 1A(u) the function that takes the value 1 if u ∈ A and 0 if u /∈ A.

Lemma 4.6. For fixed ε ∈ (0, 1), there exists a sequence of functions {ιkε}k∈N in the space
of test functions SW(T) converging to ιε in the L2(T)-norm, as k tends to infinity.

Proof. In fact, we are going to approximate the function ιε by a sequence of func-
tions on the space DW , which is a subset of SW(T), as defined in Subsection 3.3.

Define

ιkε(u) :=
∫
(0,u]

( ∫ y

0
gk

ε (z) dz
)

W(dy), ∀ u ∈ T, (4.4)

where the function gk
ε (z) ∈ L2(T) is given by

gk
ε (z) := ck,+

ε gk,+
ε (z)− ck,−

ε gk,−
ε (z), ∀ z ∈ T,
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with

gk,+
ε (z) := k

[
1(0,1/k](z)− 1(1/k,2/k](z)

]
, ∀ z ∈ T,

gk,−
ε (z) := k

[
1(ε−1/k,ε](z)− 1(ε,ε+1/k](z)

]
, ∀ z ∈ T,

ck,+
ε :=

1
ε

( ∫
(0,1]

( ∫ y

0
gk,+

ε (z) dz
)

W(dy)

)−1

,

ck,−
ε :=

1
ε

( ∫
(0,1]

( ∫ y

0
gk,−

ε (z) dz
)

W(dy)

)−1

.

We consider k ∈ N such that k > 1/ε, in order that the formulas above make
sense. We claim that∫ 1

0
gk

ε (z) dz = 0 and
∫
(0,1]

( ∫ y

0
gk

ε (z) dz
)

W(dy) = 0.

The first equality above follows from the fact that
∫ 1

0 gk,+
ε (z)dz =

∫ 1
0 gk,−

ε (z)dz = 0,
which can be easily checked. The second equality follows from a simple compu-
tation.

Under the choice of gk
ε , the function ιkε defined in (4.4) has the following be-

havior: for u ∈ (2/k, ε − 1/k], ιkε(u) is equal to ε−1 and for u ∈ (ε + 1/k, 1], ιkε(u)
vanishes. Therefore, for each k ∈ N, the function ιkε differs from ιε only on the set
(0, 2/k] ∪ (ε − 1/k, ε + 1/k].

Since |ιkε − ιε| is bounded by a constant that does not depend on k, the Domi-
nated Convergence Theorem implies that ιkε converges to ιε in L2(T), as k goes to
infinity, concluding the proof. �

4.3. The Gaussian limit. At this point we have all the needed ingredients in order
to prove our main result, namely, Theorem 2.2. In this subsection, we follow the
ideas from the proof of the Theorem 2.9 of [8].

We know that the occupation time is close to the additive functional of the den-
sity of particles evaluated on ιε, which in turn can be very well approximated by
the additive functional of the density of particles evaluated on a function in the
space of test functions SW(T). At this point, we can take the limit as n tends to
infinity, because, by Theorem 3.5, the convergence of Y n

t (H) to Yt(H) holds for
any H ∈ SW(T).

Next, we prove that the additive functional associated to Yt(ιε) converges, as ε
tends to 0, to a Gaussian process. For that purpose, define

Γ̃ε(t) =
∫ t

0
Ys(ιε)ds, (4.5)

where Yt is the Ornstein-Uhlenbeck process given in (3.7).

Remark 4.7. We point out that definition above is, in principle, not well defined
since ιε does not belong to the space SW(T). To handle that, it is necessary to look
at the limit of Cauchy sequences {Y n

t (ιkε)}k∈N, where {ιkε}k∈N is given in Lemma
4.6. By the convergence of Y n

t (ιkε) towards Yt(ιkε) as n goes to infinity, and the fact
that {Y n

t (ιkε)}k∈N is a Cauchy sequence in k (uniformly in n), a diagonal argument
leads to a precise definition of Γ̃ε(t). This was very well detailed in [5] or [8] and
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to keep the present text short, we ask the reader to accept (4.5) or to go into the
details in these references.

The next lemma characterizes, for fixed t, the dependency of Γ̃ε(t) on ε > 0.

Lemma 4.8. For any fixed t ∈ [0, T] and any ε > δ > 0,

E
[(

Γ̃ε(t)− Γ̃δ(t)
)2] ≤ Cεθt, (4.6)

where C > 0 is some constant that does not depend on ε nor δ.

Proof. Fix ε > δ > 0. Repeatedly applying the inequality (x + y)2 ≤ 2(x2 + y2),
we bound the expectation in (4.6) by four times the sum of

E
[(

Γ̃ε(t)−
∫ t

0
Y n

s (ιε)ds
)2]

, (4.7)

E
[(

Γn(t)−
∫ t

0
Y n

s (ιε)ds
)2]

, (4.8)

E
[(

Γn(t)−
∫ t

0
Y n

s (ιδ)ds
)2]

, (4.9)

and

E
[(

Γ̃δ(t)−
∫ t

0
Y n

s (ιδ)ds
)2]

. (4.10)

The term in (4.8) can be estimated by using Proposition 4.5, from where we get
that

E
[(

Γn(t)−
∫ t

0
Y n

s (ιε)ds
)2]

≤ Cεθt.

Analogously, for (4.9), we have

E
[(

Γn(t)−
∫ t

0
Y n

s (ιδ)ds
)2]

≤ Cδθt < Cεθt.

The next step is to guarantee that (4.7) is arbitrarily small for large n. We do the
following. By Lemma 4.6 there exists a sequence of functions {ιkε}k∈N in the space
of test functions SW(T) approximating the function ιε in the L2(T)-norm, as k
tends to infinity. By adding and subtracting terms, we bound (4.7) by four times
the sum of the terms below:

E
[(

Γ̃ε(t)−
∫ t

0
Ys(ι

k
ε)ds

)2]
,

E
[( ∫ t

0
Ys(ι

k
ε)ds −

∫ t

0
Y n

s (ιkε)ds
)2]

,

E
[( ∫ t

0
Y n

s (ιkε)ds −
∫ t

0
Y n

s (ιε)ds
)2]

.

(4.11)

The first expectation in (4.11) can be estimated by using the linearity of Yt together
with Lemma 6.1 (postponed to the appendix), from where we get that

E
[( ∫ t

0
[Ys(ιε)−Ys(ι

k
ε)]ds

)2]
= t2χ(ρ)

∫
T
(ιε(u)− ιkε(u))

2du.

By Lemma 4.6, the right hand-side of the previous equality goes to zero, as k goes
to infinity.

The second expectation in (4.11) goes to zero, as n tends to infinity, as a conse-
quence of the Theorem 3.5 and of Lemma 4.6.
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To bound the third expectation in (4.11) we apply the Cauchy-Schwarz inequal-
ity, leading to

E
[( ∫ t

0
[Y n

s (ιkε)−Y n
s (ιε)]ds

)2]
≤ t2 1

n ∑
x∈Tn

(ιkε − ιε)
2
( x

n

)
χ(ρ).

Taking n sufficiently large, the right hand-side of the previous expression is close
to

t2
∫

T
(ιkε(u)− ιε(u))2du χ(ρ)

and again by Lemma 4.6, this expression is small for k sufficiently big.
Expression (4.10) can be treated in same way as (4.7), finishing the proof of the

lemma. �

Proposition 4.9. As ε goes to zero, the sequence of processes {Γ̃ε(t) : t ∈ [0, T]}ε>0 con-
verges in distribution, with respect to the uniform topology of C ([0, T], R), to a Gaussian
process {Γ̃(t) : t ∈ [0, T]}.

Proof. We begin by claiming that

E
[(

Γ̃ε(t)
)2]

≤ t2 χ(ρ)

ε
. (4.12)

By the Cauchy-Schwarz inequality,

E
[(

Γ̃ε(t)
)2]

≤ t E
[ ∫ t

0
(Ys(ιε))

2ds
]
.

By Fubini’s Theorem and Lemma 6.1 we get that

E
[(

Γ̃ε(t)
)2]

≤ t
∫ t

0
E
[
(Ys(ιε))

2
]
ds = t2χ(ρ)

∫
T
(ιε(u))2du = t2 χ(ρ)

ε
,

proving the claim. We observe that Lemma 6.1 is stated only for functions in the
space SW(T). Nevertheless, an aproximation procedure in L2 as described in the
Remark 4.7 extends the statement of the Lemma 6.1 for ιε as well.

Fix ε > 0. For δ < ε, applying (4.6) and (4.12) we have that

E
[(

Γ̃δ(t)
)2]

= E
[(

Γ̃δ(t)− Γ̃ε(t) + Γ̃ε(t)
)2]

≤ 2E
[(

Γ̃δ(t)− Γ̃ε(t)
)2]

+ 2E
[(

Γ̃ε(t)
)2]

≤ 2Cεθt + 2t2 χ(ρ)

ε
.

(4.13)

If t ≥ δ1+θ , taking ε = t1/1+θ we conclude that

E
[(

Γ̃δ(t)
)2]

≤ Ct
1+2θ
1+θ , (4.14)

where C does not depend on ε nor t. On the other hand, if t < δ1+θ , then t
1

1+θ < δ
and using (4.12), the previous inequality is also true. Therefore, by the stationarity
of Yt and since Γ̃ε(0) = 0, we get that

E
[(

Γ̃ε(t)− Γ̃ε(s)
)2]

= E
[(

Γ̃ε(t − s)− Γ̃ε(0)
)2]

= E
[(

Γ̃ε(t − s)
)2] ≤ C|t − s|

1+2θ
1+θ ,

(4.15)



OCCUPATION TIME OF EXCLUSION PROCESSES WITH CONDUCTANCES 13

for all t, s ∈ [0, T]. Estimate (4.15) allows to invoke Kolmogorov-Centsov’s com-
pactness criterion (see problem 2.4.11 in [10]), assuring that the sequence of pro-
cesses {Γ̃ε(t) : t ∈ [0, T]}ε>0 is tight. Besides that, for fixed t, (4.6) implies that
{Γ̃ε(t)}ε>0 is a Cauchy sequence in L2, implying the uniqueness of limit points.
This concludes the proof.

�

A final observation: since we have, in general, no manageable formula for the
semigroup {Pt : t ≥ 0} associated to c̃′(ρ)LW , we are not able to explicitly char-
acterize the covariance of the Gaussian process {Γ̃(t) : t ∈ [0, T]} obtained above
(and hence we can not characterize the process itself beyond of proving its exis-
tence). In next subsection we detail two cases where the covariances can be com-
puted explicitly.

5. FURTHER EXTENSIONS AND EXAMPLES

In this section we present the extension of the previous results for two models
evolving in the one-dimensional lattice Z. For that purpose we need to introduce
some notation. From now on, we take the state space Ω := {0, 1}Z and the Markov
process {ηt : t ≥ 0} with infinitesimal generator given on local functions f : Ω →
R by

(Ln f )(η) = ∑
x∈Z

an
x,x+1(η)[ f (ηx,x+1)− f (η)] ,

where an
x,x+1 will be defined later accordingly to model we consider. Above, ηx,x+1

denotes the configuration obtained from η by exchanging the occupation variables
η(x) and η(x + 1), as in (2.2). For this process we define the occupation time of
the origin Γn(t) as in Definition 2.1. Below we present two examples for which we
are able to characterize completely the limiting Gaussian process appearing in the
statement of Theorem 2.2.

5.1. Porous media models. In this section we consider a collection of models
whose scaling limits were studied in [9]. First, we consider the Markov process
{ηt : t ≥ 0} with generator given by Ln as above with

an
x,x+1(η) := ax,x+1(η) = 1 + b(η(x − 1) + η(x + 2))),

where b > −1/2. In the particular case where b = 0, the process becomes the well
known symmetric simple exclusion process.

We notice that all the results of Section 4 are true for these models simply by
rewriting the proofs adapted to the infinite volume context. First, the results in
Subsection 4.1 are true for this choice of the jump rates: Lemma 4.1 holds in this
case by making the simple choice of W equal to the identity function which corre-
sponds to conductances given by ξx,x+1 = 1 for all x ∈ Z, therefore Proposition
4.5 is also true for this model. Second, to prove the results of Subsection 4.2 we
define the density fluctuation field Y n

t (see (3.6)) with the sum taken with x ∈ Z

and on the Schwarz space of test functions, that we denote by S (R). Therefore,
by the chosen space of test functions the approximation arguments of Subsection
4.2 are standard and are left to the reader. Finally, the results of Section 4.3 are also
simple to check in this setting, for details we refer to [8]. We omitted the details
of these proofs since they are basically a modification of notation to fit the infi-
nite volume setting. Moreover, since the equilibrium fluctuations were proved for
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these models in [9], then Theorem 2.2 holds in this case with the limiting process
{Γ(t) : t ≥ 0} being a fractional Brownian motion of Hurst exponent H = 3/4.

We remark that we can even take more general rates an
x,x+1(η) := ax,x+1(η)

equal to

1 + b
( −1

∏
j=−(m−1)

η(x + j) +
2

∏
j=−(m−2)

j ̸=0,1

η(x + j) + · · ·+
m−1

∏
j=−1
j ̸=0,1

η(x + j) +
m

∏
j=2

η(x + j)
)

,

with b > −1/2 and m ∈ N\{1}. Under these rates, particles more likely hop to
unoccupied nearest-neighbor sites when there are at least m − 1 ≥ 1 other neigh-
boring sites fully occupied.

Summarizing, since in [9] the equilibrium fluctuations were obtained for these
models, the limit being a generalized Ornstein-Uhlenbeck process and since all
the results of Section 4 are also true for these models, then we are able to show the
following result.

Theorem 5.1. As n goes to infinity, the sequence of processes {Γn(t) : t ∈ [0, T]}n∈N

converges in distribution with respect to the uniform topology of C ([0, T], R) to a frac-
tional Brownian motion of Hurst exponent H = 3/4.

5.2. Symmetric Exclusion with a slow bond. In this section, we consider the
Markov process {ηt : t ≥ 0} with generator given by Ln as above with

an
x,x+1(η) =

{ α
nβ , if x = −1,
1, otherwise ,

(5.1)

for α > 0 and β ∈ [0, ∞].
These models correspond to the symmetric exclusion process with a slow bond,

which was extensively studied in [3, 4, 5]. We first notice that if we take the process
evolving on T, the case β = 1 and α = 1 corresponds to a particular case of
the ones described above by simply taking W : R → R as W(x) = x + ⌊x⌋ ,
where ⌊x⌋ denotes the biggest integer number smaller or equal to x. It is simple
to check that this function W satisfies the conditions imposed in Section 2, and for
b = 0 the conductances are given by ξ−1,0 = 1

n+1 , while for x ̸= −1, ξx,x+1 = 1.
Therefore, asymptotically the behavior of this model is the same as for the slow
bond introduced above. We remark that when we take other values of β or α we
can only write the conductances in terms of a function W that depends on n and
this is not covered by the results we presented above, since there the function W is
fixed. For these models we are also able to prove the Theorem 2.2 for all the ranges
of the parameters α > 0 and β ∈ [0, ∞].

Now we sketch the proof of this result following the steps of Section 4. First, we
notice that all the results of Subsection 4.1 are true for these models by replacing
there the jump rates ξx,x+1cx,x+1 by our choice of an

x,x+1 given above. In order to
prove the results of Subsection 4.2 we define the density fluctuation field Y n

t (see
(3.6)) with the sum taken with x ∈ Z on the space of test functions that we denote
by Sβ(R) which is defined as follows.

First of all, we define first S (R\{0}) as the space of functions H : R → R, such
that H ∈ C∞(R\{0}) and H is continuous from the right at x = 0, with

∥H∥k,ℓ := sup
x∈R\{0}

|(1 + |x|ℓ) H(k)(x)| < ∞ ,
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for all integers k, ℓ ≥ 0 and H(k)(0−) = H(k)(0+), for all k integer, k ≥ 1, where

H(0+) := lim
u→0,
u>0

H(u) and H(0−) := lim
u→0,
u<0

H(u) ,

when the above limits exist.
Now, let Sβ(R) be the subset of S (R\{0}) composed of functions H satisfying:

• for β ∈ [0, 1), H(0−) = H(0+) ,

• for β = 1, H(1)(0+) = H(1)(0−) = α
(

H(0+)− H(0−)
)

,

• for β ∈ (1, ∞], H(1)(0+) = H(1)(0−) = 0 .
We remark that for β < 1, Sβ(R) coincides with the Schwarz space S (R).

Since we are working with different spaces for the test functions, we need to show
that we are able approximate the function ιε by a suitable sequence of test functions
Sβ(R). This is the content of the next lemma.

Lemma 5.2. For fixed ε ∈ (0, 1), there exists a sequence of functions {ιkε}k∈N in the space
of test functions Sβ(R) converging to ιε in the L2(T)-norm, as k tends to infinity.

Proof. This proof is the same proof as in Lemma 4.6, if we consider

ιkε(u) :=
∫ u

−∞

( ∫ y

−∞
hk

ε (z) dz
)

dy, ∀ u ∈ R,

where hk
ε is an approximation of the function gk

ε , defined above, in the space
S (R\{0}).

Then the function ιkε belongs to space of test functions Sβ(R), and converges to
ιε, as k tends to infinity in the L2(T)-norm. �

Moreover, all the results of Subsection 4.3 are of straight verification for these
models, since the equilibrium fluctuations for these models were proved in The-
orem 2.6 of [5], the limit being a generalized Ornstein-Uhlenbeck process. As a
consequence we have the following result.

Theorem 5.3. As n goes to infinity, the sequence of processes {Γn(t) : t ∈ [0, T]}n∈N

converges in distribution with respect to the uniform topology of C ([0, T], R) to:

• For β ∈ [0, 1), a mean-zero Gaussian process {Γ∞(t) : t ∈ [0, T]} with variance
given by

E
[(

Γ∞(t)
)2]

=
4
3

χ(ρ)√
π

t3/2. (5.2)

Or else, {Γ∞(t) : t ∈ [0, T]} is a fractional Brownian motion of Hurst exponent 3/4.

• For β = 1, a mean-zero Gaussian process {Γα(t) : t ∈ [0, T]} with variance given
by

E
[(

Γα(t)
)2]

=
4
3

χ(ρ)√
π

t3/2 + 2χ(ρ)
∫ t

0

∫ s

0

Fα(s − r)√
4π(s − r)

drds, (5.3)

where

Fα(t) =
1
2t

∫ +∞

0
z e−z2/4t−2αz dz. (5.4)

Moreover, this process {Γα(t) : t ∈ [0, T]} is not self-similar, hence it is not a fractional
Brownian motion.
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• For β ∈ (1, ∞], a mean-zero Gaussian process {Γ0(t) : t ∈ [0, T]} with variance
given by

E
[(

Γ0(t)
)2]

=
8
3

χ(ρ)√
π

t3/2. (5.5)

Or else, {Γ0(t) : t ∈ [0, T]} is a fractional Brownian motion of Hurst exponent 3/4
with twice the variance of {Γ∞(t) : t ∈ [0, T]}.

Proof. As mentioned above, the previous results can be obtained by following the
proof in Section 4 together with Theorem 2.6 of [5]. In order to characterize the
limiting processes, by stationarity, since they are mean-zero and equal to 0 for
t = 0, it is enough to compute their variances. For notational convenience let Γ(t)
be the limiting process for all the ranges of β. Then, by symmetry, we get that

E
[(

Γ(t)
)2]

= lim
ε→0

2
∫ t

0

∫ s

0
E[Ys(ιε)Yr(ιε)] dr ds,

where Yt is the stationary solution of

dYt = ∆βYtdt +
√

2χ(ρ)∇βdWt, (5.6)

Wt being a space-time white noise of unit variance and the characteristic operators
∆β and ∇β were defined in [5]. By equation (33) in the proof of Theorem 2.7 of [5],

E[Ys(ιε)Yr(ιε)] = χ(ρ)
∫

R
(Tβ

s−r ιε)(u)ιε(u)du,

where Tβ
t is the semigroup associated to ∆β. It remains only to take the limit of

expression above as ε goes to zero. Performing a simple but long computation we
get the result. For the sake of completeness we present this computation in the
Lemma 6.2 of the Appendix.

Finally, the fact that {Γα(t) : t ∈ [0, T]} is not self-similar it is a consequence of
the fact that its variance is not invariant under a time-transformation of a power
type, see [11]. �

It is a folklore conjecture that the fluctuations of the current and of the occupa-
tion time should be of same order. By means of the previous theorem, we offer
a counter-example for such idea. In [5], it was proved that the fluctuations for
the current at the origin in the regime β > 1 are null. Opposed to that, in the
theorem above, we get that the fluctuations for the occupation time at the origin
are not null. Of course, this does not eliminate the possibility the conjecture to be
true under some additional hypothesis on the particle system. Anyway, the par-
ticle system we have used here to present the counter-example has some strong
properties as reversibility and the order preservation of particles.

As a consequence of the Theorem 5.3 we discover also that the three processes
obtained as the limit of the occupation time are continuously related through the
parameter α presented in (5.1). This result is stated in the following corollary.

Corollary 5.4. The sequence of processes {Γα(t) : t ∈ [0, T]}α>0 converges, as α tends
to infinity, to the mean-zero Gaussian process {Γ∞(t) : t ∈ [0, T]} with variance given
by (5.2). On the other hand, as α tends to zero, the sequence of processes {Γα(t) : t ∈
[0, T]}α>0 converges to the mean zero Gaussian process {Γ0(t) : t ∈ [0, T]} with variance
given by (5.5). The convergence above is in the sense of finite dimensional distributions.
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Proof. Gaussian processes are characterized by their covariance. Reversibility in
all cases allows to characterize the covariance in terms of the variance. Therefore,
it is enough to show the convergence of the variances in each case which is a con-
sequence of the Dominated Convergence Theorem and the fact that

∀ t ≥ 0, lim
α→∞

Fα(t) = 0 and lim
α→0

Fα(t) = 1,

where Fα(t) was defined in (5.4). Both limits above are of straightforward verifica-
tion and are left to the reader. �

Remark 5.5. We notice that the result of Theorem 2.2 can be extended for particle
systems for which Corollary 4.4, Lemma 4.6 and Theorem 3.5 hold. The character-
ization of the Gaussian process would depend on the knowledge of the semigroup
associated to the corresponding operator LW in (3.7).

6. APPENDIX

We present in this appendix the proof of the following lemma, which is a stan-
dard one in the area. Because we were not able to find it written anywhere in the
literature, we include it here for the sake of completeness.

Lemma 6.1. If {Yt : t ≥ 0} is a solution of (3.7), then for all H ∈ SW(T), it holds that

E
[
Yt(H)Ys(H)

]
= χ(ρ)

∫
T
(Pt−sH)(u)H(u)du, (6.1)

where {Pt : t ≥ 0} is the semigroup associated to c̃′(ρ)LW .

Proof. From [2], since Yt solves (3.7), Yt solves the following martingale problem:
for every H ∈ SW(T),

Mt(H) = Yt(H)−Y0(H)− c̃′(ρ)
∫ t

0
Ys(LW H)ds (6.2)

is a martingale with respect to the natural filtration Ft := σ(ηs : 0 ≤ s ≤ t). At
first, we claim that

E
[
Yt(H)Y0(H)

]
= χ(ρ)

∫
T
(Pt H)(u)H(u)du. (6.3)

For this purpose, notice that

E
[
Yt(H)Y0(H)

]
= E

[(
Mt(H) +Y0(H) + c̃′(ρ)

∫ t

0
Ys(LW H)ds

)
Y0(H)

]
= E

[
Mt(H)Y0(H)

]
+ E

[
Y0(H)Y0(H)

]
+ E

[
Y0(H) c̃′(ρ)

∫ t

0
Ys(LW H)ds

]
.

(6.4)

The first expectation above vanishes because

E
[
Mt(H)Y0(H)

]
= E

[
E
[
Mt(H)Y0(H)

∣∣F0
]]

= E
[
Y0(H)E

[
Mt(H)

∣∣F0
]]

= E
[
Y0(H)M0(H)

]
= 0,

where last equality above is due to M0(H) = 0.
The second term can be handled as follows. By computing the characteristic

function of Y n
0 (H) and by the Theorem 2.1 of [2], we get that

E
[
Y0(H)Y0(H)

]
= χ(ρ)

∫
T
(H(u))2du. (6.5)
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Now we develop the last expectation of (6.4) by using again (6.2), that is:

E
[
Y0(H)c̃′(ρ)

∫ t

0
Ys(LW H)ds

]
=
∫ t

0
E
[
Y0(H)Ys

(
c̃′(ρ)LW H

)]
ds

=
∫ t

0
E

[
Y0(H)Ms

(
c̃′(ρ)LW H

)
+Y0(H)Y0

(
c̃′(ρ)LW H

)
+Y0(H)

∫ s

0
Yr

(
(c̃′(ρ))2L 2

W H
)

dr

]
ds.

Repeating the same argument as above, last expression can be rewritten as

χ(ρ)
∫

T
tc̃′(ρ)(LW H)(u)H(u)du +

∫ t

0

∫ s

0
E
[
Y0(H)Yr

(
(c̃′(ρ))2L 2

W H
)]

dr ds.

Let us introduce the temporary notation G := (c̃′(ρ))2L 2
W H and rewrite expres-

sion above simply as

χ(ρ)
∫

T
tc̃′(ρ)(LW H)(u)H(u)du +

∫ t

0

∫ s

0
E
[
Yr(G)Y0(H)

]
dr ds. (6.6)

We want to characterize the expectation in the second parcel above. Invoking (6.2)
again we have that

Mr(G) = Yr(G)−Y0(G)− c̃′(ρ)
∫ r

0
Yl(LW G)dl

is a martingale. Provided by this fact and repeating the previous arguments, we
are lead to

E
[
Yr(G)Y0(H)

]
= χ(ρ)

∫
T

G(u)H(u)du + E
[
Y0(H) c̃′(ρ)

∫ r

0
Yl(LW G)dl

]
(6.7)

Putting together (6.5), (6.7) and (6.6), we obtain:

E
[
Yt(H)Y0(H)

]
= χ(ρ)

∫
T
(H(u))2du + χ(ρ)t

∫
T

c̃′(ρ)(LW H)(u)H(u)du

+ χ(ρ)
t2

2

∫
T
(c̃′(ρ))2(L 2

W H)(u)H(u)du + Mt(H),

where

Mt(H) :=
∫ t

0

∫ s

0
E
[
Y0(H) c̃′(ρ)

∫ r

0
Yl(LW G)dl

]
dr ds.

From the Lemma 3.5 of [2], we have that LW : SW(T) → SW(T) is a bounded
operator with respect to the norm associated to the inner product defined in (3.5).
Therefore, it makes sense to define the exponential of this operator. A long, but
elementary induction argument over the previous formula leads to

E
[
Yt(H)Y0(H)

]
= χ(ρ)

∫
T
(etc̃′(ρ)LW H)(u)H(u)du

= χ(ρ)
∫

T
(Pt H)(u)H(u)du,

where {Pt : t ≥ 0} is the semigroup associated to c̃′(ρ)LW . Finally, since {Yt : t ≥
0} is a stationary process, we get that

E
[
Yt(H)Ys(H)

]
= E

[
Yt−s(H)Y0(H)

]
= χ(ρ)

∫
T
(Pt−s H)(u)H(u)du,

as desired. �
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We finish this Appendix fulfilling some details in the proof of Theorem 5.3.
Let Tβ

t be the semigroup associated to the operator ∆β. For β ∈ [0, 1) it is the
semigroup related to the heat equation in the line. Quite classical, it acts on g ∈
Sβ(R) as

Ttg(x) =
1√
4πt

∫
R

e−
(x−y)2

4t g(y) dy , for x ∈ R. (6.8)

For β ∈ (1, ∞], the semigroup Tβ
t is also known and it acts on g ∈ Sβ(R) as

TNeu
t g(x) =


1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t + e−

(x+y)2
4t

]
g(y) dy , for x > 0 ,

1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t + e−

(x+y)2
4t

]
g(−y) dy , for x < 0.

(6.9)

Denote by geven and godd the even and odd parts of a function g : R → R,
respectively, or else, for x ∈ R,

geven(x) =
g(x) + g(−x)

2
and godd(x) =

g(x)− g(−x)
2

. (6.10)

As proved in [5], for β = 1, the semigroup Tβ
t acts on g ∈ Sβ(R) as

Tα
t g(x) =

1√
4πt

{ ∫
R

e−
(x−y)2

4t geven(y) dy

+ e2αx
∫ +∞

x
e−2αz

∫ +∞

0

[
( z−y+4αt

2t )e−
(z−y)2

4t + ( z+y−4αt
2t )e−

(z+y)2
4t

]
godd(y) dy dz

}
,

(6.11)

for x > 0 and

Tα
t g(x) =

1√
4πt

{ ∫
R

e−
(x−y)2

4t geven(y) dy

− e−2αx
∫ +∞

−x
e−2αz

∫ +∞

0

[
( z−y+4αt

2t )e−
(z−y)2

4t + ( z+y−4αt
2t )e−

(z+y)2
4t

]
godd(y) dy dz

}
,

for x < 0.
Below, we state and prove a lemma required in the proof of the Theorem 5.3.

Lemma 6.2. For β ∈ [0, 1),

lim
ε↘0

∫
R
(Tβ

t ιε)(u)ιε(u)du =
1√
4πt

.

For β = 1,

lim
ε↘0

∫
R
(Tβ

t ιε)(u)ιε(u)du =
1√
4πt

(
1 +

1
2t

∫ +∞

0
ze−

z2
4t −2αzdz

)
. (6.12)

Finally, for β ∈ (1, ∞],

lim
ε↘0

∫
R
(Tβ

t ιε)(u)ιε(u)du =
2√
4πt

.
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Proof. Consider β ∈ [0, 1). In this case,

lim
ε↘0

∫
R
(Tβ

t ιε)(u)ιε(u)du = lim
ε↘0

1
ε2

∫ ε

0

∫ ε

0

e−
(x−y)2

4t
√

4πt
dx dy =

1√
4πt

, (6.13)

because the gaussian kernel is a continuous function. The case β ∈ (1, ∞] is quite
similar. Indeed, for this regime of β,

lim
ε↘0

∫
R
(Tβ

t ιε)(u)ιε(u)du = lim
ε↘0

1
ε2

∫ ε

0

∫ ε

0

e−
(x−y)2

4t + e−
(x+y)2

4t
√

4πt
dx dy =

2√
4πt

,

The case β = 1 deserves more attention. For g(u) = ιε(u), we have that

geven(u) = 1
2ε 1[−ε,ε] and godd(u) = 1

2ε

(
1(0,ε] − 1[−ε,0)]

)
,

according to (6.10). Recalling formula (6.11), we obtain∫
R
(Tβ

t ιε)(u)ιε(u)du =
1√
4πt

( 1
ε2

∫ ε

0

∫ ε

0
e−

(x−y)2
4t dy dx + S(ε)

ε2

)
, (6.14)

where S(ε) is∫ ε

0

(
e2αx

2

∫ +∞

x
e−2αz

∫ ε

0

[
(z−y+4αt)

2t e
−(z−y)2

4t + (z+y+4αt)
2t e

−(z+y)2
4t

]
dy dz

)
dx.

We want to precise the limit of (6.14) as ε ↘ 0. By (6.13), it only remains to evaluate
the limit of S(ε)/ε2 as ε goes to zero. A direct verification shows that

lim
ε↘0

1
ε2 S(ε) =

1
2t

∫ ∞

0
ze−

z2
4t −2αzdz,

leading to (6.12) and hence finishing the proof. �
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rates, Annales de l’Institut Henri Poincaré: Probability and Statistics, 45, no. 4, 887–909 (2009).

[10] Karatzas, I.; Shreve, S.: Brownian motion and stochastic calculus. Graduate Texts in Mathematics,
113. Springer, New York, (1991).

[11] Lamperti, J.W.: Semi-stable processes. Transactions of the American Mathematical Society, 104,
(1962).

[12] Kipnis, C.; Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag,
Berlin, (1999).

[13] Sethuraman, S.: Central Limit Theorems for Additive Functionals of the Simple Exclusion Process, Ann.
Probab., 28, 277–302; Correction (2006) , 34, 427–428 (2000).

[14] Sethuraman, S.; Xu, L.: A central limit theorem for reversible exclusion and zero-range particle systems,
Ann. Probab., 24, 1842–1870 (1996).
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