
Universidade do Minho

Escola de Engenharia

Bruno Miguel Correia Azevedo

A Toolkit for Music Processing
and Analysis

Setembro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Bruno Miguel Correia Azevedo

A Toolkit for Music Processing
and Analysis

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor José João Dias de Almeida

Setembro de 2013

Declaração

Nome: Bruno Miguel Correia Azevedo

Endereço Electrónico: azevedo.252@gmail.com

Telefone: 917258220

Bilhete de Identidade: 13715148

Título da Dissertação: A Toolkit for Music Processing and Analysis

Orientador: José João Dias de Almeida

Ano de conclusão: 2013

Designação do Mestrado: Mestrado em Engenharia Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA DISSERTAÇÃO APE-
NAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ES-
CRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, 1 de Setembro de 2013

Bruno Miguel Correia Azevedo

iii

iv

Resumo

ABC [58] é uma notação musical simples mas poderosa que permite a produção
de partituras completas e profissionais.

Atualmente, existe uma escassez de ferramentas genéricas para processamento
de notação musical, particularmente para ABC.

Esta dissertação apresenta o ABC::DT, uma linguagem de domínio específico [39,
38] baseada em regras (embutida em Perl), projetada para simplificar a criação de
ferramentas para processamento de ABC. Inpiradas na filosofia UNIX, essas ferra-
mentas pretendem ser simples e composicionais à semelhança dos filtros UNIX.

A partir das regras do ABC::DT obtém-se uma ferramenta para processamento
de ABC cujo algoritmo principal segue a arquitetura de um compilador tradi-
cional, dessa forma consistindo em três fases: 1) parsing de ABC (baseado no
parser do abcm2ps [46]), 2) transformação semântica de ABC (associada a atribu-
tos ABC) e 3) geração de output (um gerador definido pelo utilizador or fornecido
pelo sistema).

Um conjunto de ferramentas para processamento de ABC foi desenvolvido uti-
lizando o ABC::DT. Cada uma delas tem uma finalidade única, desde detetar er-
ros, a auxiliar no estudo de música e até imitar o comportamento de algumas fer-
ramentas UNIX. Estas têm o objetivo de serem provas de conceito e ainda podem
ser melhoradas, no entanto demonstram quão facilmente ferramentas compactas
para processamento de ABC podem ser criadas.

Um teste e avaliação foram realizados a uma das ferramentas criadas (canon_abc)
com uma partitura ABC real, o Canon de Pachelbel.

v

vi

Abstract

ABC [58] is a simple, yet powerful, textual musical notation which allows to
produce professional and complete music scores.

Presently, there is a lack of music notation general processing tools, particu-
larly for ABC.

This dissertation presents ABC::DT, a rule-based domain-specific language (DSL) [39,
38] (Perl embedded), designed to simplify the creation of ABC processing tools.
Inspired by the UNIX philosophy, those tools intend to be simple and composi-
tional in a UNIX filters’ way.

From ABC::DT’s rules an ABC processing tool whose main algorithm follows a
traditional compiler architecture is obtained, therefore consisting of three stages:
1) ABC parsing (based on abcm2ps’ [46] parser), 2) ABC semantic transformation
(associated with ABC attributes) and 3) output generation (either a user defined
or system provided ABC generator).

A set of ABC processing tools was developed using ABC::DT. Every one of
them has its single purpose, from error detection, to aiding in music studying
and even imitating some UNIX tools behavior. They are intended to be proof of
concept and can still be improved, yet they demonstrate how easily compact ABC

processing tools can be created.

A test and evaluation were done to one of the created ABC processing tools
(canon_abc) with a real ABC score, Pachelbel's Canon.

vii

viii

Acknowledgments

• Thanks to my teacher José João Almeida for all the time dedicated to this
dissertation, the supervision, the ideas and the joviality.

• Thanks to Jean-François Moine and Seymour Shlien for all the help given in
exploring their tools, the prompt responses, the discussions and the good
advices.

• Thanks to SLATE’13 reviewers for their contribution to my paper’s [13] im-
provement.

• Thanks to José Nuno Oliveira for the discussions and suggestions.

• Thanks to my family for the constant encouragement and support through-
out my studies and also my life.

• Thanks to all my friends for their friendship, support and good moments.

• Thanks to Leandra Morais for all the moral support and encouragement
when they were most needed.

ix

x

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Project Overview . 4

1.3 Case Studies . 7

1.4 Summary . 7

1.5 Document Structure . 8

2 State of the Art 11

2.1 Musical Notation . 11

2.1.1 ABC . 12

2.1.2 LilyPond . 13

2.1.3 MusicXML . 15

2.2 Internal Representation . 15

2.2.1 Sequential vs. Hierarchical 16

2.2.2 Melody vs. Harmony . 18

2.2.3 Summary . 20

2.3 Projects and Tools . 21

2.4 Corpora . 25

2.4.1 Building corpora . 25

2.4.2 What can be analysed . 26

2.4.3 Existing Corpora . 27

xi

xii CONTENTS

2.4.4 Summary . 28

3 ABC::DT and ABC processing tools 29

3.1 Parse ABC Input . 30

3.1.1 abcm2ps parser’s features . 31

3.1.2 From abcm2ps parser’s IR to Perl 31

3.2 Transform the generated representation 33

3.2.1 Processor Algorithm . 34

3.2.2 ABC::DT Rules . 35

3.2.3 ABC::DT’s main features . 39

3.3 Generate the output . 39

3.4 Summary . 41

4 ABC::DT by example 43

4.1 Paste ABC . 43

4.2 Cat ABC . 49

4.3 Learning ABC . 54

4.4 Wc ABC . 59

4.5 Detect Errors ABC . 62

4.6 Find Chords ABC . 65

4.7 Canon ABC . 69

4.8 Working Together . 73

5 Test and Evaluation 77

6 Conclusions and Future Work 81

6.1 Conclusions . 81

6.2 Future Work . 83

A abcm2ps’s parser IR 93

B ABC::DT 99

B.1 ABC::DT Rules’ Actuators . 99

B.2 ABC::DT Functions . 104

C Pachelbel’s Canon 109

C.1 Melody . 109

C.2 Accompaniment . 113

C.3 Output generated by canon_abc . 113

xiii

xiv CONTENTS

List of Figures

2.1 ABC example’s generated score . 13

2.2 LilyPond example’s generated score 15

3.1 ABC processing tool’s architecture . 29

3.2 Parse ABC Input stage . 32

3.3 Undirected graph of the pscom class 36

3.4 Note Distribution by pitch and duration 42

4.1 Verbum caro factum est: Section 1; Part 1 - Soprano (Score) 47

4.2 Verbum caro factum est: Section 1; Part 3 - Tenor (Score) 48

4.3 Verbum caro factum est: Section 1; Part 1 & 3 (Score) 49

4.4 Verbum caro factum est: Section 2; Part 1 - Soprano (Score) 53

4.5 Verbum caro factum est: Section 3; Part 3 - Tenor (Score) 54

4.6 Verbum caro factum est: Section 2; Part 1 & Section 3: Part 3 (Score) 54

4.7 canon_abc’s output scheme . 73

4.8 Verbum caro factum est Score: Sections 1, 2 & 3; Parts 1 & 3 74

C.1 Pachelbel’s Canon accompaniment 113

xv

xvi

List of Tables

3.1 ABC::DT rules for the graph generation 41

4.1 ABC::DT rules for paste_abc’s first stage 45

4.2 ABC::DT rules for paste_abc’s second stage 46

4.3 ABC::DT rules for cat_abc’s second stage 51

4.4 ABC::DT rules for learning_abc’s first stage 55

4.5 ABC::DT rules for learning_abc’s second stage 56

4.6 ABC::DT rules for learning_abc’s third stage 57

4.7 ABC::DT rules for wc_abc . 60

4.8 ABC::DT rules for detect_errors_abc’s first stage 64

4.9 ABC::DT rules for find_chords_abc 67

4.10 Additional ABC::DT rules for find_chords_abc 67

4.11 ABC::DT rules for canon_abc’s stage 2-b) 70

4.12 ABC::DT rules for canon_abc’s stage 3-a) 71

4.13 ABC::DT rules for canon_abc’s stage 3-b) 71

5.1 Execution times . 79

xvii

xviii

List of Examples

2.1 ABC example . 13
2.2 LilyPond Example . 14
4.1 paste_abc’s manual . 47
4.2 paste_abc by example . 47
4.3 Verbum caro factum est: Section 1; Part 1 - Soprano 47
4.4 Verbum caro factum est: Section 1; Part 3 - Tenor 48
4.5 Verbum caro factum est: Section 1; Part 1 & 3 48
4.6 cat_abc’s manual . 52
4.7 cat_abc by example . 53
4.8 Verbum caro factum est: Section 2; Part 1 - Soprano 53
4.9 Verbum caro factum est: Section 3; Part 3 - Tenor 53
4.10 Verbum caro factum est: Section 2; Part 1 & Section 3: Part 3 54
4.11 learning_abc’s manual . 57
4.12 learning_abc by example . 58
4.13 100.abc . 58
4.14 100_all_but_Tenor.abc . 58
4.15 100_just_Tenor.abc . 58
4.16 wc_abc’s manual . 61
4.17 wc_abc by example . 61
4.18 wc_abc’s output . 61
4.19 detect_errors_abc’s manual . 64
4.20 detect_errors_abc by example . 65
4.21 100.abc with errors . 65
4.22 detect_errors_abc’s output . 65
4.23 find_chords_abc’s manual . 67
4.24 find_chords_abc by example . 68

xix

xx LIST OF EXAMPLES

4.25 100_with_maj_t.abc . 68
4.26 find_chords_abc’s output . 68
4.27 canon_abc’s manual . 72
4.28 canon_abc by example . 72
4.29 cat_abc and paste_abc by example 73
4.30 verbum.abc . 74
4.31 learning_abc on combined score . 75
4.32 verbum_just_Tenor.abc . 75
4.33 verbum_all_but_Tenor.abc . 76
5.1 canon_abc for Pachelbel’s Canon . 77
5.2 wc_abc on Pachelbel’s Canon . 78
5.3 wc_abc on Pachelbel’s Canon Melody 78
5.4 wc_abc on Pachelbel’s Canon Accompaniment 78
C.1 pachelbel_canon_melody.abc . 109
C.2 pachelbel_canon_accompaniment.abc 113
C.3 pachelbel_canon.abc . 113

List of Acronyms

DSL domain-specific language . 3

IR internal representation . 5

OS Operating System . 1

xxi

xxii

Chapter 1

Introduction

1.1 Context and Motivation

Textual Musical Notation

All music needs to be written before read, comprehended or performed by any
musician. To make it possible, a notation system has been developed that pro-
vides musicians with the information necessary to reproduce it as the composer
wanted.

The notation consists in any system that represents audible music through
written symbols. The use of symbolic and abstract formats improves music rea-
soning, as it gives the composer a greater freedom to express his music and pro-
vides easier readability to the performer.

As computers were introduced to the world of music, a variety of file formats
and textual notations emerged in order to describe music, such as, ABC [58], Lily-
Pond [48] or MusicXML [42].

ABC is used as the base notation throughout this dissertation.

UNIX Metaphor

In the 1970s the Operating System (OS) UNIX was born and with it a new philosophy[51]
based on the principle of creating simple, yet capable and efficient programs,

1

2 CHAPTER 1. INTRODUCTION

which tackle only one problem at a time.

The system’s interface is the command line, thus making the work method
very powerful and flexible as it enables the automatic execution of commands.
Moreover, commands handle text streams as a universal type, allowing programs
to be chained.

In order to facilitate the development of new UNIX commands, UNIX creators
built a new language (C).

UNIX is simple. It just takes a genius to understand its simplicity.

Dennis Ritchie

When moving to the music world, the goal is to build simple music com-
mands, using a universal music stream type - ABC -, creating a development lan-
guage for conceiving music commands and exercising command compositional-
ity.

Each command - an ABC processing tool - assists in the solving of music re-
lated problems. For instance, questions like "How many times does that happen in
Beethoven’s sonatas?", or "I wish I could extract these parts from this score and transpose
them up a major second" could be easily answered.

As UNIX, with its universal interface - the text stream -, an ABC processing tool
uses ABC as its universal interface. Being text as well, an ABC processing tool can
be chained with others.

There are many UNIX commands whose functionality can be mapped to an
ABC processing tool. This is true mainly because of the textual nature of their
input. Here are some UNIX commands that could be mapped to ABC processing
tools: musical cat, paste, wc, grep, diff, cut, join, sed, ...

ABC toolkit

Presently, there is a lack of music notation general processing tools, particularly
for ABC. So the main goal is to build an ABC OS, i.e. a system that provides a
set of ABC processing tools that deal with real ABC and aid in musical tasks like
analysis, composition, studying, ...

1.1. CONTEXT AND MOTIVATION 3

ABC::DT

In order to easily build simple and compositional (in a UNIX filters’ meaning)
ABC processing tools, a system capable of precisely specifying how an ABC score
should be processed is needed. The same necessity appeared to UNIX’s devel-
opers while developing it, from which the C language was built. Therefore, a
rule-based domain-specific language (DSL) [39, 38] was created - ABC::DT.

Application Areas

In order to better understand the benefits of the toolkit being proposed, some real
life activities where those tools can help make a difference are described next:

Musical Wikis
Wikis that deal with the edition of musical scores. E.g.: Wiki::Score.

Cultural and cooperative volunteering
In environments like Wikis where the edition of documents happens con-
currently in cooperation with many elements. E.g.: Wiki::Score.

Score transcription
Often errors occur while manually transcribing a score and those errors are
not easily detected.

Music learning
Custom tools may be created with the purpose of supporting tasks such as
studying and rehearsing.

Musical analysis and composition
E.g.: Through the detection of certain patterns in specific musical style it is
possible to assess if a composition uses any feature of that style;
E.g.: Automatic classification of scores;
E.g.: Verification of a score’s authorship. In the same way that it is possible
to assess the probability of an author having written a certain text through
the type of vocabulary used.
E.g.: Generation of scores that follow strict structural rules, such as the
canon or the fugue.

4 CHAPTER 1. INTRODUCTION

The next section presents the work developed in the context of this disserta-
tion, enumerating the design goals that guided the project’s development. Sec-
tion 1.3 introduces the case studies which served as motivation to this work and
Section 1.5 presents the structure of the document, including a summary of each
chapter.

1.2 Project Overview

The main goal for this project is to have a set of ABC processing tools. Each tool
deals with a specific problem and tries to solve it in a simple and efficient way.
In order to simplify the creation of an ABC processing tool, a rule-based DSL -
ABC::DT - was designed. From ABC::DT’s rules an ABC processing tool is obtained
whose main algorithm follows a traditional compiler architecture.

Design Goals

A set of design goals was defined to guide the project’s implementation.

Toolkit

Each ABC processing tool should:

• Deal with real ABC music
Each tool should be able to deal with more than just a sequence of notes.
Musical elements other than notes and rests, like lyrics or accompaniment
chords, are parsed and can be processed. Also, unexpected elements shouldn’t
break the tool’s process.

• Follow the UNIX philosophy
Each tool tackles a single problem and can be composed with others to solve
more complex problems.

• Be open-source
The source code will be available to the general public therefore it will fol-
low community practices and will be installable and usable as a third-party

1.2. PROJECT OVERVIEW 5

tool. The existence of an open-source community allows the exchange of in-
formation and ideas between developers and users. Interesting things can
come out of a discussion in this mean, like new features or a solution to a
certain problem.

ABC::DT

ABC::DT is a rule-based DSL which aims to help the creation of ABC processing
tools in a simple and compact way. Therefore, in order to achieve that simpleness
it must have the following features:

• Generate simple tools through a compact specification

• ABC oriented

• Associate transformations with specific ABC elements, allowing a surgical
processing

• Rich embedding mechanisms (using Perl for specific ABC transformations)

• Apply the identity function to not specified elements (default transforma-
tion)

• Processing guided by the music’s internal structure

• Transform and manipulate the internal structure as it best suits the task at
hand for a more efficient processing

Musical Information Representation

A score’s internal representation (IR) must:

• Keep the original order of the score elements
This is an obvious goal since almost every task needs to know the exact
order of a score to produce anything useful.

• Hold sufficient musical information to rebuild the score as it was
This way a score can easily be outputted as it was originally.

6 CHAPTER 1. INTRODUCTION

• Have different views of its structure
In order to have a thorough and efficient processing, the structure may be
reorganized into one oriented to the part (for melodic tasks), to the time
(for harmonic tasks) or to the source (for general tasks, mainly to be able to
reconstruct the original ABC).

• Facilitate the application of scripting
This means the IR can be serialized into a structure that is easily evaluated
by a language like Perl.

Musical Corpora

In order to do statistical analysis there must be:

• Musical corpus comprised of musical scores
This corpus will be used as a source of data for the analysis as well as testing
material.

• Build tools for statistical calculation
Each tool will output some statistical information.

Musical Information Visualization

There are always different forms for displaying musical information to a user. Be
it a graph, a drawing, some sort of symbol, the actual score or even simple text,
the output must always transmit knowledge to the user so that a conclusion can
be taken from it. Thus a tool’s output must:

• Have an appropriate format (textual, graphical, other)
So that the user can make the most out of the tool’s results.

• Be easy to comprehend
The results cannot be cryptic, otherwise the user will not understand.

• Reveal some feature of the music
If an analysis is made to a score then some sort of feature, hidden or not,
must be revealed.

1.3. CASE STUDIES 7

1.3 Case Studies

Case studies help understand the origin of the problem and the problem itself,
serving as a guide to the development of a solution.

Wiki::Score

Wiki::Score[9]1 is a platform similar to the Wikipedia for cooperative editing of
large scale music scores (eg. operas, symphonies, cantatas, etc). Wiki::Score is
a Wiki which, using the ABC notation for music representation, is primarily
intended for publishing modern editions of unknown works buried in music
archives. It has emerged from experience in the lab sessions of the Computing
for Musicology course of the Music degree of the University of Minho.

Being a Wiki anyone can edit a part and submit it, moreover it allows concur-
rent editions on the same source. This makes Wiki::Score prone to having many
errors in its scores.

Wiki::Score was the original motivation for this toolkit, therefore many of the
requirements defined came from the shortcomings it presented. It also serves as
a mean to test and validate the tools developed.

1.4 Summary

Currently, there are tools that process ABC with specific purposes as well as big
software packages that integrate a lot of features (some of them are described
in 2.3), however there’s always the need for processing music, this is, making
custom modifications to the original ABC, producing some sort of information,
integrating existing tools, etc...

Therefore, what’s being proposed in this dissertation is an OS comprised of
simple tools for generic ABC processing which can be composed with each other,
and a versatile environment to create new tools through a compact DSL embed-
ded in Perl.

1http://wiki-score.org/

8 CHAPTER 1. INTRODUCTION

1.5 Document Structure

This dissertation’s document is organized as follows:

State of the Art

This chapter presents information about known musical notations and a discus-
sion about structure types for representing music and their pros and cons accord-
ing to their intended purposes. Also it presents some of the most relevant projects
and tools being developed or used. Finally it presents information about musical
corpora, how it should be built and what it can be used for.

ABC::DT and ABC processing tools

This chapter presents the three stages comprising an ABC processing tool’s inter-
nal structure. As well as the implementation of ABC::DT, a Perl embedded DSL
which aims to facilitate the creation of new ABC processing tools.

ABC::DT by example

This chapter presents examples of tools created using ABC::DT, thus demonstrat-
ing how easily a (simple and compact) tool or some occasional processing can be
made.

Test and Evaluation

A test and evaluation are made to one ABC processing tool developed within this
dissertation writing period. The goal is to help analyze the ABC processing tool’s
behavior and to support some claims that are made throughout this dissertation.

Conclusions and Future Work

This chapter presents a recapitulation and an assessment of what was discussed
throughout the dissertation. Some possible future work is described.

1.5. DOCUMENT STRUCTURE 9

Appendix

This chapter presents tables and images referenced throughout the dissertation.

10 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

This chapter describes known textual music notations, summarizes the most pop-
ular music representation approaches, presents the most relevant ABC tools and
projects and introduces the concept of corpus and how it can be applied to this
toolkit.

2.1 Musical Notation

Most music notation programs have a visual approach, in which the user drags
and drops notes and symbols using the mouse and the resulting sheet is dis-
played on the screen.

An alternative approach is writing music using a text-based notation. This
is a non-visual mode that represents notes and other symbols using text charac-
ters, making it economic and sometimes intuitive to use and also making possi-
ble faster transcriptions. A specialized program then translates the notation into
printable sheet music in some electronic format (e.g. PDF) and/or into a MIDI

file.

The three most known text-based notations are ABC [58], LilyPond [48] and
MusicXML [42].

11

12 CHAPTER 2. STATE OF THE ART

2.1.1 ABC

ABC was introduced by Chris Walshaw in 1991 as a means to share traditional
folk music, such as Irish jigs. It was later expanded to provide multiple voices
(polyphony), page layout details, and MIDI commands. ABC is a musical notation
standard and not a software package meaning that it depends on external tools
to produce a printable sheet or a MIDI file.

An ABC tune has a header with fields for title (T), composer (C), key signature
(K), time signature or meter (M) and default note duration or length (L). The
music is notated using the letters A (lá) to G (sol) to represent the notes.

The notation has a simple and clean syntax, and is powerful enough to pro-
duce professional and complete music scores. The most important advantages
are presented:

• powerful enough to describe most music scores available in paper;

• actively maintained and developed;

• the source files are plain text files;

• easy searching and indexing of tune books and easy creation of music archives;

• it can be easily converted to other known formats;

• there are already tools for transforming and publishing ABC, such as, abcm2ps [46]
(produces sheet music scores in PostScript or SVG) and abc2midi [8] (pro-
duces a MIDI file);

• compact and clear notation;

• human readable;

• thousands of tunes available on the Internet;

• open source.

ABC was adopted in this dissertation in order to cope with real world problems
that occurred in the project WikiScore [9]. Listing 2.1 illustrates an example of

2.1. MUSICAL NOTATION 13

Listing 2.1: ABC example

X: 1 0 1
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 c l e f = t r e b l e name=" Soprano " sname="S . "
G4 G2 | G4 F2 |A4 A2 | B4 z2 |: B3 A GF| E2 D2 EF| G4 F2 | G6 ! f i n e ! : |
w: Ver− bum|ca− ro|fac− tum| e s t |Por − que ∗| to − dos ∗|hos sa l−|v e i s

ABC notation and figure 2.1 its corresponding score (the first section’s Soprano
part of the Christmas Villancico1 Verbum caro factum est).

Verbum caro factum est
Anonimous, 16th century

Soprano

Ver bum ca ro fac tum est Por que to dos hos sal veis

4
3

FINE

Figure 2.1: ABC example’s generated score

There are many ABC processing tools and, among them, the most popular are
the typesetter abcm2ps [46] and the MIDI creator abc2midi [8]. The first translates
music written in ABC into customary sheet music scores in PostScript or SVG
format. The latter converts an ABC file into a MIDI file.

2.1.2 LilyPond

GNU LilyPond[48] is a computer program and file format for music engraving.
It formats music beautifully and automatically, and has a friendly syntax for its
input files. It is Free Software, this is, open source. One of LilyPond’s major goals
is to produce scores that are engraved with traditional layout rules, reflecting the
era when scores were engraved by hand.

Although there are some small similarities to ABC, there are significant differ-
ences, starting with their intent. ABC’s original purpose was to create a simple
means of sharing folk tunes that could be read as text and sent as email. Besides,
it is a music notation standard, not a software package. LilyPond is a software

1A Villancico is a musical and poetic form written in Spanish and Portuguese, traditional from
Spain, Latin America and Portugal. These pieces were popular between century XV and XVIII.

14 CHAPTER 2. STATE OF THE ART

with the intent of creating printed musical scores that match the best hand en-
graved musical scores of the past.

The similarity between ABC and LilyPond is in the means of specifying notes
in a musical score, this is, through the letters A to G.

LilyPond has a much more ambitious goal than ABC, therefore the markup
language for its source file can quickly become complex if the goal is to combine,
for instance, melody, tab, chords, chord diagrams and lyrics.

Listing 2.2 illustrates the same example used for ABC using LilyPond notation
and figure 2.2 its corresponding score.

Listing 2.2: LilyPond Example

\header {
t i t l e = "Verbum caro factum e s t "
composer = " Anonimous , 16 th century "

}
\score {

\new S t a f f {
\ s e t S t a f f . instrumentName = #" Soprano "
\ s e t S t a f f . shortInstrumentName = #" S . "
\time 3/4
\ c l e f t r e b l e
\key g \major
\ r e l a t i v e c ’ ’ {

g2 g4 g2 f i s 4 a2 a4 b2 r4
\bar " | : "
b4 .
\autoBeamOff
a8
\autoBeamOn
g8 f i s e4 d e8 f i s g2 f i s 4
g2 . \bar " : | "
\overr ide Score . RehearsalMark # ’ break−v i s i b i l i t y = # begin−of−

l i n e−i n v i s i b l e
\overr ide Score . RehearsalMark # ’ s e l f−alignment−X = #RIGHT
\mark " Fine "

}
\a d d l y r i c s {

Ver −− bum ca −− ro f a c −− tum e s t

2.2. INTERNAL REPRESENTATION 15

Por −_ que _ to −_ dos _ hos s a l −− v e i s
}

}
}

Verbum caro factum est
Anonimous, 16th century

ïïïï �
dos

� �
hos

� �
to

�
-

� �
4
3

Fine
Soprano �

sal

�
veis

ï�
ro

�
fac

�
Ver

�
bum

�
ca

�
Por

ï �
-

� �
que

�
tum

�
est

�

Music engraving by LilyPond 2.12.3—www.lilypond.org

Figure 2.2: LilyPond example’s generated score

2.1.3 MusicXML

MusicXML[42] is an XML-based file format for representing Western musical no-
tation designed for notation, analysis, retrieval, and performance applications.
The format is proprietary, developed by Recordare LLC, but fully and openly
documented, and can be freely used under a Public License.

MusicXML was designed from the ground up for sharing sheet music files
between different applications, and for archiving sheet music files for use in the
future. Its files are readable and usable by a wide range of music notation appli-
cations, now and in the future. MusicXML complements the native file formats
used by Finale [34] and other programs [55], which are designed for rapid, inter-
active use.

2.2 Internal Representation

The representation of musical information is an area of research that has been
receiving contributions throughout time and it’s not expected to be a consensus
about a universal structure.

One of the most influent matters in making such representations is their final
purpose. There are different intentions, such as music rendering, play back, print-
ing, music analysis, composition, among others. The scope of this thesis includes
only music rendering and analysis, therefore the representation will have a well

16 CHAPTER 2. STATE OF THE ART

defined orientation which will not take into account additional components that
would benefit, for instance, composition tasks.

There are many models, data structures, paradigms, techniques, systems and
theories proposed by many authors [17, 18, 16, 52, 59, 24] and none can be labeled
as the perfect representation, as there will never be a closed definition of music and
it is still difficult to represent all aspects of music.

This dissertation’s aim is to obtain a structure that allows the easy manipula-
tion of music in a computer. That structure should be compliant with a variety
of tasks regarding music rendering and analysis, such as, representing pitch and
determining intervals from them, and obtaining all musical elements that occur
in a specific musical moment. Most importantly, it must allow the reconstruction
of the original ABC, in other words, it must contain all the original information
including the order of each element.

Next, a discussion on two topics is made: the pros and cons of sequential vs.
hierarchical representations and melody vs. harmony representations. The latter
is mentioned again in section 3.1.

2.2.1 Sequential vs. Hierarchical

The most used structures for music representation are the sequential and hierar-
chical structures.

Sequential

In the beginning, computer music systems represented music as a simple se-
quence of notes. It was a simple approach, thus making it difficult to encode
structural relationships between notes, such as enveloping a group of notes in
order to apply some kind of property.

For instance, MIDI [3] has no mechanisms for describing new structural re-
lationships. However, MIDI has a number of predefined structures. There are
16 channels, which effectively form 16 groups of notes. Each group has a set
of controllers such as volume and pitch-bend. This gives MIDI a limited 2-level
structure.

2.2. INTERNAL REPRESENTATION 17

The sequential structure refers to a sequence of any kind of musical compo-
nent, usually indexed by ordinal position rather than time. For instance, a musi-
cal element, such as a measure bar, is referred as the fourth element rather than
an element at time 5.7 seconds or at musical offset 3, corresponding to the length
of 3 quarter notes.

Many groupings of interest in music are likely to exhibit this property of strict
ordering - most melodies, for example, are monophonic. An analysis task’s effi-
ciency may improve when dealing with this kind of structure.

Hierarchical

It is widely accepted that music is best described at higher levels in terms of some
sort of hierarchical structure [14]. This kind of structure has the benefit of isolat-
ing different components of the score, therefore allowing transformations, such
as tempo or pitch, to be applied to each of them individually. It also represents
a set of instructions for how to put the score back together, hence allowing to
reassemble it as it was.

Musical events can spread behavior to other events through the binary relation
part-of, which denotes relations like "measures part-of phrase". They can also
inherit behavior and characteristics from other events through the is-a relation,
which designates relations like "a dominant chord being a special kind of seventh
chord" [31].

There are other kinds of relations that are needed as well in a hierarchical
representation. Honing[31] suggests:

• Binary:

– associative: e.g.: "A theme with its variations"

– functional: e.g.: "The function of a particular chord in a scale"

– referential: e.g.: "A theme referring to a previously presented or al-
ready known motif"

• N-ary: These relations can structure more complex types of relation.
e.g.: "the dependency of a certain chord on scale, mode and the context in
which it is used is a ternary relation"

18 CHAPTER 2. STATE OF THE ART

A single hierarchy scheme is not enough because music frequently contains
multiple hierarchies, for instance, a sequence of notes can belong simultaneously
to a phrase marking and a to section (like a movement). So the need of a multi-
level hierarchy appears. There are some other possible hierarchies: voices, sec-
tions (movement, measure), phrases, and chords, all of which are ways of group-
ing and structuring music.

A few representations have been proposed [23, 17] that support multiple hi-
erarchies through named links relating musical events and through instances of
hierarchies. And others where tags are assigned to events in order to designate
grouping, such as, all notes under a slur.

2.2.2 Melody vs. Harmony

In polyphonic music there are materials besides melody that are combined in a
score: rhythm and harmony. Those three (melody, rhythm and harmony) deter-
mine the global quality of a score [15] and their combination is usually called a
texture. When there’s only one voice (melody), accompanied or not by chords,
it is called monophony, but when there’s two or more independent voices, it is
called polyphony.

The study of independent melodies is relatively simple compared to the anal-
ysis of polyphony. Each voice moving through the horizontal dimension creates
other effects by overlapping with notes in other voices. The necessity for repre-
senting these vertical structures arises so that the harmonic motion can be anal-
ysed.

Four suggestions of representations arise from this discussion: part-wise, time-
wise and hybrid and source-wise.

Part-wise

The part-wise representation expresses a score by part (voice, instrument). So
each part contains many tuples (voice , ABC elements). Each ABC element belongs
to specified voice. See example 1.

2.2. INTERNAL REPRESENTATION 19

score→ part*
part→ (voice, abc_element*)

Example 1: Part-wise representation

This representation is best suited for melodic studies, considering that it is
possible to directly obtain all ABC elements belonging to a voice.

Time-wise

The time-wise representation expresses a score by time (musical moment), this is,
by the offset of the elapsed time. So each musical moment contains many parts.
A part is a tuple (time offset , voice , ABC element). See example 2.

score→musical_moment*
musical_moment→ part*
part→ (time_offset, voice, abc_element)

Example 2: Time-wise representation

This representation is best suited for harmonic studies, considering that it is
possible to directly obtain all musical events that occur in a specific moment in
time.

MusicXML allows the representation of both time and part dimensions in two
separate schemas. The part-wise schema represents scores by part/instrument
and the time-wise schema by time/measure.

Hybrid

The hybrid representation derives from the need to solve an issue related with
the variability of a score’s texture. This is, a score may have different densities
of notes per part and it is required that all events occurring at the same time are
vertically aligned.

So, Brinkman [17] suggests a solution that uses a linked representation of a
sparse matrix. Each row of the latter references a part and each column the offset
of the elapsed time, which would enable traversing the score in any direction
required (vertical or horizontal). Thus, attaining a perception of the context of

20 CHAPTER 2. STATE OF THE ART

what’s happening in a specific part, a feature that can’t be achieved when dealing
with representations with only one dimension. Moreover, it makes the task of
score segmentation by part or time easier.

Source-wise

The source-wise representation expresses a score as it is parsed from the ABC file.
So a score is an ordered list of tuples (ABC element , context). The context keeps
record of an ABC element’s contextual information, this is, it keeps track of the
current time offset, the current voice, among other information (this context is
explained in more detail in section 3.2.2). See example 3.

score→ (abc_element , context)*
context→ (current_time, current_voice, ...)

Example 3: Source-wise representation

This representation is best suited for rewriting purposes, considering that the
actual order of ABC elements is the same as in the original ABC file. It’s also best
for generic processing where there’s no need for specific representation.

2.2.3 Summary

Two structures most commonly approached by researchers for representing mu-
sic were discussed: sequential and hierarchical. However, the decision of which
structure type one should choose relies on the purpose the IR will have, such as,
rendering of music, printing, music analysis, composition, etc. This is, it relies in
how many and what kind of questions are to be made to it.

A sequential structure may benefit certain tasks where a fast and simple traver-
sal and/or a strict ordering of its elements are required.

A hierarchical structure allows to isolate different components of a score and
establish relations between them. These are obvious advantages, although its
traversal requires more advanced techniques.

Regarding the horizontal and vertical dimensions of polyphonic music, four
representation were suggested. A part-wise representation is better for melodic

2.3. PROJECTS AND TOOLS 21

studies, time-wise for harmonic studies, hybrid for both and source-wise for generic
processing.

The most relevant disadvantage of the first three representations is that they
don’t maintain the original order of elements. For instance, in ABC, it is common
to write a part alternately with other parts like (voice A, voice B, voice A, voice B).
Meaning that a fragment of part A’s music is written first, followed by a fragment
of part B, then another fragment from voice A and another from voice B. When
representing a score oriented to a vertical axis, the order in which each element
is written in the source file is lost, thus invalidating tasks like re-rendering ABC

tunes.

A perfect representation would be one that is sufficiently generic and complete
to be useful in different analytic tasks in many styles of music [31], like expressing
common abstract musical patterns.

2.3 Projects and Tools

In this section some of the most relevant projects and tools being developed or
used at the moment are discussed2.

abcm2ps [46] A command line program which translates music written in ABC

music notation into customary sheet music scores in PostScript or SVG for-
mat.

It is based on abc2ps 1.2.5 and was developed mainly to print Baroque or-
gan scores that have independent voices played on multiple keyboards and
a pedal-board. The program has since then been extended to support vari-
ous other notation conventions in use for sheet music. Moreover, it is now
one of the most complete ABC implementations.

It is developed in C language and the author, an organist and programmer
called Jean-François Moine, releases “stable” and “development” versions
of his program. As of this writing3, the stable release is 6.6.22 and the devel-

2A more extensive list of ABC software may be consulted in
http://abcnotation.com/software#linux

3September 6, 2013

22 CHAPTER 2. STATE OF THE ART

opment release is 7.6.0. Since release 7.2.1, abcm2ps tries to follow the ABC

standard version 2.14.

abc2midi [8] A program that converts an ABC music notation file into a MIDI

file.

It is part of the abcMIDI package, which includes other utility applications.

The program was developed in C language by James Allwright in the early
1990s and has been supported by Seymour Shlien since 2003. It contains
many features, such as expansion of guitar chords, drum accompaniment,
and support for micro tones which do not exist in other packages.

tclabc [47] A tcl5 extension which permits ABC tunes parsing and editing.

• the ABC tunes are converted into an IR suitable for many tcl operations,
without losing the original tune information;

• most of the ABC specification is supported;

• the headers and tune symbols may be changed in many ways;

• transposition is done automatically when changing the key signature;

• bars may be automatically inserted;

• MIDI files may be imported and exported;

• partial dump/include solves the selection copy/paste functions;

• MIDI input and output are supported on many systems;

Music21 [22] A Python-based toolkit for computer-aided musicology.

Music21 is a set of tools for helping scholars and other active listeners an-
swer questions about music quickly and simply.

Music21 builds on preexisting frameworks and technologies such as Hum-
drum, MusicXML, MuseData, MIDI, and LilyPond, but Music21 uses an
object-oriented skeleton that makes it easier to handle complex data. At the

4http://abcnotation.com/wiki/abc:standard:v2.1
5Tcl is a scripting language created by John Ousterhout. It is commonly used for rapid proto-

typing, scripted applications, GUIs and testing. Tcl is used on embedded systems platforms, both
in its full form and in several other small-footprint versions.

2.3. PROJECTS AND TOOLS 23

same time, Music21 tries to keep its code clear and makes reusing existing
code simple.

Applications of this toolkit include computational musicology, music infor-
mations, musical example extraction and generation, music notation edit-
ing and scripting, and a wide variety of approaches to composition, both
algorithmic and directly specified.

It also has a large corpus of musical scores in many formats, including ABC

and MusicXML.

abctool [36] A Python script that manipulates music files in ABC format.

It’s mostly useful for people working on the command line and/or editing
ABC directly in an editor. It relies on external programs for certain tasks like
converting into PostScript or transposing.

Its main features are reading from standard input or file, outputting to stan-
dard output (PostScript, PDF or MIDI), viewing (using abcm2ps and gv),
transposing, translating chord names to Danish/German, and removing
chords and fingerings.

It is open source, developed by Atte André Jensen and released under GPL.

Haskore [32] Haskore is a set of Haskell modules for creating, analyzing and
manipulating music.

The formal approach used in this project is very elegant and powerful and
is a very good studying resource. Nevertheless, when one wants to process
existing ABC music, there are many details that don’t fit in Haskore model
like slurs, dynamics, microtones. In order to process them, those elements
must be forgotten or drastic changes to the model must be introduced.

EasyAbc [41] An open source ABC editor for Windows, OSX and Linux.

It uses abcm2ps and abc2midi and it has a rich features list. Most notably, it
can import MusicXML files and export tunes in SVG format. It is published
under the GNU Public License and was developed by Nils Liberg.

abcpp Preprocessor [29] A simple yet powerful preprocessor designed for, but
not limited to, ABC music files.

24 CHAPTER 2. STATE OF THE ART

It was written to overcome incompatibilities between ABC packages, and to
facilitate writing portable and more readable ABC files. A preprocessor is a
program that modifies a text file, according to commands contained in the
file.

It provides:

• conditional output;

• exclude or include parts of a piece according to specified conditions;

• define macros, i.e. symbols and sequences of customized commands;

• rename commands, symbols, and notes;

• include parts of other files.

ABCp [26] A parser for the ABC music notation.

It is a C library that interprets ABC. It is released as open source, under
the terms of the BSD license, and may be used in both free and commercial
software.

ABCp has been designed with the following requirements in mind:

• to be able to handle the ABC 2.0 standard as well as previous standards
and the extensions introduced by the most widely used tools (abcm2ps,
abcMIDI, ...);

• to be fast;

• to be small: there must be a fair trade-off between size and functional-
ities;

• to be easily embeddable: no big restriction on the programming lan-
guage to use;

• to be usable: no complex API or class hierarchy to remember.

Music::Abc::Archive [35] A Perl module to parse ABC music archives.

ABC music archives contain songs in the ABC format. This module encapsu-
lates the ABC archive and individual songs so they may be managed more
easily by Perl front-ends.

2.4. CORPORA 25

Some of the tools and projects presented were very relevant: abctool is a sim-
ple command following UNIX’s philosophy; abc2midi and abcm2ps deal with pro-
cessing real world ABCs, but have specific purposes; Music21 has similar goals
and has a very powerful and complex object oriented modules for music pro-
cessing; Haskore is very flexible and elegant but can’t deal with real world ABC

details.

2.4 Corpora

In order to calculate the difference between what is considered a pattern, assess
what is expected, calculate similarities between scores or generate statistics there
must exist some example cases.

Those example cases are called corpus and in this dissertation’s case it is a spe-
cific corpus (a musical corpus) which contains rich metadata regarding musical
scores. The knowledge generated by the analysis of the corpus may be shared by
many tools through a richer combination of tools.

The corpus can be used as testing material for the toolkit, for instance, a tool
that validates an ABC score’s syntax needs either flawless examples or examples
with deliberately typed errors to guarantee that it works as it’s supposed to. Also,
it can be used to train systems that learn from data, for instance, a system that is
trained with a set of scores in order to learn how to identify certain music aspects,
such as the style.

2.4.1 Building corpora

This phase, according to existing literature on building corpora [12, 60, 27] (plural
of corpus), consists of planning the whole process and annotating them.

Planning

In this step decisions have to be made so that the remaining steps may take place.
They consist in defining the quantity of scores that will be added to the corpus,
selecting the scores that should be added (according to their use and availability),

26 CHAPTER 2. STATE OF THE ART

defining the intermediary formats and conventions to be used in the processing
pipeline, defining if and what annotations should be included in the corpus and
finally, defining in which formats the corpus should be available and how should
the analysis tools interface with them.

Gathering scores

ABC notation has become very popular since its introduction, and nowadays
thousands of tunes exist in electronic format. Scores, as in a music consisting
of multiple voices, exist in a lesser number because the features that allow the
writing of polyphony were only added to the standard much later, yet it is an
ever growing culture. However, a previous parsing and reformatting might still
be needed in order to process them efficiently.

Annotating scores

In order to improve the usefulness of a corpus for a richer and more rigorous
statistical analysis, it might be subject to the process of annotation. It consists
in applying some sort of structural representation to act as a blue print of the
original text and to provide additional interpretative information.

2.4.2 What can be analysed

It’s desired that a set of tools for statistical calculation is built. To make that possi-
ble a large set of corpora must be built, so that statistical analysis and hypothesis
testing6 can be performed and from the results extract valuable information.

The corpus may be used for finding sets of vertical patterns that occur in
a large number of scores in the corpus[20], measuring rhythmic similarity (the
repetitive nature of the music) with manual annotations to the corpus[10], iden-
tifying trends and changes throughout a historical time period through cluster
analysis[6], among many other uses.

6Hypothesis testing is the use of statistics to determine the probability that a given hypothesis
is true.

2.4. CORPORA 27

2.4.3 Existing Corpora

There are many existing musical corpus available in the Internet. A large cor-
pus will be assembled ranging from ABC corpus, to MIDI, MusicXML and still
LilyPond.

The corpus format may vary depending on what the tools can read and pro-
cess, for instance, if MIDI transformations are implemented then a MIDI corpus
has to exist as well. As this dissertation’s focus is ABC, the main format will also
be ABC.

Here are some of the websites and packages from where they’ll be gathered:

http://abcnotation.com/browseTunes
Around 350,000 tunes available as ABC or MIDI sound files;

http://thesession.org/
Around 11,000 tunes available as ABC or MIDI sound files;

http://moinejf.free.fr/abc/index.html
ABC organ pieces;

http://www.classicalarchives.com
Around 14,000 MIDI sound files;

http://abc.sourceforge.net/NMD/
Around 1000 ABC files;

Music21 corpus package
A collection of approximately 10,000 works including a complete collection
of the Bach Chorales, numerous Beethoven String Quartets, and examples
of Renaissance polyphony. The corpus includes ABC, MusicXML and Kern
files.

http://wiki-score.org/
Modern editions written in ABC of unknown works buried in music archives.

http://www.mutopiaproject.org/
Sheet music editions of classical music in LilyPond.

28 CHAPTER 2. STATE OF THE ART

2.4.4 Summary

A musical corpus will be built according to the needs of the toolkit. The initial
need is for a toolkit that reads and processes ABC notation, so the main focus will
be to build an ABC corpus.

A careful planning on how to build the corpus plays an important part on de-
termining the quality and quantity of tasks that can make use of it. Such planning
strongly affects the final results an ABC processing tool can produce.

Chapter 3

ABC::DT and ABC processing tools

A typical ABC processing tool follows a traditional compiler’s structure:

1. Parse ABC input
The ABC parser generates an internal representation (IR) to be transformed
in the following stage.

2. Transform the generated representation
The IR is transformed.

3. Generate the output
An output of the transformed IR is generated.

Figure 3.1 illustrates an ABC processing tool’s architecture.

Figure 3.1: ABC processing tool’s architecture

29

30 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

In order to be able to create new ABC processing tools in the most simple and
compact way possible, a DSL called ABC::DT was created as well as its processor,
in which:

1. The parsing process is invoked automatically, considering the parser is con-
stant and independent of the intended transformation, thus being common
to every ABC processing tool.

2. The IR’s transformation is described by a set of rules specified by the user
(referred to as ABC::DT rules). Each rule is composed by the pair actuator
⇒ transformation, where the actuator describes the IR’s part to be processed
and the transformation is the set of instructions to be applied to that part.

3. The output generation in ABC format is provided by default. The default
function is the identity function - toabc.

The details of ABC::DT’s implementation will be described next, following the
three stages of the architecture aforementioned.

3.1 Parse ABC Input

As was previously stated in the introduction, an ABC processing tool must be
able to deal with real ABC music. Therefore, the ABC parser has to be robust, i.e.,
it must be able to expect cases that it doesn’t recognize.

The main options for building the parser were: to build it from scratch; to
reuse an existing parser from robust programs like abcm2ps [46] or abc2midi [8]
and adapt it to the requirements; or to use directly one of the aforementioned
programs’ parsers.

Since building a robust parser is very time consuming, the first solution was
discarded. The second option would raise problems when adapting it to newer
versions. So, using abcm2ps or abc2midi’s parser was the natural choice. The
program chosen was abcm2ps for the reasons that are explained in the following
section.

3.1. PARSE ABC INPUT 31

3.1.1 abcm2ps parser’s features

abcm2ps is one of the most widely used programs for working with ABC, not just
as a standalone software but as part of many applications. This fact implies that
it’s not a piece of software that was casually made. It was designed to process
ABC in the best way possible, therefore its quality is acknowledged.

It is actively maintained and well documented which facilitates the analysis of
the structures its parser generates. Moreover, its author, Jeff Moine, was and still
is a preponderant influence for the evolution of the ABC notation and standard.
Its parser is also used in other Moine’s tools like tclabc [47].

The IR generated by its parser follows the sequential structure type and it’s
source-wise. In other words, each element captured by the parser is simply ap-
pended to an ordered list, resulting in a sequence of ABC elements in the same
order they are parsed. An element is any component existing in ABC, from the
header information - like the key or initial meter - to a note, bar, a tuplet or lyrics.

Given that abcm2ps was designed to print ABC scores, its IR (source-wise) is
not well suited for music analysis or composition purposes. Still, it can be easily
transformed into different views of the same representation. For instance, a time-
wise IR could be a set of monophonic voices, which could be used to describe
relationships between vertical musical entities on a polyphonic score.

As the aim of this dissertation is to build a toolkit based on scripts, the sequen-
tial structure is very appropriate since the sequence of elements that it provides
can be easily mapped to an array or a hash. These data types are part of the com-
mon, yet powerful, data types of a scripting language like Perl, which is the kind
of approach that’s intended.

3.1.2 From abcm2ps parser’s IR to Perl

At this point, it was necessary to define a strategy to implement the first stage
(Parse ABC Input).

It consists in selecting the best and most robust tool that processes ABC, isolate
its parser and finally add a traversal function that serializes1 the IR’s structure so

1Serialization is the process of translating data structures into a format that can be stored and

32 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

that it can be evaluated by Perl into a Perl structure.

Perl is the developing language being used and, since it supports reflection2,
it provides the ability to evaluate a string as if it were a source code statement at
runtime.

So abcm2ps is the tool selected to have the parser extracted. Its parser is im-
plemented in C, so the structure that it generates is a list of C data structures.
Therefore, a C program - called ABC2Perl - was created. It uses abcm2ps’ parser
to parse an ABC file into a C structure, then it translates that structure into a seri-
alized Perl hash which is then printed to the standard output.

In short, Parse ABC Input stage is comprised of a Perl serialization of the struc-
ture generated by abcm2ps’ parser (ABC2Perl), followed by a Perl evaluation of
the serialized structure into a Perl hash. This way, a Perl structure that maps
the original C structure is obtained, which can be manipulated in the following
stages.

Figure 3.2 depicts the internal workflow of Parse ABC Input stage. ABC2Perl’s
workflow is represented by the group node ’ABC2Perl’.

Figure 3.2: Parse ABC Input stage

A simple mapping of the original C structure into a Perl one is being made.
Hence the original order and meaning are being kept. However, it could be possi-
ble to reorganize the structure to serve other purposes. For example, representing
it by part (part-wise) means that a specific part can be accessed directly. Or rep-
resenting it by elapsed time (time-wise) means that it is be possible to directly
retrieve all musical events that occur in a specific moment in time.

The approach being used in this strategy can be reused in other situations

resurrected later in the same or another computer environment.
2Reflection is the ability of a computer program to examine and modify the structure and

behavior (specifically the values, meta-data, properties and functions) of an object at runtime.

3.2. TRANSFORM THE GENERATED REPRESENTATION 33

similar to this one where a parser is needed and there already exists a powerful
one. ABC::DT’s parser update process is facilitated due to its constituents being
autonomous, which means that only those constituents need to be updated to
newer versions.

An Haskell specification of the serialized structure can be consulted in ap-
pendix A.

3.2 Transform the generated representation

This stage consists of making a traversal of the IR generated in the previous stage
and applying a rule-based transformation to it.

The generic processing strategy is based on a structured processing of the IR.
It is possible to process complex structures, like abcm2ps’, if its processing is di-
vided , i.e., if there are many small surgical transformations done to its parts, and
each individual result is composed into a single one. This approach has been
successfully used, for instance, in the processing module of XML documents,
XML::DT [25], attribute grammars [50] and Stratego [4]. This strategy is called DT
(Down Translate) and it’s basically a depth traversal of the structure where each
individual element may have a specific transformation associated.

The global transformation consists in specifying a set of rules. Those rules
associate smaller transformations to very specific points in the IR and any point
not covered in the rules is kept unchanged, triggering the default transformation.

In order to provide a systematic and efficient method to specify the rules, a
DSL called ABC::DT was created. It allows the user to specify, in Perl, the rules to
be applied to an ABC score. It’s actually a Perl module that can be seen as a DSL
embedded in Perl. The set of rules is called ABC::DT rules.

In the following sections, ABC::DT’s main processor algorithm (dt) and ABC::DT

rules are going to be explained in more detail.

34 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

3.2.1 Processor Algorithm

ABC::DT’s main processor is called dt. It admits an ABC file which is parsed using
the ABC2Perl program described in the previous section. It also admits a table
of ABC::DT rules - a dispatch table3 - in which an actuator is associated with a
transformation.

It performs a traversal guided by the IR meaning that a full traversal is done
and each ABC element is processed sequentially. Each visited element is matched
against the table of ABC::DT rules in order to find the transformation to apply.
Additionally, the context for the current element is calculated, which consists of
the voice’s id and name, the time elapsed until that element, the meter, the key,
among others. The context grants a more complete control of what can be pro-
cessed, thus providing a richer semantic processing.

It’s possible to define a default transformation to cover any ABC element that
doesn’t match any rule. This is achieved through the rule -default. Moreover, if
no default transformation is explicitly defined, then there is the default’s default
transformation, which is the identity function (toabc).

dt’s behavior resembles the one from the utility awk4 [56] considering that the
latter’s processing is based on a sequence of pattern-action statements. Each pro-
cessed file is transformed into a sequence of symbols. Each symbol is processed
one at a time and matched against all patterns, and for each pattern that matches,
the associated action is executed. In ABC::DT’s case, only the most specific actu-
ator (pattern) has its transformation executed. This is explained in more detail in
section 3.2.2.

dt’s default output is the concatenation of each individual transformation’s re-
sult, which is a string. Optionally, a -end rule can be added to the rules which
enables a general post processing of the final result, hence, making possible to
attain different output formats.

The algorithm just described is expressed in Algorithm 1.

The rule-based structured processing strategy grants an easy and effective
way to build tools that make simple transformations, considering that most of

3A dispatch table is a table of pointers to functions or methods.
4
awk is a pattern scanning and processing language, typically used as a data extraction and

reporting tool

3.2. TRANSFORM THE GENERATED REPRESENTATION 35

Algorithm 1: dt’s algorithm
Input: abc-file
Input: rules: [(actuator, trans f)]
musicIR← abc2perl(abc-file) //parse
forall the a ∈ musicIR do

context← recalculate current context
trans f ← rule ∈ rules with best matching actuator or -default or toabc
a← trans f (a, context)

end
return rules[-end](abc(musicIR));

the processing is done in the background, this is, it’s only needed to provide the
description of what is to be changed.

3.2.2 ABC::DT Rules

A language with the ability to do descriptive/surgical processing, in the sense
that a transformation may be applied to a specific element, enhances the effec-
tiveness of the tool to be generated. That ability takes shape as an ABC::DT rule.
It is a correspondence between an actuator and a transformation.

Actuator

Actuators act as a query language for selecting specific ABC elements (e.g.: a note)
or a set of elements (e.g.: all elements that are defined in a particular context/s-
tate). They are designed in a way that there is a natural notation for matching
(testing whether or not an ABC element matches a pattern).

An actuator (pattern) specifies a set of conditions on an ABC element. An ele-
ment that satisfies the conditions matches the pattern; an element that does not
satisfy the conditions does not match the pattern.

There’s an undirected graph of ABC elements that guides the pattern matching
process. That graph dictates the priority an actuator has over other actuators, so
that if there’s more than one match, the most specific actuator’s transformation is
applied to the ABC element. Figure 3.3 illustrates the graph for the pscom class,
in which the actuators MIDI and FORMAT are both instances of pscom and there-

36 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

fore are more specific. Actuator MIDI::channel5 is an instance of MIDI and is more
specific than the previous actuators. Example 4 shows an example of the actuator
matching process’ behavior when facing a situation where there are more than one
possible matches.

pscom

MIDI FORMAT

MIDI::channel ... staves autoclef

Figure 3.3: Undirected graph of the pscom class

An ABC element representing the abcMIDI command %%MIDI channel is being
subject to the actuator matching process.

The set of rules passed to the processor contains the actuators pscom, MIDI and
MIDI::channel.

The ABC element satisfies the conditions specified by all of the actuators, therefore
the most specific has to be chosen.

The graph dictates that the most specific actuator is MIDI::channel, so it is the
actuator selected.

Example 4: Actuator matching

An actuator is comprised of one to three components, each separated by the
characters ’::’.

An actuator with just a single component represents either: 1) an ABC state, 2)
an ABC element type, 3) a specific ABC element, or 4) one of the special actuators
(-default and -end).

5MIDI::channel is an abcMIDI command that selects a melody channel (ranging from 1 to 16
channels)

3.2. TRANSFORM THE GENERATED REPRESENTATION 37

1. The ABC state represents the context in which an ABC element appears in the
tune. It can be in_global (any element written between the tune’s beginning
and the header X:), in_header (any element written between the headers X:
and K:), in_tune (any element written after the header K:) and in_line (any
embedded element, i.e. written between the characters ’[’ and ’]’).

2. The ABC element type represents a class of elements, such as note (a note or a
chord), info (any ABC header (K:, V:, ...)), pscom (any formatting or abcMIDI
command), tuplet (an element that indicates that the following elements be-
long to a tuplet), gchord, deco (respectively, an accompaniment chord and a
decoration/ornament which are associated with a note, rest or bar).

3. A specific ABC element represents an instance of a class of ABC elements, such
as staves (an instance of the class pscom; it’s a particular formatting com-
mand), !ff! (an instance of the class deco; it’s a dynamics, fortissimo), V: (an
instance of the class info; it’s the header that indicates that the following
music belongs to the voice specified).

4. The special actuator -default describes how to transform uncovered ABC el-
ements and the actuator -end enables a general post processing of dt’s final
result, hence, making possible to attain different output formats.

An actuator may have other components added: 1) an instance of an ABC ele-
ment’s class, 2) a restriction on ABC elements.

1. An instance of an ABC element’s class may be added, such as MIDI::channel
(channel is an instance of MIDI (abcMIDI command)) or note::C (C is an in-
stance of note).

2. A restriction (filter) on ABC elements may be added, such as V:Tenor::rest (it
selects any element rest that belongs to the voice with name Tenor), bar::gchord::FINE
(selects any gchord with text FINE that is associated to a bar) or in_line::K: (se-
lects all K: elements whose state is in_line, this is embedded headers).

Due to the existence of different levels of detail, when an ABC element matches
more than one actuator, the most specific is the one chosen. This corresponds to
the deepest selectable node in the graph of actuators.

38 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

A list of the currently available actuators in ABC::DT rules may be consulted in
appendix B.1.

In the future, another approach to actuators specification is going to be inves-
tigated. What’s intended is a richer syntax for identifying ABC elements, one that
uses path expressions to navigate through an ABC tune and has a set of standard
functions to help selecting ABC elements. This approach should be very similar to
XPath’s[57].

Transformation

A transformation is specified by the user and it defines how each ABC element
should be processed according to its internal values.

ABC::DT requires that only ABC elements that need to be transformed are speci-
fied, meaning that what is not explicitly specified also needs to be processed. The
default function which processes the latter is the identity function - toabc - and it
prints the contents of an element just as it was in the ABC source file. toabc’s Perl
implementation was inspired on Jean-François Moine’s tclabc [47] sym_dump_i
function which dumps the original ABC element. abcm2ps and tclabc use the same
parser and IR, therefore sym_dump_i integration in ABC::DT was made without
major obstacles.

In addition to user specified functions, there is a set of default functions that
help accomplish certain tasks which would otherwise make more difficult the cre-
ation of ABC processing tools. Music21 [22] has been developing a set of effective
methods for music processing which reveal an advanced state of maturity, there-
fore they have been a source of inspiration for some of the created functions.

Most of these functions emerged from simple necessity when some of the ABC

processing tools (described in chapter 4) were being built . Many transformations
were becoming very complex and were making the code very hard to read and
maintain, therefore, some functionalities being implemented became ABC::DT de-
fault functions. Some of those functions may be consulted in appendix B.2.

As was previously mentioned in this section, during dt’s traversal, for every
ABC element visited, the context is calculated. This context allows the user to access

3.3. GENERATE THE OUTPUT 39

contextual information of the tune at that moment. It includes the current voice’s
id and name, the time elapsed until that moment, the meter, the total duration a
measure should have (wmeasure), the note’s length, and the key along with some
properties: the number of sharp/flats (sf), the exp flag, the number of explicit
accidentals (nacc), the MIDI number for each explicit note in the key element (pits)
and the code that identifies the accidental for each explicit note in the key element
(accs).

3.2.3 ABC::DT’s main features

ABC::DT’s main features are summarized as follows:

Dispatch Table
ABC::DT rules are defined by a correspondence between the actuators and
transformations.

Rich Actuators
The set of actuators is comprised of well structured elements in order to
provide a precise ABC elements matching.

Higher-Order Processing
The transformations are user specified functions, or the identity function
(toabc).

Systematic
In order to build an ABC processing tool, the user must define what and
how is to be transformed.

Specify only the necessary
If no actuator applies, the default function is used.

3.3 Generate the output

In this stage, an output of the transformed IR is produced.

40 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

By default, toabc is the transformation applied to an ABC element, therefore the
output generated consists in the string concatenation of the individual transfor-
mations, which is ABC::DT’s universal type, the ABC stream.

The ABC stream is not the only format that can be generated as it depends on
the intended purpose for the ABC processing tool being built. ABC::DT allows a
post processing to be done at the end of the IR’s traversal, thus enabling a any-
thing to be done with the intermediate transformations. This is achieved through
the actuator -end that has already been described earlier in this chapter.

This control over the final format allows an ABC processing tool to be inte-
grated with others that can make use of the information generated.

Next, an hypothetical situation (meaning that the features described are not
yet implemented in ABC::DT) where the graph format is used to help visualize
characteristics present in a score that are otherwise difficult to observe is de-
scribed.

Note distribution by pitch and duration

The purpose of the graph generated is to study the distribution of notes in a score,
i.e., to find correlations between pitch and duration. It plots three features: pitch,
duration of notes, and how frequently these pitches and durations are used.

Algorithm

The algorithm used in this example consists in processing a tune with dt in order
to produce the desired graph.

For every note found, the number of occurrences of the pair pitch⇒ duration is
updated. In the end of dt’s traversal, a post processing for generating the graph is
done by calling an auxiliar function that makes use of the note distribution data
gathered during the traversal and an external plotting tool, such as gnuplot [1],
TikZ [5], Maxima [2].

Table 3.1 describes an example of ABC::DT rules that could be used with dt in
order to generate the required graph.

3.4. SUMMARY 41

Actuator Transformation (Perl) Notes

note

$pitch = get_pitch_name(); get_pitch_name() is an
ABC::DT function that
returns the note’s pitch.

$dur = get_note_length(); get_note_length() is an
ABC::DT function that
returns the note’s dura-
tion/length.

$occurrence{$pitch}{$dur}++; %occurrence stores the
number of occurrences.

-end plot(%occurrence); plot would be an ABC::DT
function that given a struc-
ture like %occurrence gen-
erates a 3D graph.

Table 3.1: ABC::DT rules for the graph generation

The graph generated is shown in figure 3.4.

The graph plots three features: pitch, duration of notes, and how frequently
these pitches and durations are used. It can be seen that pitches follow a type
of bell-curve distribution, with few high notes, few low notes, and many notes
toward the middle of the register. This line of inquiry may reveal characteristics
that are not easy to figure out, for instance, that a composer may be following a
certain trend.

3.4 Summary

With the DSL ABC::DT there is a considerable simplification of the process of cre-
ating an ABC processing tool considering the following features:

• It’s not necessary to specify what doesn’t need to be transformed (default
functions);

• A transformation specification is rule-based which facilitates its writing;

42 CHAPTER 3. ABC::DT AND ABC PROCESSING TOOLS

Figure 3.4: Note Distribution by pitch and duration

• There’s a set of rich actuators which allows to precisely select a specific point
to transform.

Using a structured processing of ABC allows an ABC processing tool to be de-
scribed in an effective way.

Using Perl as the language embedded into ABC::DT provides a rich environ-
ment to allow easy processing of text. Furthermore, through the use of data
structures, like hashes, the user has bigger expressive power to specify trans-
formations.

The next chapter presents some ABC processing tools created using ABC::DT.

Chapter 4

ABC::DT by example

This chapter presents examples of ABC processing tools created using ABC::DT,
thus demonstrating how easily a (simple) tool or some occasional processing can
be done. Some of the tools presented are an extension of those presented in the
article [13] submitted and accepted to SLATE’13’s conference.

The tools presented here are merely a proof of concept of what can be done
with ABC::DT, therefore, they only provide a limited number of features and can
be further improved in the future. However, as they are, some of them have
already proven their worth, consult chapter 5.

Every ABC processing tool created performs at least one traversal to an ABC IR
(through dt). So, in order to facilitate the ABC::DT rules readability for each dt call,
a tabular format will be used, in which each row describes a single ABC::DT rule.

4.1 Paste ABC

This tool, as the UNIX paste, merges voices parallel to each other in the time per-
spective. In other words, each individual voice will start at the beginning of the
resulting score.

Some decisions were made regarding what should be done with some infor-
mation present in each tune. This ensured that the resulting tune was consistent
with each individual tune:

1. The resulting tune’s header derives from the first tune which has an actual

43

44 CHAPTER 4. ABC::DT BY EXAMPLE

tune written, in other words, at least one note.

2. The context is updated every time a change is detected during the tune’s
traversal. It is a local data structure that comprises the current voice and its
key, meter, length, tempo and number of measures.

3. Any context change detected, like the key or the meter, is written to the re-
sulting tune only if it is different from the current context.

4. In the resulting tune, any voice that has fewer measures than the longest
one is appended with the necessary measure rests to match the longest.

Algorithm

paste_abc’s algorithm is divided in three stages: 1) retrieving the header for the
resulting tune, 2) pasting the tunes and 3) appending any necessary measure rests.
In the end, the output generated is printed to the output.

An algorithmic description is made in algorithm 2.

1. As mentioned before, the resulting tune’s header comes from the first tune
with at least one note written.

This stage follows a simple algorithm where each tune is processed by dt in
the order they are passed in. As soon as a tune with a note written is found, it
stops and returns that tune’s header. During the tune’s traversal, the context
is updated. It will be used in the final stage where a post processing is done
to guarantee the resulting tune’s validity.

The set of ABC::DT rules to be passed to dt consists in applying a blank trans-
formation to every ABC element with state in_tune or in_line (consult section
3.2.2 for more information on state), activating a flag when a note is found
to stop processing further tunes and, finally, recording the context. See table
4.1 for a description of the ABC::DT rules.

4.1. PASTE ABC 45

Actuator Transformation (Perl) Notes

in_tune q{};
in_line q{};
note $has_tune = 1; q{};
in_header::M: update_context({meter => 1}); toabc(); update_context is a local

function that updates, in
this rule’s case, the con-
text’s meter. toabc is called
in the end so that the ac-
tual ABC element is printed
instead of the returning
value from the previous
statement.

in_header::L: update_context({length => 1}); toabc();
in_header::K: update_context({key => 1}); toabc();
in_header::Q: update_context({tempo => 1}); toabc();

Table 4.1: ABC::DT rules for paste_abc’s first stage

2. This stage’s consists in processing each tune with dt and concatenating each
individual result. This is the actual pasting where each tune’s original ABC

is returned except for the following parts.

The header from each tune is not printed since it has already been retrieved
in the previous stage.

abcMIDI commands %%staves and %%score are not printed as well, since
each voice’s positioning on the resulting score may differ from the original
one.

The context is also being recorded each time one of its constituents is found,
which enables the possibility of not printing the context change if it is the
same as the current one. This makes the resulting tune cleaner without
useless duplications. See table 4.2.

3. The final step consists in verifying if there is any voice with fewer measures
than the voice with the biggest number of measures. If there is such a voice

46 CHAPTER 4. ABC::DT BY EXAMPLE

Actuator Transformation (Perl) Notes

in_global::info q{};
in_header::info q{};
staves q{};
score q{};
bar update_measure_count();

toabc();
update_measure_count is a local function
that increments the measure count for the
current voice.

V: print_voice(); Local function that prints the voice element
if it is different from the current voice. Also,
if this voice has been previously defined,
then the short form of the voice’s ABC ele-
ment is printed. context’s voice is updated.

M: print_meter(); Local function that prints the meter ele-
ment if it is different from the current me-
ter. context’s meter is updated.

L: print_length(); Same as the previous rule but applied to
the length element.

K: print_key(); Same as the previous rule but applied to
the key element.

Q: print_tempo(); Same as the previous rule but applied to
the tempo element.

Table 4.2: ABC::DT rules for paste_abc’s second stage

then a measure rest with length equal to the missing measures is appended
after that voice. This is possible because, in step 2), the number of measures
for each voice was being recorded.

Usage

Listing 4.1 shows paste_abc’s manual.

Listing 4.2 shows a usage example for paste_abc. It reads tunes 101.abc (list-
ing 4.3) and 103.abc (listing 4.4) and its output is shown in listing 4.5 along with
the corresponding score (figure 4.3).

4.1. PASTE ABC 47

Algorithm 2: paste_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

header ← dt(tune, rules from table 4.1) //1)
end
forall the tune ∈ abc_tunes do

res← res ++ dt(tune, rules from table 4.2) //2)
end
measures← add_measures() //3)
return header ++ res ++ measures

Listing 4.1: paste_abc’s manual

SYNOPSIS
paste_abc [FILE] . . .
paste_abc −s [STRING] . . .

OPTIONS
−s , −−strmode

ABC tunes are t e x t streams ins tead of f i l e names

Listing 4.2: paste_abc by example

paste_abc 1 0 1 . abc 1 0 3 . abc

Listing 4.3: Verbum caro factum est: Section 1; Part 1 - Soprano

X: 1 0 1
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 c l e f = t r e b l e name=" Soprano " sname="S . "
G4 G2 | G4 F2 |A4 A2 | B4 z2 |: B3 A GF| E2 D2 EF| G4 F2 | G6 ! f i n e ! : |
w: Ver− bum|ca− ro|fac− tum| e s t |Por − que ∗| to − dos ∗|hos sa l−|v e i s

Verbum caro factum est
Anonimous, 16th century

Soprano

Ver bum ca ro fac tum est Por que to dos hos sal veis

4
3

FINE

Figure 4.1: Verbum caro factum est: Section 1; Part 1 - Soprano (Score)

48 CHAPTER 4. ABC::DT BY EXAMPLE

Listing 4.4: Verbum caro factum est: Section 1; Part 3 - Tenor

X: 1 0 3
T : Verbum caro factum e s t
C: Anon , 16 th century
M:3/4
L:1/8
K:G
V: 3 c l e f = t r e b l e−8 name=" Tenor " sname="T . "
G3 A B2 | c4 A2 | c4 c2 | d4 z2 |:\
w: Ver − bum | ca− ro | fac− tum | e s t |
d2 B4 | c2 B4 | c2 A4 | G6 :|
w: Por− que | to− dos | hos sa l−|v e i s

Verbum caro factum est
Anon, 16th century

Tenor

Ver bum ca ro fac tum est Por que to dos hos sal veis8

4
3

Figure 4.2: Verbum caro factum est: Section 1; Part 3 - Tenor (Score)

Listing 4.5: Verbum caro factum est: Section 1; Part 1 & 3

X: 1 0 1
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " sname="S . " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2 |: \
w: Ver− bum | ca− ro | fac− tum | e s t |
B3 A GF| E2 D2 EF| G4 F2| G6 ! f i n e ! : |
w: Por − que ∗| to − dos ∗ | hos sa l−|v e i s
V: 3 name=" Tenor " sname="T . " c l e f = t r e b l e−8
G3 A B2| c4 A2| c4 c2| d4 z2 |: \
w: Ver − bum | ca− ro | fac− tum | e s t |
d2 B4| c2 B4| c2 A4| G6:|
w: Por− que | to− dos | hos sa l−|v e i s

4.2. CAT ABC 49

Verbum caro factum est
Anonimous, 16th century

Tenor

Soprano

Ver bum ca ro fac tum est Por que to dos hos sal veis

Ver bum ca ro fac tum est Por que to dos hos sal veis

4
3

8

4
3

FINE

Figure 4.3: Verbum caro factum est: Section 1; Part 1 & 3 (Score)

4.2 Cat ABC

This tool is based on UNIX’s cat, as it consists in the concatenation of each tune
one after the other in the time perspective. In other words, any voice present in
the second tune is printed after the time offset corresponding to the end of the
first tune, and so on.

Some design goals were established:

1. The resulting tune’s header derives from the first tune which has an actual
tune written, in other words, at least one note.

2. The context is updated every time a change is detected during the tune’s
traversal. It is a local data structure that comprises the current voice and its
key, meter, length and tempo. The number of measures per voice is recorded
separately for each tune.

3. Any context change detected, like the key or the meter, is written to the re-
sulting tune only if it is different from the current context.

4. For each tune, before appending it to the resulting tune, a verification for
missing voices is made in the current tune and all prior to that. This way,
measure rests can be appended to any missing voice in order to ensure that
the voice starts at the correct time offset.

5. In the resulting tune, any voice that has fewer measures than the longest
one is appended with the necessary measure rests to match the longest.

50 CHAPTER 4. ABC::DT BY EXAMPLE

Algorithm

cat_abc’s algorithm is similar to paste_abc’s except that after processing an ABC

tune with dt, measure rests may be appended to some voices before and after the
actual tune is written. Since all voices in an ABC file are written after the time off-
set corresponding to the end of the previous ABC file, there may be music missing
for some voices from one file to the other, thus the need for measure rests to fill
those "holes".

So the algorithm has the following stages: 1) retrieving the header for the
resulting tune, 2) printing each tune and any necessary measure rests. In the end,
the output generated is printed to the output.

An algorithmic description is made in algorithm 3.

1. The resulting tune’s header comes from the first tune with at least one note
written.

This stage does exactly the same as paste_abc’s first stage.

2. For each tune:

(a) Applies dt to the current tune;

(b) Appends measure rests to every voice that is present in previous tunes
and not in the current one;

(c) Appends measure rests to every voice presented for the first time;

(d) Appends dt’s output, which is the actual tune;

(e) Appends any necessary measure rests to the processed tune (same as
stage 3) in paste_abc’s main algorithm);

Each individual result is concatenated into the resulting tune.

The set of ABC::DT rules used in this stage is the same as in paste_abc’s
second stage. However, cat_abc provides two more options for concate-
nating tunes: inserting a number of measure rests at the beginning of each
tune (option -d) and repeating each tune a number of times (option -r).

To implement the first option, some modifications were made to the set of
ABC::DT rules:

4.2. CAT ABC 51

When concatenating tune A with tune B and tune B is being processed, step b) ap-
pends the measure rests illustrated by the letter P1 and step c) appends the measure
rests illustrated by the letter P2.

Example 5: Appending necessary measure rests

• The default transformation for each ABC element is not toabc, but in-
stead a local function that, once for each voice, inserts a measure rest
with the request length before the element itself and also updates the
context’s measure count for that voice.

• The context’s measure count update is made when a bar or a mrest is
found.

Those modifications are described in table 4.3.

Actuator Transformation (Perl) Notes

bar update_measure_count(1);
insert_canon_delta();

update_measure_count is a local function
that increments, in this case by 1, the con-
text’s measure count for the current voice.
insert_canon_delta is a local function that in-
serts a measure rest before the element itself,
once for each voice.

mrest update_measure_count(
$sym->{info}->{len} - 1);
insert_canon_delta();

$sym is the ABC element currently being pro-
cessed, a measure rest. $sym->{info}->{len} is
the number of measures in rest.

-default insert_canon_delta();

Table 4.3: ABC::DT rules for cat_abc’s second stage

52 CHAPTER 4. ABC::DT BY EXAMPLE

The second option is obtained by simply repeating steps a to e a requested
number of times.

Algorithm 3: cat_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

header ← dt(tune, rules from table 4.1) //1)
end
forall the tune ∈ abc_tunes do

for 0.. value of -r option do
c_tune← dt(tune, rules from tables 4.2 and 4.3) //2-a)
res← res ++ add_measures_to_missing_voices() //2-b)
res← res ++ add_measures_to_new_voices() //2-c)
res← res ++ c_tune //2-d)
res← res ++ add_measures() //2-e)

end
end
return header ++ res

Usage

Listing 4.6 shows cat_abc’s manual.

Listing 4.6: cat_abc’s manual

SYNOPSIS
cat_abc [OPTION] . . . [FILE] . . .
ca t_abc −s [OPTION] . . . [STRING] . . .

OPTIONS
−s , −−strmode

ABC tunes are t e x t streams ins tead of f i l e names

−d , −−d e l t a = I
Measure r e s t s of length I w i l l be i n s e r t e d at the beggining of

each voice

−r , −−rep= I
The tune w i l l be repeated I times

4.2. CAT ABC 53

Listing 4.7 shows a usage example for cat_abc. It reads tunes 201.abc (listing
4.8) and 303.abc (listing 4.9) and the output is shown in listing 4.10 with its re-
spective score (figure 4.6).

Listing 4.7: cat_abc by example

cat_abc 2 0 1 . abc 3 0 3 . abc

Listing 4.8: Verbum caro factum est: Section 2; Part 1 - Soprano

X: 2 0 1
T : Solo Fem
C: Anon , 16 th century
M:3/4
L:1/8
K:G
V: 1 c l e f = t r e b l e name=" Soprano " sname="S . "
B4c2 | B2 A2 > G2 | G4 F2 | G4 G2 |

Solo Fem
Anon, 16th century

Soprano

1. Y la Vir gen le de zi a:

4
3

Figure 4.4: Verbum caro factum est: Section 2; Part 1 - Soprano (Score)

Listing 4.9: Verbum caro factum est: Section 3; Part 3 - Tenor

X: 3 0 3
T : Solo Tenor
C: Anon , 16 th century
M:3/4
L:1/8
K:G
V: 3 c l e f = t r e b l e−8 name=" Tenor " sname="T . "
d4 e2| d2c2 > B2|AGA4| G4 G2|
w: 1 . ~ ’ Vi−da | de l a ∗ | vi − da | mi−a ,

54 CHAPTER 4. ABC::DT BY EXAMPLE

Solo Tenor
Anon, 16th century

Tenor

1. ’Vi da de la vi da mi a,8

4
3

Figure 4.5: Verbum caro factum est: Section 3; Part 3 - Tenor (Score)

Listing 4.10: Verbum caro factum est: Section 2; Part 1 & Section 3: Part 3

X: 2 0 1
T : Solo Fem
C: Anon , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " sname="S . " c l e f = t r e b l e
B4c2| B2 A2> G2| G4 F2| G4 G2|
w: 1.~Y l a | Vir−gen ∗ | l e de−| zi−a :
[V: 1] Z4 |
[V: 3] Z4 |
V: 3 name=" Tenor " sname="T . " c l e f = t r e b l e−8
d4 e2| d2c2> B2|AGA4| G4 G2|
w: 1 . ~ ’ Vi−da | de l a ∗ | vi − da | mi−a ,

Verbum caro factum est
Anon, 16th century

Tenor

Soprano

1. Y la Vir gen le de zi a:
2. O ri que zas te rre na les.

1. ’Vi da de la vi da mi a,
2. No da reis u nos pa Ã±a kes

4
3

8

4
3

Figure 4.6: Verbum caro factum est: Section 2; Part 1 & Section 3: Part 3 (Score)

4.3 Learning ABC

When there is a multi-voice score, like a four part choir, it is important to, for
instance, the Soprano to be able to study her part individually. Sometimes there’s

4.3. LEARNING ABC 55

the need to hear all the other parts except hers, so that she may know what the
rest is going to sound. Other times the opposite is what is needed.

The learning_abc tool generates two ABC scores whose goal is to help mu-
sicians in individual rehearsal of multi-voice music for studying purposes. One
reduces the volume of a particular voice and the other increases the volume of a
particular voice and reduces the volume of the remaining voices.

Algorithm

learning_abc’s algorithm consists of 3 stages that are applied to each tune.

An algorithmic description is made in algorithm 4.

For each tune:

1. Retrieve voice data

In this stage, the tune is processed by dt, in which each voice’s name, chan-
nel and program (instrument) are stored to be used in the following stages.

The set of ABC::DT rules is shown in table 4.4.

Actuator Transformation (Perl) Notes

V: store_channel_and_name(); Local function that stores each voice’s
channel and name.

MIDI::program store_program(); Local function that stores each voice’s
program.

Table 4.4: ABC::DT rules for learning_abc’s first stage

2. All but one

In ABC, it is possible to add commands to control audio properties through
the use of MIDI directives (%%MIDI, followed by different parameters) that
abc2midi recognizes.

56 CHAPTER 4. ABC::DT BY EXAMPLE

In this stage, the tune is processed by dt, in which a MIDI directive to reduce
the volume of the voice is inserted. To be more precise, a change-volume
MIDI directive (%%MIDI control 7 NewVolume, where NewVolume is a num-
ber between (0-127)- is appended after the voice definition.

In the end, the processed tune is written to a new ABC file.

The set of ABC::DT rules is shown in table 4.5.

Actuator Transformation (Perl) Notes

V:$req_voice toabc() . "%%MIDI control 7
$min_volume\n");

$req_voice keeps the voice
requested when calling
learning_abc.

Table 4.5: ABC::DT rules for learning_abc’s second stage

3. Just one

In this stage, the tune is processed by dt, in which, for each voice, three
MIDI directives are inserted after the X: statement. The first is a select-
channel directive (%%MIDI channel Channel, where Channel is a number
between (1-16)), the second a select-program directive (%%MIDI program
Channel Program, where Program is the instrument (0-127) for channel Chan-
nel) and the third is a change-volume directive to reduce or increase the
voice’s volume. Furthermore, the select-channel directive is also appended
to the voice statement so that abc2midi can make the association between
the voice and the channel when reproducing.

In the end, the processed tune is written to a new ABC file.

The set of ABC::DT rules is shown in table 4.6.

4.3. LEARNING ABC 57

Actuator Transformation (Perl) Notes

X: set_volume(); Local function that sets the volume
by appending the three MIDI di-
rectives mentioned before for each
voice.

V: toabc() . "%%MIDI channel
$voice_channel{$c_voice}{channel}\n";

Appends the select-channel direc-
tive after its corresponding voice.

Table 4.6: ABC::DT rules for learning_abc’s third stage

Algorithm 4: learning_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

dt(tune, rules from table 4.4) //1)
just_one← dt(tune, rules from table 4.5) //2)
write_to_ f ile(just_one) //2)
all_but_one← dt(tune, rules from table 4.6) //3)
write_to_ f ile(all_but_one) //3)

end
return

Usage

Listing 4.11 shows learning_abc’s manual.

Listing 4.11: learning_abc’s manual

SYNOPSIS
learning_abc [OPTION] . . . [FILE] . . .

OPTIONS
−v , −−voice=voiceId|voiceName

Determines which voice i s going to be the focus of the t o o l . I t
accepts the voice ’ s id or i t s name .

−min=volume
S e t s the volume f o r the voices to be minimized . Defaul t =50

−max=volume
S e t s the volume f o r the voices to be maximized . Defaul t =127

58 CHAPTER 4. ABC::DT BY EXAMPLE

Listing 4.12 shows a usage example for learning_abc. It reads tune 100.abc
(listing 4.13) and the output is shown in listing 4.14 and 4.15.

Listing 4.12: learning_abc by example

l earning_abc −v=Tenor −min=25 1 0 0 . abc

Listing 4.13: 100.abc

X: 1 0 1
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
D4 D2| E4 D2| E4 F2| G4 z2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
G3 A B2| c4 A2| c4 c2| d4 z2|
V: 4 name=" Baixo " c l e f =bass
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2

|

Listing 4.14: 100_all_but_Tenor.abc

X: 1 0 1
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
D4 D2| E4 D2| E4 F2| G4 z2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
%%MIDI c o n t r o l 7 50
G3 A B2| c4 A2| c4 c2| d4 z2|
V: 4 name=" Baixo " c l e f =bass
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2

|

Note the MIDI command %%MIDI control 7 25 after V:3 in listing 4.14. That
way, voice "Tenor" is going to be attenuated when abc2midi reproduces the score.

Listing 4.15: 100_just_Tenor.abc

X: 1 0 1
%%MIDI channel 1
%%MIDI program 1 1
%%MIDI c o n t r o l 7 50
%%MIDI channel 2
%%MIDI program 2 1
%%MIDI c o n t r o l 7 50
%%MIDI channel 3
%%MIDI program 3 1
%%MIDI c o n t r o l 7 127

4.4. WC ABC 59

%%MIDI channel 4
%%MIDI program 4 1
%%MIDI c o n t r o l 7 50
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
%%MIDI channel 1
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
%%MIDI channel 2
D4 D2| E4 D2| E4 F2| G4 z2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
%%MIDI channel 3
G3 A B2| c4 A2| c4 c2| d4 z2|
V: 4 name=" Baixo " c l e f =bass
%%MIDI channel 4
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2|

4.4 Wc ABC

This tool, is similar to UNIX’s wc, in the sense that it prints voices, measures and
notes/pitches per voice counts for each ABC file.

This tool generates a textual summary of the counts made. For each tune it
prints:

• number of voices

• for each voice:

– total number of notes

– total number of measures

– number of occurrences of a certain note (pitch)

60 CHAPTER 4. ABC::DT BY EXAMPLE

Algorithm

wc_abc’s algorithm consists in processing each tune with dt in order to produce
the desired counts. In the end an output is generated with the produced data.

An algorithmic description is made in algorithm 5.

The voice count is updated when the voice element is found, the note and
pitch counts are updated when the note element is found and the measure count
is updated when the bar element is found. The set of ABC::DT rules is shown in
table 4.7.

Actuator Transformation (Perl) Notes

V: update_voice_count(); Local function that increments the voice
count when a new voice is found.

note update_note_count(); Local function that increments the
note and pitch count. For the pitch
name, it uses ABC::DT’s function
get_pitch_name().

bar update_measure_count(); Local function that increments the mea-
sure count according to the bar number.

Table 4.7: ABC::DT rules for wc_abc

Algorithm 5: wc_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

dt(tune, rules from table 4.7)
end
res← create_output()
return res

Usage

Listing 4.16 shows wc_abc’s manual.

4.4. WC ABC 61

Listing 4.16: wc_abc’s manual

SYNOPSIS
wc_abc [FILE] . . .

Listing 4.17 shows a usage example for wc_abc. It reads the tune generated by
paste_abc (listing 4.5) and the output is shown in listing 4.18.

Listing 4.17: wc_abc by example

wc_abc 101 _103 . abc

Listing 4.18: wc_abc’s output

101 _103 . abc
Voice count : 2
Voice : 1

Measure count : 8
Note count : 18

G−na tur a l : 6
F−na tur a l : 4
A−na tur a l : 3
E−na tur a l : 2
B−na tur a l : 2
D−na tur a l : 1

Voice : 3
Measure count : 8
Note count : 15

C−na tur a l : 5
A−na tur a l : 3
B−na tur a l : 3
G−na tur a l : 2
D−na tur a l : 2

wc_abc reports that there are 2 voices. Voice with id 1 has 8 measures, a total
of 18 notes and 6 G’s, 4 F’s, 3 A’s, 3 E’s, 2 B’s and 1 D. The interpretation for voice
with id 3 is analogous.

62 CHAPTER 4. ABC::DT BY EXAMPLE

4.5 Detect Errors ABC

ABC is a textual music notation, therefore it is very common for an ABC score to
have syntactical errors, such as, having more beats in a measure than it can hold.

There are three kinds of behavior when facing an error: correct it immediately
(e.g.: insert a bar when it’s missing); warn the user of the error’s existence; and
comment the error and annotate a FIXME comment so that the user can locate
and fix the error manually.

Due to time limitations, only one behavior is adopted in detect_errors_abc,
which is to warn the user. So, for each file, it detects errors and produces an
output with error messages along with the voice and measure number where
they occurred.

detect_errors_abc will expose the following errors:

Incomplete/Overflowing measure
A measure is a segment of time defined by a given number of beats which is
delimited by a bar element. The number of beats in a measure is determined
by the Meter (M:) previously defined.

The first metrically complete measure within a score is the first measure.
When the score begins with an anacrusis (an incomplete measure at the
head of a score), the first measure is the following measure.

So, the number of beats (the length of all notes and rests) in a measure (ex-
cept if it is an anacrusis) must be equal to that measure’s defined length.

Last ABC element per voice isn’t a bar
ABC allows a score to not having a bar at the end of a voice, however, it isn’t
considered a good practice in modern music notation.

Therefore, a voice must finish with a bar element, in other words, the last
ABC element, except eoln, for a voice has to be a bar.

Different number of measures per voice
All voices must have the same number of measures.

Different key definitions per measure
In modern music, there are certain properties that apply to many elements

4.5. DETECT ERRORS ABC 63

simultaneously, for instance, in a multi-voice score, the second measure is
the second measure for all voices, as well as the key, among others. How-
ever, in ABC, that assumption may be ignored.

Thus, for each measure, the key must be the same for all voices.

Algorithm

detect_errors_abc’s algorithm consists of 2 stages that are applied to each tune.

An algorithmic description is made in algorithm 6.

For each tune:

1. Retrieve data and detect incomplete/overflowing measures

In this stage, the tune is processed by dt, in which each voice’s last ABC

element, number of measures and the key per measure are stored to be used in
the following stage.

It also stores the current measure’s real length in order to detect incomplete/over-
flowing measures. In order to accomplish the latter, when the bar element
is found, it compares the current measure’s real length with the current mea-
sure’s defined length.

The set of ABC::DT rules is shown in table 4.8.

2. Detect the remaining syntactical errors

It detects if the tune’s last ABC element for all voices is a bar and if the num-
ber of measures is the same for all voices. Error messages are produced in
case errors are found.

If no errors were found until this moment, then the detection for different
key definitions per measure proceeds.

64 CHAPTER 4. ABC::DT BY EXAMPLE

Actuator Transformation (Perl) Notes

in_tune update_data({}); Local function that sets the current ele-
ment as the current voice’s last ABC ele-
ment.

note update_data({meas_dur => 1,
n_meas => 1});

Local function that sets the current ele-
ment as the current voice’s last ABC ele-
ment. When meas_dur is 1, it increments
the current measure’s real length with
the element’s value. When n_meas is 1,
it updates the current voice’s number of
measures.

rest update_data({meas_dur => 1,
n_meas => 1});

mrest update_data({key => 1}); Local function that sets the current ele-
ment as the current voice’s last ABC ele-
ment. When key is 1, it updates the key
for all measures that mrest covers.

bar $ret .= check_measure_length();
update_data({n_meas => 1, key
=> 1});

check_measure_length is a local function
that detects if the current measure is in-
complete or overflowing and returns an
error message in case it finds one.

eoln q{}; The end of a line won’t be set as a voice’s
last element.

Table 4.8: ABC::DT rules for detect_errors_abc’s first stage

Algorithm 6: detect_errors_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

dt(tune, rules from table 4.8) //1)
res← res ++ detect_remaining_errors() //2)

end
return res

Usage

Listing 4.19 shows detect_errors_abc’s manual.

4.6. FIND CHORDS ABC 65

Listing 4.19: detect_errors_abc’s manual

SYNOPSIS
d e t e c t _ e r r o r s _ a b c [FILE] . . .

Listing 4.20 shows a usage example for detect_errors_abc. It reads the tune
100_errors.abc (listing 4.21) and the output is shown in listing 4.22.

Listing 4.20: detect_errors_abc by example

d e t e c t _ e r r o r s a b c 100 _ e r r o r s . abc

Listing 4.21: 100.abc with errors

X: 1 0 1
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
D4 D2| E4 D2| E4 F2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
G3 A B2| c4 A2| c4 c2| d2 z2|
V: 4 name=" Baixo " c l e f =bass
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2

Listing 4.22: detect_errors_abc’s output

100 _ e r r o r s . abc
Measure 4 in voice 3 isn ’ t complete !
Voice 4 must f i n i s h with a bar !
The number of measures per voice i s d i f f e r e n t !

4.6 Find Chords ABC

find_chords_abc searches voices for melodically expressed chord formations (chords
formed from a list of consecutive notes) such as a dominant seventh or a major triad.

66 CHAPTER 4. ABC::DT BY EXAMPLE

It then inserts an accompaniment chord with the labeled chord in the first note of
a found chord.

Algorithm

find_chords_abc’s algorithm consists in processing each tune with dt in order to
find the request chord formations. In the end, it returns the original tune with a
labeled chord inserted as accompaniment chord into the first note of all chords
found.

An algorithmic description is made in algorithm 7.

The set of ABC::DT rules has only one rule. Basically, for each visited note ele-
ment, all consecutive notes in that measure are collected in order to form a chord
and test if its formation has been requested by the user. The actuator isn’t static
though, i.e. the user may limit the search to a particular voice, consequently a
voice restriction needs to be added to the note actuator.

The set of ABC::DT rules is shown in table 4.9.

To test a chord’s formation, some ABC::DT functions are being used, namely,
root(), get_pitch_name(), is_major_triad(), is_minor_triad(), is_dominant_seventh(). These
are explained in appendix B.2.

find_chords_abc also allows the user to specify which voices shouldn’t be
searched. That feature is translated into a set of ABC::DT rules for each of the
specified voices, in which, each rule assigns toabc to a note element with a voice
restriction. So, if $ex_voice is a particular voice to be excluded from the search, then
the additional rule in table 4.10 would be added to the existing set of ABC::DT

rules.

4.6. FIND CHORDS ABC 67

Actuator Transformation (Perl) Notes

$note_act

my @notes =
find_consecutive_notes_in_measure(
skip_unisons => 1, skip_octaves => 1,
skip_rests => 1, no_undef => 1);

ABC::DT’s function that gets a
list of consecutive notes, skip-
ping unisons, octaves, and rests.

search_requested_chords(@notes); Local function that searches for
each requested chord formation
by taking X consecutive notes at
a time from @notes and creating
the chord to be tested against
the requested chord formations.
X is a number taken from a ta-
ble that associates a chord for-
mation to the number of notes
that form it.

to_abc(); Prints the note element that may
have or not a labeled chord as
accompaniment chord.

Table 4.9: ABC::DT rules for find_chords_abc

Actuator Transformation (Perl) Notes

"V:$ex_voice" . ’::note’ to_abc(); No chord formations will be
searched in this particular voice.

Table 4.10: Additional ABC::DT rules for find_chords_abc

Algorithm 7: find_chords_abc’s algorithm
Input: abc_tunes
forall the tune ∈ abc_tunes do

res← res ++ dt(tune, rules from tables 4.9 and 4.10)

end
return res

Usage

Listing 4.23 shows find_chords_abc’s manual.

Listing 4.23: find_chords_abc’s manual

68 CHAPTER 4. ABC::DT BY EXAMPLE

SYNOPSIS
find_chords_abc [OPTION] . . . [FILE] . . .

OPTIONS
−v , −−voice=voiceID|voiceName

Searches only the s p e c i f i e d voice
Searches a l l vo ices by d e f a u l t

−e , −−except−voice=voiceID|voiceName
Doesn ’ t search the s p e c i f i e d voice

−c , −−chord=chord_code
Searches f o r the s p e c i f i e d chord
Searches f o r the major t r i a d by d e f a u l t

Listing 4.24 shows a usage example for find_chords_abc. It reads tunes 100_with_maj_t.abc
(listing 4.25) and the output is shown in listing 4.26.

Listing 4.24: find_chords_abc by example

f ind_chords_abc 100 _with_maj_t . abc

Listing 4.25: 100_with_maj_t.abc

X: 1 0 1
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
D4 D2| E4 D2| E4 F2| G4 z2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
G3 D B2| c4 A2| c4 c2| d4 z2|
V: 4 name=" Baixo " c l e f =bass
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2

|

Listing 4.26: find_chords_abc’s out-
put

X: 1 0 1
T : Tut i
C : Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2|
V: 2 name=" Contra l to " c l e f = t r e b l e
D4 D2| E4 D2| E4 F2| G4 z2|
V: 3 name=" Tenor " c l e f = t r e b l e−8
"^G−na tu ra l Major Triad "G3 D B2|

c4 A2| c4 c2| d4 z2|
V: 4 name=" Baixo " c l e f =bass
G, 4 G,2| C, 4 D,2| A, 4 A,2| G, 4 z2

|

4.7. CANON ABC 69

4.7 Canon ABC

canon_abc generates a complete canon1 score from a set of ABC files containing
the melodic part and other file containing the accompaniment part. The order in
which the ABC files are provided to canon_abc is important as they determine the
voices’ order in the final score.

The only part in a canon’s form that is not simple to automate is the canon’s
finale, as it depends on the composer’s will and taste. So that part is left for the
composer to change manually.

In canon_abc, the base duration, after which another voice may start playing,
is a full measure. Thus, in this section, that duration is treated in measure rests.

The melodic part is played by as many voices as the user specifies and each
one of them may start at different time offsets (specified by the user in number of
measure rests). The accompaniment part is repeated until it has the same number
of measures as the melodic parts.

canon_abc requires the user to provide the number of measure rests each melodic
part should have at the beginning as well as identify which ABC file is the accom-
paniment part. This is achieved through a slight modification on the arguments
that canon_abc is expecting. So, in order to meet the first requisite, the user must
append to each melody file the string +Num (where Num is the number of measure
rests to insert at the beginning) and to meet the second requisite he must append
the string ++.

This tool reuses other ABC processing tools (cat_abc and paste_abc) in order
to accomplish some of the features proposed.

Algorithm

canon_abc’s algorithm consists of 3 stages: 1) extract information from canon_abc’s
arguments, 2) build the canon’s melodic parts and 3) build the canon’s accompa-
niment part. In the end, the generated score is printed to the output.

1In music, a canon is a contrapuntal compositional technique that employs a melody with one
or more imitations of the melody played after a given duration. It is possible for a canon to be
accompanied by one or more additional independent parts which do not take part in imitating
the melody.

70 CHAPTER 4. ABC::DT BY EXAMPLE

An algorithmic description is made in algorithm 8.

1. Extract information from canon_abc’s arguments about the parts of the canon.

In this stage, for each melodic part, the file name and the number of measure
rests are stored. For the accompaniment part the file name is stored.

2. Build the canon’s melodic parts

For each melodic part and its information:

(a) Add measure rests at the beginning

The ABC processing tool cat_abc is used to achieve this by using the
option -d.

(b) Add voice header

This consists of processing the part (ABC tune) with dt in order to add
a single new voice header (e.g.: V:1). The set of ABC::DT rules is shown
in table 4.11.

Actuator Transformation (Perl) Notes

in_header::K: add_voice_header(); Local function that appends a voice header
after the key definition.

Table 4.11: ABC::DT rules for canon_abc’s stage 2-b)

At the end of this stage, all melodic parts are merged into one single score,
here called of melody. This is achieved with paste_abc.

3. Build the canon’s accompaniment part

(a) Add voice header to the accompaniment part and count measures

This consists of processing the accompaniment part (ABC tune) with dt
in order to add a new voice header (e.g.: V:1) and count the number of
measures. The set of ABC::DT rules is shown in table 4.12.

4.7. CANON ABC 71

Actuator Transformation (Perl) Notes

in_header::K: add_voice_header(); Local function that appends a voice header
to the key definition.

bar update_measure_count(); Local function that updates the measure
count

Table 4.12: ABC::DT rules for canon_abc’s stage 3-a)

(b) Count measures of melody

The number of measures in melody is counted. The set of ABC::DT rules
is shown in table 4.13.

Actuator Transformation (Perl) Notes

bar update_measure_count(); Local function that updates the measure
count

Table 4.13: ABC::DT rules for canon_abc’s stage 3-b)

(c) Repeat the accompaniment part

In this step, the number of times the accompaniment part will be re-
peated is calculated by dividing melody’s number of measures by the
accompaniment part’s number of measures.

Then, the accompaniment part is repeated using cat_abc with option
-r.

(d) Merge melody and accompaniment

The final step consists in merging the melodic and accompaniment
parts to form the canon. This is achieved through paste_abc.

Usage

Listing 4.27 shows canon_abc’s manual.

72 CHAPTER 4. ABC::DT BY EXAMPLE

Algorithm 8: canon_abc’s algorithm
Input: args
canon_in f o ← extract_canon_in f o(args) //1)
forall the melody ∈ canon_in f o{melodic_parts} do

m1← cat_abc -d=melody{delta} melody{ f ile} //2-a)
m2← dt(m1, rules from table 4.11) //2-b)

end
mel ← paste_abc (* for every m2 *) //2)
(acc, acc_meas)← dt(canon_in f o{accomp_part}, rules from table 4.12)
//3-a)
mel_meas← dt(res, rules from table 4.13) //3-b)
acc_reps← calculate_reps(mel_meas, acc_meas) //3-c)
acc← cat_abc -r=acc_reps acc //3-c)
res← paste_abc mel acc //3-d)
return res

Listing 4.27: canon_abc’s manual

SYNOPSIS
canon_abc [MELODY−FILE] . . . [ACCOMPANIMENT−FILE]

MELODY−FILE : ABC f i l e followed by ’+NUMBER’
ACCOMPANIMENT−FILE : ABC f i l e followed by ’++ ’

Listing 4.28 shows a usage example for canon_abc. It reads the melody files
violini.abc (appendix C.1) along with the respective number of measure rests and
the accompaniment file basso.abc (appendix C.2). The output is shown in ap-
pendix C.3 and figure 4.7 illustrates the output’s scheme.

Listing 4.28: canon_abc by example

canon_abc v i o l i n i . abc+8 v i o l i n i . abc+16 v i o l i n i . abc+24 basso . abc++

4.8. WORKING TOGETHER 73

Figure 4.7: canon_abc’s output scheme

4.8 Working Together

This section shows a real example of how to combine three of the ABC processing
tools created: cat_abc, paste_abc and learning_abc.

In this example, a user wants to study his voice (Tenor) and Soprano’s on the
first three sections of the Christmas Villancico2 Verbum caro factum est.

Each section and voice is written in separate files, so the parts requested will
be assembled by combining paste_abc with cat_abc.

Then learning_abc is going to be used with the combined score in order to
produce two scores: one where voice Tenor is highlighted and another where the
other voices are.

Listing 4.29 shows the first step being put into action. Listing 4.30 shows its
output, which, in this section, is going to be referred to as verbum.abc and figure
4.8 the corresponding score.

Listing 4.29: cat_abc and paste_abc by example

cat_abc (
paste_abc (1 0 1 . abc 1 0 3 . abc)
cat_abc (2 0 1 . abc 3 0 3 . abc)

) > verbum . abc

2A Villancico is a musical and poetic form written in Spanish and Portuguese, traditional from
Spain, Latin America and Portugal. These pieces were popular between century XV and XVIII.

74 CHAPTER 4. ABC::DT BY EXAMPLE

Listing 4.30: verbum.abc

X: 1 0 1
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " sname="S . " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2 |: \
w: Ver− bum | ca− ro | fac− tum | e s t |
B3 A GF| E2 D2 EF| G4 F2| G6 ! f i n e ! : |
w: Por − que ∗| to − dos ∗ | hos sa l−|v e i s
V: 3 name=" Tenor " sname="T . " c l e f = t r e b l e−8
G3 A B2| c4 A2| c4 c2| d4 z2 |: \
w: Ver − bum | ca− ro | fac− tum | e s t |
d2 B4| c2 B4| c2 A4| G6:|
w: Por− que | to− dos | hos sa l−|v e i s
V: 1
B4c2| B2 A2> G2| G4 F2| G4 G2| \
w: 1.~Y l a | Vir−gen ∗ | l e de−| zi−a :
[V : 1] Z4|
[V: 3] Z4|
V: 3
d4 e2| d2c2> B2|AGA4| G4 G2|
w: 1 . ~ ’ Vi−da | de l a ∗ | vi − da | mi−a ,

Verbum caro factum est
Anonimous, 16th century

Tenor

Soprano

Ver bum ca ro fac tum est Por que to dos hos sal veis

Ver bum ca ro fac tum est Por que to dos hos sal veis

4
3

8

4
3

FINE

T.

S.

1. Y la Vir gen le de zi a:

1. ’Vi da de la vi da mi a,8

Figure 4.8: Verbum caro factum est Score: Sections 1, 2 & 3; Parts 1 & 3

After putting the score together, it’s time to modify it in order to help the user
study. So learning_abc (see listing 4.31) generates a score where just voice Tenor

4.8. WORKING TOGETHER 75

is highlighted (4.32) and one where all voices but Tenor’s are highlighted (4.33).

Listing 4.31: learning_abc on combined score

l earning_abc −v=Tenor verbum . abc

Listing 4.32: verbum_just_Tenor.abc

X: 1 0 1
%%MIDI channel 1
%%MIDI program 1 1
%%MIDI c o n t r o l 7 25
%%MIDI channel 2
%%MIDI program 2 1
%%MIDI c o n t r o l 7 127
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " sname="S . " c l e f = t r e b l e
%%MIDI channel 1
G4 G2| G4 F2| A4 A2| B4 z2 |: \
w: Ver− bum | ca− ro | fac− tum | e s t |
B3 A GF| E2 D2 EF| G4 F2| G6 ! f i n e ! : |
w: Por − que ∗| to − dos ∗ | hos sa l−|v e i s
V: 3 name=" Tenor " sname="T . " c l e f = t r e b l e−8
%%MIDI channel 2
G3 A B2| c4 A2| c4 c2| d4 z2 |: \
w: Ver − bum | ca− ro | fac− tum | e s t |
d2 B4| c2 B4| c2 A4| G6:|
w: Por− que | to− dos | hos sa l−|v e i s
V: 1
%%MIDI channel 1
B4c2| B2 A2> G2| G4 F2| G4 G2|
w: 1.~Y l a | Vir−gen ∗ | l e de−| zi−a :
Z4|
V: 3
%%MIDI channel 2
Z4|

d4 e2| d2c2> B2|AGA4| G4 G2|
w: 1 . ~ ’ Vi−da | de l a ∗ | vi − da | mi−a ,

76 CHAPTER 4. ABC::DT BY EXAMPLE

Listing 4.33: verbum_all_but_Tenor.abc

X: 1 0 1
T : Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V: 1 name=" Soprano " sname="S . " c l e f = t r e b l e
G4 G2| G4 F2| A4 A2| B4 z2 |: \
w: Ver− bum | ca− ro | fac− tum | e s t |
B3 A GF| E2 D2 EF| G4 F2| G6 ! f i n e ! : |
w: Por − que ∗| to − dos ∗ | hos sa l−|v e i s
V: 3 name=" Tenor " sname="T . " c l e f = t r e b l e−8
%%MIDI c o n t r o l 7 25
G3 A B2| c4 A2| c4 c2| d4 z2 |: \
w: Ver − bum | ca− ro | fac− tum | e s t |
d2 B4| c2 B4| c2 A4| G6:|
w: Por− que | to− dos | hos sa l−|v e i s
V: 1
B4c2| B2 A2> G2| G4 F2| G4 G2|
w: 1.~Y l a | Vir−gen ∗ | l e de−| zi−a :
Z4|
V: 3
%%MIDI c o n t r o l 7 25
Z4|

d4 e2| d2c2> B2|AGA4| G4 G2|
w: 1 . ~ ’ Vi−da | de l a ∗ | vi − da | mi−a ,

Chapter 5

Test and Evaluation

This chapter’s goal is to help measure and analyze the behavior of ABC processing
tools created with ABC::DT with real world tasks and to support some claims that
have been made throughout this dissertation. A thorough evaluation was not
possible mainly because of time limitations, although it’s planned to happen in
the near future.

The ABC processing tool being evaluated is canon_abc which will process a
real world ABC score - Pachelbel’s Canon, a canon belonging Pachelbel’s Canon and
Gigue for 3 violins and basso continuo.

The melodic part (here called violini.abc) can be seen in appendix C.1 and the
accompaniment (here called basso.abc) in C.2.

Listing 5.1 shows how canon_abc is called.

Listing 5.1: canon_abc for Pachelbel’s Canon

canon_abc v i o l i n i . abc+8 v i o l i n i . abc+16 v i o l i n i . abc+24 basso . abc++

The output generated is shown in appendix C.3.

Using wc_abc on the generated canon (see listing 5.2, the pitch counts were
removed since they are not needed for this explanation), there are 4 voices, each
with 168 measures. The individual melody (violini.abc) has 144 measures (see
listing 5.3, pitch counts removed) and considering that the biggest number of
measure rests that are inserted to each melody is 24 (as can be seen on 5.1 and 4.7),

77

78 CHAPTER 5. TEST AND EVALUATION

the number of expected measures per voice in the canon is 168 (144+24), which
matches the count produced in listing 5.2.

Listing 5.2: wc_abc on Pachelbel’s Canon

Voice count : 4
Voice : 1

Measure count : 168
Note count : 378

Voice : 2
Measure count : 168
Note count : 378

Voice : 3
Measure count : 168
Note count : 378

Voice : 4
Measure count : 168
Note count : 168

Listing 5.3: wc_abc on Pachelbel’s Canon Melody

Voice count : 1
Voice : g loba l

Measure count : 144
Note count : 378

Furthermore, the number of notes in each of the first three voices (melody
parts) is the same as in the original melody as expected considering that the only
thing that canon_abc inserts into melodic parts is measure rests.

The accompaniment part (basso.abc) has 8 notes and 8 measures (see listing
5.4, pitch counts removed). Since it is repeated until it has the same number of
measures as the melody, the expected result is 168 notes in 168 measures which
matches the count produced in listing 5.2.

Listing 5.4: wc_abc on Pachelbel’s Canon Accompaniment

Voice count : 1
Voice : g loba l

Measure count : 8
Note count : 8

79

The execution time for this test’s case rounds the 2.3 seconds (see table 5.1).
It’s quite acceptable since it has 4 voices and 168 measures each which translates
into a lot of external calls to cat_abc and paste_abc in order to gradually build
each individual voice and finally put them all together.

Tool Execution Time1

canon_abc violini.abc+8 > canon.abc 2.3 s
wc_abc canon.abc 0.4 s

Table 5.1: Execution times

The tool itself wasn’t very hard to complete. It has around 85 lines of Perl
code (not counting empty lines), excluding cat_abc and paste_abc and it was
quite quick to put together from the moment the algorithm was designed.

All in all, this test with a real ABC score, even though not being an exhaustive
one, demonstrates that generating scores with many measures, notes and with
a few minutes of length is viable. This operation doesn’t involve complex cal-
culations, however there are several traversals to the ABC structure as well as a
few auxiliary calculations which affect the overall performance. In the end it pro-
duces the expected result proving that an ABC processing tool built using ABC::DT

can deal with real ABC and not with just some controlled testing tunes.

1The times presented were measured in a 5 year old laptop with the following features: Pro-
cessor: 2x Intel(R) Core(TM)2 Duo CPU T9400 2.53GHz; Memory: 3GB; Operating System: Linux
Mint 13 Maya

80 CHAPTER 5. TEST AND EVALUATION

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The UNIX philosophy and its simple and successful ideas were essential to the
conception of this dissertation:

• The concept of simple and compact tools/commands that solve problems
of small complexity and can be articulated with others was adopted;

• The universal type (the text stream) suggested ABC as the obvious universal
type since it is text as well;

• The creation of the language C to help developing UNIX inspired the cre-
ation of a language as well (a DSL) called ABC::DT.

So, the natural course of events is to map some of the existing UNIX tools into
ABC ones like cat, paste and wc.

The strategy of creating a robust parser for a reflexive language (Perl) is ob-
tained in 3 steps: 1) searching the best tool that processes what is wanted; 2)
isolating its parser; 3) adding a function that traverses the parser’s generated IR
and serializes it in order to be evaluated.

The IR used must be complete enough to enable the application of many dif-
ferent analytic tasks. However, that fact doesn’t invalidate an approach that starts

81

82 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

by generating a sequential and source-wise structure and then transforming it into
something that suits more complex demands.

Reusing abcm2ps’ parser was very important to help guarantee this work’s
quality, coverage and developing time. The generated IR is source-wise which,
along with the calculation of the current context (consult section 3.2.2), allows
performing a representation-agnostic processing.

With the DSL ABC::DT there is a considerable simplification of the process of
creating an ABC processing tool considering the following features:

• It’s not necessary to specify what doesn’t need to be transformed (default
functions);

• A transformation specification is rule-based which facilitates its writing;

• There’s a set of rich actuators which allows to precisely select a specific point
to transform.

Using a structured processing of ABC allows an ABC processing tool to be de-
scribed in an effective and compact way. Processing a complex structure is possi-
ble if divided into smaller parts, i.e., applying many surgical transformations to
its parts (according to its structure) and composing each individual result into a
single result.

A rule based processor (ABC::DT’s dt function) makes it possible to write very
compact and effective tools. Most of the processing is done by default, i.e. the
user only needs to specify what needs to be transformed. The default function is
the identity function, toabc().

Using Perl as the language embedded into ABC::DT provides a rich environ-
ment to allow easy processing of text. Furthermore, through the use of data
structures, like hashes, the user has bigger expressive power to specify trans-
formations.

Currently, there are tools that process ABC with specific purposes as well as
big software packages that integrate a lot of features, however there’s always the
need to process music, this is, making custom modifications to the original ABC,

6.2. FUTURE WORK 83

producing some sort of information, integrating existing tools, etc... That is the
main reason for creating an OS comprised of simple tools for generic ABC process-
ing which can be composed with each other, as well as a versatile environment to
create new tools through a compact DSL embedded in Perl.

6.2 Future Work

As expected, there are many parts of this work that can be improved and ex-
tended. In this section, only a few are going to be described.

Internal Representation

A part-wise IR is more suited to melody processing, while a time-wise IR is more
suited to harmony processing and a source-wise to a general, robust processing.
These "views" of the IR provide different spacial perspectives over a score. Each
one of them covers different aspects of music and can even hide those less rele-
vant.

So there will be a mechanism that, during the IR’s traversal, recalculates the
structure’s orientation when needed in order to provide different notions of the
spacial context.

Consequently, a more thorough investigation on data structures and music
representations is required in order to obtain a set of IRs capable of answering to
very specific tasks in the best way possible.

Musical Corpora

Due to time limitations, no work has been done towards this area of research,
even though it’s one of the most interesting areas that can bring a lot of useful
features.

Building an ABC corpus to serve as testing material for the toolkit and also to
train systems that learn from data is still a main goal.

A set of statistical models is planned to be developed over ABC corpora in

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

order to produce features like automatic classification of scores by genre, time
period, author, ...

The composition field has been, from the beginning of this dissertation’s writ-
ing, postponed due to its complexity. However, it’s definitely an area of research
worth working in, therefore one of the features that will be developed is the au-
tomatic generation of music. For instance, training a program to generate a score
that follows a certain style, author, or other characteristics associated, through the
use of models, like Hidden Markov [19, 43]. Also, techniques of text mining [54]
will be used to extract interesting and non-trivial patterns from text documents.

ABC::DT

ABC::DT is far from being complete, it’s actually in constant development. Still,
some improvements, extensions, even fixes are to be done in the near future.

The parser used - abcm2ps’ - has its own bugs that the author has identified
but not fixed yet, as well as bugs that were identified during ABC::DT’s develop-
ment. So, whenever possible, any bug found will be reported to the author in
order to help to the parser’s and the tools’ it is used in - abcm2ps and tclabc -
improvement.

The set of available actuators will be expanded to accept even more detailed
queries.

Another approach to actuator specification will be devised. What’s intended
is a richer syntax for identifying ABC elements, one that uses path expressions to
navigate through an ABC tune and has a set of standard functions to help selecting
ABC elements. This approach is very similar to XPath’s[57].

More default functions will be added to ABC::DT’s API.

The identity function - toabc - is not perfect and still needs some improve-
ments.

Toolkit

More UNIX-like tools will be developed, such as:

6.2. FUTURE WORK 85

• grep_abc
Prints melodic lines that match a pattern

• diff_abc
Compares scores, for instance, voice by voice

• cut_abc, sed_abc, head_abc, tail_abc, . . .

Other tools are planned to be developed:

• transpose_abc
Transposes a score up or down by an interval. There are already some tools
that perform this task, such as abc2abc [7] and the Perl script transpose_abc.pl [28].

It’s desired that this feature is available as a polymorphic ABC::DT’s func-
tion, i.e., it may be applied to the note element, as well to the key element
and also an accompaniment chord.

• fugue_abc
Similar to canon_abc, only that each voice may change the pitch of the orig-
inal theme. The fugue form, is not simple and has more details to its struc-
ture, however this tool may serve as an initial structure to build one.

For the existing tools a few improvements will be done as well:

wc_abc

• Add more counts

• Provide options to select specific counts from the output

canon_abc

• Add the option to assign a name to a voice

• Add the option to assign a MIDI instrument to a voice

find_chords_abc

• Add more chord formations to find

detect_errors_abc

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Add more errors to detect

• Error fixing

– Incomplete measures⇒ Add Rests

– Overflowing measures ⇒ For example, comment the exceeding
elements and annotate a FIXME

– Final bar⇒ Add bar

References

[1] gnuplot. http://www.gnuplot.info/. Tool.

[2] Maxima. http://maxima.sourceforge.net/. Computer algebra system.

[3] midi. http://www.midi.org/. Technical standard.

[4] Stratego. http://strategoxt.org/Stratego/StrategoLanguage. Lan-
guage.

[5] Tikz. http://www.texample.net/tikz/. TeX package.

[6] J. Albrecht and D. Huron. On the emergence of the major-minor system:
Cluster analysis suggests the late 16th century collapse of the dorian and
aeolian modes.

[7] James Allwright and Seymour Shlien. abc2abc. http://abc.sourceforge.

net/abcMIDI/. Tool.

[8] James Allwright and Seymour Shlien. abc2midi. http://abc.sourceforge.
net/abcMIDI/. Tool.

[9] J.J. Almeida, N.R. Carvalho, and J.N. Oliveira. Wiki::score - a collabora-
tive environment for music transcription and publishing. 2012. http:

//wiki-score.org/.

[10] I Antonopoulos, A Pikrakis, S Theodoridis, O Cornelis, D Moelants, and
M Leman. Music retrieval by rhythmic similarity applied on greek and
african traditional music. 2007.

[11] Christopher Ariza and Michael Scott Cuthbert. Modeling Beats, Accents,
Beams, and Time Signatures Hierarchically with music21 Meter Objects.

87

http://www.gnuplot.info/
http://maxima.sourceforge.net/
http://www.midi.org/
http://strategoxt.org/Stratego/StrategoLanguage
http://www.texample.net/tikz/
http://abc.sourceforge.net/abcMIDI/
http://abc.sourceforge.net/abcMIDI/
http://abc.sourceforge.net/abcMIDI/
http://abc.sourceforge.net/abcMIDI/
http://wiki-score.org/
http://wiki-score.org/

88 REFERENCES

[12] Sue Atkins, Jeremy Clear, and Nicholas Ostler. Corpus Design Criteria. Lit-
erary and Linguistic Computing, 1992.

[13] Bruno Azevedo and José João Almeida. ABC with a UNIX Flavor. Sympo-
sium on Languages, Applications and Technologies, 29, 2013.

[14] M. Balaban. A Music Workstation Based on Multiple Hierarchical Views of Music.
State University of New York at Albany, Department of Computer Science,
1987.

[15] B. Benward and M. Saker. Music: In Theory and Practice. McGraw-Hill, 2003.

[16] J Bilmes. A Model for Musical Rhythm. 1992.

[17] A Brinkman. A Data Structure for Computer Analysis of Musical Scores.
1984.

[18] William Buxton, William Reeves, Ronald Baecker, and Leslie Mezei. The Use
of Hierarchy and Instance in a Data Structure for Computer Music. Computer
Music Journal, 1978.

[19] W Chai and B Vercoe. Folk music classification using hidden Markov mod-
els. In Proceedings of International Conference on Artificial Intelligence. Citeseer,
2001.

[20] Darrell Conklin. Representation and Discovery of Vertical Patterns in Music.
Music and Artificial Intelligence, LNCS:2445, 2002.

[21] Michael Scott Cuthbert and Lisa Friedland. Feature extraction and machine
learning on symbolic music using the music21 toolkit. 2011.

[22] Michael Scott Cuthbert and Ben Houge. Music21. http://web.mit.edu/

music21/. Toolkit.

[23] Roger B. Dannenberg. A structure for efficient update, incremental redisplay
and undo in graphical editors. Software: Practice and Experience, 1990.

[24] Roger B Dannenberg. A Brief Survey of Music Representation Issues, Tech-
niques, and Systems. Computer Music Journal, 1993.

http://web.mit.edu/music21/
http://web.mit.edu/music21/

REFERENCES 89

[25] José João Dias de Almeida. Dicionários dinâmicos multi-fonte. PhD thesis,
Universidade do Minho, 2003.

[26] Remo Dentato. Abcp. https://sites.google.com/site/abcparser/.
Parser.

[27] André Fernandes dos Santos. Contributions for building a Corpora-Flow
system. Master’s thesis, Universidade do Minho, Portugal, 2011.

[28] Matthew J. Fisher. tanspose_abc. http://moinejf.free.fr/transpose_

abc.pl. Perl script.

[29] Guido Gonzato. Abc plus project. http://abcplus.sourceforge.net/.
Project.

[30] Enric Guaus and Perfecto Herrera. A basic system for music genre classifi-
cation. Audio, 2007.

[31] Henkjan Honing. Issues on the representation of time and structure in mu-
sic. Contemporary Music Review, 1993.

[32] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music
notation–an algebra of music. Journal of Functional Programming, 1996.

[33] S. Hunston. Corpora in Applied Linguistics. Cambridge Applied Linguistics.
Cambridge University Press, 2002.

[34] MakeMusic Inc. Finale. http://www.finalemusic.com/. Tool.

[35] Jeffrey J. Welty. Music::abc::archive. http://search.cpan.org/~weltyjj/

Music-ABC-Archive-0.01/Archive.pm. Perl Module.

[36] Atte André Jensen. abctool. http://atte.dk/abctool/. Tool.

[37] Ian Knopke. The Perlhumdrum And Perllilypond Toolkits For Symbolic
Music Information Retrieval.

[38] Tomaž Kosar, Pablo A Barrientos, Marjan Mernik, et al. A preliminary study
on various implementation approaches of domain-specific language. Infor-
mation and Software Technology, 2008.

https://sites.google.com/site/abcparser/
http://moinejf.free.fr/transpose_abc.pl
http://moinejf.free.fr/transpose_abc.pl
http://abcplus.sourceforge.net/
http://www.finalemusic.com/
http://search.cpan.org/~weltyjj/Music-ABC-Archive-0.01/Archive.pm
http://search.cpan.org/~weltyjj/Music-ABC-Archive-0.01/Archive.pm
http://atte.dk/abctool/

90 REFERENCES

[39] Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Varanda João Maria Pereira,
Matej Črepinšek, Cruz Daniela Da, and Rangel Pedro Henriques. Compar-
ing general-purpose and domain-specific languages: An empirical study.
Computer Science and Information Systems, 2010.

[40] T Langlois and G Marques. Automatic Music Genre Classification Using a
Hierarchical Clustering and a Language Model Approach. 2009.

[41] Nils Liberg. Easyabc. http://www.nilsliberg.se/ksp/easyabc/. Editor.

[42] Recordare LLC. Musicxml. http://www.makemusic.com/musicxml. Musical
Notation.

[43] Yu-Lung Lo Yu-Lung Lo and Yi-Chang Lin Yi-Chang Lin. Content-based
music classification. 2, 2010.

[44] N Maddage, Haizhou Li, and M Kankanhalli. A Survey of Music Structure
Analysis Techniques for Music Applications. Recent Advances in Multimedia
Signal Processing and Communications, 231, 2009.

[45] B Manaris, P Roos, P Machado, D Krehbiel, L Pellicoro, and J Romero. A
corpus-based hybrid approach to music analysis and composition. In Pro-
ceedings of the National Conference on Artificial Intelligence, volume 22. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[46] Jean-François Moine. abcm2ps. http://moinejf.free.fr/. Tool.

[47] Jean-François Moine. tclabc. http://moinejf.free.fr/. Tool.

[48] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lilypond. http://lilypond.
org/. Musical Notation.

[49] T M Oliwa. Genetic algorithms and the abc music notation language for rock
music composition. In Proceedings of the 10th annual conference on Genetic and
evolutionary computation. ACM, 2008.

[50] Jukka Paakki. Attribute grammar paradigms—a high-level methodology in
language implementation. ACM Computing Surveys (CSUR), 27, 1995.

http://www.nilsliberg.se/ksp/easyabc/
http://www.makemusic.com/musicxml
http://moinejf.free.fr/
http://moinejf.free.fr/
http://lilypond.org/
http://lilypond.org/

[51] E.S. Raymond. The art of Unix programming. Addison-Wesley Professional,
2004.

[52] A Smaill, G Wiggins, and M Harris. Hierarchical music representation for
composition and analysis. Computers and the Humanities, 1993.

[53] Muralidhar Talupur, Suman Nath, and Hong Yan. Classification of Music
Genre. Building, pages 1–5, 2003.

[54] Ah-hwee Tan. Text Mining : The state of the art and the challenges. vol-
ume 8. Citeseer, 1999.

[55] Avid Technology. Sibelius. http://http://www.sibelius.com/. Tool.

[56] UNIX. awk. http://www.gnu.org/software/gawk/manual/gawk.html. Tool.

[57] World Wide Web Consortium (W3C). Xpath. http://www.w3.org/TR/

xpath/. Language.

[58] Chris Walshaw. Abc notation. http://abcnotation.com/. Musical Notation.

[59] Geraint Wiggins, Mitch Harris, and Alan Smaill. Representing music for
analysis and composition. In M Balaban, K Ebcio Vglu, O Laske, C Lischka,
and L Soriso, editors, Proceedings of the Second Workshop on AI and Music.
Dept. of Artificial Intelligence, Edinburgh, Association for the Advancement
of Artificial Intelligence, 1989.

[60] M. Wynne. Developing linguistic corpora: a guide to good practice. Oxbow
Books, 2005.

91

http://http://www.sibelius.com/
http://www.gnu.org/software/gawk/manual/gawk.html
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://abcnotation.com/

92 REFERENCES

Appendix A

abcm2ps’s parser IR

This appendix presents an Haskell specification of the serialized structure gener-
ated by an ABC processing tool’s parsing stage.

-- * Type definitions

data AbcTunes = AbcTunes [AbcTune]

-- Tune definition
data AbcTune = AbcTune {

abc_vers :: Int,
client_data :: string,
micro_tb :: [Int],
symbols :: [AbcSym]

}

-- Symbol Definition
data AbcSym = AbcSym {

type :: Int,
state :: Int,
colnum :: Int,
flags :: Int,
linenum :: Int,
text :: String,
comment :: String,
u :: SymInfo

93

94 APPENDIX A. ABCM2PS’S PARSER IR

}

-- Tune Information Definition
data SymInfo = Key { -- K: info

sf :: Int,
empty :: Int,
exp :: Int,
mode :: Int,
nacc :: Int,
octave :: Int,
pits :: [Int],
accs :: [Int]
}

| Length { -- L: info
base_length :: Int
}

| Meter { -- M: info
wmeasure :: Int,
nmeter :: Int,
expdur :: Int,
meter :: [MeterDef]
}

| Tempo { -- Q: info
str1 :: String,
length :: [Int],
value :: String,
str2 :: String
}

| Voice { -- V: info
id :: String,
fname :: String,
nname :: String,
scale :: Float,
voice :: Int,
octave :: Int,

95

merge :: Int,
stem :: Int,
gstem :: Int,
dyn :: Int,
lyrics :: Int,
gchord :: Int
}

| Bar { -- bar, mrest (multi-measure rest) or mrep (measure repeat)
type :: Int,
repeat_bar :: Int,
len :: Int,
dotted :: Int,
dc :: Deco
}

| Clef { -- clef (and staff!)
name :: String,
staffscale :: Float,
stafflines :: Int,
type :: Int,
line :: Int,
octave :: Int,
transpose :: Int,
invis :: Int,
check_pitch :: Int
}

| Note { -- note, rest
note :: NoteDef
}

| User { -- user defined accent
symbol :: Int,
value :: Int
}

| Eoln { -- end of line
type :: Int

96 APPENDIX A. ABCM2PS’S PARSER IR

}
| VOver { -- voice overlay

type :: Int,
voice :: Int
}

| Tuplet { -- tuplet (n:t:x
p_plet :: Int,
q_plet :: Int,
r_plet :: Int
}

-- Meter Definition
data MeterDef = MeterDef {

top :: String,
bot :: String
}

-- Note Definition
data NoteDef = NoteDef { -- note or rest

pits :: [Int],
lens :: [Int],
accs :: [Int],
sl1 :: [Int],
sl2 :: [Int],
ti1 :: [Int],
decs :: [Int],
chlen :: Int,
nhd :: Int,
slur_st :: Int,
slur_end :: Int,
brhythm :: Int,
dc :: Deco
}

-- Decoration Definition
data Deco = Deco { -- decorations

n :: Int,

97

h :: Int,
s :: Int,
t :: [Int]
}

98 APPENDIX A. ABCM2PS’S PARSER IR

Appendix B

ABC::DT

This appendix presents ABC::DT rules’ list of existing actuators and a list of the
functions that ABC::DT provides.

B.1 ABC::DT Rules’ Actuators

This appendix presents ABC::DT rules’ list of existing actuators.

99

100 APPENDIX B. ABC::DT

Scope Actuator Example Description

GENERAL

<state> ’in_header’ Selects all ABC elements
that appear in con-
text <state> (in_global,
in_header, in_tune,
in_header)

SPECIAL

’-default’ Default transformation for
unselected ABC elements

’-end’ General post processing

PSCOM

’pscom’ Selects all formatting com-
mands; Any element start-
ing with ’%%’

’FORMAT’ Selects all formatting com-
mands

’FORMAT::’ . <format-
ting_command>

’FORMAT::staves’ Selects a specific format-
ting command

’MIDI’ Selects all abcMIDI com-
mands

’MIDI::’ . <abc_midi> ’MIDI::channel’ Selects a specific abcMIDI
command

B.1. ABC::DT RULES’ ACTUATORS 101

Scope Actuator Example Description

NOTE

’note’ Selects all ABC elements that are
notes

’note::’ . <note> ’note::C’ Selects a specific note

’V:’ . <voice_name> .
’::’ . ’note’

’V:Tenor::note’ Selects a note that appears in
the context of a voice with name
<voice_name>

’V:’ . <voice_id> . ’::’
. ’note’

’V:2::note’ Selects a note that appears in
the context of a voice with id
<voice_id>

’V:’ . <voice_name> .
’::’ . ’note::’ . <note>

’V:Tenor::note::C’ Selects a specific note that ap-
pears in the context of a voice
with name <voice_name>

’V:’ . <voice_id> . ’::’
. ’note::’ . <note>

’V:2::note::C’ Selects a specific note that ap-
pears in the context of a voice
with id <voice_id>

REST

’rest’ Selects all ABC elements that are
rests

’V:’ . <voice_name> .
’::’ . ’rest’

’V:Tenor::rest’ Selects a rest that appears in the
context of a voice with name
<voice_name>

’V:’ . <voice_id> . ’::’
. ’rest’

’V:2::rest’ Selects a rest that appears in
the context of a voice with id
<voice_id>

BAR

’bar’ Selects all ABC elements that are
bars

<bar> ’:|’ Selects a specific bar

’V:’ . <voice_name> .
’::’ . ’bar’

’V:Tenor::bar’ Selects a bar that appears in the
context of a voice with name
<voice_name>

’V:’ . <voice_id> . ’::’
. ’bar’

’V:2::bar’ Selects a bar that appears in
the context of a voice with id
<voice_id>

102 APPENDIX B. ABC::DT

Scope Actuator Example Description

GCHORD

’gchord’ Selects all ABC elements that are ac-
companiment chords

’gchord::’ .
<gchord>

’gchord::F’ Selects a specific accompaniment
chord

<type> . ’::gchord’ ’note::gchord’ Selects an accompaniment chord that
is associated with a <type> (note, rest
or bar)

<type> . ’::gchord’
. <gchord>

’note::gchord::F’ Selects a specific accompaniment
chord that is associated with a <type>
(note, rest or bar)

DECO

’deco’ Selects all ABC elements that are dec-
orations/ornaments

<deco> ’!ff!’ Selects a specific decoration

<type> . ’::deco’ ’note::deco’ Selects a decoration that is associated
with a <type> (note, rest or bar)

<type> . ’::’ .
<deco>

’note::!ff!’ Selects a specific decoration that is as-
sociated with a <type> (note, rest or
bar)

CLEF

’clef’ Selects all ABC elements that are clefs

<state> . ’::clef’ ’in_tune::clef’ Selects a clef that appears in con-
text <state> (in_global, in_header,
in_tune, in_header)

B.1. ABC::DT RULES’ ACTUATORS 103

Scope Actuator Example Description

INFO

’info’ Selects all ABC elements that are in-
fo/headers (key, length, meter, voice,
...)

<info> ’K:’ Selects a specific info/header (key,
length, meter, voice, ...)

<state> . ’::info’ ’in_line::info’ Selects an info/header (key, length,
meter, voice, ...) that appears in
context <state> (in_global, in_header,
in_tune, in_header)

<state> . ’::’ .
<info> . ’:’

’in_line::K:’ Selects a specific info/header (key,
length, meter, voice, ...) that ap-
pears in context <state> (in_global,
in_header, in_tune, in_header)

’M:’ . <meter> ’M:3/4’ Selects a meter with text <meter>

<state> . ’::M:’ .
<meter>

’in_line::M:3/4’ Selects a meter with text <meter> that
appears in context <state> (in_global,
in_header, in_tune, in_header)

’V:’ .
<voice_name>

’V:Tenor’ Selects a voice with name
<voice_name>

’V:’ . <voice_id> ’V:2’ Selects a voice with id <voice_id>

<state> . ’::V:’ .
<voice_name>

’in_line::V:Tenor’ Selects a voice with name
<voice_name> that appears in
context <state> (in_global, in_header,
in_tune, in_header)

<state> . ’::V:’ .
<voice_id>

’in_line::V:2’ Selects a voice with id <voice_id> that
appears in context <state> (in_global,
in_header, in_tune, in_header)

OTHER

<type> ’tuplet’ Selects all ABC elements that are
<type> (eoln (end of line), mrest
(measure rest), mrep (measure re-
peat), v_over (voice overlay) or tu-
plet)

104 APPENDIX B. ABC::DT

B.2 ABC::DT Functions

This appendix presents a list of the functions that ABC::DT provides.

Function Arguments Description Notes

dt() $abc_file,
%rules

Processes ABC tunes. Re-
ceives the filename of an ABC

tune and a set of functions
(%rules) defining the process-
ing and associated values for
each ABC element.

dt_string() $abc_string,
%rules

Processes ABC tunes. Re-
ceives an ABC tune in string
format and a set of functions
(%rules) defining the process-
ing and associated values for
each ABC element.

toabc() $sym

ABC::DT main processor’s de-
fault function. The identity
function. It produces the
original ABC for a given IR el-
ement (ABC element)

Inspired on Jean-
François Moine’s
tclabc sym_dump_i
function.

get_chords() $sym

Produces the guitar/accom-
paniment chords that come
associated with a note, rest or
bar.

get_key()
Returns the current voice’s
key

get_length()
Returns the current voice’s
note length

get_meter()
Returns the current voice’s
tune meter

B.2. ABC::DT FUNCTIONS 105

Function Arguments Description Notes

get_wmeasure()
Returns the current voice’s
expected measure duration

get_time()

Returns the elapsed time (in
the internal time representa-
tion) until the current ele-
ment.

get_time_ql()

Returns the elapsed time (in
quarter notes) until the cur-
rent element.

get_chord_step()
$sym,
$chord_step,
$test_root

Returns the (first) note struc-
ture found on the chord
($sym) (ABC element note) at
the provided scale degree
($chord_step). Returns undef

if none can be found.

Inspired in Music21
music21.chord mod-
ule’s getChordStep()
method.

get_fifth() $sym

Returns a note structure de-
scribing the fifth of the chord
($sym) (ABC element note).
Shortcut for get_chord_step(5).

Inspired in Music21
music21.chord mod-
ule’s getFifth() method.

get_third() $sym

Returns a note structure de-
scribing the third of the chord
($sym) (ABC element note).
Shortcut for get_chord_step(3).

Inspired in Music21
music21.chord mod-
ule’s getThird() method.

get_seventh() $sym

Returns a note structure
describing the seventh of
the chord ($sym) (ABC el-
ement note). Shortcut for
get_chord_step(7).

Inspired in Music21
music21.chord mod-
ule’s getSeventh()
method.

106 APPENDIX B. ABC::DT

Function Arguments Description Notes

is_major_triad() $sym

Returns True if the chord
($sym) (ABC element note) is a
Major Triad, that is, if it con-
tains only notes that are either
in unison with the root, a major
third above the root, or a per-
fect fifth above the root. Ad-
ditionally, it must contain at
least one of each third and fifth
above the root. The chord must
be spelled correctly. Otherwise
returns False.

Inspired in Music21
music21.chord mod-
ule’s isMajorTriad()
method.

is_minor_triad() $sym

Returns True if the chord
($sym) (ABC element note) is a
Minor Triad, that is, if it con-
tains only notes that are either
in unison with the root, a mi-
nor third above the root, or
a perfect fifth above the root.
Additionally, it must contain at
least one of each third and fifth
above the root. The chord must
be spelled correctly. Otherwise
returns False.

Inspired in Music21
music21.chord mod-
ule’s isMinor() method.

is_dominant_
seventh()

$sym

Returns True if the chord
($sym) (ABC element note) is a
Dominant Seventh, that is, if it
contains only notes that are ei-
ther in unison with the root, a
major third above the root, a
perfect fifth, or a major seventh
above the root. Additionally,
must contain at least one of
each third and fifth above the
root. Chord must be spelled
correctly. Otherwise returns
false.

Inspired in Music21
music21.chord mod-
ule’s isDominantSev-
enth() method.

B.2. ABC::DT FUNCTIONS 107

Function Arguments Description Notes

find_consecutive_
notes_in_measure()

$args

Returns a list of consecutive
note structures belonging to
the same measure. Receives
an hash of options to filter
the search ($args).

Inspired in Music21
music21.stream mod-
ule’s findConsecu-
tiveNotes() method.

root() $sym

Looks for the chord’s ($sym)
root by finding the note with
the most 3rds above it.

Inspired in Music21
music21.chord mod-
ule’s root() method.

get_pitch_class() $note

Returns the pitch class of the
note. The pitch_class is a
number from 0-11, where 0
= C, 1 = C#/D-, etc.

Inspired in Music21
music21.pitch mod-
ule’s pitchClass at-
tribute.

get_pitch_name() $note
Returns the pitch name of a
note: A-flat, C-sharp.

Inspired in Music21
music21.pitch module.

108 APPENDIX B. ABC::DT

Appendix C

Pachelbel’s Canon

This appendix presents Pachelbel’s Canon. First only the melodic part, next the
accompaniment part and finally the whole score.

C.1 Melody

This appendix presents Pachelbel’s Canon’s melodic part.

Listing C.1: pachelbel_canon_melody.abc

X: 1
T : Canon per V i o l i n i e Basso
C: Johann Pachelbe l
C:(1653−1706)
M:C
L:1/4
K:D
f4| e4| d4| c4 |B4| A4| B4| c4 |
d4 |c4 |B4 |A4 |G4 |F4 |G4 |E4 |
D2F2 |A2G2 |F2D2 |F2E2 |D2B, 2 |D2A2 |G2B2 |A2G2 |
F2D2 |E2c2 |d2f2 |a2A2 |B2G2 |A2F2 |D2d2 |Td3c |
dcdD |CAEF |DdcB |cfab |gfeg |fedc |BAGF |EGFE |
DEFG |AEAG |FBAG |AGFE |DB, Bc |dcBA |GFEB |ABAG |
F2f2 |e4 |z2d2 |f4 | b4 |a4 |b4 |c ’ 4 |
d ’ 2 d2 |c4 |z2B2 |d4 |d4−|d2d2 |d2g2 |e2a2 |

109

110 APPENDIX C. PACHELBEL’S CANON

af/g/ af/g/ |a/A/B/c/ d/e/ f /g/ |fd/e/ fF/G/ |A/B/A/G/ A/F/G/A/ |GB/A/
GF/E/ |F/E/D/E/ F/G/A/B/ |GB/A/ Bc/d/ |A/B/c/d/ e/ f /g/a/ |

fd/e/ f e /d/ |e/c/d/e/ f /e/d/c/ |dB/c/ dD/E/ |F/G/F/E/ F/d/c/d/|Bd/c/
BA/G/ |A/G/F/G/ A/B/c/d/ |Bd/c/ dc/B/ |c/d/e/d/ c/d/B/c/ |

d2d2|c4|z2B2|d4|D4|D2D2|D2G2|A2E2|
F2f2 |e4 |z2d2 |A4 | B4 |A4 |B4 |c4 |
dcdD |CAEF |DdcB |cfab |gfeg |fedc |BAGF |EGFE |
DEFG |AEAG |FBAG |AGFE |DB, Bc |dcBA |GFEB |ABAG |
F2D2 |E2c2 |d2f2 |a2A2 |B2G2 |A2F2 |D2d2 |c2E2 |
D2F2 |A2G2 |F2D2 |F2E2 |D2B, 2 |D2A2 |G2B2 |A2c2 |
d4 |c4 |B4 |A4 |G4 |F4 |G4 |A4 |
f4| e4| d4| c4 |B4| A4| B4| c4 |

Canon per Violini e Basso
Johann Pachelbel

(1653-1706)

tr

C.2. ACCOMPANIMENT 113

C.2 Accompaniment

This appendix presents Pachelbel’s Canon’s accompaniment part.

Listing C.2: pachelbel_canon_accompaniment.abc

X: 1
T : Canon per V i o l i n i e Basso
C: Johann Pachelbe l
C:(1653−1706)
M:C
L:1/4
K:D bass
D,4|A, , 4 | B , , 4 | F , , 4 |G, , 4 | D, , 4 | G, , 4 | A, , 4 |

Canon per Violini e Basso
Johann Pachelbel

(1653-1706)

Figure C.1: Pachelbel’s Canon accompaniment

C.3 Output generated by canon_abc

This appendix presents Pachelbel’s Canon’s whole score.

Listing C.3: pachelbel_canon.abc

X: 1
T : Canon per V i o l i n i e Basso
C: Johann Pachelbe l
C:(1653−1706)
M:C
L:1/4
K:D
V: 1
Z8|
f4| e4| d4| c4| B4| A4| B4| c4|

114 APPENDIX C. PACHELBEL’S CANON

d4| c4| B4| A4| G4| F4| G4| E4|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2G2|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| Td3c|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2f2| e4| z2d2| f4| b4| a4| b4| c ’4|
d ’ 2 d2| c4| z2B2| d4| d4−|d2d2| d2g2| e2a2|
af/g/ af/g/| a/A/B/c/ d/e/ f /g/| fd/e/ fF/G/| A/B/A/G/ A/F/G/A/| GB/A/

GF/E/| F/E/D/E/ F/G/A/B/| GB/A/ Bc/d/| A/B/c/d/ e/ f /g/a/|
fd/e/ f e /d/| e/c/d/e/ f /e/d/c/| dB/c/ dD/E/| F/G/F/E/ F/d/c/d/|Bd/c/

BA/G/| A/G/F/G/ A/B/c/d/| Bd/c/ dc/B/| c/d/e/d/ c/d/B/c/|
d2d2|c4|z2B2|d4|D4|D2D2|D2G2|A2E2|
F2f2| e4| z2d2| A4| B4| A4| B4| c4|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| c2E2|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2c2|
d4| c4| B4| A4| G4| F4| G4| A4|
f4| e4| d4| c4| B4| A4| B4| c4|
V: 2
Z16|
f4| e4| d4| c4| B4| A4| B4| c4|
d4| c4| B4| A4| G4| F4| G4| E4|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2G2|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| Td3c|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2f2| e4| z2d2| f4| b4| a4| b4| c ’4|
d ’ 2 d2| c4| z2B2| d4| d4−|d2d2| d2g2| e2a2|
af/g/ af/g/| a/A/B/c/ d/e/ f /g/| fd/e/ fF/G/| A/B/A/G/ A/F/G/A/| GB/A/

GF/E/| F/E/D/E/ F/G/A/B/| GB/A/ Bc/d/| A/B/c/d/ e/ f /g/a/|
fd/e/ f e /d/| e/c/d/e/ f /e/d/c/| dB/c/ dD/E/| F/G/F/E/ F/d/c/d/|Bd/c/

BA/G/| A/G/F/G/ A/B/c/d/| Bd/c/ dc/B/| c/d/e/d/ c/d/B/c/|
d2d2|c4|z2B2|d4|D4|D2D2|D2G2|A2E2|
F2f2| e4| z2d2| A4| B4| A4| B4| c4|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| c2E2|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2c2|
d4| c4| B4| A4| G4| F4| G4| A4|
f4| e4| d4| c4| B4| A4| B4| c4|

C.3. OUTPUT GENERATED BY CANON_ABC 115

V: 3
Z24|
f4| e4| d4| c4| B4| A4| B4| c4|
d4| c4| B4| A4| G4| F4| G4| E4|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2G2|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| Td3c|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2f2| e4| z2d2| f4| b4| a4| b4| c ’4|
d ’ 2 d2| c4| z2B2| d4| d4−|d2d2| d2g2| e2a2|
af/g/ af/g/| a/A/B/c/ d/e/ f /g/| fd/e/ fF/G/| A/B/A/G/ A/F/G/A/| GB/A/

GF/E/| F/E/D/E/ F/G/A/B/| GB/A/ Bc/d/| A/B/c/d/ e/ f /g/a/|
fd/e/ f e /d/| e/c/d/e/ f /e/d/c/| dB/c/ dD/E/| F/G/F/E/ F/d/c/d/|Bd/c/

BA/G/| A/G/F/G/ A/B/c/d/| Bd/c/ dc/B/| c/d/e/d/ c/d/B/c/|
d2d2|c4|z2B2|d4|D4|D2D2|D2G2|A2E2|
F2f2| e4| z2d2| A4| B4| A4| B4| c4|
dcdD| CAEF| DdcB| cfab| gfeg| fedc| BAGF| EGFE|
DEFG| AEAG| FBAG| AGFE| DB, Bc| dcBA| GFEB| ABAG|
F2D2| E2c2| d2f2| a2A2| B2G2| A2F2| D2d2| c2E2|
D2F2| A2G2| F2D2| F2E2| D2B,2| D2A2| G2B2| A2c2|
d4| c4| B4| A4| G4| F4| G4| A4|
f4| e4| d4| c4| B4| A4| B4| c4|
V: 2
Z8|
V: 1
Z16|
V: 4
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |

116 APPENDIX C. PACHELBEL’S CANON

D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |
D,4|A, , 4 | B , , 4 | F , , 4 | G, , 4 | D, , 4 | G, , 4 | A, , 4 |

Canon per Violini e Basso
Johann Pachelbel

(1653-1706)

tr

tr

tr

	Introduction
	Context and Motivation
	Project Overview
	Case Studies
	Summary
	Document Structure

	State of the Art
	Musical Notation
	ABC
	LilyPond
	MusicXML

	Internal Representation
	Sequential vs. Hierarchical
	Melody vs. Harmony
	Summary

	Projects and Tools
	Corpora
	Building corpora
	What can be analysed
	Existing Corpora
	Summary

	ABC::DT and ABC processing tools
	Parse ABC Input
	abcm2ps parser's features
	From abcm2ps parser's IR to Perl

	Transform the generated representation
	Processor Algorithm
	ABC::DT Rules
	ABC::DT's main features

	Generate the output
	Summary

	ABC::DT by example
	Paste ABC
	Cat ABC
	Learning ABC
	Wc ABC
	Detect Errors ABC
	Find Chords ABC
	Canon ABC
	Working Together

	Test and Evaluation
	Conclusions and Future Work
	Conclusions
	Future Work

	abcm2ps's parser IR
	ABC::DT
	ABC::DT Rules' Actuators
	ABC::DT Functions

	Pachelbel's Canon
	Melody
	Accompaniment
	Output generated by canon_abc

