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Resumo 

O sono está ligado a uma quantidade bastante considerável de patologias que têm impacto 

direto na maioria das atividades diárias tais como a aprendizagem, memorização ou pro-

dutividade. Assim, reduzir as consequências pessoais e os custos associados com os dis-

túrbios do sono tornou-se num dos maiores desafios das últimas décadas. Patologias como 

distúrbios respiratórios do sono, sonolência, síndrome de pernas inquietas ou distúrbios 

do sono relacionados com o ritmo circadiano são bastante prevalentes, produzindo gran-

des distúrbios no dia-a-dia dos pacientes. Para o diagnóstico e tratamento deste tipo de 

patologias, a capacidade de avaliar o padrão de sono do paciente por períodos de tempo 

mais alargados poderá ser necessária. A necessidade de avaliação de um determinado 

medicamento ou a monitorização da qualidade do sono do paciente ao longo do tempo 

são bons exemplos. O teste clínico PSG, atualmente padrão para a avaliação do sono, é 

um método caro e complexo, disponíveis apenas em hospitais especializados e equipados 

com um laboratório do sono e profissionais qualificados. Para além de nem sempre estar 

disponível, PSG é considerado um procedimento muito penoso devido aos diversos elé-

trodos em contacto com o corpo e cabeça, que causam desconforto e possivelmente um 

padrão de sono anormal. Para além destes incómodos, os pacientes têm ainda que dormir 

num laboratório, sendo continuamente observados ao longo da noite. PSG é, portanto, 

uma técnica cara, geralmente limitada a uma ou duas noites num laboratório do sono. 

Métodos como actigraphy, que utilizam sensores semelhantes a relógios de pulso para 

medir os movimentos corporais dos pacientes, podem dar informações úteis sobre os pa-

drões de sono dos indivíduos durante períodos de tempo mais alargados sem perturbar 

significativamente os hábitos normais de sono dos pacientes. No entanto, este método tem 

várias limitações, uma vez que apenas avalia movimentos corporais, o que é insuficiente 

para informações relativas à arquitetura do sono dos pacientes. 

Para ultrapassar as limitações dos métodos acima descritos, seria relevante a criação de 

um novo procedimento capaz de complementar os já existentes. Um sistema de monito-

rização do sono baseado em informação cardiorrespiratória poderá fornecer mais infor-

mação sobre a arquitetura do sono, de forma não intrusiva e durante períodos de tempo 

alargados, no conforto e privacidade da residência dos pacientes. Esta informação poderia 
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ser utilizada para o rastreio de doenças, acompanhamento e monitorização de tratamentos 

ou mesmo complementar o PSG para o diagnóstico de algumas doenças do sono. 

O sistema apresentado neste trabalho aborda parte desta hipótese, classificando automa-

ticamente várias fases do sono usando apenas informação cardiorrespiratória. Embora os 

dados utilizados para este estudo, tenham sido adquiridos através do uso de sensores de 

contacto, no futuro, esta informação poderá ser obtida através da utilização de métodos 

não intrusivos, que já se encontram disponíveis comercialmente. Esta hipótese é bastante 

interessante porque consegue fornecer mais informação aos profissionais do sono, sem 

interferir com o dia-a-dia do paciente.   
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Abstract 

Sleep pathologies have a direct negative impact into most of daily activities such has 

learning, memorization or productivity. Decreasing the personal burden and the societal 

cost associated with sleep disturbances has become one of the major challenges in the last 

decades. Pathologies like sleep disordered breathing, insomnia, restless leg syndrome or 

circadian rhythm sleep disorders are fairly prevalent, heavily disturbing the life of af-

fected subjects. For the diagnosis and treatment of these disorders, the ability to assess a 

patient’s sleep pattern over longer periods of time may be required. The need of evalua-

tion of a certain medication or the monitoring of the sleep quality of the patient over time 

can be named as good examples. The polysomonographic (PSG) clinical test, current gold 

standard for sleep assessment, is an expensive and complex method only available in 

specialized hospitals equipped with a sleep lab and qualified professionals. Not always 

available, PSG is considered a very stressful procedure because of the various electrodes 

attached to the body and head, which cause discomfort and potentially disrupt the usual 

sleep patterns. Furthermore people need to sleep in an unfamiliar environment while be-

ing observed throughout the entire night. PSG is therefore an expensive technique usually 

limited to one or two nights in a sleep laboratory. Methods like actigraphy, which measure 

body movements, can give useful insight about the sleeping patterns of the subjects during 

longer periods of time without significantly disrupting the normal sleeping habits of a 

person. However this method has several limitations as it only assesses the movements 

of the patients and therefore provides little insight about the subjects’ sleep architecture. 

In order to address the shortcomings of the existing techniques, the introduction of a new 

system, easy and cheap to deploy and use, capable of complementing the existent ap-

proaches is relevant. A sleep monitoring system based on cardiorespiratory data may be 

able to provide bigger insight of the sleep architecture, while having the potential to be 

unobtrusive and able to monitor sleep during longer periods of time, in the comfort and 

privacy of the subject’s own room. Furthermore it can potentially enable the screening of 

diseases, follow-up on treatments, or even complementing PSG for diagnosis of some 

sleep disorders. 
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The system presented in this work addresses part of this system by automatically classi-

fying multiple sleep stages using cardiorespiratory information. Although the data used 

for this study was acquired with contact sensors, in the future, this information might be 

obtained through the use of non-obtrusive methods that are already commercially availa-

ble.  This possibility is interesting as it provides bigger insight of the subject sleeping 

patterns and architecture for the sleep professional, without interfering with the daily life 

of the patient.  
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 Introduction 

Modern lifestyles introduced a wide variety of factors capable of perturbing the ordinary 

habits of the population. Stress, overworking and a fast paced lifestyle made sleep depri-

vation and fatigue a common problem and hence the source of many accidents, depres-

sions, and health related problems. Although sleep is increasingly recognized as im-

portant to public health, it is essential to realize that sleep deprivation is very often due to 

undiagnosed sleep disorders. After a disturbed night of sleep, a person might not feel 

restored and refreshed and be sleepy during the day, but be totally unaware that is sleep-

deprived or has a sleep disorder. On the other hand existing diagnosis are expensive, ob-

trusive, limited to one or two night, and require a patient to sleep in an unfamiliar envi-

ronment. The solution to this problem may reside in new technologies in the area of am-

bient assisted living that may provide new solutions for a better and cheaper care provid-

ing. 

 Ambient assisted living 

The continuous increase of older population in Europe and worldwide, associated with 

increased costs of healthcare favor the deployment of AAL intelligent systems for a bet-

ter, healthier and safer life in the preferred living environment. AAL comprises concepts, 

products and services that interlink and improve new technologies and the social envi-

ronment, with a focus on older people. 

AAL relies greatly on Ambient Intelligence (AmI) to provide seamless and unobtrusive 

interaction in the human environment, thus radically moving away from more traditional 

assistive technologies towards universal access.  

Ambient Intelligence is a relatively new field of Artificial Intelligence, in which comput-

ers interaction is made in a more natural way since it’s made using friendly interfaces 

such as gestures. The underlying goal of Ambient Intelligence is to involve a wide variety 

of different technologies, hiding their presence from users or soothingly integrate them 

within the surrounding context as augmented physical objects, rather than technological 
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gadgets. This methodology makes ICT accessible and usable for the largest possible pop-

ulation and takes into account the requirements of older users. 

The AAL domains range from the AAL for home and mobile support, including AAL for 

health, rehabilitation and care, personal and home safety and security, AAL in the com-

munity, addressing social inclusion, entertainment and mobility and lastly AAL at work, 

addressing the needs of older people in the workplace. 

 AAL for health, rehabilitation and care 

In this work we will be focusing on AAL for health, rehabilitation and care, specifically 

home care monitoring systems, which are intelligent technologies capable of monitoring 

home inhabitants in their daily activities, and thus preventing health and security risks or 

alerting family members or healthcare providers when specific situations occur. Current 

efforts in this context address fall detection and prevention, detection of helplessness, as 

well as the long term vital signals monitoring. 

 The monitoring of the vital signs during sleep plays an important role in the quality of 

life of an individual and therefore in the AAL context. The available knowledge has es-

tablished that sleep serves an important function, as evidence by the rebound of sleep loss 

and the developmental, functional, and metabolic impairments produced by sleep depri-

vation. Persons experiencing sleep insufficiency are more likely to suffer from chronic 

diseases such as hypertension, diabetes, depression, and obesity, as well as from cancer, 

increased mortality, and reduced quality of life and productivity[1]. 

The analysis of a survey taken in the United States in 2009, regarding perceived insuffi-

cient rest or sleep, and on sleep behavior, determined that among 74,571 adult respond-

ents in 12 states, 35.3% reported  less than 7 hours of sleep during a typical 24-hour 

period, 48.0% reported snoring, 37.9% reported unintentionally falling asleep during the 

day at least once in the preceding month, and 4.7% reported nodding off or falling asleep 

while driving at least once in the preceding month [2]. 

Although sleep is increasingly recognized as important to public health, it is important to 

realize that sleep deprivation is very often due to undiagnosed sleep disorders. After a 

typical night's sleep, a person might not feel restored and refreshed and be sleepy during 
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the day, but be totally unaware that is sleep-deprived or has a sleep disorder. On the other 

hand existent treatments are expensive, obtrusive, and long-lasting requiring a patient to 

sleep in a sleep clinic which is a hassle to the patient. These facts favor alternative solu-

tions following the AAL approach, capable of monitoring sleep at home, in an unobtru-

sive way during extended periods of time.  

 Sleep monitoring  

Sleep is a natural, periodic and easily reversible state characterized by reduced or absent 

consciousness and sensory activity as well as inactivity of nearly all voluntary muscles. 

It’s a state of extreme rest observed in most animals. Sleep scientists remain in the delicate 

position of not knowing why we sleep, however it is accepted that the function of sleep 

is likely multidimensional and differential depending on the organism’s stage of devel-

opment [3].  

Sleep disorders interfere with the normal sleeping pattern of a patient, and sometimes are 

serious enough to interfere with normal physical, mental and emotional functioning. In-

adequate or non-restorative sleep can markedly impair a patient’s quality of life [4]. Sleep 

disordered breathing, insomnia, restless leg syndrome or circadian rhythm disor-ders may 

need the examination of the patient’s sleeping patterns over extended periods of time for 

a correct diagnosis and treatment. The current gold standard for sleep assessment is the 

clinical procedure known as polysomnography (PSG). This procedure comprises a com-

prehensive recording of the bio-physiological changes that occur during sleep, monitoring 

the brain (EEG), eye movements (EOG), muscle activity or skeletal muscle activation 

(EMG), heart rhythm (ECG) and breathing functions. Due to the number of functions 

monitored in a standard PSG, the number of attached electrodes and the overall complex-

ity of the method, PSG is an expensive method, only available in specialized hospitals 

equipped with a sleep lab and qualified professionals. Moreover, carrying out a PSG test 

forces the patient to spend the night in a sleeping lab which cause discomfort and poten-

tially an unusual sleeping pattern. The “first night effect” is good example of a phenom-

enon that may alter the usual sleeping pattern of the patient [5–7]. 
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To overcome some these problems, PSG is sometimes complemented by actigraphy. This 

technique is a non-invasive method capable of distinguishing rest from activity cycles. 

Actigraphy sensors are generally watch-shaped devices, which can be worn for several 

weeks on the wrist of the non-dominant arm. An actigraphy sensor, usually equipped with 

accelerometers, continually records the gross movements of the body. Actigraphy has 

been indicated by the American Academy of Sleep Medicine (AASM) as a suitable 

method to assist in the evaluation of patients with circadian disorders and sleep-wake 

disturbances, and also to assess response to therapy of circadian disorders and insomnia 

[8][9]. Although having some advantages over the PSG test, actigraphy is only capable 

of differentiating between rest – wake, which is insufficient for the diagnosis of certain 

diseases. 

As a form of support for sleep assessment techniques, a sleep diary is usually used, in 

which patients are asked to report their perceived sleep quality. The patients use subjec-

tive measures that may turn out to be hard to interpret. Moreover different people have 

different opinions about the quality of their sleep when experiencing a night with similar 

sleep quality. As a consequence data obtained from PSG and data derived from a sleep 

diary often do not coincide very well. An alternative system with objective measures, 

capable of supporting long-term and unobtrusive sleep monitoring at home is therefore 

extremely interesting. 

This work has the aim of developing a system for the analysis of cardiorespiratory signals 

and automatically classify sleeping stages. Through this method, sleep parameters can be 

objectively analyzed in an unobtrusive manner during long periods of time. 

 Scope of the dissertation 

Systems currently implementing multiple sleep stage classification based on cardiorespir-

atory signals are considered to have great potential. This potential comes from the varia-

tions in features related to cardiac or respiratory activities, induced by different sleeping 

stages [10][11]. The use of unobtrusive techniques to retrieve data as well as the use of 

hardware, which is simple and cheap to deploy and use, instead of specific and expensive 

reveals interesting and conforms to the standards of AAL. Moreover this technique is 

promising as it offers objective measures to assess sleep staging. 
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This investigation took as a starting point the work already developed in the Sleep Mon-

itoring project at Philips Personal Health Solutions department [3][4].  

 Objectives 

The goal of this research is to provide a method capable of automatically classify multiple 

sleep stages based on cardiorespiratory data. This method, when integrated in a system 

capable of monitoring and capturing cardiorespiratory data from a patient, should be able 

to monitor the patient’s sleeping patterns over long periods of time, in the comfort of his 

house. Although the available data for this study was collected with contact sensors, in 

the future, these sensors can be substituted with non-obtrusive devices that are already 

commercially available. This method would be a very good complement to other methods 

of sleep assessment and help in the diagnose, treatment and monitoring of patients with 

sleep disturbances. 

In this work, the main objective is to further improve the existent technologies and meth-

ods for the creation of a multiple sleep stage classifier based on cardiorespiratory data. 

To address the objectives proposed, the following tasks will be performed:  

 Research on sleeping patterns and sleep architecture of a normal healthy adult. 

o The aim is to provide new designs to acquire new information for the clas-

sification process. 

 Improve data quality and reduce between-subject variability. 

o Research normalization techniques capable of reducing the differences in 

the features belonging to different subjects.  

o Search for transformations of the features, such as statistical transfor-

mations, capable of providing new information for the classification pro-

cedure. 

 Use an adequate classifier set-up in order to successfully extend the existent work 

for the multiple class situation 

o Research and apply feature selection algorithms. 

o Define and set up an appropriate classifier, capable of good discrimination 

between multiple classes. 
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o Create methods capable of using probabilistic techniques, to further im-

prove classification techniques. 

As a way to have an idea of the overall system, as well as the way the proposed 

objectives and subsystems are going to be organized, Figure 1, shows the archi-

tecture of the system that will be constructed. 

 

Figure 1.System overview 
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 Research methodology 

This work was developed according to an Action-Research methodology. This method is 

suitable for solving a problem that seeks to obtain information leading to its resolution 

through an iterative and recurrent process. This method starts with the identification of 

the problem so that several hypotheses can be formulated on which development work 

will be based. Afterwards, the gathered information will be recompiled, structured and 

analyzed, in order to continuously develop a proposal to solve the identified problem. As 

an end result, one can make conclusions based on the outcomes obtained during the re-

search. 

Using this research model, six complementary steps are defined to achieve the planned 

objectives: 

 Specification of the problem and its characteristics; 

 Incremental update and review of the state of the art; 

 Idealization of new methods and iterative development of the proposed model; 

 Experimentation and implementation of the prototype; 

 Results analysis and conclusions; 

 Diffusion of knowledge with the scientific community. 

 Structure of the document 

This document is organized as follows: Section 1 starts with the description the main 

techniques for sleep assessment focused on the insufficiencies and problems associated 

with them. After defining the main problem, the scope of the project, followed by the 

objectives and research methodology are introduced. 

Section 2 will begin with a brief introduction to sleep medicine, describing the essential 

aspects of normal human sleep and some sleep disorders. Some studies related to sleep 
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assessment are reviewed. Studies that are in the same scope of the research being devel-

oped are presented, examined and compared.  

In section 3 the datasets used in this work are described. A review and a comparison of 

the current data with sleep literature is presented as well. The sleep architecture of the 

subjects of this study will be further analyzed, culminating in the selection of the subjects 

with a normal healthy sleep architecture. 

Section 4 will cover the techniques used to improve the quality of the data and its dis-

criminating power. These techniques will be divided in two distinct procedures, namely 

normalization and transformation. Normalization aims at reducing between-subject vari-

ability while transformation aims at maximizing the number of features with a high dis-

criminative power. The results of the application of this techniques are discussed in this 

section as well. 

Section 5 will describe the classifier, the feature selection algorithm and the probabilistic 

post-processing step used to improve the classification results. This step aims at capturing 

the non-stationary temporal characteristics of sleep.  

The final results are presented, discussed and compared with literature in section 6.  

Finally, section 7 will review the work performed and draw the final conclusions of the 

present work. 
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 Sleep monitoring 

 History of sleep medicine 

It is difficult to determine or even produce an estimated point in time when interest in 

sleep first occurred. Insomnia was reported in ancient Egyptian texts and it is thought that 

opium was used as the first hypnotic medication [5]. Despite early curiosity, the scientific 

interest in sleep has emerged over the past century and the field of sleep medicine itself 

has existed for only about five decades. Sleep medicine is devoted to the diagnosis and 

therapy of sleep disturbances and disorders. 

2.1.1 Early theories 

In the late nineteenth and early twentieth century, a variety of theories were formed re-

garding the nature of sleep. A theory gained popularity around the end of the nineteenth 

century, hypothesizing that toxins were developed during wakefulness and were gradu-

ally eliminated during sleep. Legendre and Pieron injected serum from sleep deprived 

dogs into awake dogs and observed that they became fatigued. The term ‘hypnotoxin’ 

was introduced to describe this endogenous sleep factor, which promoted sleep [6].  

The development of the electroencephalogram (EEG) in 1929 by the German Psychiatrist, 

Hans Berger allowed the examination of brain activity during sleep [7]. This measuring 

technique recorded the electrical activity of the human brain, allowing for a continuously 

and quantitatively measure of the neural activity of the sleeper without disturbing it. In-

vestigation in the following years established the characteristics of the EEG during sleep. 

High amplitude, slow waves, and spindles were found to be typical during sleep while 

wakefulness was characterized by fast and lower amplitude waves and alpha rhythms [8]. 

Using the EEG it became clear that the brain was not idle and that it actually followed a 

synchronized pattern of neuronal activity. 

Sleep stages were first categorized and described in 1937 by Alfred Lee Loomis and his 

team, who distinguished the different electroencephalography features of sleep into five 

levels representing the spectrum from wakefulness to deep sleep [9]. 
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2.1.2 REM sleep 

The phenomenon of rapid-eye movement (REM) sleep and its association with dreams 

was discovered by Eugene Aserinsky, Nathaniel Kleitman and William C. Dement in 

1952 at the University of Chicago [10]. The creation of a method which could measure 

the eye mobility, called electrooculography (EOG), made possible the analysis of the eye 

mobility across the night.  They found that during certain periods in the night, there was 

a substantial increase in the speed of the movement of the eyes. These periods were there-

fore called rapid eye movement (REM) sleep [11]. During their investigation, recurring 

variations were observed, corresponding to cyclical occurrences of REM sleep at intervals 

of 90 to 100 minutes, with intervals tending to be longer toward the end of night. The 

total sleep time spent in REM sleep was estimated to be between 20 and 25% of the whole 

sleep time. The association between REM sleep and dreaming was also established [12]. 

Meanwhile in 1960, Michel Jouvet demonstrated through electromyographic (EMG) re-

cordings that activity and muscle tone are completely suppressed during REM. Presently 

it is established that muscle atonia is a fundamental characteristic of REM sleep [13].  

Because of these discoveries sleep was therefore reclassified into REM and four non-

REM (NREM) stages. 

2.1.3 Sleep clinics and sleep disorders 

 With the discovery of REM sleep, sleep research relying on all-night sleep recordings 

became standard and was the precursor of sleep medicine and particularly of the clinical 

test, polysomnography.  

The first sleep disorders center was established as a narcolepsy clinic at Stanford Univer-

sity in 1964, evolving into evolved into a full-service sleep disorders clinic by 1970. The 

sleep center was directed by a sleep specialist, and had the ability to perform polysomnog-

raphy and multiple sleep latency tests [14].  

In 1965, sleep apnea was discovered independently by Gastaut, Tassinari and Duron in 

France and Jung and Kuhlo in Germany [15][16].  
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The staging criteria were standardized in 1968 by Allan Rechtschaffen and Anthony 

Kales in the "R&K sleep scoring manual" [17].  

At Stanford University in 1972, respiratory and cardiac measurements became a standard 

of the all-night diagnostic test. In 1974, Dr. Jerome Holland, a member of the Stanford 

group named this test ”polysomnography” [18]. 

Presently people are much more aware of the significance of sleep in their lives as well 

as the consequences of sleep disorders. However the percentage of undiagnosed sleep 

disorders is still extremely high.  

 Normal human sleep 

Healthy sleep is characterized by a consistent and cyclic process in which phases of deep 

sleep alternate with lighter sleep. Normal human sleep is composed by two major phases 

of sleep called REM and NREM (Non Rapid Eye movement). These major phases alter-

nate cyclically across the night. In 2007, the former Rechtschaffen and Kales scoring 

system [28], which was comprised by Wake, Rem and four individual stages of Non-Rem 

sleep, was revised by the AASM, which resulted in several changes. Arousals and respir-

atory, cardiac, and movement events were added and stages III and IV were combined 

into a single stage, stage N3 [28]. Using the AASM definition, NREM sleep is further 

divided in N1, N2 and N3, increasing depth towards N3 which is sometimes also called 

slow-wave sleep. When comparing ASSM and Rechtschaffen and Kales scoring, it is ac-

ceptable to compare N1 to stage I, N2 with stage II and N3 with stages III and IV. 

Presently the current gold standard for sleep assessment is the polysomnography clinical 

test. As mentioned before, this is a very reliable manual scoring performed by sleep pro-

fessionals who visually inspect the recordings of brain activity, eye movements and mus-

cle activity in order to determine, for each period of the night, in which sleep stage the 

subject is. Sleep stages are consequently used to plot a so-called hypnogram, as illustrated 

in Figure 1. If sleep diseases are suspected, sleep professionals might use additional sen-

sor modalities such as using respiratory flow and respiratory effort to score apnea events, 

or use video recordings to diagnose REM behavior disorder.  
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According the AASM guidelines, the night is divided into 30-second epochs which are 

manually classified as Wake, N1, N2, N3 or REM.  

Stage N1 is common in the beginning of the sleeping period, accompanied with slow eye 

movement and a decline in the tonic activity when compared with the wake state. It is 

normally a transition phase between wake and sleep. It can also emerge briefly during 

transitions from sleep to wake or after brief body movements.  People are normally una-

ware of this stage and when aroused they often believe they were still wake. The EEG is 

characterized by relatively low voltage slow activity in the theta range (4 - 7Hz). N1 is 

distinguishable from relaxed wake, with closed eyes, since wake during wake higher fre-

quency alpha waves (8 - 13Hz) are generated by the brain [17].   

Stage N2, is marked by the appearance of EEG spindles (fast activity in the 7-14 Hz range 

lasting at least half a second) and K-Complexes, which consist of high-voltage waves 

with a negative sharp component followed by a positive component. Cardiac and respir-

atory frequencies are usually slower than during the wake state. Conscious awareness 

completely vanishes [3].  

Stage N3, is the deep sleep stage where slow-wave sleep (SWS) occurs. This stage is 

scored if delta waves, large amplitude figures with a frequency range of 0.5 - 2Hz, occupy 

at least 20% of the thirty second epoch in the EEG. These very pronounced waves are 

much “slower”, have a lower frequency, than those characteristic of N1 and N2, explain-

ing why this stage is also called slow-wave sleep. Deep sleep is characterized by lower 

variations in respiratory and cardiac activity when compared against the other sleep 

stages. Sleepwalking, sleep-talking or other parasomnias are typically encountered in this 

stage [29]. 

REM sleep represents an active form of sleep and is characterized by low amplitude and 

high frequency cerebral activity, very similar to wake, associated with muscle atonia and 

rapid eye movements. Both cardiac and respiratory activity are highly variable during 

REM sleep. Most dreams occur in this phase of sleep. REM sleep can be further divided 

in tonic and phasic components. Tonic REM sleep is associated with near paralysis of 

most muscular groups. Only the diaphragm, the cardiac muscle, and some sphincters at 
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the top and at the bottom of the gastrointestinal tract remain active during REM sleep.  

Transient swings in blood pressure, heart rate changes, and irregular respiration are asso-

ciated with tonic REM sleep as well. Phasic REM sleep is characterized by irregular epi-

sodes of EMG activity and rapid eye movements [17]. 

2.2.1 Sleep architecture 

In a healthy adult, sleeping on a normal schedule, sleeps follows a certain architecture 

beginning with NREM, progressing towards N3, before arriving at the first episode of 

REM sleep approximately 80 to 100 minutes after sleep onset. Afterward NREM sleep 

alternates with REM sleep with a periodicity of approximately 90 minutes. Across the 

night the length of the episodes of deep sleep and REM sleep vary. In the first cycles of 

sleep, N3 episodes are longer than REM sleep episodes. As the nigh progresses, N3 epi-

sodes start to be smaller or even absent and REM sleep episodes become longer. In young 

adults, N1 sleep constitutes about 5-10% of the night. The largest amount of sleep time, 

50-60%, is spent in stage N2. Stage N3 constitutes about 10-20% of the total sleeping 

time while REM sleep 20-25% [19]. 

 

Figure 2. Hypnogram of a healthy adult 

Figure 2 illustrates an actual hypnogram of a single night of healthy subject, monitored 

in a sleep laboratory. Hypnograms were developed as an easy tool to present the sleep 

architecture during a period of sleep. They allow the easy visualization of the sleep stages, 

which in turn allow certain parameters which might be indicative of sleep disorders to be 
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easily identified, for example, high sleep fragmentation or low sleep efficiency, too short 

REM sleep onset, long sleep onset, low percentage of deep sleep among others. Each 

epoch correspond to 30 seconds starting from the moment the lights were turned off. In 

this image it is possible to see the NREM - REM cycles as well as the changes in the 

duration of these two stages throughout the night.  

2.2.2 Changes in sleep with age 

In the absence of disorders, the most significant factor affecting total sleep time and sleep 

stages is age. Newborns have so-called passive and active sleep stages, which are the 

precursors of NREM and REM sleep respectively. Newborn infants, during the first 

months of life, sleep 17-18 hours a day, and spend 50% of their sleep time in active sleep. 

The duration of the passive-active sleep cycle is also shorter in the newborn, when com-

paring with NREM-REM cycle in adults, at about 50-60 minutes [20]. Also, SWS is max-

imal in young children and decreases markedly with age. REM sleep and sleep efficiency 

decrease with age as well. 

 

Figure 3. Age related trends for stage 1, stage 2, slow wave sleep (SWS), REM sleep, wake 
after sleep onset (WASO) and sleep onset latency (minutes)  [21] 
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In Figure 3 it is possible to observe how sleeping time is divided according to the age of 

the subjects. Sleep onset latency is the length of time that it takes to accomplish the tran-

sition from wake to sleep. The changes in sleep onset latency are not very significant, and 

remain fairly constant as subject’s age. WASO is the amount of time spent wake after 

sleep has been initiated and before final awakening. It is a good metric for measuring the 

subject’s difficulty to stay asleep, a common occurrence in sleep disorders such as insom-

nia but also a normal occurrence in elderly subjects, since it increases with age. 

Sleep efficiency is the ratio of time spent asleep (total sleep time) to the amount of time 

spent in bed from light out to lights on. Since WASO increases with age, sleep efficiency 

consequently decreases. 

 Sleep disorders 

The prevalence of sleep disorders in the general population is considerably high. In fact 

hundreds of millions of people over the world suffer from sleep disturbances [2]. Sleep 

disorders can be the cause of impaired academic or occupational performance, accidents 

at work or while driving and disturbances of mood and social adjustment. Somnolence 

and the predisposition to fall asleep during the performance of dangerous tasks, is recog-

nized as an important problem in our society. Furthermore, sleep disorders may lead to 

or aggravate serious medical, neurologic and psychiatric problems. There are some com-

mon complaints regarding disturbances in sleep. Patients usually mention problems like 

insomnia, excessive daytime sleepiness and abnormal movements, behaviors or sensa-

tions during sleep or nocturnal awakenings. 

Ever since sleep disorders were first accepted, their classification has been of particular 

interest to clinicians. The Diagnostic Classification of Sleep and Arousal Disorders [22], 

published in 1979, was the first significant classification and organized sleep disorders in 

categories which influenced the current classification systems. In order to standardize the 

sleep disorders and create a systematic approach for their diagnose, the International Clas-

sification of Sleep Disorders (ICSD) was created in 1990 and in 2005 it was updated and 

named ICSD-2 [23]. The sleep disorders were organized into eight distinct categories: 
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1. Insomnias. 

2. Sleep related breathing disorders. 

3. Hypersomnias of central origin not due to a circadian rhythm sleep disorder, sleep 

related breathing disorder or other cause of disturbed nocturnal sleep. 

4. Circadian Rhythm Sleep Disorders. 

5. Parasomnias. 

6. Sleep Related Movement Disorders. 

7. Isolated Symptoms, Apparent Normal Variants, and Unresolved Issues. 

8. Other Sleep Disorders.  

This classification has been widely accepted and used by sleep professionals and has al-

lowed better international communication and cooperation in sleep disorder research.   

2.3.1 Insomnia 

Insomnia is by far the most common form of sleep disturbances [24]. Usually insomnia 

is defined as the symptom of difficulty falling asleep or remaining asleep and occasionally 

as the inability to obtain restorative sleep. Insomnia has a very peculiar characteristic as 

it is both a symptom and a disorder. It can be secondary to another disorder or an inde-

pendent disorder. Thus, insomnia may be classified into primary or secondary, with both 

forms leading to sleep - wake disturbances although the secondary form arises as a func-

tion of psychiatric conditions, medical diseases or substance abuse [25].  Insomnia is usu-

ally linked with a very active life, high levels of stress, age, shift working, and psychiatric 

and medical disorders. It is also more prevalent in women. The clinical assessment of 

insomnia is usually based on a clinical interview with a patient, often supplemented by 

questionnaires, psychological screening tests, sleep diaries, and interviews with the bed 

partner. The use of actigraphy in addition to the questionnaires is a common practice 

before PSG [26]. An efficient assessment and management of insomnia must address 

psychological and behavioral factors such as poor sleep routines with irregular sleep-

wake schedules, hyperarousability, and wrong attitudes and beliefs about sleep. Several 

treatments are applied in order to address primary insomnia. Examples include sleep re-
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striction, stimulus control, cognitive theraphy. Relaxation training and sleep hygiene ed-

ucation are used as well as a combination of those methods, which is referred together as 

cognitive behavior therapy. 

2.3.2 Sleep disordered breathing 

These types of sleep disorders are characterized by an irregular and unnatural respiration 

during sleep. Among this disorders, sleep apnea is by far the most common and well-

known. It is associated Sleep apnea can be distinguished between central apnea and ob-

structive sleep apnea. Central apnea disorders are characterized by diminished or absent 

respiratory effort intermittently or cyclically as a result of central nervous system dys-

function. Obstructive sleep apnea disorders are formed by an obstruction in the airway 

resulting in an increased breathing effort and inadequate ventilation. In adults, obstructive 

sleep apnea is characterized by repetitive episodes of breathing cessation (apneas) or par-

tial upper airway obstruction (hypopneas). The typical consequences are snoring and 

sleep disruption leading to secondary insomnia or excessive daytime sleepiness [28]. It is 

also associated with cardiovascular morbidity and hypertension. Although significant 

prevalent in preschool children and middle age adults, in many countries, up to 90% of 

the affected subjects remain undiagnosed due to the lack of  resources [27–29]. 

 State-of-the-art in home sleep monitoring 

As presented in the previous sections, although sleep disturbances have a significant neg-

ative impact on health, Laboratory-based polysomnography (PSG), the gold standard for 

sleep monitoring, is impractical for long-term and home use. Hence, alternative devices 

have been developed for home sleep assessment and diagnose of sleep disorders. This 

section reviews the literature, providing an overview of available projects and commer-

cially available products for sleep monitoring outside the laboratory or the sleep clinic. 

2.4.1 Actigraphy 

Actigraphy is a non-invasive method that is able to monitor human wake and sleep activ-

ity cycles. An actigraph is generally a watch-shaped device, as seen in Figure 4, worn by 

the patient on the wrist of the non-dominant hand, in order to measure gross motor activ-

ity. It continually records the movements it undergoes over extended periods of time, 



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 18 | António José Almeida Rebelo | Universidade do Minho 

while allowing the patients to proceed with their normal daily routine and to sleep in their 

natural environment. Depending on the type of device, the data can be later transferred to 

a computer or mobile device and further analyzed. The recorded movements, when par-

titioned by thirty second epochs, lead to the widely known feature called activity counts, 

which is a set of numbers expressing the total number of movements within each epoch. 

Based on the acquired data, scoring algorithms are used to identify sleep and wake states 

from the activity counts. This information allows the objective assessment of several 

sleep parameters like time in bed, total sleep time, sleep efficiency or wake after sleep 

onset. Actigraphy is suitable to provide sleep and wake information that can supplement 

PSG tests or be used to pre-screen some patients. Furthermore it can track longitudinal 

sleep information that may be missed by a one-night PSG study. 

Actigraphy has been indicated by the AASM as a suitable method to assist in the evalua-

tion of patients with circadian rhythm disorders, such as advanced sleep phase syndrome, 

delayed sleep phase syndrome or shift work disorder, and also to assess response to ther-

apy of circadian disorders and insomnia [26]. The AASM’s Standards of Practice Com-

mittee (SPC) also provided recommendations for the use of actigraphy in clinical practice. 

 

Figure 4. Actiwatch Spectrum, Philips Electronics 

2.4.2  Unattended portable monitors in the diagnosis of OSA  

As a related project regarding sleep monitoring and diagnosis of obstructive sleep apnea, 

Collop et al. published a review, including an overview [30], and clinical guidelines [31] 
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on portable monitoring methods specifically for the diagnosis of OSA. As a result of the 

work performed, the authors concluded that portable monitoring may be used as an alter-

native to polysomnography (PSG) for the diagnosis of OSA in patients with a high prob-

ability of moderate to severe OSA. For patients with significant comorbid medical con-

ditions, portable monitoring is not appropriate for the diagnosis of OSA, as it may signif-

icantly degrade the accuracy of the system. This method may be indicated for the diag-

nosis of OSA in patients for whom in-laboratory PSG is not possible because of immo-

bility, safety, or critical illness. The portable monitoring must record, at least, airflow, 

respiratory effort, and blood oxygenation. The airflow, effort, and oximetric biosensors 

should be similar to the ones conventionally used for in-laboratory PSG. 

A good example of an unattended portable monitor is the Philips Stardust II. This system 

records the body position as well as the airflow, gathered by the nasal cannula, in Figure 

5, and/or the oral thermistor. The pulse oximetry, gathered by the SpO2 sensor which 

corresponds to the grey sensor in the finger in Figure 5. Pulmonary ventilation is meas-

ured by respiratory inductance plethysmography which consists of two sinusoid wire coils 

installed on a flexible band, one placed around the rib cage under the armpits, visible in 

Figure 5, another placed around the abdomen at the level of the umbilicus (belly button).  

  

Figure 5. Stardust II, Philips Electronics 

Although these methods allow measurements to be performed at home, which greatly 

improves the comfort of the patient who is being monitored, the collected data must be 
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analyzed by a sleep clinician, and the diagnosis of obstructive sleep apnea (OSA) must 

be performed only in conjunction with a comprehensive sleep evaluation. Furthermore, 

the application of the sensors must be performed by an experienced sleep technician or 

the patients must be educated in sensor application. 

2.4.3 Ambulatory polysomnography  

Sleep in a laboratory may not be representative of the typical sleep of a subject suspected 

of a sleep disorder. One of the main reasons is related to the unfamiliarity or intimidation 

with the environment [32]. The labour-saving and cost-saving benefits of home record-

ings as well as the increased comfort, privacy, and convenience are the main advantages 

of ambulatory polysomnography. 

There are a lot of products capable of performing ambulatory polysomnography. Philips 

Alice PDx, visible in Figure 6, is a good example, which is a multi-purpose device capable 

using different sensors depending on the study being performed. Examples of such sen-

sors are the ones used for OSA monitoring as well as others like ECG, EEG and EOG. 

 

Figure 6. Alice PDx, Philips Electronics 

 Unobtrusive monitoring in bed 

Ambulatory PSG systems greatly reduce the problems related to sleep monitoring in an 

unfamiliar environment, potentially diminishing effects such as the “first night effect”. 

However, these types of approaches use obtrusive methods with several contact sensors 

and wires, which decrease the level of comfort of the patient.  Furthermore, these systems 

are still costly to use and not easy to deploy, generally limiting their application to one or 

two nights. Although some modalities such as airflow or neural activity cannot be readily 

replaced by unobtrusive counterparts, other modalities such as cardiac and respiratory 
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activity, and body movements can be monitored using already available commercial sys-

tems.  

2.5.1 Ballistocardiography 

Ballistocardiography is a technique for producing a representation of repetitive motions 

of the human body, induced by the heartbeat, occurring due to acceleration of blood as it 

is ejected and carried through the great vessels. Ballistocardiography obtains mass move-

ments of the body, caused by the heart contraction, giving information regarding the over-

all performance of the circulatory system. Through this technique the mechanical move-

ment of the heart can be captured by unobtrusive methods from the surface of the body. 

An example of a device relying on this technology is the EMFIT’s bed foil sensor in 

Figure 7. Through this type of devices it is possible to unobtrusively acquire cardiac in-

formation as well as movement and respiration information. 

 

Figure 7. Under-Mattress Bed Sensor, Emfit 

2.5.2 Doppler radar 

The Doppler radar, uses the Doppler Effect, to acquire information regarding the velocity 

of the objects at a distance. The Doppler Effect is the change in frequency of a wave, an 

observer experiences, when moving relatively to its source. The radar beams a microwave 

signal against the target, waits for the reflection and analysis the frequency of the returned 

signal, which has been altered due to the target’s motion. Doppler radars have a wide 
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variety of applications including aviation, satellites, meteorology, police speed guns and 

healthcare. 

In the context of sleep monitoring, unobtrusive sleep monitoring devices use the Doppler 

Effect to measure respiration signals. The emitted microwave signals hit the patient’s 

moving chest wall and are modulated in amplitude and phase. The frequency of the mov-

ing chest wall can be calculated through the reflected signal. 

An example of a device using this principle for unobtrusive respiration monitoring during 

sleep is SleepMinder from BiancaMed. This device is capable of unobtrusively monitor 

respiration during sleep and detecting sleep-disordered breathing events. 

 

 

 

Figure 8. An example set up of SleepMinder, Biamcamed [33] 

2.5.3 Video 

Different methods have been proposed that rely on video recording for monitoring sleep 

in an unobtrusive way. For instance Duffy et al.[34] proposed a methodology to access 

the respiration information of the patient based on an optical chest-wall measurement 

system. The system used a low powered helium-neon laser to illuminate the chest wall of 

the patient.  
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In 2010, Kuo et al.[35] sugested a method to monitor gross body movements and body 

positions as well as respiration activity of a sleeping patient. In their study they used near-

infrared camera with a near-infrared lighting source. 

 Sleep stage classification using unobtrusive modalities 

The systems described in the previous section have the potential to use non-obtrusive 

techniques for data collection, which makes then valid options for comfortable, non-ob-

trusive sleep monitoring over extended periods of time. 

In order to compare their performance, the studies presented in this section are described 

in terms of Cohen’s Kappa coefficient. This is a statistical measure of inter-rater agree-

ment for qualitative items. Although there is no consensus about what constitutes a good 

or a bad performance, Landis and Koch [36], characterized values less than zero as indi-

cation of no agreement, 0 to 0.20 as slight agreement, 0.21 to 0.40 as fair agreement, 0.41 

to 0.60 as moderate agreement, 0.61 to 0.80 as substantial agreement, and 0.81 to 1 as 

almost perfect agreement. The metric is further described in section 6.1. 

2.6.1 Sleep and wake Discrimination 

The study described in this document had used the work of Devot et al. [4] developed 

within Philips Research as the starting point. It used a Linear Discriminant (LD) classifier 

trained to classify sleep and wake using actigraphy, cardiac and respiratory features, on a 

dataset comprised of 35 middle-aged subjects (9 healthy, 27 insomniacs, 16 males and 20 

females)  and reported an overall Cohen’s kappa coefficient of agreement of 0.62 (overall 

accuracy of 86.7%) , 0.7 for healthy subjects, 0.61 for insomniacs. 

This system has been further extended with additional features, such as described by Xi 

et al. [3]. Using only actigraphy and features derived from respiratory effort extracted 

from a dataset comprised of nine healthy subjects (eight females) with a mean age of 32 

± 13, it reports a κ of 0.69 (overall accuracy of 95.4%). 

2.6.2 Sleep staging using cardiorespiratory signals 

The work reported by Redmond et al. [37] is a method for the discrimination of Wake, 

Non-REM and REM stages, using ECG and respiratory effort signals. In previous work 
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[38], Redmond et al. executed a similar study, aimed at performing sleep stage classifi-

cation on subjects being assessed for Obstructive Sleep Apnea. The newly developed 

study, aimed at examining the effectiveness of the same system when applied to normal 

healthy subjects. 

The dataset used for this work was composed by 31 male subjects with a mean age of 

42±7 years. 

This study tested and compared the performance of linear and quadratic discriminant clas-

sifiers. Temporal varying priori probability information was introduced in the classifica-

tion results to further increase the classification results. The best performance was ob-

tained by linear discriminant classifier model using temporal varying priori probability. 

For the 3 class system an agreement of κ = 0.45 was achieved. When considering only a 

two class system, Sleep and wake, the agreement would increase to κ = 0.57.  

2.6.3 Sleep staging based on signals acquired through bed sensor 

The study performed by Kortelainen et al. [39], had the peculiar characteristic of acquir-

ing the signals using non-obtrusive sensors. It was based on previous work developed in 

the same scope but with signals acquired through contact sensors[40]. Emfit sensor foils, 

such as that illustrated in the previous section in Figure 7, were used and placed under the 

bed mattress, from which the heart-beat interval (HBI) and body movements were ob-

tained. 

The dataset used for this work was composed by 18 recordings from shift-work subjects. 

Nine females, aged between 20 and 54 years, participated in this study with two record-

ings each.  

 A time-variant autoregressive model was used for the extraction of the relevant features, 

and the classification was performed with a hidden Markov model (HMM). The classifi-

cation results for the 3 classes Wake, NREM and REM achieved κ of 0.44 ±0.19 and an 

accuracy of 79 ±10% using only three HBI features and one movement feature.  
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2.6.4 Analysis and Comparison 

All the studies presented above reported very promising results, which shows why this 

area of research is interesting and continues to progress towards a reliable unobtrusive 

sleep staging system. However, since obtaining cardiorespiratory and movement data in 

an unobtrusive manner and using this data for automatic sleep stage classification, is not 

a trivial challenge, there is room for improvements.  

In terms of data used, Redmond et al.[37] had the bigger dataset, has he had the bigger 

number of subjects. Their study had a total of 31 subjects, however all subjects were men 

of the same age group, suggesting that performance might degrade when using the same 

system in datasets with female subjects, or with subjects of other age groups. Kortelainen 

et al.[39] used a total of 18 recordings from healthy subjects, however the subjects were 

all female and only nine subjects participated in the study (with two nights each). Since 

the sleep architecture of a subject is usually similar across different nights, classification 

results when training and testing with data from the same subject, even though they be-

long to different nights, might be biased. Long et al.[3] used only nine healthy sleeping 

subjects. The dataset to be used in this research project will consist of more subjects. 

Furthermore it will be interesting to observe the results obtained with a bigger number of 

subjects and with a classification process using more features. Moreover it is possible that 

during the research project more features are created and added or the method or the cre-

ation method of the features is modified. 

For the maximization of the discrimination power, these studies used various methods 

like detrended fluctuation analysis or time-dependent auto regressive models. Such meth-

ods aim to retrieve information from the features taking the time factor into consideration. 

Furthermore Redmond et al.[37], suggested that the use of time varying prior probabilities 

would result in improved results. Time plays therefore an important role in the sleeping 

architecture and should not be forgotten when developing the classifier. 

In terms of the classification process, two of these studies chose a Linear Discriminant 

and another used a Hidden Markov model. Hidden Markov Models and Bayesian Linear 

Discriminants are widely known classification algorithms, each with some advantages 



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 26 | António José Almeida Rebelo | Universidade do Minho 

and disadvantages. A hidden Markov model (HMM) is a statistical Markov model in 

which the system being modelled is assumed to be a Markov process with unobserved 

(hidden) states [41]. Bayesian Classifiers are based on the idea of assigning unknown 

patterns to the most probable class within a known set of classes. Each pattern is charac-

terized by a feature vector [42]. 

Although sleep follows a certain sequence of states throughout the night, Hidden Markov 

Models may not be appropriate for this specific classification process. The complexity of 

the model and wrong assumptions regarding the process may reduce the classification 

performance. Assumptions such as the Markov assumption which requires that the next 

state is dependent only upon the current state, and the stationary process assumption 

which requires that state transition probabilities are independent of the actual time at 

which the transitions takes place, may cause the classification results to drop. Besides the 

probability of a certain sleep stage may not only depend on the previous epoch, but on 

the sequence of previous epochs. Moreover the probabilities of stage change vary across 

time, in fact, before the study of Kortelainen et al.[39] and in an attempt to capture the 

time varying stage probabilities, Redmond et al.[37], proposed a method that uses time-

varying a priori probabilities, accomplishing positive results.  

Linear discriminants are very simple classifiers where probabilities can be added or al-

tered in order to achieve the best representation of the problem at hand [41]. Although 

time-varying a priori probabilities played an important role in the task of capturing the 

time varying probabilities of sleep stages, this method can be further explored. 

Classification results are very similar for the studies performed by Kortelainen et al. [39] 

and Redmond et al. [37]. The study performed by Long et al.[3] only analyzed the classi-

fication for Wake and Sleep which makes the comparison against the systems classifying 

Wake, Non-REM and REM stages difficult since systems have different problem com-

plexities.  

One important detail is the high standard deviation in the classification results of the sub-

jects reported in the literature. The very high standard deviation suggest that these results 

are being affected by large between-subject variability. Between-subjects variability, 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Markov_model
http://en.wikipedia.org/wiki/Markov_process
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when all data is pooled, greatly decreases the discrimination power comparing against the 

average discrimination power of the same feature for the each subject. Normalizing the 

feature values across each subject this between-subject variability can be reduced, possi-

bly improving the classification results.  

 Summary 

This section began with an introduction to sleep medicine, with information regarding the 

normal human sleep and sleep disorders. Some studies, methods and devices related to 

sleep assessment were reviewed.  

This section finished with an examination of some techniques, technologies and studies 

within the same scope of this project. The different studies were compared, taking into 

consideration the datasets used, the methods applied for the classification and the classi-

fication results.   
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 Datasets 

For the investigation of the automatic classification of sleep stages based on cardiorespir-

atory data and evaluation of developed algorithms, annotated data is needed. Since the 

goal of this research work is to use supervised learning to classify data into sleep stages, 

the annotated sleep stages and corresponding cardiorespiratory measurements are needed. 

The annotated sleep stages were annotated by a sleep professional, in 30-second epochs 

following the AASM or R&K guidelines. 

In this work four different datasets are considered, namely the Boston healthy, The Bos-

ton insomniacs, Eindhoven and SIESTA. 

 Boston Healthy dataset 

The Boston Healthy dataset comprises 10 healthy subjects (8 females) with an average 

age of 31 ± 12 years. Sleep stages were scored by an expert according to the AASM 

guidelines. 

 Boston Insomniacs dataset 

The Boston Insomniacs dataset comprises 27 subjects (13 females) diagnosed with in-

somnia, with an average age of 46 ± 14 years. 

Sleep stages were scored by an expert according to the AASM guidelines. 

Looking at Figure 9, high amount of epochs score as wake is observable. Sleep efficiency 

is therefore very low on insomniacs subjects. Moreover the number of epochs scored as 

deep sleep is much lower than in normal healthy subjects considering the same age of the 

subjects. As expected, a person who suffers from insomnia, has a predominance in N2 

and N1, with difficulty to fall asleep followed by several awakenings which explains the 

high amount of N1 and wake epochs. 
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Figure 9. Total epochs spent in each stage from lights out, for Boston Insomniacs dataset 

 Eindhoven dataset 

The Eindhoven dataset comprises 12 subjects (6 females) with an average age of 29 ± 5 

years. 

Sleep stages were scored by an expert according to the AASM guidelines. 

 SIESTA dataset 

SIESTA was a project funded by the European Commission which involved several Eu-

ropean partners. The aim of the project was to research the nocturnal human sleep as well 

as to develop and evaluate new methods of sleep analysis [43]. 

The SIESTA dataset is the largest dataset in this study. It has a total of 292 subjects, 

amongst which subjects diagnosed with general anxiety disorder, depressive disorder, 

sleep apnea syndrome, restless legs or Parkinson.  

They have an average age of 52 years ± 17. This dataset is composed by 126 females and 

166 males. 

Sleep stages were scored by a consensus of at least two experts according to the R&K 

guidelines. 
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 Invalid data handling 

There are many reasons that can lead to invalid feature values, such as artifacts on the 

sensors. Nevertheless, the invalid data on a certain feature on some certain epochs is a 

very delicate problem. If invalid data intervals were not bigger than two consecutive 

epochs, an interpolation method, such as cubic spline, could be used with some assurance 

on the trustworthiness of the final data. However, since the invalid data is present in a 

much further extent, sometimes bigger than 100 consecutive epochs for a certain feature, 

interpolation of the missing data might not be reliable. Since some transformation tech-

niques use time series statistics, analysing the data with a fixed window of epochs, as will 

be further explained in chapter 4.4, the deletion of the invalid epochs from the time series 

of a certain feature, will make the sample rate inconstant which implies that statistical 

analysis with a window of fixed length can no longer be applied.  

Considering this two constraints, epochs with invalid data will be handled in two different 

ways. Upon the normalization and transformations of the features, the missing data will 

be interpolated, in order to be able to preserve the time series and a constant sample rate. 

After the features are normalized and transformed, the epochs previously marked as con-

taining invalid feature values will be ignored and excluded from training and validation. 

In this work, given the low prevalence of invalid epochs in most subjects, it was decided 

that the invalid features values would not significantly influence the results. In a real 

world scenario, this particular problem would have to be addressed separately. Invalid 

feature values would probably have to be detected and classified into indeterminate, or 

attempt to use other features to classify those particular epochs. 

 Subjects selection 

As seen in previous sections, a healthy adult should have sleep efficiency over 90%, and 

the sleeping time should be distributed between 45% to 55% in light sleep (N1 and N2), 

10% to 20% in deep sleep (N3), and 20% to 25% in REM sleep [44]. Sleep efficiency is 

defined by the sleeping time divided by the total time spent in bed, from the moment 

lights are turned off with the intention to sleep until lights are turned on again before 

definitely getting up. Considering the first night effect and the widespread age distribution 

of the subjects, these parameters are going to be substituted by less strict parameters. 
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The less strict parameters used for this study are: minimum sleep efficiency 80%, mini-

mum asleep REM ratio 15%, and minimum asleep deep sleep ratio 7%. Due to the re-

moval of a considerable number of epochs in some subjects, a minimum night length of 

6 hours (corresponding to 720 epochs) was set. These parameters are only applicable to 

healthy subjects and therefore will not be used for the Boston Insomniacs dataset. 

Knowing healthy subjects have stable sleep architecture, with the order and the timings 

of the sleep stages being quite similar across different nights, there could be a bias if data 

from one of the nights of a given subject would be used for training with the other night 

would be used for validation. Therefore, and considering that the first night effect has a 

detrimental effect on the sleep architecture, the second night of the SIESTA dataset will 

not be used. 

Using the less strict parameters, the dataset of healthy subjects used in this work com-

prises a total of 61 subjects (42 female), 54 from the SIESTA dataset, 2 from the Eindho-

ven dataset and 5 from the Boston Healthy dataset. The mean age of these subjects is 41 

± 17 years. 

3.6.1 First night effect 

The “first night effect” is a well-known issue regarding PSG recordings on the first night 

spent by a subject in a sleep laboratory. This effect translates in a number of differences 

in the sleep architecture between the first night and consecutive nights. Although most 

differences are observed between the first and the second night, there are studies suggest-

ing the first night effect is present beyond second night [45]. The first night usually con-

tains more wake epochs and less REM epochs. Furthermore there is a delay in the onset 

of N3 and REM and the sleep is more fragmented [32].  



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 32 | António José Almeida Rebelo | Universidade do Minho 

 

 

Figure 10. Comparison of sleep stages distribution of first and second night 

Looking at Figure 10, it can be seen that there are differences, especially regarding sleep 

efficiency. The average sleep efficiency in the first night for the SIESTA dataset was 78% 

which according to literature is very low. However on the second night the same subjects 

had an average sleep efficiency of 85%. Besides the improvement in sleep efficiency, 

REM and deep sleep also occupy a larger percentage of the sleep in the second night. This 
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concurs with the hypothesis that sleep in the second night is less affected by the first night 

effect. 

 Establishing ground truth 

The methods used to deal with the epochs with invalid feature values are already de-

scribed. However, before joining the subjects into a dataset that is going to be used for 

this study, the ground truth (class labels), have to be converted into a common format. 

This problem exists because the subjects belong to different datasets, following different 

sleep scoring criteria, AASM[46] and R&K [47]. Furthermore, this work will consider 

only four sleep stages, light sleep, deep sleep, REM and wake. 

Considering only three classes, Non-REM, REM and wake, the establishment of the 

ground truth would be easy since both AASM and R&K consider REM and wake. How-

ever when considering four classes, which implies further division of Non-REM sleep, 

the problem is not so simple.   

R&K further divides Non-REM sleep into stages I, II, III, and IV, while AASM divides 

it into stages N1, N2 and N3. In this work, Non-REM sleep will be divided into light and 

deep sleep. Therefore in order to convert the ground truth to four sleep stages, for AASM, 

stages N1 and N2 correspond to light sleep while N3 correspond to deep sleep. For R&K 

stages I and II correspond to light sleep, while stages III and IV correspond to deep sleep. 

 Cardiorespiratory features 

In this section, the methods used to record the data will be presented, with examples of 

features derived from the acquired data.  

The available feature set is quite extensive, so as a way to summarize the information 

contained within each feature, a table with the corresponding feature number, name of 

the feature and a small description is provided in the Appendix. 

The feature numbers are not sequential for several reasons. Some features are not availa-

ble to all datasets in this study. Other features are being implemented, have errors or, for 

other reasons, were removed. 
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3.8.1 ECG data 

Electrocardiography is a non-invasive method to monitor the electrical activity of the 

heart. The electrical activity is detected by electrodes which are attached to the skin. The 

recordings produced by this methodology are called electrocardiograms. An example of 

a recording of ECG is visible in Figure 11. 

 

Figure 11. Example of an ECG recording 

A typical ECG tracing is composed by a periodic signal that starts with a P-wave, which 

is followed by the QRS complex and ends with a T-wave. Figure 12, shows the typical 

tracing and its waves and intervals. 

 

Figure 12. Schematic representation of a typical ECG tracing 
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Feature 27, which measures the mean RR interval, is a good intuitive example of a feature 

derived by the ECG data. This feature represents the interval between an R wave and the 

consecutive R wave. An example showing the feature values of this feature, for a given 

subject, is visible in Figure 13. 

 

Figure 13. Example of feature 27, mean RR interval, for a given subject 

3.8.2 Respiratory inductance plethysmography 

Respiratory inductance plethysmography is a non-invasive method to monitor breathing 

movements, without any connections in the airway opening, by measuring chest and ab-

dominal wall movements. This method uses two elastic belts, in which an inductance 

sinusoidal wire coil was sew into, which are worn around the ribcage and the abdomen. 

During inspiration and expiration, the chest and the abdominal area vary, which changes 

the self-inductance of the coils and the frequency of their oscillation. The detected 

changes in inductance are proportional to the changes in ribcage and abdominal volume. 

In Figure 14, and example two elastic respiratory inductance plethysmography belts are 

visible. 
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Figure 14. Pro-Tech ezRIP, Philips Electronics 

A good example of a respiratory feature acquired through this method, is feature 13 which 

records the respiration frequency of the subject. An example of the feature values, for a 

given subject, of respiration frequency can be visible in Figure 15. Note that upon extrac-

tion of this feature, the values have been normalized by subtracting the mean. 

 

Figure 15. Example of feature 13, respiration frequency, for a given subject  
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 Summary 

This section revised the datasets used for this study. The data from the different subjects 

were compared against sleep literature which showed that some subjects had an unusual 

sleep architecture. The sleep architecture of the subjects of this study was further ana-

lyzed, which will culminate in the selection of the subjects with a normal healthy sleep 

architecture. The subjects were filtered according to several relaxed parameters obtained 

in literature. These subjects formed the final dataset that is going to be used in the next 

sections. In order to provide an insight of the features used in this work, examples of 

cardiorespiratory features were presented.  
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 Feature Analysis 

Feature processing is a very important step in the training/classification process. This is 

a preliminary phase which transforms the properties of the data which will be more ef-

fectively discriminated by the classifier. The stages in a pattern recognition system are in 

a pipeline fashion meaning that each step depends on the success of the previous phase 

in order to produce optimal results. In order to improve the discriminatory power of each 

feature, it will first normalized. This method aims at minimizing the impact of between-

subject variability on the expression of the differences between sleep stages on the fea-

tures. After features are normalized, they will be further processed (or transformed). This 

method aims at extracting additional information about each feature, for example, about 

the way it varies in time, or its low- or high-frequency components. In order to determine 

which normalization and transformation methods actually contribute towards these goals, 

features will be evaluated individually by their discriminatory power using a class sepa-

rability measure. 

 Class separability measures 

In this work class separability measures are used to measure the discrimination power 

that a feature can provide for a certain individual class or multiple classes. As a way to 

understand what is a discriminative feature Figure 16 is present. This figure shows feature 

169, for a given subject, which is a feature related to respiratory amplitude, which is able 

to provide good discrimination power for deep sleep. 
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Figure 16. Example of feature 169 for a given subject, a feature with good discrimination 

power for deep sleep and REM. 

As an opposite example, feature 13, visible in Figure 17, representing respiration fre-

quency, for the same subject, is a feature which is unable to provide good discrimination 

power to any class. Although originally having low discriminatory power, this feature has 

significant statistical information that can be used to obtain new features with good dis-

criminatory power. 
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Figure 17. Example of feature 13 for a given subject, a feature with low discrimination 

power for all classes 

4.1.1 Absolute standardized mean distance 

One of the simplest and fastest methods for evaluating the class separability of a given 

feature is the absolute standardized mean difference (ASMD). Furthermore, as will be 

discussed in section 5, the linear discriminants used for classification depend on the Ma-

halanobis distance metric, which is a multivariate version of standardized mean distance. 

As such, if this metric is used to assess normalization/transformation methods, it is guar-

anteed to yield improvements when using the linear discriminant. For a given feature, 

with N features values 𝑥, the ASMD between class 1 and 2 with mean 𝜇1  and 𝜇2 and 

standard deviation of 𝜎1,2 the ASMD is given by 

Although very fast the ASMD distance is clearly only applicable in the binary case, i.e., 

when only two classes are considered. Because the problem addressed in this study con-

cerns multiple classes (corresponding to multiple sleep stages), the ASMD distance of a 

 𝐴𝑆𝑀𝐷 = |
𝜇1 − 𝜇2
𝜎1,2
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certain class will always refer to the absolute standardized mean distance between the 

mean of the analyzed class and the mean of the aggregated remaining classes. This 

method was chosen because, as seen in section 5, a classifier will be used per each class 

and trained as one class versus the rest. 

4.1.2 One way analysis of variance F-statistic 

One way analysis of variance (or one way ANOVA) tests the null hypothesis that the 

samples in two or more groups are taken from populations with the same mean values. 

The F-test is the ratio of two scaled sums of squares which represent different sources of 

variability. The statistic tends to be greater when the null hypothesis is not true. The one-

way ANOVA F-test, for feature values x, N epochs, and k classes, with ni representing 

the number of instances from a certain class i, 𝑥𝑖  the vector of their respective val-

ues, xi̅ the mean of the values and xij a value of the vector, is given by 

 
𝐹 =

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑤ℎ𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (2)  
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𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
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𝑖
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(2.2)  

 
𝑤ℎ𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =    
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𝑖

𝑁 − 𝑘
 

(2.3)  

The between-group variability is described as the sum of squares between groups, and is 

sometime referred to as the explained variance. The within-group variability expresses 

the variability within the groups and is sometimes referred to as the unexplained variance. 

The F-statistic will be large if the between-group variability is large relative to the within-

group variability, which is unlikely to happen if the population means of the groups all 

have the same value. 

 Unprocessed features 

Every analysis of data starts with a preliminary part of unifying data from different data 

sets, cleaning it and preparing it for further processing. That part of the process was ad-

dressed in chapter 3. Before features are normalized and further processed, they were first 
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analysed in terms of their discriminatory power. This step will serve as a starting point 

for further analysis and as a comparison for the evaluation of the different techniques 

which will be applied. When the discrimination power of the original features is compared 

with the processed features, derived from the original ones, it will be clear that the pro-

cessed features possess bigger discriminatory power and a lower intra subject variation.  

In Figure 18 the ASMD is measured for all features for deep, light and REM sleep as well 

as wake. Note that the ASMD refers to the pooled data after aggregating the feature data 

from all subjects.  From this figure it’s possible to visualize that each class has its own 

good set of discriminative features. For instance feature 67 is good for the discrimination 

of deep sleep, but not for the other classes.  

 

Figure 18. ASMD of all unprocessed features for four classes 

To have a better understanding about the relationship between each individual class and 

the number of features discriminatory power for that particular class, Figure 19 is pre-

sented below. This new figure consists of four individual histograms, each illustrating the 

absolute count of features with given ASMD for each class versus the remaining classes. 
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In order to compute the histograms, the ASMD was first divided into equally spaced bins.  

For each bin, the number of features with an ASMD between the boundaries of that bin 

was counted. 

 

Figure 19. Histograms relating the ASMD with the number of features per class 

From these figures, it can be concluded that the class with most discriminatory (unpro-

cessed) features is the wake class. This class has several features with a high ASMD  and 

therefore several feature capable of providing good discriminative power. Following the 

wake class, deep sleep and REM stages have some features with reasonable ASMD. On 

the other hand, light sleep seems to have most features below an ASMD of 0.4. Looking 

at this information, one can say that the wake class is the easiest to discriminate, followed 

by REM and deep sleep. Light sleep will be harder to discriminate with these features. 
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 Feature normalization 

Feature normalization aims at reducing the between-subject variability arising from dif-

ferences in the sensors used during PSG recordings (since they were performed in differ-

ent sleep laboratories), and differences in the physiological expression of sleep stages 

between subjects. 

4.3.1 Motivation 

Due to fact that the range of possible values for any measurable characteristic, of a human 

being analyzed or treated in the course of a particular study can vary significantly, feature 

normalization is needed in order to compensate for the differences between the subjects. 

The fact that the data was obtained from several different sources makes feature normal-

ization even more important, as the equipment and techniques used to obtain the data can 

be different. Therefore the variations between subjects might partially be explained by 

technical reasons. Different sensors which may have different scales or frequencies for 

data acquisition, makes the analysis of the pooled data look inconsistent although the data 

is correct.  For instance an electrode on one sleeping center might be recording milivolts 

while other sleeping centers might have the same electrode recording data at volts. The 

data is therefore incomparable and requires normalization. 

Besides these technical aspects, the between-subject variations can be explained by the 

biological differences between different persons. These variations are well-known in the 

biological field as each person has different reactions for the same stimulus. For instance 

the heart rate of two healthy subjects can be substantially different during similar activi-

ties.  

As a result from this effect, the pooled ASMD of the features, the ASMD of the concate-

nated features from all the subjects, will be greatly reduced compared with the mean 

ASMD for each feature, the mean of the ASMD of a feature for all the subjects. Further-

more this effect produces high disparity on the classification performance between dif-

ferent subjects, as perceived from the high standard deviation in the classification results 

of similar studies [37], [39].  
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Figure 20 and Figure 21 illustrate the problem at hand, where the two plots depict the 

differences between the mean ASMD for all subjects, and the pooled ASMD per feature 

for deep sleep and REM. Analyzing these figures, it is clear that there are several features, 

such as 130 for deep sleep and 88 for REM, with good discriminatory power, as expressed 

by their ASMD. However, when those features are pooled, the discriminatory power 

clearly decreases. For instance for deep sleep, in feature 130, the mean ASMD is 0.85 

while the pooled ASMD is 0.45. For REM for feature 88, the mean ASMD is 0.75 while 

the pooled ASMD is 0.45. 

 

Figure 20. Mean and pooled ASMD for deep sleep versus the remaining classes, for each 

feature. 
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Figure 21. Mean and pooled ASMD for REM versus the remaining classes, for each fea-

ture. 

By normalizing these features, the between-subject variations should be minimized, 

which in turn should improve the pooled discriminatory power. Ideally, the pooled 

ASMD should increase up to the same level as the mean ASMD. 

4.3.2 Normalization Techniques 

The normalization techniques can be divided in three groups. Clipping operations, which 

aim at reducing the effects of the outliers, scaling techniques which aim at standardizing 

the amplitude of the features for all subjects and quantile normalization, a method capable 

of transforming the features values into a given distribution. Below a detailed description 

of the methods is available. 

4.3.2.1 Winsor 

Winsoring or Winsorization of data is a procedure which reduces the effects of possible 

outliers by limiting the extremes of the feature values. It is named after Charles P. Winsor 

[48][49]. The effect of this transformation is similar to clipping in signal processing. Val-

ues lower or bigger than a given percentile boundary, for instance 5 and 95, are clipped 

to the values of the 5th and 95th percentile. This technique has no consideration for the 

mean or scale of the data from the different subjects and is usually only used as a pre-

processing step before further normalization techniques. 
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4.3.2.2 Amplitude 

Amplitude normalization is, as the name suggests, a scaling operation. The original fea-

ture values are scaled and transposed by defining a new reference maximum and mini-

mum value. Considering a value 𝑋 and reference values for new maximum and minimum, 

 

𝑛𝑜𝑟𝑚𝑎𝑚𝑝 = 𝑛𝑒𝑤_𝑚𝑖𝑛

+ 
𝑋 −𝑚𝑖𝑛 (𝑋)

(𝑚𝑎𝑥(𝑋) −𝑚𝑖𝑛(𝑋)) ∗ (𝑛𝑒𝑤_𝑚𝑎𝑥 − 𝑛𝑒𝑤_𝑚𝑖𝑛)
 

(3)  

4.3.2.3 ZScore 

This is a widely known technique for feature normalization. This simple technique re-

moves the mean from the data and normalizes its standard deviation to one [50]. For 

sample data with mean 𝑋 and standard deviation 𝜎 the z-score of a value x is: 

 𝑧 =
x − 𝑋

𝜎
 (4)  

4.3.2.4 Percentile 

This technique removes the median and clips values to an upper and a lower threshold. 

Since it uses percentiles values (for example, the 25th and 75th), this technique is robust 

against outliers in the data.  A new lower and an upper value are selected as the target 

values for the percentiles. As an example, assume that the values -1, 0 and 1 are the de-

sired minimum, median and maximum and that the 25th, 50th and 75th percentiles will be 

used. For a given set of values, the percentiles are computed. The percentile 50th is first 

subtracted in order to match the target value 0. The values above percentile 50th are then 

scaled according to the values of percentiles 50th and 75th, so that the new 75th percentile 

is 1. The same procedure is applied for the values below the 50th percentile, therefore they 

are scaled according to the values of the 25th and 50th percentiles such that the new 25th 

percentile is -1. Representing the percentile function as Prc, for a feature values 𝑥, the 

final value of the data point p in that set is: 
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𝑃𝑟𝑐(p)

=  

{
  
 

  
 

p − 𝑃𝑟𝑐50(𝑥)

(𝑃𝑟𝑐75(𝑥) − 𝑃𝑟𝑐50(𝑥)) × (𝑛𝑒𝑤_𝑚𝑎𝑥 − 𝑛𝑒𝑤_𝑚𝑖𝑑)
+ 𝑛𝑒𝑤_𝑚𝑖𝑑,

  p ≥  𝑃𝑟𝑐50(𝑥)

p − 𝑃𝑟𝑐50(𝑋)

(𝑃𝑟𝑐50(𝑥) − 𝑃𝑟𝑐25(𝑥)) × (𝑛𝑒𝑤_𝑚𝑖𝑑 − 𝑛𝑒𝑤_𝑚𝑖𝑛)
+ 𝑛𝑒𝑤_𝑚𝑖𝑛,

p <   𝑃𝑟𝑐50(𝑥)

 
(5)  

Because some features do not follow a normal distribution, an upper or lower limit can 

exist with several points having the same value, which caused the values of 25th and 50th 

or 50th and 75th percentiles to be the same. A good example of this problem is features 

like activity counts, where most epochs have the value of 0. For this special case, a new 

approach was implemented, in which the maximum and minimum values of a feature are 

not considered when calculating the percentiles.  

4.3.2.5 Quantile 

Quantile is a normalization technique that aims at making two different distributions iden-

tical in terms of their statistical properties  [51]. In this work, three reference distributions 

were used to normalize each feature of each subject: the normal distribution, the expo-

nential distribution and the uniform distribution. To normalize the features values, the 

first step is to create a reference distribution with the same length as the original distribu-

tion. The next step is to create two auxiliary vectors with the reference and original dis-

tributions sorted according to the feature value. After sorting, the highest element in the 

original distribution, will take the highest value of the reference distribution. The same 

procedure is applied to the second highest values and so on. Following this procedure the 

original feature values will be converted so that the feature will follow the given reference 

distribution. Figure 22 shows an example of the feature values of feature 169, for a given 

subject. Below, in Figure 23, it is possible to see the same feature for the same subject 

after the application of quantile with normal distribution as the reference. 
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Figure 22. An example of feature values of feature 169 before quantile normalization 

 

Figure 23. An example of feature values of feature 169 after quantile normalization with 

normal distribution as reference 

4.3.3 Combining techniques 

In order to choose which of the different normalization techniques improves the discrim-

inatory power of each feature, a systematic search, described in Figure 24, for the combi-

nation of methods that produces the best discrimination is performed. The normalization 

methods are grouped in Scaling and the Quantile methods. The ZScore, Amplitude, and 

Percentile techniques change the mean and scale the amplitude of the features, and so 
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they are grouped within the scaling methods. The Quantile methods change the original 

distribution of the feature to a predefined distribution. Each normalization technique in a 

group is treated as an independent node. 

 

Figure 24. Normalization techniques search graph 

The Winsor technique might be used in order to correct the influences of the outliers in 

the scaling methods. Since the quantile methods are already capable of dealing with the 

presence of outliers in the data, the Winsor method is not needed for these type of nor-

malizations. With the organization of the normalization methods in groups and in a search 

graph, the search for the best normalization can be performed using a depth-first search 

algorithm. This algorithm begins from the starting node and evaluates as far as possible 

before going back to explore the remaining nodes. It is appropriate for this scenario since 

the number and depth of nodes in the graph is small. 

In order to evaluate the techniques in each node of the search graph, the one way ANOVA 

F-statistic metric is used. This metric is preferred over the ASMD since it allows the 

measurement of the discriminatory power of a feature across multiple classes. Since in 

the normalization procedure the main goal is to improve the pooled feature discriminatory 

power regardless of the classes, this metric is more appropriate for this task. 

4.3.4 Normalization results 

After finding the best normalization or set of normalizations that maximize the discrimi-

natory power of each feature, the pooled ASMD of each feature is noticeably larger.  
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Looking at Figure 19 and Figure 26, there is a clear increase in the number of features 

with ASMD above 0.6. There is a considerable amount of features capable of providing 

a ASMD bigger than 0.6 for wake. For deep sleep and REM, the number of features is 

still good. Light sleep on the other hand, when looking only at the ASMD, did not seemed 

to benefit from the normalization process. This is due to the inexistence of features capa-

ble of providing a good discriminatory power for light sleep.  

Using the information present in the same plot, it is possible to see the ASMD values per 

feature after the normalization. When comparing Figure 18 with its clear that some 

ASMD values increased considerably. For example, for deep sleep, feature 67 increased 

from 0.68 to 1 and feature 124 from 0.46 to 0.92. For wake, feature 18 increased from 

0.27 to 0.83 and for REM, feature 65 increased from 0.5 to 0.82.  

After normalizing the features, there are still some features that are not able to provide 

any discriminatory power for some classes. This is normal as each feature was designed 

to provide discrimination to some certain classes and the normalization aims only at re-

ducing the between-subject variability. 
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Figure 25. Pooled ASMD of all normalized features for four classes 

Figure 26 illustrates the histograms with the number of features per ASMD bin for each. 

“O” stands for the feature counts in the original feature set, and “N” for the normalized 

feature set. The color scheme indicating each class is maintained, black corresponding to 

deep sleep (“D”), green to light sleep (“L”), red to REM (“R”) and blue to wake (“W”). 

Analyzing the figure, it is clear that the number of features with ASMD lower than 0.2 

substantially decreased in comparison with the original feature set.  
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Figure 26. Comparison between Original (O) and Normalized (N) feature set with histo-

grams indicating the number of feature for different ASMDs 

More importantly, however, is that the number of features with higher discriminatory 

power increased for all classes, even for light sleep although not very pronouncedly. For 

deep sleep and wake, the number of features with ASMD above 0.8 more than doubled. 

For REM, the number of features above 0.6 also increased with some of the features hav-

ing an ASMD over 0.8. 

 Feature transformation 

Feature normalization achieved very good results, decreasing the subject variability 

which improved the pooled quality of the features and consequently improved the features 

discriminatory power for all classes. Nevertheless normalization was only concerned in 

reducing between subject variations. In this section feature transformation will be ex-

plored. In this work, feature transformation or post processing will refer to a combination 

of methods that aim at transforming a feature into a different one in order to maximize 

the discriminatory power.  
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4.4.1 Motivation 

Linear discriminants are very simple classifiers capable of good generalization. However 

complex relations and statistical information on the data might be disregarded for the 

classification task, since the classifier is unable to use this information. Applying some 

transformation methods to the original features, might extract this information in a rec-

ognizable way for the classifier, which in turn will use these newly created features for 

classification purposes. Furthermore if this new information is able to increase the num-

ber of features with a high AMSD for some classes, it’s very likely that this step will be 

noticeable upon examination of the next chapters concerning the classification results. 

Linear discriminants are very simple classifiers capable of good generalization. However 

complex relations and statistical information on the data might be disregarded for the 

classification task, since the classifier is unable to use this information. Applying some 

transformation methods to the original features, might extract this information in a rec-

ognizable way for the classifier, which in turn will use these newly created features for 

classification purposes. Furthermore if this new information is able to increase the num-

ber of features with a high AMSD for some classes, it is very likely that this step will be 

noticeable upon examination of the next chapters concerning the classification results. 

One of the most noticeable incentives for the transformation of the features was the 

known differences in physiological variations within each sleep stage. In fact variations 

in cardiorespiratory signals are correlated with different stages of sleep[52], [53]. These 

variations are observable in healthy subjects although similar differences between varia-

tions in stages are encountered for unhealthy subjects as well[54–56]. These variations 

are usually bigger in Wake, N1 and REM and tend to be lower in deeper sleep namely in 

N3. 

4.4.2 Techniques 

In this work the applied transformations will explore statistical properties of the datasets 

as well as apply some filters to the original signal. 
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4.4.2.1 Statistical techniques 

The statistical techniques consist in methods to analyze the variations of the features. In 

literature there are several reference describing how the variability in the cardiorespira-

tory features varies with the stages of sleep. The purpose of these methods is to evaluate 

the possibility of finding relevant information in the current normalized features, regard-

ing the variability described in the literature. The concept is to investigate the variations 

over time of the feature values. This is performed by evaluating the variability within a 

sliding windows of time. The two methods available for this purpose are the Std (Standard 

deviation) and the MAD (Mean absolute deviation), computed with the formulas pre-

sented below. 

 𝑠𝑡𝑑 = (
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

)

1
2

 (6)  

 
𝑀𝐴𝐷 =

1

𝑛
∑|𝑥𝑖 − �̅�|

𝑛

𝑖=1

 
(7)  

Where n is the size of the window and �̅� the mean of the values in the window. For each 

epoch, the Std or the mad is computed for the specific window. In this work two window 

options were studied. The backwards option, where the values used for the calculation 

are after the epoch whose value is being calculated and the central option in which the 

window of values is centered in the epoch which value is being computed. 

For each epoch, a value of variability is computed based on one of the above methods. 

The window changes accordingly with the epoch being calculated. The values are based 

on the normalized original feature value. As an example, the feature values of feature 13, 

from a given subject are visible in Figure 27. In Figure 28 the std method, with a backward 

window of 23 epochs, was applied to the feature values. 



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 56 | António José Almeida Rebelo | Universidade do Minho 

 

Figure 27. Example feature values for feature 13 for a given subject 

 

Figure 28. Example feature values for feature 13, for the same subject, after the applica-

tion of the std method  

In order to find best window sizes for the analysis of the variability in the features, an 

analysis of the way the discriminatory power varies with the variation of the window sizes 

was performed. In order to understand the effects of low frequencies variations over the 

feature data, a median filter was investigated as well.  
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The methodology used was to apply a median filter with different window sizes, in order 

to remove any trends in the data, perform the Std method, again with several window 

sizes, and lastly execute a Logarithmic transformation. 

 

Figure 29. Contour lines of the ASMD of feature 13 for Deep sleep, varying the size of the 

median filter window and the std window  

In Figure 29, it is visible that the variation in the discriminatory power for deep sleep of 

feature 13, a respiration based feature, varies greatly with the size of the window in which 

the variation is being computed. The blue section represent low values of ASMD, while 

darker red represents the biggest values of ASMD. In terms of changes in the low fre-

quency domain, the discriminatory power did not suffered great alteration which makes 

the application of the median feature rather irrelevant no matter the chosen size of the 

window. However, as witnessed by the figure presented beneath, with features based on 

the ECG, like feature 27, ecg_rr_mean, the application of the median filter with a small 

window size produces very good results. 
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Figure 30. Contour lines of the ASMD of feature 27 for Deep sleep, varying the size of the 

median filter window and the std window 

Undoubtedly, Figure 30, the need for the median filter is obvious. Furthermore, although 

not visible in this figures, changing the feature or the class would create new optimal 

setting. With this problem in mind, the need for specific transformations for different 

classes and features is understandable. Regardless this conclusion there is some infor-

mation left in these pictures. If a closer look is given, it’s quite clear that the size of the 

window in which the variation is being studied has relatively flexible maximum values. 

For instance in Figure 29, to achieve the maximum ASMD, a variation window for the 

std must be between 23 and 33. This is important for the search process as it’s possible to 

set a small collection of predefined values to search, which makes the search much more 

efficient, without losing much discrimination power. 

With the progress of the work the median filter was eventually substituted with a high 

pass filter that was able to provide similar and in some cases better results. 

4.4.2.2 Smoothing techniques 

The smoothing techniques compromise a high pass filter and a low pass filter.  

In this work the low pass filter is successfully applied to very noise signals as this method 

is able to remove it. 
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The high pass filter is used to remove the variation in the low frequency domain, which 

in turn can make the variance analysis more efficient as it will be displayed in the next 

sections. 

4.4.3 Combining techniques 

As a way to combine this different technique into a successful approach, there is a need 

to define how to combine this different techniques. 

Starting from the normalized features, using the methodology described in the previous 

section, it is possible to perform a statistical analysis of variation or a smoothing opera-

tion.  If the smoothing operation is performed the transformation process can stop, or a 

statistical analysis of variation can be applied.  

After the application of a statistical method there are three possible scenarios. The trans-

formation can be complete, or the feature values can be transformed further. In the last 

case, a logarithm may be applied to the values of the statistical analysis of variance as a 

way to make the distribution of the data more similar to normal, method used in other 

analysis of variance studies [57][58][54]. From the statistical or log transformation, the 

data might need to be normalized again. In fact since the statistical methods assess the 

variation of the features, different subjects might have different variations, which produce 

between subject variability, and therefore justifies the need for normalization. The nor-

malization is performed in the same manner as it’s described in Figure 31. 
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Figure 31. Transformations search graph 

4.4.4 Optimizing best transformations for each class 

As the transformations have different optimal parameters for each class, the transfor-

mation techniques are going to be computed per class in order to maximize de ASMD per 

feature per class. In the end of the process the final dataset increases linearly in relation 

to the number of classes as each feature will be added with the best normalization for a 

determined class. 

To find the best combination for each feature for each class the graph represented in the 

figure above will be used as the search graph for the breath first search algorithm. In order 

to evaluate each node of the graph the ASMD metric was used. As not all transformations 

are useful for all features, and a lot of different combinations are present, note that the 

statistical methods have several different configurations to accommodate the different 

optimal parameters with different features and classes, a greedy search was implemented. 

This search has a look ahead of two nodes and only searches for the best configuration of 

the statistical methods. 

With this method the search for the best transformations for each class and for each fea-

ture was hastened significantly. At the end of the process, for each class, an xml contain-

ing the best transformations, with the designated configurations, was created in order to 

store the newly attained results. 

Statistical

Standard Deviation

Mean absolute Deviation Log

Normalization

Smoothing

High Pass filter

Low Pass filter
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4.4.5 Transformations results 

After the best transformation was found for each class, for each feature, the next step is 

to apply the transformations on normalized features and add the newly created features to 

the dataset. As each feature is going to have a transformed version for each class, the 

inherent result of this method is the growth in the total number of features. The number 

of features will increase linearly with the number of classes, four in this study, which will 

result in a dataset with five times more features than the original one.  

The large number of features is a problem that will be dealt with at classification time by 

the feature selection algorithm. In this section the aim is to create features with high dis-

criminatory power in order to improve the results of the next steps of the classification 

process. 

Figure 32 compares the number of features according to different ASMD values for the 

post processed dataset with the normalized features and the transformed features, the nor-

malized dataset and the original dataset. 

Through observation of this figure, the increase in the number of features with high dis-

criminatory power is very substantial for deep sleep, REM and wake. For light sleep the 

available transformations were unable to create features capable of good discrimination 

between this class and the others.  

For deep sleep, the number of features with an ASMD higher than one increased from 

very few to nearly fifty features. Furthermore there are now features with an ASMD over 

1.2. For REM the increase of features with high discriminatory power was not so expres-

sive, however with the transformation step, the features with an ASMD over 0.6 are now 

abundant, and there are about twenty features with an ASMD bigger than 0.8. For wake 

the increase in features with high discriminatory power is very considerable. Without the 

transformation step, there is only one feature with an AMSD over 1. After transformation, 

there are around fifty features with an ASMD higher than one. 

The post-processed dataset, the dataset with normalized features with the added features 

from the transformation step, is going to be the dataset used for classification. The epochs 
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which had invalid feature values, which for normalization and transformation purposes 

were interpolated, are going to be removed. 

 

Figure 32. Comparison between Original (O), Normalized (N) and Post-processed (P) da-

taset with histograms relating the ASMD with the number of features per class  

 Normalizations and transformations on subjects with insomnia 

The best normalization and transformation techniques were found using the current da-

taset and the ground truth associated to it. This fact might introduce some bias in the 

classification results. However this bias should be small as this process was performed 

only using the ASMD as a performance measure. In fact the purpose was to maximize the 

discriminatory power of the features. The increases in the results of classification process 

are a consequence of the increase of the information of the features. 

In order to evaluate if the methods are able to generalize on a different dataset with sub-

jects with different sleep architectures, a dataset with subjects diagnosed with insomnia 

was used.  
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The normalizations and transformations found on the previous datasets were applied to 

the dataset of insomnia subjects. Figure 33 shows the results of normalization and trans-

formation. 

 

Figure 33. Comparison between Original (O), Normalized (N) and Post-processed (P) da-

taset with histograms relating the ASMD with the number of features per class for subjects 

with insomnia 

Through the observation of the figure, it is noticeable that normalization once again 

proved very fruitful, with all the classes increasing the number of features with higher 

discriminative power. The transformation step also added very discriminative features to 

the dataset. Nevertheless very significant changes are visible regarding the discriminatory 

power of the features per class for the healthy subjects compared with the subjects with 

insomnia. These differences are likely related to the different sleep architecture and class 

distribution of the datasets. For instance, the insomnia subjects have substantially less 

deep sleep which may explain why the number of features with higher discriminative 

power deep sleep and light sleep increased. Furthermore the overall instability of sleep of 
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subjects with insomnia and the bigger percentage of wake epochs might explain the de-

crease in discriminatory power of the features for REM and Wake. Nevertheless the nor-

malization and transformation of the data definitely improved the number of higher dis-

criminative features for all classes.  

The increase in the number of features with high discriminatory power suggests that the 

normalization and transformation techniques are useful and appropriate for subjects with 

a different sleep architecture than a healthy subject. 

 Conclusions 

The normalization and transformation techniques increased the number of features with 

high discrimination power and therefore increased the data quality. When compared 

against the original data, the increase of the number of features with high discrimination 

power for all classes is very significant. Normalization techniques reduced between sub-

ject variability while transformation maximized the number of features with a high dis-

crimination power. The results of the application of this techniques were discussed in this 

section with a comparison with the results for non-healthy subjects. 
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 Classifier 

In this section, the process of classification and validation of the data will be reviewed.  

The chapter starts with a section regarding Bayesian decision theory followed by the in-

troduction of the Bayesian linear discriminant, which is the classifier used in this work. 

Linear discriminant is a very fast and simple classifier, capable of good generalization. 

Unaffected by class imbalance this classifier is suited for this specific problem. Further-

more, other studies regarding multiple sleep stage classification have used it as well [37]. 

Feature selection, and time varying prior probabilities calculation and integration on the 

formula output are described in this section as well. In the end a system overview of the 

classification procedure is presented, with an explanation on the procedure for the vali-

dation of the results. 

 Bayesian decision theory 

The basic idea in Bayes decision theory is to minimize the overall risk, of making a wrong 

decision, by always choosing the action that minimizes the conditional risk 𝑅(𝛼|𝑥). In 

other words, in a classification problem, the state that maximizes the posterior probabil-

ity 𝑃(𝜔𝑖|𝑥), should always be chosen so that the probability of error is minimized.  

For example, given two classes 𝜔1 and 𝜔2, and an unknown pattern represented by a fea-

ture vector 𝑥, the conditional or a posteriori probabilities 𝑃(𝜔𝑖|𝑥) represent the proba-

bility that the unknown pattern belongs to the respective class 𝜔𝑖 given that feature vector 

x. If 𝑃(𝜔1|𝑥) and 𝑃(𝜔2|𝑥) are determined, the decision with the lowest classification 

risk is: 

 𝐼𝑓 𝑃(𝜔1|𝑥) > 𝑃(𝜔2|𝑥)  𝑡ℎ𝑒𝑛 𝑥 𝜖 𝜔1 𝑒𝑙𝑠𝑒 𝑥 𝜖 𝜔2 (8)  

Bayes’ formula allows such probabilities to be computed from the prior probabilities 

𝑃(𝜔𝑖) and the conditional densities 𝑃(x|𝜔𝑖). Using Bayes’ rule, the conditional proba-

bilities can be computed as: 
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 𝑃(𝜔𝑖|𝑥) =  
𝑝(𝑥|𝜔𝑖) × 𝑃(𝜔𝑖) 

𝑝(𝑥)
 (8.1)  

 𝑝(𝑥) =  ∑𝑝(𝑥|𝜔𝑖) × 𝑃(𝜔𝑖)

𝑐

𝑖=1

 (8.2)  

The posterior probabilities 𝑃(𝜔𝑖|𝑥) can be computed if the class-conditional probability 

density functions (pdf), of the distributions of the feature vectors, for both classes, are 

known. The term 𝑝(𝑥) is equation 8.1 is the same for all classes so it is possible to write: 

 

𝐼𝑓 𝑝(x|𝜔1) × 𝑃(𝜔1) > 𝑝(x|𝜔2) × 𝑃(𝜔2) 

 𝑡ℎ𝑒𝑛 x 𝜖 𝜔1 𝑒𝑙𝑠𝑒 x 𝜖 𝜔2  
(8.3)  

This classification test is in fact equivalent to minimizing the classification error proba-

bility. Considering equal prevalence for both classes, 𝑝(x|𝜔1) and 𝑝(x|𝜔2) with 𝑅1 as 

the feature space region where the decision favors 𝜔1 and 𝑅2 as the region where the de-

cision favors 𝜔2, the Figure 34 can be created. 

 

Figure 34. Example of two regions R1 and R2 formed by the bayesian classifier on proba-

bility density functions with equal prevalences for both classes 



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 António José Almeida Rebelo | Universidade do Minho | 67 

 

An error occurs whenever 𝑥 ∈  𝑅1 although it belongs to 𝜔2 or when 𝑥 ∈  𝑅2 although 

it belongs to 𝜔1. The risk is minimized if 𝑅1 is the region of space in which 𝑝(𝑥|𝜔1) > 

𝑝(𝑥|𝜔2) and 𝑅2 is the region where the reverse is true. Since the class prevalences are 

equal, the decision threshold is at half distance from the means of the classes. The number 

of misclassifications using the rules above is proportional to the area of the shaded areas 

and is equal for both classes. In the case of unequal class prevalences, the decision thresh-

old is displaced towards the class with smaller prevalence, therefore decreasing the num-

ber of errors of the class with higher prevalence. 

 Bayesian linear discriminant 

Assuming the normal distribution, the likelihood for class 𝜔𝑖 is given by the pdf in equa-

tion 9 where 𝜇𝑖 and Σ𝑖 are the theoretical or true mean vector and covariance matrix for 

class 𝜔𝑖 respectively. 

. 

 𝑝(𝑥|𝜔𝑖) =  
1

(2𝜋)
d
2⁄ |Σ𝑖|

exp (−
1

2
(𝑥 − 𝜇𝑖)

′Σ𝑖
−1(𝑥 − 𝜇𝑖)) 

(9)  

In order to simplify the computation of a posteriori probabilities, a discriminant function 

𝑔𝑖(𝑥) = 𝑃(𝜔𝑖|𝑥) is used. Using the monotonic logarithm ln(𝑃(𝜔𝑖) × 𝑝(𝑥|𝜔𝑖)), in order 

to eliminate the exponential term in 𝑝(𝑥|𝜔𝑖)  the discriminant function can be further 

simplified,  

 𝑔𝑖(𝑥) = 𝑃(𝜔𝑖|𝑥) =  𝑝(𝑥|𝜔𝑖) × 𝑃(𝜔𝑖) (9.1)  

 ℎ𝑖(𝑥) =  ln(𝑔𝑖(𝑥)) =  ln(𝑃(𝜔𝑖) × 𝑝(𝑥|𝜔𝑖)) (9.2)  

 

ℎ𝑖(𝑥) =  −
1

2
(𝑥 − μi)

′Σ𝑖
−1(𝑥 − μi) −

d

2
 ln2𝜋

−
1

2
ln|Σ𝑖| + ln 𝑃(𝜔𝑖) 

(9.3)  
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The results of this function is often called the discriminant score for the 𝑖𝑡ℎ class. The 

first term on the right-hand side of the ℎ𝑖(x) is also called the Mahalanobis distance be-

tween x and μi. This discriminant function separates the regions of the feature space 

with a quadratic boundary. For that reason it is called a quadratic discriminant. When 

the covariance matrices can be assumed to be identical, the discriminant function can be 

simplified further, resulting in a linear discriminant function, 

 ℎ𝑖(𝑥) =  −
1

2
(𝑥 − 𝜇𝑖)

′Σ−1(𝑥 − 𝜇𝑖) +  ln 𝑃(𝜔𝑖) (9.4)  

In the case of the quadratic discriminant there is a need to compute the covariance matri-

ces for all classes, whereas in the case of the linear discriminant, it is assumed that all 

classes share the same covariance matrix. In both cases, the a priori probabilities 𝑃(𝜔𝑖), 

which is usually a constant, can be provided by the user or deduced from the data. Quad-

ratic and linear discriminant functions can be expected to work well if the class condi-

tional densities are approximately normal and good estimates can be obtained for the 

population parameters defining the distributions, namely the class mean vectors and co-

variance matrices. Since quadratic discriminants generally require larger sample sizes 

than linear discriminant and seem to be more sensible to violations of the basic assump-

tions [41], linear discriminants functions are used. Furthermore, similar studies achieved 

better results using linear discriminants than using quadratic discriminants [37]. Robust-

ness to the violations of the assumptions are desirable since not all features follow a nor-

mal distribution. 

For a two-class problem, assuming the same covariance matrix for both classes, the linear 

discriminant 𝑑(𝑥) =  ℎ1(𝑥) − ℎ2(𝑥) is easily computed as 

 𝑑(x) =  w′𝑥 − 𝑤0  (9.5)  

 w = Σ−1(𝜇1 − 𝜇2) (9.6)  

 𝑤0 = −
1

2
(𝜇1

′Σ−1𝜇1 − 𝜇2
′Σ−1𝜇2) +  ln 

𝑃(𝜔1)

𝑃(𝜔2)
 (9.7)  
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 From binary classification to multiple class 

Multi-class classification can roughly be divided into two groups. The first group consists 

of classifier algorithms that can naturally handle multi-class cases. Examples of this types 

of algorithms are nearest neighbors [59] or regression and decision trees such as C4.5[60] 

or CART (Classification And Regression Tree) [61]. The second group comprises meth-

ods that reduce the multi-class classification problem into binary cases. These methods, 

depending on the approach used, can be further divided into one-versus-the-rest [62], 

[63], pairwise comparison [64–66], direct graph traversal [67], error-correcting output 

coding [68], [69] and multi-class objective functions [70]. The first three methods are the 

most applicable for the linear discriminant case, but considering that studies indicate that 

the performance of the three methods are very similar and no one method is statistically 

better the others [71] , one-versus-the-rest , the simplest method, was chosen. Moreover 

linear discriminants were used successfully in previous studies multiple class sleep stage 

classification [37]. 

Since different features were suitable for the discrimination different classes, choosing an 

overall set of features that would provide good discrimination power for all the classes 

would prove to be a hard task. On the other hand there were some classes that were 

known, from previous work, to discriminate well in a one-versus-the-rest setup. Using 

this information, a linear discriminant classifier was created for each existent class. Each 

classifier was trained in a one-versus-the-rest setup, with the target class corresponding 

to the positive class and the rest of the classes merged in the negative class. Although the 

vector  𝑥𝑖 for each discriminant is comprised of different features, a direct comparison of 

the discriminants scores can be performed as the inverse covariance matrix of the linear 

discriminant function standardizes the features and therefore the distances and scores. 

This is very important as it allows direct comparison between different linear discrimi-

nants scores, which is very useful to establish the final classification. 
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 Feature selection 

Feature selection is method to evaluate and select the most appropriate features, for a 

certain classification task, in order to achieve better classification performance. 

As visible in Figure 35 there are two main methodologies for feature selection: a filter 

and a wrapper approach. Wrappers methods use the classifier to evaluate the performance 

of different sets of features according to some performance or error metric. This might be 

a very time-demanding task, especially when the number of features is large. Filter mod-

els rely on the characteristics of the training data to select features such as relevance, 

discriminatory power, redundancy and correlation between features. 

 

Figure 35. Filter and wrapper feature selectors [72] 

In this work, since the number of features is considerably large (580 features), the wrapper 

approach takes an intolerable amount of time to proceed with the selection of the best 
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combination of features. One important aspect to be considered when selecting features 

is the correlations between the different features. According to empirical evidence from 

feature selection literature, features with low discriminatory power and redundant infor-

mation should be minimized [73–75]. A feature is considered redundant if one or more 

of the other selected features are highly correlated with it. After transforming the features, 

as explained in Section4, it is expectable that there are highly correlated features, which 

do not add information and therefore should be removed from the final set of selected 

features. So the filter algorithm should take in consideration the relevance of the features 

individually as well as their redundancy. 

Feature selection was performed with the Correlation Feature Selection (CFS) algorithm 

described by M. Hall [72].This method is a fast and simple method to perform feature 

selection, which takes into consideration the discriminatory power of the features indi-

vidually as well as the correlation between the features. 

This iterative method selects the features that are correlated with or which are predictive 

of the positive and negative classes, avoiding features which are highly correlated features 

selected in previous iterations. For each iteration, CFS computes a heuristic measure of 

“merit” of a feature subset from pairwise feature correlations and a formula adapted from 

test theory 

 𝑀𝑆 = 
𝑘𝑟𝑓𝑐̅̅̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 

(10)  

where 𝑀𝑆 is the heuristic “merit” of a feature subset S containing k features, 𝑟𝑓𝑐̅̅̅̅  is the 

mean feature-class correlation, and 𝑟𝑓𝑓̅̅ ̅̅  is the average feature-feature intercorrelation. 

The numerator of this equation provides an indication of how predictive of the class a 

set of features are, whereas the denominator indicates how much redundancy there is 

among the features. 

A greedy sequential forward selection search is used to traverse the space of feature 

subsets with the subset with the highest merit found during the search being reported. 
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The stopping criteria of the method is attained once the addition of any unselected fea-

ture can no longer improve the merit of the subset of selected features. 

Although CFS discretizes all continuous features in the training data, in this work, since 

discretization of a big amount of features is either a very slow process or a process 

where there is a big amount of information lost, discretization was not performed. In-

stead, in order to evaluate the correlation between the ground truth and features, the ab-

solute value of Pearson linear correlation coefficient  was used. This coefficient is able 

to compute the correlation between continuous variables and therefore the discretization 

step of the CFS algorithm can be skipped without significantly degrading the results.  

The fact that features in this study are continuous had a great impact on the decision of 

the feature selection algorithm. Popular algorithms for feature selection based on mutual 

information, such as MRMR [76], are hard to compute and time inefficient as it is often 

difficult to compute the integral in the continuous space based on a limited number of 

samples. 

 Temporal stage changes 

As discussed in Section 2.2.1, sleep follows a certain repeatable pattern on most healthy 

subjects. It has been shown that the probabilities of each sleep stage occurring vary from 

the moment lights are turned off, until the subject wakes up in the morning. Redmond et 

al. [38], in an attempt to track the non-stationary behavior of sleep, suggested that the use 

of time dependent a priori probabilities 𝑃(𝜔𝑖|𝑡) can improve the classification perfor-

mance. This information can be used in order to improve the results of classification. In 

this work, the non-stationary behavior of sleep is further explored in order to add mean-

ingful information regarding sleep architecture to the classification results. 

In this section a new method is proposed, which extends the sleep stage probability infor-

mation  of the time dependent a priori probabilities proposed by Redmond et al. [38]. The 

method use the data, to capture the changes in sleep stages in each consecutive epoch for 

each subject. Saving information regarding temporal changes in sleep stages allows the 

posterior calculation of temporal prior probabilities as well as the time varying probabil-

ities of transitions between stages. Time varying probabilities of transitions between sleep 
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stages can help to improve classification results as this information can use the already 

classified epochs to provide statistics regarding sleep stage changes in the next neighbor 

epochs.  

For instance it is unlikely that a subject who, in a certain epoch in the beginning of the 

night was classified as being in REM sleep, to be in deep sleep after one or two epochs. 

Since time dependent a priori probabilities only have time into consideration, and deep 

sleep is likely to occur in the beginning of the night, the a priori probability of deep sleep 

would be high. With the addition of the time varying probabilities of transitions between 

stages, previously classified epochs will be taken into consideration and so, for this ex-

ample, deep sleep would have small a priori probability. 

As a way to model this information and store the stage changes along the length of the 

night, a three dimensional matrix is created which is called temporal stage changes. The 

temporal stage changes, has information relative to the epoch of the night, original sleep 

stage and the next sleep stage. In other words, this matrix is composed by several squared 

sub-matrix, each having information on the number of sleep stage changes during a cer-

tain time of the night. The numbers inside the cells of these sub-matrixes are ordinary 

counters that express the total amount of stage changes from one stage, in its correspond-

ing row, to some other stage, in its corresponding column. An example of such matrix 

can be seen in Figure 36. 

In order to process this matrix, an iterative process is followed in which each subject is 

processed individually. The temporal stage changes is complete when all subjects have 

been processed. 

The first step for the insertion of stage changes for a certain subject, is to compute the 

specific subject’s constant. This constant is calculated based on the night length of the 

subject, last subject’s epoch number (SLEN), and the predefined nigh time (PNL) of 8 

hours, which corresponds to 960 epochs. The aim of this constant is to normalize the 

different night lengths of the subjects, in order to obtain a more accurate description of 
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the likelihoods of the different sleep stages across the night. The formula to compute the 

subject’s constant (SC) is given by: 

 
𝑆𝐶 =  

𝑃𝑁𝐿

𝑆𝐿𝐸𝑁
 

(11)  

As having 960 matrixes of stage changes, one sub-matrix per epoch, would be too specific 

and redundant, the number of epochs per sub-matrix (NESM) was set to 4 epochs, which 

makes this structure, by default, a set of 240 sub-matrixes which will be referred to as the 

total number of sub-matrixes (TNSM). 

Because the night length of the subjects is rarely the same as the predefined night con-

stant, a formula to scale the subject’s night length and correctly input the stage changes 

of an epoch into the correct sub-matrix number (SBN) is needed.  

The sub-matrix number of an epoch e of a given subject is given by: 

 
SMN =  1 + floor ( 

e × SC − 1

NESM
) (12)  

The function floor(X) is a function that rounds X to the nearest integer less than or equal 

to X. 

To achieve better results, generalizing the data obtained and smoothing the final proba-

bility values, each sleep stage change is inserted with 90 epoch (45 minutes which is 

approximately half of the REM Non-REM cycle) tolerance (T). This step is needed in 

order to compensate for the lack of subjects in this study. This tolerance will create a 

smoothening effect much like a low pass filter. Although this tolerance is applicable to 

most of the night, in the beginning of the nigh as well as in the end, this tolerance is lower 

in order to avoid losing information. To determine the initial sub-matrix number (ISNM) 

and the final sub-matrix number (FSMN) the following formulas are applied: 

 
ISMN =  1 + floor (

𝑆𝑀𝑁

2
)  (13)  
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FSMN =  TNSM − 𝑓loor (

SMN

2
)  (14)  

This calculation allows the epochs near the beginning and the end to be less affected by 

the sleep stage changes of the epochs referring to the middle of the night. On the other 

hand for epochs in the middle of the night, the tolerance provided by these formulas is 

too high. To correct this, a tolerance limit (TL) is established for tolerance of initial and 

final sub-matrix number, which is given by: 

 
TL =  

T

2 × NESM
  (15)  

In Equation 15, the constant two, divides the tolerance between the upper limit and the 

lower limit. 

 

Figure 36. Sub Matrix of Temporal Stage Changes being processed 

After calculation of the initial and final sub matrix, in which the sleep stage change should 

be recorded to, the cell of the matrixes corresponding to the sleep stage change should be 

incremented by the subject’s constant. This step is to ensure that sleep stage changes from 
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subjects with a bigger night length do not get more significance than sleep stage changes 

from subjects with a lower night length.  

 Temporal a Priori probabilities calculation 

The temporal a priori probabilities are calculated from the information in the previously 

computed temporal stage changes. In order to perform the calculation of the a priori prob-

abilities for each class, the epoch number and the number of total epochs of the subject’s 

nights are needed. At first, the subject’s constant is calculated based on Equation 11, and 

then the sub matrix number is found using Equation 12. With the correct sub matrix num-

ber, it is possible to sum the values of the column’s corresponding class and divide by the 

sum of all the values of the matrix. When looking at all the epochs of the night, assuming 

predefined nigh time, the time varying prior probabilities for all the classes will take the 

values visible in Figure 37. 

 

Figure 37. Temporal a Priori Probabilities for all classes 

 Stage change probability and Markov Chain 

As the epochs start to be assigned a final classification, it is possible to check which class 

has a higher discriminant value, and therefore select it as the most likely class. Assuming 

that this class is correct, the a priori probabilities of the next classes can be updated based 

on the time varying probabilities of transitions between stages. This probability can easily 
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be computed using the correspondent row of the correspondent sub matrix number of the 

epoch. Using the information on that specific row, it is possible to find the probabilities 

of the next class based on the currently selected class. The problem with this method is 

that it assumes that classified epoch was assigned the correct class, which might not be 

the case, which by turn introduces wrong information on the probabilities. 

In the specific case of having a discriminant with a considerable higher output than the 

rest (when the higher discriminant output minus the second best discriminant output is 

higher than a certain threshold) the probabilities of the epoch being incorrectly classified 

are low. In this case, which is going to be referred to as a confidence point, the probabil-

ities of a class being correctly classified are increased. When an epoch with these charac-

teristics is found, and the next epochs are not confidence points anymore, a first-order 

Markov Chain is applied to supplement the time varying probabilities. When another con-

fidence point is found, the Markov Chain method stops, restarting when a confidence 

point is followed by a non-confidence point.  

The transition matrix is of the Markov process is obtained from the sub matrix from the 

temporal stage changes, according to the epoch and the last epoch of the subject’s night. 

As the transitions grow, so does the epoch and so, the transition matrix can be updated 

according to the sub matrix that the analyzed epoch corresponds to. This way the Markov 

chain is applied to small segments of the night, which means the transition probabilities 

do not change significantly, and therefore the Markov stationary process assumptions, 

which states that the transition probabilities are independent from the time in which the 

transition takes place, is respected. 

 Combination with Linear Discrimination formula and output 

The introduction of the probabilities in the discriminant formula is quite simple. In fact 

discriminant functions have the a priori probability variable 𝑃(𝑤𝑖) in the formula which 

is usually used as a constant and for instance can be used to compensate for problems like 

class imbalance.  
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ℎ(𝑖) =  

1 

2
(x − μi)

′∑ (x − μi)
−1

+ ln𝑃 (𝑤𝑖) 
(16)  

In this work as shown above, this variable will be computed based on the time of the 

epoch and, if present, with the information of the nearest confidence point. To achieve 

the final value of 𝑃(𝑤𝑖), the   temporal prior probability value for class i is multiplied by 

the probability given by the Markov chain assuming the starting point to be the last con-

fidence point. 

 Post processing and establishing final classification 

The classification process is done gradually, subject by subject, starting with the first 

epoch until the last one, with each epoch being classified by the class which linear discri-

minant provides with a higher score. 

After the calculation of temporal varying prior probability for all epochs, it is necessary 

to know how much weight the prior probabilities should have in the final classification 

results. Furthermore it is necessary to discover and optimize the threshold for the confi-

dence points. To access this questions a study was done in order to understand how the 

final classification differs with the variation of these variables. The method was to use 

the results of the discriminant functions with different values of weight of prior probabil-

ity as well as the values for the establishment of confidence points in order to access the 

variations in the final result of the averaged kappa coefficient of agreement. 

The results can be observed in Figure 38. The blue values correspond to lower values of 

the kappa coefficient of agreement while the darker red represent the higher values. 

Clearly, there is a maximum value for the kappa for the values of the weight of prior 

probability close to 0.4 and with the values for the threshold for the confidence point 

around 1. 
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Figure 38. Averaged kappa coefficient of agreement for different weight values of prior 

probability and threshold values for the confidence points  

 Validation 

In order to validate the results of the classification procedure, and access how the classi-

fier will perform on an independent dataset, ten-fold cross validation scheme was used.  

In ten-fold cross validation, the dataset is divided into 10 equal subsets. Then, iteratively, 

one of the subsets is used for testing, the testing data, and the remaining nine for training, 

the training data. The training set is used for feature selection, and to build and train the 

classifier model. After the classifier has been trained, it is used with the features from the 

testing data, to predict the class of the newly received data. Based on this prediction and 

the ground truth from the testing data, it is possible to validate the model and measure 

several performance statistics of the classification problem. Once the testing data has been 

classified, another part is selected to be used for testing, and the classification process 
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starts process starts again. This process is repeated until all parts have been used as the 

testing data. 

The classification procedure can be observed in Figure 39.  

 

Figure 39. Diagram of the Classification procedure 

 Conclusions 

The section described the classifier, the feature selection algorithm and the probabilistic 

post-processing used to improve the classification results as well as to establish final clas-

sification. The probabilistic post-processing aims at capturing the non-stationary temporal 

characteristics of sleep. Temporal prior probabilities calculation, as well as their applica-

tion in the classifier output was described here. In the end of the section, the validation 

technique was presented as well as the diagram of the classification procedure. 
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 Results and Discussion 

In this section the classification results for the work performed will be presented.  

The classification results, obtained using ten-fold cross validation, will be evaluated with 

the unprocessed data, the normalized data and with the transformed data. The impact of 

the temporal varying prior probability will be explored in each configuration. The evalu-

ation of the performance of each individual discriminant will be made as well. 

 Cohens’s kappa coefficient 

The metric used for the evaluation of the classification results of this work, as well as the 

results of the studies from literature, is the Cohens’s kappa coefficient. The seminal paper 

introducing kappa as a new technique was published by Jacob Cohen in the journal Edu-

cational and Psychological Measurement in 1960 [77].  

The kappa coefficient (K) measures pairwise agreement among a set of coders making 

category judgments, correcting for expected chance agreement, where P(A) is the propor-

tion of times that the coders agree and P(E) is the proportion of times that we would 

expect them to agree by chance, calculated along the lines of the intuitive argument pre-

sented below. 

 𝑘 =
P(A) −  P(E)

1 − 𝑃(𝐸)
 (17)  

The values of K are constrained to the interval [-1, 1]. A K value of one means perfect 

agreement, a K value of zero means that agreement is equal to chance, and a K value of 

negative one means “perfect” disagreement.  

It is considered to be a more robust measure than simple percent agreement calculation 

since it takes into account the agreement occurring by chance. Furthermore it compen-

sates for class imbalance, penalizing the score whenever the classification performance 

for the underrepresented class is poor [43]. 
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 Results for with the original data 

As seen in section 4.2, the original data has various problems regarding between subject 

variation and absence of features with high discriminative power. Therefore the classifi-

cation results show low coefficient of agreement between the predicted classes as the 

actual ground truth. Another important issue is the standard deviation in the classification 

results with the original data. The high standard deviation shows that in fact, the normal-

ization of the data, would lead to an improvement of the pooled data quality which would 

cause the standard deviation to drop and possibly increase the classification results. 

The introduction of temporal prior probability information causes a substantial increase 

in the classification performance of the algorithm for both individual classes and overall.  

This preliminary results are already very good as they are already comparable to values 

presented in literature, although this is a problem with a bigger number of classes.  

Table 1. Results with the original data 

Class No temporal prior probability With temporal prior probability 

Kappa Accuracy Kappa Accuracy 

Overall 0.39 ∓ 0.13 0.58 ∓ 0.12 0.45 ∓ 0.20 0.67 ∓ 0.10 

Deep Sleep 0.39 ∓ 0.17 0.80 ∓ 0.09 0. 41 ∓ 0.17 0.86 ∓ 0.06 

Light Sleep 0.30 ∓ 0.16 0.64 ∓ 0.10 0.37 ∓ 0.15 0.69 ∓ 0.08 

REM 0.52 ∓ 0.20 0.84 ∓ 0.08 0.55 ∓ 0.21 0.88 ∓ 0.07 

Wake 0.43 ∓ 0.19 0.88 ∓ 0.08 0.52 ∓ 0.20 0.91 ∓ 0.07 

 Results for with the normalized data 

Following the decrease in the between subject variability, and the consequent improve-

ment of the data in section 4.3, perceptible with the increase of the number of features 

with a high ASMD, the classification results were expected to increase. When comparing 

Table 1 and Table 2 a very significant increase in the classification results is noticeable. 

The overall accuracy increased about 5% while the average kappa coefficient of agree-

ment increase almost 0.1 which is very substantial. Another positive observation is the 

overall decrease of the standard deviation, both for accuracy and kappa, which can be 

explained by the minimization of the between subject variability. 
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The introduction of temporal prior probability information causes a substantial increase 

in the classification performance of the algorithm for both individual classes and overall. 

On the other hand, since the prior probability information added general information of 

the night, which worked on most subjects but degraded the results of other subjects, the 

standard deviation of the results increased as well.  

Table 2. Results with the normalized data 

Class No temporal prior probability  With temporal prior probability 

Kappa Accuracy Kappa Accuracy 

Overall 0.48 ∓ 0.12 0.65 ∓ 0.08 0.54 ∓ 0.12 0.72 ∓ 0.07 

Deep Sleep 0.44 ∓ 0.15 0.84 ∓ 0.05 0. 49 ∓ 0.17 0.88 ∓ 0.04 

Light Sleep 0.39 ∓ 0.13 0.69 ∓ 0.07 0.47 ∓ 0.13 0.74 ∓ 0.13 

REM 0.56 ∓ 0.19 0.86 ∓ 0.06 0.60 ∓ 0.23 0.9 ∓ 0.06 

Wake 0.58 ∓ 0.15 0.90 ∓ 0.04 0.63 ∓ 0.15 0.92 ∓ 0.04 

 Results for with the transformed data 

The transformation step, as described in 4.4, aimed at creating new features, some of them 

with very high discrimination power, so that new information was added to the classifi-

cation procedure. However since the decision of which features and transformations was 

useful for the classification of each class, was delayed for the feature selection procedure, 

a lot of redundant, indiscriminative and therefore unnecessary features were added to the 

pool. The results of this section show not only the improvements of the results with the 

newly added features, but the effectiveness of the feature selection algorithm, which was 

able to identify for each class, in a very short period time, the relevant features subset, in 

a set with 580 features (116 + 116 x 4).  

The increase in the classification performance is again very substantial. Looking at clas-

sification without the introduction of any temporal prior probability the increase of the 

kappa coefficient of agreement was 0.1, and for the accuracy 8%. Comparing with the 

original data the differences are even bigger with an increase of approximately 0.2 in the 

kappa coefficient of agreement and 15% for accuracy. 
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The introduction of temporal prior probability information causes a slight increase in the 

classification performance of the algorithm. As in the results above, the standard devia-

tion of the results increased as well. The decrease in the effectiveness of the introduction 

of prior probability information might have several explanations. The simplest one is the 

fact that with the gradual increase in the classification results, the increase in the classifi-

cation results with the introduction of the general temporal information will decrease 

gradually, as the general temporal information will gradually introduce less new infor-

mation. Another explanation might be concerned with the newly added features that 

might be representing the effects of the differences in time to the classifier. 

Table 3. Results with the transformed data 

Class No temporal prior probability With temporal prior probability 

Kappa Accuracy Kappa Accuracy 

Overall 0.58 ∓ 0.11 0.73 ∓ 0.07 0.60 ∓ 0.12 0.76 ∓ 0.07 

Deep Sleep 0.60 ∓ 0.16 0.88 ∓ 0.05 0. 62 ∓ 0.16 0.90 ∓ 0.04 

Light Sleep 0.49 ∓ 0.13 0.75 ∓ 0.06 0.53 ∓ 0.13 0.77 ∓ 0.06 

REM 0.66 ∓ 0.19 0.86 ∓ 0.06 0.67 ∓ 0.20 0.91 ∓ 0.05 

Wake 0.60 ∓ 0.16 0.93 ∓ 0.03 0.60 ∓ 0.17 0.94 ∓ 0.03 

 Comparisons with literature results 

In order to evaluate the results of this study, this section compares the results obtained in 

this work with the other similar studies from literature. 

As this work is pioneer in the classification of four sleep stages based on cardiorespiratory 

data, it is harder to establish comparisons with the other results from literature. Neverthe-

less, since similar studies classified three sleep stages, Non REM, REM and Wake, with 

Non REM corresponding to the Deep sleep and Light sleep stages of this study, it is easy 

to use the same algorithm, converting only the labels to the three classes problem. 

Another aspect to keep in mind is the number of subjects in this study is considerably 

higher than the other studies. This study was performed with a total of sixty one subjects, 

while other studies only performed  classification on eighteen[39] and thirty one[37] sub-

jects. These number of subjects might not be sufficient for this classification problem. 



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 António José Almeida Rebelo | Universidade do Minho | 85 

 

According to the computed learning curves of the algorithm, in order to have a stabilized 

classification results that are able to generalize well, at least approximately forty subjects 

are needed. 

 

Figure 40. Learning curves for the different classes, for the classification algorithm 

This figure shows that the number of subjects used in this study is appropriate. 

Before establishing comparisons, one important factor should be taken into consideration. 

Truthfully, in [39] only a total of nine females, each with two nights, participated in the 

study. The cross validation methodology used in the study is unclear, but if when classi-

fying a subject, data from the same subject is used for training, even if the data belongs 

to a different night recording, the classification results might be biased. Another issue to 

keep in mind are the total number of features. In [39] only three features were used while 

[37] used about thirty features, which means that both studies used significantly smaller 

feature sets than the one used in this work. 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of subjects

K
a
p
p
a

Deep Sleep

 

 

Training

Testing

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of subjects

K
a
p
p
a

Light Sleep

 

 

Training

Testing

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of subjects

K
a
p
p
a

REM

 

 

Training

Testing

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of subjects

K
a
p
p
a

Wake

 

 

Training

Testing



Sleep stage classification based on cardiorespiratory signals 

Dissertation of Master’s Degree 

pg19827@alunos.uminho.pt 

 

 86 | António José Almeida Rebelo | Universidade do Minho 

Table 4. Comparison with results from literature 

 Classes Subjects Kappa Accuracy 

Kortelainen et al. [39] 3 18 0.44 ∓ 0.19 0.79 ∓ 0.10 

Redmond et. al.[37] 3 31 0.45 0.76 

Results Achieved 
4 61 0.60 ∓ 0.12 0.76 ∓ 0.06 

3 61 0.66 ∓ 0.13 0.85 ∓ 0.06 

When looking at the classification results, the differences are obvious. Considering the 

problem of classification regarding three classes, the results achieved in this study are 

increased by 0.2 for the coefficient of agreement, which reveals a much better agreement 

between classification results and ground truth, than the results from literature. The accu-

racy is significantly higher as well, and the standard deviation for both kappa and accu-

racy is much lower. For the four classes scenario, a more challenging task since there are 

more classes to distinguish from and therefore bigger chances of classification errors, the 

results are still remarkably better than the ones form previous studies. With similar accu-

racy and with an increase of 0.15 in the kappa coefficient of agreement. 

When the differences between the subjects are taken in consideration, this values are even 

more noteworthy. The subjects used in this study have a mean age of 41 ± 17 years and 

are divided into 19 males and 41 females. In [37] a database of 31 male subjects with an 

mean age of 42 ± 7 years was used. In [39], nine woman with an age between 20 to 54 

years. It is clear that not only the present study has subjects from different genders but 

also the standard deviation of the ages of the subjects are considerably larger. This means 

that subjects will have very different ages which, as seen in chapter 2.2.2, is a factor of 

variation in the subjects nigh architecture. With further investigation, the consequences 

of age in classification results, were found. They are resumed in the table below.  

Table 5. The impact of age in the classification results 

Age group 20-29 30-39 40-49 50-59 60-79 >79 

Subjects 22 12 7 10 8 2 

Average kappa 0,6100 0,605 0,6896 0,6220 0,5554 0,2650 

This table shows that age is not only a cause of variation in subject’s sleep architecture, 

but it also affects classification results. In fact there is a clear decrease in classification 
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performance with elderly subjects, 60 years or more. This fact is very interesting since 

when examining Figure 3, the most noticeable changes in the sleep architecture occur 

when the age of the subject is around 55 to 60 years old. 

Nevertheless these differences are small and were probably minimized in the normaliza-

tion procedure. For subjects with and age over 79 years old, the classification results were 

very different from the rest of the subjects. These results might suggest that this method 

may not be appropriate for subjects within this age group. On the other hand, there were 

only two subjects in that age group, so any conclusions regarding these results are unre-

liable because of the lack of sufficient subjects. 
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 Conclusions 

Sleep medicine is a relatively new field of study, which aims at study, diagnose and treat 

sleep disturbances.  As seen in section 2, current methods for sleep assessment are expen-

sive, very obtrusive and not widely available for the general population. Thus, reducing 

the personal burden and the societal cost of sleep disturbances has become one of the 

major challenges in the last decades. The system which has been presented in this thesis 

takes part in this challenge by aiming at automatic detection of multiple sleep stages, light 

sleep, deep sleep, REM and wake using cardiorespiratory data. The sensors used for the 

acquisition of the cardiorespiratory data, in future work can likely be substituted by non-

obtrusive sensors like bed sensors. Section 3 describes the data collected from healthy 

subjects from various sleep laboratories using the previously mentioned sensors and full 

polysomnographic data. Sleep staging, was carried out by sleep professionals, using a 30 

seconds epochs and the acquired polysomnographic data. From the original data 116 fea-

tures were extracted regarding cardiac information, respiratory data or both. Since the 

scope of this project is to primarily assess the method for the classification of sleep stages 

on healthy subjects, a filter, with relaxed parameters defining healthy subjects character-

istics obtained from literature, was applied in order to remove subjects with an unusual 

sleep architecture. This study, when compared against similar studies in literature, has a 

bigger number of subjects, from both genders, with a wide age distribution and measured 

in different sleep laboratories. These are all sources of variation and therefore normaliza-

tion of the data had to be applied. In section 4, the normalization techniques are described. 

Also, in order to extract new information from the existent features, like statistical infor-

mation, which might not be used by the classifier, a set of transformation techniques is 

presented. This two separate processes were able to improve the number of features with 

a higher discriminatory power for all classes and therefore increase the quality of the data, 

however the transformation step introduced a lot of irrelevant features as well. In section 

5, the classifier algorithm is described, furthermore the feature selection algorithm that 

will deal with the high number of features, is presented and explained. In order to capture 

the time variations of sleep, section 5 also describes how the temporal prior information 

is computed and added to the results from the classifier. Moreover the establishment of 

the final classification, considering the results from the classifier and from the temporal 
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varying prior probabilities, is presented as well as the tune of the parameters. The perfor-

mance and results obtained are discussed in section 6 for the different classes and config-

urations.  

The proposed objectives for this work were all successfully accomplished. The research 

on the sleeping patterns and normal healthy adult sleep architecture, allowed the creation 

of newer probabilistic techniques to capture the non-stationary temporal characteristics 

of sleep. Furthermore the reported differences in the variability of the cardiorespiratory 

data, associated with different sleep stages, motivated the creation of probabilistic trans-

formation methods, which created new highly discriminative features from the already 

existent ones. 

When these new statistical transformation methods, inspired by the existent literature, are 

complemented with other transformation techniques, they were able to create new fea-

tures with high discrimination power which improved the overall data quality, assuming 

that at classification time, the feature selection algorithm is able to select only the relevant 

features. Furthermore, in order to reduce the between subject variability, causing high 

standard deviation in the classification results and degrading data quality, the set of nor-

malization techniques applied to the features. The discrimination power of the features 

increased and when classified the classification results improved as well with a decrease 

in the standard deviation. 

As each class had a distinct discriminative set of features, the use of individual linear 

discriminants, trained in a one against the rest setup, allowed the selection and use of the 

relevant features for the discrimination of each class. The slightly modified version of 

correlation feature selection [72] has proven very effective in the problem of selecting the 

relevant features for each class, taking into account the correlation between the features. 

It is able to select a representative set of features for each class in a short period of time. 

The last step of the classification process is the introduction of temporal prior probabili-

ties in order to capture the temporal non-stationary sleep properties. The probabilistic 
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techniques used in this work, extended others found in literature and were able to intro-

duce new information to the classifier scores that further increased classification results. 

In the end the different scores are measured and the final classification is established. 

The final and best configuration, taking into consideration, the normalizations and trans-

formations of the data, the feature selection algorithm, the various linear classifiers and 

the temporal prior probabilities, achieved remarkably good results when compared 

against the existent results from literature. Cardiorespiratory signals provide significant 

accuracy and correlation for the classification of multiple sleep stages. This type of sys-

tems might be a useful addition for long term sleep monitoring purposes with the aptitude 

of being unobtrusive for the user.  
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 Appendix 

Since available feature set is quite extensive, the information was resumed in a table with 

the corresponding feature number, name of the feature and a small description. The fea-

tures number is not sequential for several reasons. Some features are not available to all 

datasets in this study. Other features are being implemented, have errors or were removed 

for other reasons. 

Table 6. Features used 

N Name Description 

13 resp_freq_periodogram               The respiratory frequency [38] 

14 resp_power_freq_periodogram         
The power of the respiratory frequency ( in frequency 

domain) [38] 

15 resp_vlf_periodogram                
Normalized total power in the Very Low Frequency 

band [38] 

16 resp_lf_periodogram                 
Normalized total power in the Low Frequency band 

[38] 

17 resp_hf_periodogram                 
Normalized total power in the High Frequency band 

[38] 

18 resp_lf_hf_periodogram              
Ratio between the low and high frequency band power 

[38] 

19 resp_v_5_epochs                     
Logarithm of the standard deviation of the respiratory 

frequency over a 5 epochs sliding window [37] 

20 resp_v_7_epochs                     
Logarithm of the standard deviation of the respiratory 

frequency over a 7 epochs sliding window [37] 

21 resp_v_9_epochs                     
Logarithm of the standard deviation of the respiratory 

frequency over a 9 epochs sliding window [37] 

22 
resp_mean_breath_by_breath_co
rr     

Mean breath-by-breath correlation [38] 

23 resp_std_breath_by_breath_corr      Standard deviation of breath-by-breath correlation [38] 

24 resp_std_breath_length              Standard deviation of breath length[38] 

25 resp_freq_td                        
Respiratory frequency estimation from the time-domain 

[38] 

26 ecg_hr_mean                         Mean heart rate, reciprocal of RR mean [38],[78] 

27 ecg_rr_mean                         Mean RR-interval [38] 
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28 ecg_sdnn                            
Logarithm of the standard deviation of the normalized 

RR interval [79] 

29 ecg_rr_range                        Range of the normalized RR interval [79] 

30 ecg_pnn50                           
Percentage of NN intervals with a >50ms difference 
[79] 

31 ecg_rmssd                           

Square root of the mean squared differences between 

adjacent normal-to-normal heart beats (NN)  intervals 

[79] 

32 ecg_sdsd                            
Standard deviation of differences between adjacent NN 

intervals [79] 

33 ecg_vlf_norm                        
Logarithm of ratio of Very Low Frequency power 

[78],[79] 

34 ecg_lf_norm                         Logarithm of ratio of Low Frequency power [78], [79] 

35 ecg_hf_norm                         Logarithm of ratio of High Frequency power [78], [79] 

36 ecg_lf_hf_ratio                     Ratio between low and high power [78], [79] 

37 ecg_sampen1_scale1                  

Computes Sample Entropy, over the original detrended 

RR interval using scale=1 and template length = 1 [80], 

[81] 

38 ecg_sampen2_scale1                  

Computes Sample Entropy, over the original detrended 

RR interval using scale=1 and template length = 2 [80], 

[81] 

39 ecg_sampen1_scale2                  Sample Entropy with scale=2 and template length = 1 

40 ecg_sampen2_scale2                  Sample Entropy with scale=2 and template length = 2 

41 ecg_sampen1_scale3                  Sample Entropy with scale=3 and template length = 1 

42 ecg_sampen2_scale3                  Sample Entropy with scale=3 and template length = 2 

43 ecg_sampen1_scale4                  Sample Entropy with scale=4 and template length = 1 

44 ecg_sampen2_scale4                  Sample Entropy with scale=4 and template length = 2 

45 ecg_sampen1_scale5                  Sample Entropy with scale=5 and template length = 1 

46 ecg_sampen2_scale5                  Sample Entropy with scale=5 and template length = 2 

47 ecg_sampen1_scale6                  Sample Entropy with scale=6 and template length = 1 

48 ecg_sampen2_scale6                  Sample Entropy with scale=6 and template length = 2 

49 ecg_sampen1_scale7                  Sample Entropy with scale=7 and template length = 1 

50 ecg_sampen2_scale7                  Sample Entropy with scale=7 and template length = 2 
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51 ecg_sampen1_scale8                  Sample Entropy with scale=8 and template length = 1 

52 ecg_sampen2_scale8                  Sample Entropy with scale=8 and template length = 2 

53 ecg_sampen1_scale9                  Sample Entropy with scale=9 and template length = 1 

54 ecg_sampen2_scale9                  Sample Entropy with scale=9 and template length = 2 

55 ecg_sampen1_scale10                 Sample Entropy with scale=10 and template length = 1 

56 ecg_sampen2_scale10                 Sample Entropy with scale=10 and template length = 2 

57 ecg_alpha_1                         Computes short-term DFA correlation coefficient [82] 

58 ecg_alpha_2                         Computes long-term DFA correlation coefficient [82] 

59 ecg_alpha                           Computes overall DFA correlation coefficient [83] 

60 ecg_alpha_al  Computes non-normalized DFA correlation coefficient 

61 ecg_pdfa                            Computes progressive DFA [84], [85] 

62 ecg_mean_resp_freq                  Estimates the respiratory frequency from ECG 

63 ecg_power_mean_resp_freq            
Power of the mean respiratory frequency (in frequency 

domain)  

64 ecg_phase_hf_pole                   Estimate the phase of the HF pole [86] 

65 ecg_module_hf_pole                  Estimate the module of the HF pole [86] 

66 ecg_rr_mean_detr                    Mean RR-interval of detrended series [38] 

67 ecg_wdfa                            Computes windowed DFA [4], [87] 

88 resp_sampen                         
Computes the SampEn over the original respiratory sig-
nal 

89 x_resp_ecg_copower                  
Spectral coherence between respiratory and ecg (above 
VLF band) [88] 

90 resp_activity                       
Variance over the respiratory signal of which only the 

peaks are preserved (through a median filter) 

91 resp_dtw_dist                       Constrained Dynamic Time Warp distance [3] 

94 ecg_power                           Power of the ecg signal (x²) [89] 

95 ecg_4th_power                       4th power of the ecg signal (x4) [89], [90] 

96 ecg_curve_length                    Length of the signal curve  [89] 

97 ecg_nonlin_energy                   Nonlinear energy [89] 

100 ecg_hjorth_mobility                 Hjorth Mobility [89], [91] 

101 ecg_hjorth_complexity               Hjorth Complexity [91] 
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103 ecg_psd_peak_power                  Peak power of the ecg spectral density [89] 

104 ecg_psd_peak_frequ                  
Frequency corresponding to the peak power of the ecg 
[89] 

105 ecg_psd_mean                        Mean power of the ecg spectral density [89] 

106 ecg_psd_median                      Median spectral power of the ecg [89] 

107 ecg_psd_entropy                     Spectral entropy [89] 

109 ecg_hurst_exponent                  
Computes the Hurst exponent over the ecg signal (also 

Rescaled Range Statistics) [92] 

116 x_cwt_activity                      
Estimation of the number of movements (activity), over 

an epoch 

119 ecg_rr_percentile10                 10th percentile of the RR interval distribution [93] 

120 ecg_rr_percentile25                 25th percentile of the RR interval distribution [93] 

121 ecg_rr_median                       Median RR interval [94] 

122 ecg_rr_percentile75                 75th percentile of the RR interval distribution [93] 

123 ecg_rr_percentile90                 90th percentile of the RR interval distribution [93] 

124 ecg_rr_MAD                          Mean absolute deviation of the RR interval [94] 

125 ecg_rr_percentile10_detr            10th percentile of the detrended RR interval distribution 

126 ecg_rr_percentile25_detr            25th percentile of the detrended RR interval distribution 

127 ecg_rr_median_detr                  Median of the detrended RR interval 

128 ecg_rr_percentile75_detr            75th percentile of the detrended RR interval distribution 

129 ecg_rr_percentile90_detr            90th percentile of the detrended RR interval distribution 

130 ecg_rr_MAD_detr                     Mean absolute deviation of the detrended RR interval 

131 ecg_hr_percentile10                 10th percentile of the heart rate 

132 ecg_hr_percentile25                 25th percentile of the heart rate 

133 ecg_hr_median                       Median heart rate 

134 ecg_hr_percentile75                 75th percentile of the heart rate 

135 ecg_hr_percentile90                 90th percentile of the heart rate 

136 ecg_hr_MAD                          Mean absolute deviation of the heart rate 

137 ecg_hr_percentile10_detr            10th percentile of the detrended heart rate 
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138 ecg_hr_percentile25_detr            25th percentile of the detrended heart rate 

139 ecg_hr_median_detr                  Median detrended heart rate 

140 ecg_hr_percentile75_detr            75th percentile of the detrended heart rate 

141 ecg_hr_percentile90_detr            90th percentile of the detrended heart rate 

142 ecg_hr_MAD_detr                     Mean absolute deviation of the detrended heart rate 

159 
x_resp_ecg_phase_coordina-

tion_long  
Coordination between resp and ecg long term [95], [96] 

160 
x_resp_ecg_phase_coordina-

tion_short 

Coordination between resp and ecg short-term [95], 

[96] 

161 ecg_phase_coordination_long         Coordination in ecg long term 

162 ecg_phase_coordination_short        Coordination in ecg short-term 

163 resp_dfw_dist                       
Constrained dynamic time warp distance measure for 
respiration, over the power spectral density [3] 

164 resp_amp_peak_ApEn                  
Approximate entropy for peaks for respiration ampli-
tude [97], [98] 

165 resp_amp_trough_ApEn                
Approximate entropy for troughs for respiration ampli-

tude [71] 

166 resp_amp_peak_sd_mean               
Standardized mean peak value for respiration ampli-

tude [71] 

167 resp_amp_trough_sd_mean             
Standardized mean trough value for respiration ampli-

tude [71] 

168 resp_amp_peak_sd_median             
Standardized median peak value for respiration ampli-

tude [71] 

169 resp_amp_trough_sd_median           
Standardized median trough value for respiration am-

plitude [71] 

170 resp_amp_pt_dist_median             
Median peak/trough value ratio. Ratios of zero are ig-

nored [71] 

171 resp_amp_pt_dtw_dist                
Minimum constrained dynamic time warp distance be-

tween Zscore normalized peak and trough series [71] 

172 resp_breath_vol_median              Median breath volume. Zeros are ignored [71] 

173 resp_breath_in_vol_median           Median inhale volume (ignoring zeros) [71] 

174 resp_breath_ex_vol_median           Median exhale volume (ignoring zeros) [71] 

175 resp_breath_fr_median               
Median of the breath volume over time (ignoring zeros) 

[71] 
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176 resp_breath_in_fr_median            
Median of the inhale volume over time (ignoring zeros) 

[71] 

177 resp_breath_ex_fr_median            
Median of the exhale volume over time (ignoring ze-

ros) [71] 

178 resp_breath_in_ex_fr_ratio          
Median of the ratio of inhale and exhale volume over 

time (ignoring zeros) [71] 

179 resp_breath_in_ex_time_ratio Median inhale/exhale time ratio [71] 

 


