
Universidade do Minho

Escola de Engenharia

Samuel da Silva Moreira

Simulating Ubiquitous Computing

Environments

Janeiro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Samuel da Silva Moreira

Simulating Ubiquitous Computing

Environments

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor José Creissac Campos

Professor Rui José

Janeiro de 2013

ii

Acknowledgements

First of all, I like to thank to my supervisors. To Professor José Creissac Campos by

his guidance, patience, dedication and total availability throughout the dissertation. To

Professor José Rui for giving his opinion on several aspects of this work, and for helping me

understand more about the Instant Places system. To José Lúıs for his help and availability

for answering my questions and helping me understand more about the APEX framework.

To all the people who work in the Instant Places, for providing information about the

system. And a special thanks to Constantin Taivan for his help in carrying out some of

the tests in the second case study.

A big thanks to all my colleagues and friends, and a special thanks to those with whom

I lived and that helped me throughout this journey. To André Barbosa for his friendship

and companionship during the course of this thesis.

And finally a thank you to my family. To my grandparents for their support during my

passage through the University. To my sister for her unaware support, leading me to

overcome and improve myself every day. And in particular to my parents for their support,

encouragement and for doing everything they could for me, so that I can have a better life.

iii

iv

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
This work is funded by the ERDF through the Programme COMPETE and by the
Portuguese Government through FCT - Foundation for Science and Technology,
project ref. PTDC/EIA-EIA/116069/2009 and by FCT, under the grant with reference
UMINHO/BI/59/2012.
	
	

	

vi

Abstract

Ubiquitous computing (Ubicomp) technologies provide exciting new opportunities for en-

hancing physical spaces to support the needs and activities of people within them. The

ability to develop such systems effectively will offer significant competitive advantage. Tools

are required to predict problems related with use early in the design cycle.

At the Department of Informatics in the University of Minho the rApid Prototyping for

user EXperience (APEX) framework is being developed. This framework allows a rapid

prototyping and simulation of ubiquitous environments. The goal of APEX is to ease

the creation of immersive prototypes of ubiquitous environments, so that they can be

realistically explored by the users. These prototypes enable the early evaluation of how

users will experience the ubiquitous environment.

This dissertation presents a state of the art in ubicomp simulation platforms. It also

presents a study that defines analysis dimensions for immersive prototyping based on 3D

simulation. Thus providing a framework to guide the alignment between specific evaluation

goals and particular prototype properties.

The focus of this dissertation is on creating two virtual environments based on real envi-

ronments, with the goal of supporting the usability testing of those environments. These

tests aim to assess aspects such as people’s reaction in virtual environments, assessing the

ubiquitous environments created, and analyzing if these ubiquitous environments can pro-

vide a rich and desirable experience to users (based on user satisfaction when interacting

with the system).

vii

Results indicate that indeed APEX can be used to provide early feedback on the design of

ubiquitous computing environments.

Keywords: Ubiquitous and Context-Aware Computing, Rapid Prototyping, 3D Virtual

Environments, Evaluation, User Experience

viii

Resumo

As tecnologias de computação ub́ıqua (ubicomp) oferecem novas oportunidades para enri-

quecer espaços f́ısicos de modo a suportar as necessidades e actividades das pessoas dentro

desses espaços. A capacidade para desenvolver sistemas eficientes irá fornecer uma vanta-

gem competitiva significativa. Assim, são necessárias ferramentas para prever problemas

relacionados com a sua utilização desde as fases iniciais do projecto de desenvolvimento.

No Departamento de Informática da Universidade do Minho está a ser desenvolvido a

plataforma APEX (rApid Prototyping for user EXperience). Esta plataforma permite a

prototipagem rápida de ambientes ub́ıquos por simulação através de ambientes virtuais 3D.

O objectivo da framework APEX é facilitar a criação de protótipos de ambientes ub́ıquos

que possam ser explorados de forma imersiva pelos utilizadores.

Esta dissertação apresenta o estado da arte em plataformas de simulação de computação

ub́ıqua. Também é apresentado um estudo que define dimensões de análise para a proto-

tipagem imersiva com simulações 3D. Fornecendo, assim, um enquadramento que permite

guiar o alinhamento de objectivos espećıficos de avaliação e propriedades espećıficas de

protótipos.

A dissertação tem como objectivo principal a construção de dois ambientes virtuais base-

ados em ambientes reais, tendo em vista a realização de testes de usabilidade sobre eles.

Estes testes visam avaliar aspectos como a reacção das pessoas em ambientes virtuais, a

qualidade dos ambientes ub́ıquos tal como modelados e analisar se os ambientes ub́ıquos

criados conseguem fornecer uma experiência rica e desejável ao utilizador (baseado-nos na

ix

satisfação do utilizador ao interagir com o sistema).

Os resultados obtidos indicam que a APEX pode, de facto, ser utilizada para criar e avaliar

protótipos de ambientes de computação ub́ıqua.

Palavras Chave: Computação Ub́ıqua e senśıvel do Contexto, Prototipagem Rápida,

Ambientes Virtuais 3D, Avaliação, Experiência do Utilizador

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Dissertation goals . 3

1.3 Dissertation structure . 4

2 State of the art 7

2.1 Focus on devices . 7

2.2 Focus on environments . 9

2.2.1 UbiWorld . 9

2.2.2 3DSim . 11

2.2.3 TATUS . 14

2.2.4 VARU . 17

2.2.5 APEX . 19

2.3 Conclusion . 23

3 Simulation of ubiquitous computing environments 25

3.1 Methodology . 26

3.2 Dimensions features . 28

3.2.1 Prototyping . 28

3.2.2 Evaluation . 33

3.3 Analysis . 37

xi

3.4 Conclusion . 39

4 Using the APEX Framework 41

4.1 APEX Framework . 41

4.1.1 Architecture . 42

4.2 Second Life viewer . 47

4.2.1 Client viewers . 48

4.2.2 Second Life user interaction . 54

4.3 Conclusion . 55

5 Case studies 59

5.1 First case study . 59

5.1.1 The original experiment . 60

5.1.2 Virtual environment proposed . 61

5.2 Second case study . 62

5.2.1 Instant Places . 63

5.2.2 Proposed virtual environment . 65

5.2.3 Evaluation process and Results . 71

5.3 Conclusion . 75

6 Conclusion 77

6.1 Discussion . 77

6.2 Current and Future Work . 80

A Questionnaires 89

B Plan of ongoing test study 93

xii

Acronyms

3D Three-Dimensional

APEX rApid Prototyping for user EXperience

CAVE Cave Automatic Virtual Environment

CPN Coloured Petri Nets

HP Hewlett Packard

HCI Human-Computer Interaction

LSL Linden Scripting Language

PDA Personal Digital Assistant

UbiREAL Ubiquitous Application Simulator with REAListic Environments

XML Extensible Markup Language

HMD Head-Mounted Display

SUS System Usability Scale

UPnP Universal Plug and Play

xiii

xiv

List of Figures

2.1 Example of the three kinds of virtual reality devices used in UbiWorld. . . 10

2.2 Examples of 3DSim environments. 13

2.3 Map editor’s rendering of an environment 15

2.4 Simulated meeting room scenarios showing other characters 17

2.5 Different perspectives on how to interact in VARU framework. 18

2.6 Simple example of APEX framework architecture. 21

2.7 Example of a library simulation . 22

4.1 Logical architecture of the APEX framework 42

4.2 Gate module using a CPN model . 45

4.3 Physical Architecture . 46

4.4 Second life official viewer. 49

4.5 Ability to connect to a specific grid. 50

4.6 Environment showing mesh objects . 51

4.7 Environment not showing mesh objects . 52

4.8 Example of Dale’s SL viewer in anaglyph stereo mode. 53

4.9 Example of CaveSL viewer with three running client viewers. 54

4.10 Primitive objects provided by Second Life viewers. 55

4.11 Linking primitive objects to build a more complex object. 56

4.12 Functionality to import mesh objects to virtual environments. 57

5.1 “T” shaped corridor with ambient display to the right (taken from [40]) . . 61

xv

5.2 Example of experimental case . 62

5.3 Example of the four applications of Instant Places. 64

5.4 Example of the real and virtual environment. 66

5.5 Representation of the architecture. 67

5.6 Example of the developed interactive tables. 68

5.7 Method for choosing an application through a smartphone. 69

5.8 Public display showing Activity Stream application. 70

5.9 Test performed by users in the virtual environment. 71

xvi

List of Tables

2.1 Distribution of codes by frameworks . 24

3.1 Relation between each evaluation dimension and each prototyping dimension. 38

3.2 Relation between the codes of dimension and the simulation platforms. . . 39

xvii

xviii

Chapter 1

Introduction

Over the past few years, the interest over ubiquitous computing research has been intensi-

fying. One of the major goals has been to shorten the gap between the technology and the

humans. Marc Weiser the author of the term Ubiquitous computing (ubicomp) in 1988,

claimed that:

“The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from it.”

[41]

considering ubicomp as an improvement over the traditional model of Human-Computer

Interaction (HCI) held on desktops. The essence of this vision is the creation of environ-

ments saturated with computing resources and the ability to communicate, in a way that

is transparent for the user. In these environments users become exposed to public spaces,

with sensors and computing devices, allowing them to interact with such environments

through personal devices, and/or by a “natural” interaction (interaction that comes nat-

urally to human users, while interacting with the system). It is worth pointing out that

more recently this vision has been contradict by some researchers, claiming that the idea

of the “disappearance” of the computer is not ideal, and that what is needed is technology

that captivates us (see [33] for a discussion).

1

Whatever the vision, ubiquitous computing technologies provide innovative solutions for

enhancing physical spaces to support the needs and activities of people within them. Given

their situated nature, many aspects of the interaction with ubiquitous computing systems

in built environments can only be explored in the context of the target environment (the

richness and texture of the actual environment is crucial to the success of the potential

system). Displays, devices and sensors form an integrated whole contributing to the tex-

ture of the target environment. The ability to develop such systems effectively will offer

significant competitive advantages, and tools are required to predict problems early in the

design life-cycle.

1.1 Motivation

Ubiquitous computing systems pose new usability challenges that cut across all phases of

design and development [36]. Additionally, the potential impact of a system in user prac-

tice, justifies that its design should be explored as early as possible [30]. When exploring

and evaluating physical ubiquitous spaces, is not only necessary to explore conventional

properties of usability, but is also necessary to explore properties of the environment that

contribute to the users’ experience. Specific situations (e.g. a crowded space or an innova-

tive technology) need to be evaluated, and is not always possible to recreate these situations

in a real-world environment. One solution is to develop physical prototypes of the ubiqui-

tous computing system, to explore the consequences that different design decisions might

have, while promoting the identification of new solutions. However the development of

such prototypes might imply commitment to design decisions that would be expensive to

reverse. Because of the potential cost of development and design failure, the features of

such systems must be explored using early versions of the system in order to conclude

whether the system could disrupt the normal operation of the target environment.

Three-Dimensional (3D) simulations can provide an alternative for an initial evaluation

of the system, enabling people to experience such situations. 3D Application Servers and

2

game engines provide a fast track to develop virtual worlds that replicate the type of envi-

ronments that needs to be prototyped. The use of these resources as the basis for immersive

prototyping enables the development of simulations of the ubiquitous environment. Sim-

ulated environments offer a very diverse set of properties, enabling for example different

degrees of fidelity for the prototypes, from simple desktop simulations, to fully immersive

experiences in a Cave Automatic Virtual Environment (CAVE) environment.

This work considers immersive prototypes for scenarios where a new ubiquitous comput-

ing system is being designed for deployment into some type of built environment. The

environment will itself be a significant part of the user experience. To be successful, im-

mersive prototyping requires a thorough alignment with the key properties of the target

environment, both at the technical and social level, and a strong focus on the specific

evaluation goals, such as users experience. Yet, user experience is a difficult requirement

to demonstrate and assess. Obtaining information about the effects of given design can be

complicated. Not only because it is costly to measure the user’s feedback, but also because

the relevant factors that might affect the experience must be considered. To address this,

two aspects will be considered. Developing an understanding of the relevant dimensions of

immersive prototyping for ubicomp systems, and developing actual prototypes to explore

their value in evaluating ubcomp systems’ designs.

1.2 Dissertation goals

As discussed above, the project addresses critical factors that must be considered in the

construction of immersive prototypes for ubicomp systems. One is to understand the

dimensions involved in prototyping this type of systems, in particular the characteristics

that support the modeling of the relevant aspects of a ubiquitous environment. The other

is the capacity of the virtual environment to provide sufficiently realistic simulations of

the desired real environment, so that the results obtained during testing with users have

relevance and can function as reliable indicators of user experience of the system in question.

3

With the purpose of evaluating these risk factors, our main goals are to:

• Carry out a study to relate the dimensions of prototyping with dimensions of evalu-

ation in ubiquitous systems.

• Develop immersive prototypes of actual ubiquitous computing systems in order to:

– Compare users’ behavior in the ubiquitous system and in the virtual environ-

ments, in order to assess the capacity of prototypes to recreate the users expe-

rience of real world environments;

– Implement new functionalities for the real ubiquitous system at prototype level

in order to evaluate them with users.

This latter point will be based on the evaluation of the prototypes by users, resorting to

the filling out of questionnaires, among other techniques for assessing the user experience.

Initially the prototypes will developed for desktop environments, although it is also possible

to use them in a CAVE [19].

To support the development of the prototypes a 3D Application Server will be used, in

order to provide a fast track to developing virtual worlds and to construct simulations that

can be explored realistically by users.

1.3 Dissertation structure

The dissertation document is divided into 6 Chapters. The current Chapter (Chapter 1) has

presented an introduction to the motivation behind the work carried out in this dissertation.

The remaining of the dissertation is structured as follows:

• Chapter 2 – State of the art: presents the current state of art on ubicomp

prototyping approaches. First it presents relevant projects on the prototyping of

ubiquitous systems focusing on isolated devices. Then it examines relevant ubicomp

simulation platforms, with a particular focus on the rapid prototyping, modeling

4

and simulations approaches. At the end of the chapter critic discussion of all the

mentioned projects is made.

• Chapter 3 – Simulation of ubiquitous computing environments: presents

an analysis of the relevant dimensions for ubicomp prototyping. A set of dimensions

specific for the characterization of the prototyping of ubiquitous systems is presented,

as is a set of dimensions specific for the evaluation of ubiquitous systems. Then,

an analysis on how much each prototyping dimensions influences on the different

evaluation dimensions is put forward. The chapter ends with a critical analysis of

the research on the prototyping and evaluation dimensions.

• Chapter 4 – Using the APEX Framework: presents an overview of APEX

framework. First it presents a detailed view of the framework’s architecture. After-

wards, viewers to interact with OpenSimulator environments are presented, as are

the basic steps involved in building and interacting with 3D virtual environments in

OpenSimulator;

• Chapter 5 – Case studies: presents two case studies implemented with the APEX

framework. It describes the implementation of the virtual environments, and makes

an analysis on the results obtained through user testing.

• Chapter 6 – Conclusion: presents a summary of the work carried out in the thesis.

It ends, by presenting ongoing work and directions for future work.

5

6

Chapter 2

State of the art

The prototyping of ubiquitous systems, can be said to follow two main approaches. One

that is focused in the development of prototypes of specific devices in their context of use,

and another that is focused in prototyping whole environments as an ecology of devices.

This chapter discusses these two main approaches to ubicomp prototyping, with a partic-

ular emphasis in the second, as it is the focus of the dissertation. Section 2.1 describes

approaches to develop prototypes focused on devices. Then, Section 2.2 describes several

ubicomp simulation platforms, that have as goal to support the prototyping of ubicomp

environments. The last section (Section 2.3) summarizes and compares the information

about the ubicomp simulation platforms.

2.1 Focus on devices

When considering the progress that has been made in ubiquitous systems prototyping, it

can be seen that most of the approaches are still focused on the development of prototypes

based on devices. This can be easily explained with the growth in wireless devices, such

as, mobile phones, tablets, situated displays, among others. Examples of prototyping

frameworks for devices are the cases of UBIWISE [5, 6], Topiary [17], or UbiReal [23].

7

UBIWISE [5, 6] was developed at Hewlett Packard (HP) by Barton et al., and it became

a reference in prototyping devices. This simulator has the goal of simulating real devices,

in order to support the development and testing of context aware applications. It enables

these applications to run on the simulated devices, thus avoiding their deployment in real

devices. Using it, developers can create devices or interaction scenarios in significantly less

time than that needed to create physical prototypes with the same features.

Ubiquitous Application Simulator with REAListic Environments (UbiREAL) [23] is a

smartspace simulator, with the goal of developing and testing ubiquitous applications.

These applications might have to control much information about user’s preferences, state

of the external environment, and others. UbiREAL generates context changes based on

the user behavior and on devices communications and represent them in a smartspace (e.g.

interaction between devices, changes in humidity or temperature). This approach is more

interested in letting developers systematically verify the influence of context changes in

an application when placed in a virtual Smartspace design, than in exploring the user’s

experience of the place.

The third prototyping approach, Topiary [17], is targeted at location-enhanced ubiqui-

tous applications. More specifically applications running on mobile devices, such as smart

phones. Topiary aims to support interaction designers, by providing them concrete ab-

stractions for prototyping, such as, storyboards, scenarios and maps. The Wizard of Oz

methodology [15] is used. This is a common evaluation methodology used to evaluate sys-

tems before full implementation. In this case, the methodology is used to let a developer

externally control the behavior of a user’s mobile phone, according to a specific planned

behavior, by simulating context changes. Thus, the developer can influence the user’s

experience, while avoiding the use of physical sensors.

8

2.2 Focus on environments

Our concern is focused on virtual environments, capable of creating ubiquitous computing

simulations for testing and evaluation purposes. The early construction and evaluation

of physical smart environments is expensive. Additionally, the detection of construction

or usability errors, while or after constructing a physical smart environment, is a major

setback. Ubiquitous computing simulations give a feasible alternative to the creation of

physical smart environments.

Ubiquitous computing simulation platforms can also have expensive costs associated with

the evaluation and design of their applications. However, developments have been made in

the ubiquitous computing simulation platforms, by making the evaluation of these appli-

cations more systematic and with lower costs [10].

This section discusses ubiquitous computing simulation platforms, that provide a tool for

developing ubicomp environments and evaluating them.

2.2.1 UbiWorld

One of the first ubiquitous computing environments simulation platforms was UbiWorld [9].

This simulator tries to combine advanced networking, supercomputing and virtual reality

to explore the implications of ubiquitous computing. UbiWorld was developed in the

Electronic Visualization Laboratory at University of Illinois at Chicago, the same place

where the first CAVE was developed. So, in order to create a more immerse environment,

and to enable the construction of 3D objects, three virtual reality devices are used to

display the virtual environment. The CAVE, ImmersaDesk, and the Infinity Wall1, can be

seen in Figure 2.1.

The main goal of this project is to test UbiWorld objects and environments in a task-based

way under different scenarios, where a user can explore Ubicomp-type concepts without

1http://www.evl.uic.edu/pape/CAVE/idesk/paper/ (Accessed: 29/1/2013)

9

(a) CAVE (b) ImmersaDesk

(c) Infinity Wall

Figure 2.1: Example of the three kinds of virtual reality devices used in UbiWorld.

having to build real Ubicomp hardware. To accomplish this goal some features are needed:

• Innovative Representation Design: take the best from the advanced industrial

design and apply it to designs of ubicomp devices in UbiWorld;

• Device/Space Awareness: a device must show awareness of other devices and of

the place where it is;

• Transparent Networking: network is transparent to the user. Devices are con-

nected with each other without the user realize.

10

In the development of futuristic ubiquitous computing scenarios/objects some issues were

identified, such as:

• Scalability: need to support the addition of objects into a UbiWorld environment;

• Network Latency: need to achieve low (user-perceived) latencies in the interactive

system;

• Object Representation: the representation of objects must be flexible;

• Behavior Specification: need to identify the best way to specify the behavior of

objects;

• Object Brokering and Binding: simplifying user interaction by making interfaces

easier to use and understand;

• Data Mapping: the ability to map new processes (users, devices) into an existing

computational framework;

• Security: mechanisms to control the access to information and computer resources;

• Evaluation and Measure: measuring, evaluating and reporting the data generated

by UbiWorld.

2.2.2 3DSim

3DSim [21] is a tool for the rapid prototyping of Ambient Intelligence application. The

motivation is to test ubicomp applications in a virtual environment, before deploying them

in the real world. Additionally, to test the same ubicomp application in several different

domains (meeting room, home). Figure 2.2, shows a example of a virtual environment

using 3DSim.

The 3DSim tool allows developers to concentrate on:

• Human-ambient-interactions solutions: It provides realistic impressions of the

11

visualized domain, through the use of interactive 3D visualizations of a virtual do-

main;

• Strategy Components and Re-active Agent Systems: Using it developers can

validate and test the dynamic behavior of several components and agents;

• Situation-Recognition: It has an environment monitoring system (EMS), respon-

sible for analyze sensor data and for detect higher-level environment state transitions;

• Dialogue Management: 3DSim enables use of 3D gestures to point to devices and

room objects.

• Actuator and Sensor Integration Interface: 3DSim core system use TCP/IP-

based eventing interfaces, that integrates a 3D scene changed by Universal Plug and

Play (UPnP) actuators and sensor components.

The use of a photo-realistic and interactive 3D virtual environment, enables users and

developers to get a realistic view of the environment, allowing a first judgment on the

usability and system adaptability to a place. Integrating a ubiquitous system in a new

place allows testing the suitability of the system to different domains (e.g. house, meeting

room, and others), before actual deployment in a physical environment. Additionally, it

allows the observation of the behavior of the application under different interactions by the

users. Thus, this approach is more focused on the application functionality, than on the

users’ experience.

3DSim has the flexibility to manipulate system settings and conditions, and even change

the state of devices, allowing the possibility to observe the system’s reaction to these

changes. The possibility to manipulate objects (state, position, etc), change the position

and intensity of lights, and the temperature in a room, are examples of benefits of using

this tool, and a way to save costs and speed up development cycles.

For situation recognition (changes in sensors, etc.) and to simulate sensor data, 3DSim

uses an Environment Monitoring Subsystem (EMS). It analyzes the sensor data, and if

12

necessary triggers a (visible) reaction in the virtual environment. Automatically changing

the state of the shutters (open/close) according to the light settings, is an example of this

capability.

3DSim also allows persons to use 3D gestures to interact with devices and objects in the

virtual environment. Providing these accurate data about user’s gestures, supports the

development of dialog management systems.

The architecture of 3DSim is essentially a CVE-server (Collaborative Virtual Environment)

and 3DSim-clients. The CVE-server manages the 3D environments and stores the state of

every object in the environment. Meanwhile the 3DSim-client, provide a interface for the

user to explore the 3D environment.

3DSim provides a set of devices and actuators with full UPnP support, which can be dy-

namically integrated in the virtual environment, by dragging the corresponding Extensible

Markup Language (XML) description-file in the 3D scene. The CVE is based on a system

that manages object life cycles and provides event distribution in the virtual environment.

When the CVE-Server receives the messages, it updates each affected entity in the virtual

environment, and then reproduces the 3D view at the client side. For rendering purposes,

3DSim uses the RenderWare Plataform [4] for game development.

(a) 3D rapid prototyping environment. (b) Environment with three displays.

Figure 2.2: Examples of 3DSim environments.

13

Another important operating mode in 3DSim is the context visualization mode. It allows

the analysis of events received from real sensors and their representation and animation in

the virtual environment. This is used to test the precision in context aware systems, using

sensors to recognize any sort of activity and trying to reproduce into the 3D environment

the state of that activity. Examples of this are, when EMS recognizes that a real person

is sitting in a chair with pressure sensors, or when it detects a person cleaning/writing

in a whiteboard, 3DSim animates an avatar to reproduce this actions. This is also true

of environmental and devices changes (turning lights off/on, displaying device states, or

opening/closing doors). These changes are also rendered in the 3D environment. With

this, developers can test the fidelity and responsiveness of the context aware system, or

reconfigure the environment to react suitably to the events.

Overall, 3DSim have features which makes it a flexible, extensible and a different tool from

others approaches. Enables rendering scenes to give photo-realistic impression to the 3D

environment and supports the development of human-ambient-interaction systems or adap-

tive user interfaces. Another difference is that it allows the interaction of virtual sensors

or real sensors connected through UPnP. Using this standardized interface means that it

can be easily adapted to real world environments. To conclude, 3DSim is aimed mainly to

help developers, developing realistic and controlled environments, and user interfaces. The

possibility of using either real or simulated sensors, gives a richer user experience to users

and developers.

2.2.3 TATUS

A high-level goal of the TATUS project [24, 25] was to provide a suitable and flexible

3D virtual environment, that allows developers to test ubiquitous computing applications

under development. Developers/designers can use it to test and evaluate applications

in a 3D virtual environment without having cost and logistic issues. It can be used to

understand if there exist any unwanted causal relation, when a user makes a decision

14

Figure 2.3: Map editor’s rendering of an environment

that triggers some unexpected behavior in the virtual environment. A software-under-

test (SUT) connected to the simulator is used. The SUT can make decisions and adapt

its behavior according to environmental changes, or in reaction to user behavior (actions,

position, etc.).

The virtual environment representation is achieve through a 3D game engine developed by

Valve Software, and used in many of its games, e.g., Half-Life 2. The main reasons behind

the choice of this 3D game engine are, the fact that its SDK is available for free, and that it

provides a high customization of the virtual environment and physics simulations, enabling

the creation of realistic environments. Valve Software also provides tools used for building

the 3D virtual environments, as can be seen in Figure 2.3.

The main features of the simulator are:

15

• 3D Graphical Interface: Use of a 3D interactive graphical user interface, to allow

multiple and simultaneous users to explore and test the virtual environment, as shows

Figure 2.4;

• Separation of simulator and SUT: The SUT and the simulator are physically

separated. This allow simultaneous connections to multiple SUTs.

• Realism: It enables the development of realistic virtual environments. Simulating

actual sensor data, instead of exploit the simulator data.

• Flexibility: The simulator supports the test of a range of software. It is generic, so

it can provide a specific state or interface a particular piece of software.

• Usability: The quick, simple and flexible implementation of an experiment is achieved

through the use of existing map editors and an additional message definition tool.

• Extensibility: The underlying SDK can be adapted to extend several features of-

fered by the simulator framework.

• SUT API: Selection and extraction of state information is provided to developers.

The SUT is also capable of making decisions and actions on the virtual environment.

The researchers can set up a test environment, most fitting for the SUT experiments.

In conclusion, TATUS is a flexible ubiquitous computing simulator for use as a tesbed for

SUT. TATUS is focused on controlling ubiquitous computing environments through the use

of sensors and actuators. By using sensors and actuators, it tries to predict user intentions

in the virtual environment. It is also focused on the behavior of adaptive ubiquitous

computing applications that are centered on the user. Regarding users, TATUS tries to

make them feel immersed in the 3D virtual environment through the whole experiment.

For researchers, TATUS guides them through the stages of developing a scenario, framing

all test situations for running the test successfully.

16

Figure 2.4: Simulated meeting room scenarios showing other characters

2.2.4 VARU

The VARU framework [11] aims to integrate, in a single platform, a rapid prototyping

framework for augmented reality, virtual reality, and ubiquitous computing spaces (envi-

ronments), as can be seen in Figure 2.5. It uses OpenSceneGraph2 as the game engine to

render each of these spaces. It is possible to interact and collaborate with users that exist

in different spaces, and it is also possible to change from an interaction space to another,

without much effort.

Different users can interact with the same object, each using a different representation. I.e.

a user in a virtual reality space can interact with the virtual representation of the object,

while a user in an augment reality space can also interact with the physical representation

of the object. This raises the problem of how to synchronize the same object with the

different representations present in the different interaction spaces that share the object.

To solve this, three levels of abstraction are used to describe an object: (Object Class,

Individual and Extension).

2http://openscenegraph.org (Accessed: 29/1/2013)

17

Figure 2.5: Different perspectives on how to interact in VARU framework.

• Object Class: This represents a abstract group or a specific collection of objects.

For example, Table is the class of all tables.

• Individual: This represents an instance of an Object Class. For example a Black Table

is a instance of the Class Table

• Extension: This represents an Individual in a specific interaction space. For example

the Black Table@Client1 is an Extension of the Individual Black Table.

So when a user joins a AR space or a VR space, new extensions to the existing Individ-

ual objects are created for that interaction space (e.g. the extensions Black Table@AR or

Black Table@VR can be created for the individual object Black Table). This is all stored

in the Object Database, which is one of the three components of the VARU Server, that

supports the synchronization of objects throughout the different interaction spaces (e.g.,

when a user in a interaction space changes the values of a object, their attributes’ values

must be updated on the Individual objects). Later, the extensions of the individual ob-

jects in the different spaces are also updated. Thus, users become aware of each other’s

actions. The actual responsibility of keeping the objects synchronized, belongs to another

component of the VARU Server, the Object Server. The last component is the Simulation

server, which is responsible for simulating the events in the virtual environment.

The VARU Client must have a kernel to make the communication between the VARU

Client and VARU Server possible. The VARU Client have a Space Manager (AR/VR/UC

18

Manager), responsible for managing its interaction space. The other components are the

Device Manager, Display Manager and Streaming Manager. The Device Manager is re-

sponsible for managing the input/output of devices. The Display Manager is responsible for

configuring the display system of VR and AR spaces.The Streaming Manager is responsible

for streaming images through the network

So, the VARU framework differs from other approaches due to the fact of supporting

a mixed space collaboration. Application developers can design applications involving a

virtual, physical or mixed spaces, according to their available resources. Allowing users the

possibility to interact with virtual and physical objects whatever is their location. All of

this, contributes for developers to have a easier and efficient way to develop tangible space

applications.

2.2.5 APEX

The APEX (rApid Prototyping for User eXperience) framework [37], which is being devel-

oped at the University of Minho, allows for the rapid prototyping and simulation of ubiq-

uitous environments. The approaches of the previous simulation platforms focus mainly

on testing/analyzing the software/devices that are being developed, and how they react to

context changes. In general, they do not have support for testing environments with many

concurrent users (an important aspect ubiquitous environments). The APEX framework

seeks to answer these two problems.

In order to discover possible issues in a ubiquitous environment’s design, we must conduct

evaluations from the early stages of design on how the users will interact with the environ-

ment, and about their reactions to that experience. The main goal of the APEX project

is to facilitate the creation of prototypes of actual ubiquitous environments, allowing the

users to interact with the virtual environment in such a way that the experience feels nat-

ural to them. The APEX framework generates prototypes and their simulation enabling

users to navigate through them to evaluate usability issues. At the same time it will help

19

the developer to understand how user might experience the system.

To construct virtual worlds that might be explored realistically by users, a system which

enables their creation is necessary. In particular, 3D application servers offer tools for

construction and navigation through virtual worlds, which allow the creation of objects,

such as, characters, houses and terrain. They also let different users (avatars) connect

to the 3D application server and interact with each other. Furthermore, 3D application

servers provide features to add behavior to objects through scripts. Additionally, with the

use of model based techniques, it becomes possible to specify the behavior of the whole

system at a higher level of abstraction, and subsequently make a exhaustive analysis of

that systems’ behavior.

The APEX framework uses OpenSimulator3 as its 3D application server. The main reason

for this is because it is open source, which means that the server is programmable, allowing

greater configurability and extensibility. For modeling ubiquitous systems, the APEX

framework uses Coloured Petri Nets (CPN) [14], an extension of the Petri nets [28] modeling

language. Additionally, the support for formal analysis through the use of CPN Tools4 is

another main advantage. OpenSimulator and CPN Tools working together allow for the

rapid prototyping of the envisaged ubiquitous environment. They support both users to

experience the virtual environment and behavioral analysis.

APEX features are supported by four components which compose the APEX architecture

as shown in Figure 2.6:

• Virtual Environment Component: responsible for managing the layout of the

virtual environment through a 3D application server (Opensimulator);

• Behavior Component: responsible for the description, the analysis and validation

of the virtual environment’s behavior, using CPN to model sensors and dynamic

objects, and also responsible for the animation of the behavior;

3www.opensimulator.org
4cpntools.org

20

Figure 2.6: Simple example of APEX framework architecture.

• Physical Component responsible for the connection of external physical devices

(e.g. smart phones, sensors) to the virtual world via Bluetooth;

• Communication/Execution Component: responsible for the data exchanges be-

tween all components, while the simulation is running, and for the execution of the

framework.

To explain how the APEX framework works, and to demonstrate the role of each compo-

nent, an example with a smart library will be used, as shown in Figure 2.7. This library

features sensors placed close to a gate (A), books (B) are identified by RFID tags and are

stored in bookshelves (C). Screens are used to provide information to users. The main goal

is to help users locate books through the use of sensors to recognize the user’s position in

real-time. In particular we will demonstrate how the gate of the library works, taking into

account the position of the user. The virtual environment component sends information

from the simulation to the behavior component and manages which objects must be seen

and their characteristics (e.g. position in space). The behavior component is responsible

for receiving the information (sensors value) coming from Opensimulator, making decisions

21

Figure 2.7: Example of a library simulation

(open/close the gate), reflecting the CPN models, and sending relevant data to the simula-

tion. In other words it has the function of managing the behavior of objects in the virtual

world, which in our case can be considered as the opening or closing the gate of the library.

In order to be able to run the simulation, and have the virtual environment adjusted to

the users’ navigation and interactions, a communication/execution component, able to link

the previous components, is needed. Finally, the physical component is used in this case

to connect devices such as a smartphone or a Personal Digital Assistant (PDA), in order

to provide directions to users. In the example of Figure 2.7 the virtual component is

responsible for sending information to physical devices and to the modeling component,

and for showing the virtual environment. Once the user moves his avatar towards the

library gate, the behavior component (CPN model) will receive the sensors’ information

about the presence of the avatar in the space, and check if its position is near the gate.

If it is not near the gate nothing happens, otherwise the CPN model makes the decision

of opening the gate, and then the action is reflected in OpenSimulator. After the avatar

enters the library and moves away from the gate, the CPN model checks if the avatar is

22

already far from the gate, if it is the decision of closing the gate is made and the action

is reflected to OpenSimulator. All of these information exchange between OpenSimulator

and CPN model are controlled by the communication/execution component.

2.3 Conclusion

We will use the APEX framework to develop virtual environments representing a spe-

cific physical space augmented with ubiquitous technologies, and to evaluate user related

aspects of the proposed design (experience, usability). Table 2.1 shows comparisons be-

tween the ubicomp simulation platforms identified in the previous section. In relation to

UbiWorld and 3DSim the main advantage of APEX is that it uses models for creating

the envisaged systems, unlike the UbiWorld and 3DSim approaches that use programming

languages to do it. The benefit of this is the possibility of combining a model approach

with analytical approaches, providing a leverage on properties of ubiquitous environments

that are relevant to use. The main advantage of APEX framework to the work of O’Neill

[25, 24], is that APEX provides more flexibility and a multi-layered prototyping approach

supporting different levels of analysis. Enabling developers to verify system properties and

allowing them to move between, and evaluate specific features of, different layers. Oth-

ers advantages that APEX has in relation to the mentioned simulation platforms and to

VARU, is the use of a 3D application server instead of game engines and the possibility

to have exhaustive analysis support. The use of a 3D application server provides a few

benefits as, the possibility of creating and customization a virtual environments in real

time, the possibly of loading modules, and support for multiple users to access the virtual

environment at the same time. Using an exhaustive/formal analysis, gives the possibility

to analyze every system behavior and the possibility to prove specific properties [37].

In conclusion, APEX gives us all these advantages in relation to the ubiquitous computing

simulation platforms previously mentioned. Hence, as stated above, APEX will be used to

build the virtual environments that we propose to make.

23

UbiWorld 3DSim TATUS VARU APEX

Ubicomp environments
prototyping

yes yes yes yes yes

Provide user experience yes yes yes yes yes

3D application server or
game engine

game engine game engine game engine game engine
3D

application
server

Multi-layered prototyping
approach

no no no yes yes

Programming or modeling
approach

program-
ming

program-
ming

modeling N/A modeling

Exhaustive analysis sup-
port

no no no no yes

Table 2.1: Distribution of codes by frameworks

24

Chapter 3

Simulation of ubiquitous computing

environments

To better understand how virtual worlds might support the prototyping of ubicomp en-

vironments, we need to establish how to align them with the key properties of the target

environment, as well as the specific evaluation goals that they should support. Particularly,

we are interested in spaces enhanced with sensors, public displays and personal devices,

and in understanding how prototypes support evaluation of such systems. This chapter de-

fines analysis dimensions for immersive prototyping based on 3D simulation, and provides

a framework to guide the alignment between specific evaluation goals and particular pro-

totype properties. This should provide a relevant contribution towards understanding the

potential added-value of 3D simulation as a tool in the development process of ubiquitous

computing environments. The key issue that we want to address is “what are the relevant

dimensions that prototypes should exhibit to better support evaluation of the envisaged

design ?”.

A similar process to the one described herein was carried out by Ostkamp et al. [27],

but in that case the authors were only interested in studies about public displays. They

introduce the AR-Multipleye, a system that visually highlights items on a personal device

25

that is pointed towards a public display, and then evaluate existing highlight methods for

public displays according to a set of classification criteria. As said above, we follow a

similar approach but focused on the immersive prototyping of ubiquitous systems.

In order to establish relevant analysis dimensions for ubicomp immersive prototyping, the

chapter performs a review of the literature on the topic. The collected papers address

several topics about ubiquitous computing, with a specific focus on virtual environments.

Several groups of papers are identified, with each group addressing a specific ubiquitous

computing topic.

Most of the papers are related to the rapid development and evaluation of ubiquitous

systems in the early stages of the development life cycle. Examples include 3DSim [21],

TATUS [24, 25], the work of O’Neill et al. [26], UBIWISE [5, 6], the work of Reynolds

[31] or APEX [37, 34]. Others papers, as UbiWorld [9] and the work of Pushpendra

et al. [38], are focused in creating immersive environments for users, and testing their

applications, using CAVEs and other immersive technologies. VARU [11] and CityCompiler

[20], UbiREAL [23], and the work of Brandherm et al.[29], focus their study in hybrid

prototyping approaches, integrating services (e.g. Internet services) and devices in their

ubiquitous systems. A few papers are more concerned with the analysis of user behavior

when confronted with different situations (this is the case of Siafu [18] and the work of

Maly et al. [13]), while Topiary [17] and the work of Li et al. [16] are more concerned with

the context awareness behavior of ubiquitous applications. In particular Topiary enables

developers to use the Wizard of Oz methodology to control the experience of using a mobile

phone.

3.1 Methodology

The papers were analyzed in search of codes for two groups of characteristics of ubiquitous

computing that we initially defined as:

26

1. Properties of the simulation;

2. Evaluation requirements and objectives.

Open Coding [39] was used to analyze the contents of the papers. Each paper was read

in order to identify phrases or paragraphs containing references to the two groups of char-

acteristics of ubiquitous computing aforementioned. A code was assigned to each piece of

text identified. At this stage, the goal was to generate as many codes as possible without

much consideration of how they related with each other. The MAXQDA101 tool was used

to aid the open coding process. A total of 33 different codes were identified. Of these, 20

corresponded to the first group, while the other 13 related to the second group. A total of

220 instances of codes were identified.

An affinity diagram2 was created to synthesize the gathered data (in our case codes).

The goal here was to find the key dimensions, based on the natural relationships between

codes. In a brainstorming session we grouped similar properties into logical groups. As we

analyzed more codes, we discussed whether to place each of them in one of the existing

groups, the possibility of creating more groups or of creating subgroups.

As the results of this process, we identified two distinct groups of characteristics of ubiq-

uitous computing. The first group characterizes the relevant features of immersive pro-

totyping ubiquitous systems. The second group characterizes the different perspectives

on ubiquitous systems evaluation, and the methods used to gather feedback about user

experience. The list of dimensions (and sub-dimensions) in each group is presented below.

Prototyping

• Fidelity of immersion

• 3D modeling and simulation

• Embodied interaction support

• Controlled environment manipulation

1http://www.maxqda.com/products/maxqda10/ (Accessed: 29/1/2013)
2http://infodesign.com.au/usabilityresources/affinitydiagramming/ (Accessed: 29/1/2013)

27

• Context driven behavior

• Multi-user support

• Hybrid prototyping

Evaluation

• Controlled experiments

• System-centric Evaluation

• Developer-centric evaluation

• Environments evaluation

• Data collection

• User-centric Evaluation

• Evaluating user experience

• Evaluating usability

3.2 Dimensions features

This section presents the groups identified in the previous section and their dimensions.

It provides a description of each of the dimensions and, where relevant, presents specific

cases that were identified in the analyzed papers.

3.2.1 Prototyping

The Prototyping group of dimensions captures the relevant features of a system for the

immersive prototyping of ubiquitous computing systems.

Fidelity of immersion

Fidelity of immersion, in this context, can be described as the possibility to represent the

real world in a virtual environment. Specifically, the better the virtual environment repre-

sents the real environment and the better the user feel submerged in terms of appearance,

sound and interaction, the better he feels immersed in the virtual environment. Creating

28

this type of environments is beneficial to the user, because it creates a closer connection

between him or she and the authenticity of the environment. However, it can be difficult

and time consuming to recreate these virtual environments.

A number of techniques exist with the purpose of immersing users when presenting them

the virtual environment. These techniques go from the use of head-mounted displays or

augmented reality to mix virtual information with real environments, to the use of CAVEs

[7] (see, for example [38, 9]), or other CAVE-derived techniques as presented in [9], the

ImmersaDesk and the Infinity Wall [8].

An example of immersion is the case of immersive video inside a CAVE. This approach

eases the evaluation and prototyping of mobile applications before its actual deployment,

providing a high fidelity recreation of a user’s experience [38].

3D modeling and simulation

3D modeling and simulation is a means to build virtual environments/devices and also to

simulate them. This is typically achieved through the use of game engines or 3D application

servers. This is also a key factor to make the virtual environment realistic, by providing

e.g. better rendering, better physics and a better response to collisions. It should be noted

however, that creating a realistic simulation extends beyond the physical and graphical

qualities of the simulation. For example, [5] points out that creating a realistic simulated

wireless device, implies being realistic in terms of connection latency, bandwidth, screen

size, and battery life.

According to [26] the use of game engine allows for a greater flexibility in the type of sensors

that are used. The most used game engines in the construction of virtual environments are

Half-Life, Unreal, and Quake. In [37] the Opensimulator 3D application server (an open

source alternative to SecondLife) is used. According to the author one advantage of using

a 3D application server is to enable the remote and simultaneous connection of many users

over the internet.

29

Embodied interaction support

This type of interaction refers to the ability of the ubiquitous systems to enable the repro-

duction of interactions that we use every day in the real world, in a natural and intuitive

manner. Embodied interaction can be achieved through the use of a few interactions tech-

nologies, such as motion tracking and gesture or speech recognition, to improve the usual

ways in which user actions are executed (mouse, keyboard). Users may, for example, in-

teract with the virtual environment through the use of 3D gestures to point to devices

and room objects [21]. In particular, gestures can be used to control interactions within

the virtual environment, allowing a more interactive and immersive experience. In [20] a

scenario is built where a camera captures the size and location of human shadows and,

based on that, triggers appropriate events (e.g. displaying a video).

Controlled environment manipulation

Ubiquitous systems’ simulation can be molded to best serve the objectives of the designers

and developers. We can define the behavior of the system and its objects, by programming

them, by the use of models, or we can manually control/influence this behavior, e.g. trough

Wizard of Oz techniques.

The most common method, for expressing behavior is programming it through the use of

scripts. Usually, scripts store all system settings, enabling that several users might have the

same scenario, with the same settings, in their individual sessions. With this, developers

have a easy way for testing and comparing the metrics that they want to evaluate [5, 37].

Another approach to attach behavior and functionalities to the system and its objects, is

through the use of models. We can model the behavior, whether of the system or of the

objects, so that they can simulate events in response to context changes or user actions.

In [37] and [26], models are used in combination with a 3D simulation to prototype virtual

environments. More specifically, in [37], CPN [14] models are used to describe the behavior

30

of the objects in the virtual environment.

Wizard of OZ can also be used to give behavior to the system. Li et al. [16] use this

method to simulate the use of sensors in testing context-aware applications, avoiding the

costs associated with real sensors’ deployment. The need to use people to realize experience

tests, and the fact that these tests are never realized in the exact same circumstances, are

problems associated with the technique [38].

Context driven behavior

Context driven behavior happens when the system/prototype is able to capture the state of

the environment and its relevant data, adjusting its behavior to that data. These systems

need to learn the skill of constantly adapting to context changes (e.g., a door opens, when

a user gets close to it). This feature is present in many systems [17, 25, 9, 26, 5].

Approaches to gather context data are e.g., sensors, devices (e.g. GPS readings [16]),

systems with information about networks, or specialized tools to extract information from

the virtual environment [21, 13]. Sensors, in particular, are very common in ubiquitous

systems. According to [31], sensors can be classified as active or passive, i.e., they can

detect values internally or from the virtual environment, respectively. Sensors can act as

listeners for the system, enabling it to react to the environment [21] and storing relevant

sensor information for later use [38].

Multi-user support

Enabling multiple users to explore the ubiquitous system allows for faster testing and

assessment of the behavior of the system. Two approaches to consider scenarios with

multiple concurrent users in a single experiment are: supporting the connection of multiple

real users, or supporting the use of bots in the system.

Supporting multiple real users allows mainly to evaluate their behavior and their interac-

31

tions in the system. At a second level, it allows evaluating the behavior of the system.

In [37, 26, 25], this is an important dimension to integrate in the development of the

ubiquitous system.

Supporting the use of bots (i.e. AI expert software systems), allows essentially to evaluate

the behavior of the system and its functionalities. Bots can also have the ability to emulate

the decision-making ability of a human being. Bots can be used to support the configuration

of multiple user environments with a limited numbers of real users, or to systematically

explore an environment (e.g. to automatically identify unwanted behaviors) [26, 25].

Hybrid prototyping

Hybrid prototyping can be defined as an approach that takes advantage of the use of a

combination of simulated and real components when building the prototype. This generates

a mixed reality where augmented reality can be used to compare the simulation and the

experiment. In [20], a mixed of physical miniature prototyping and virtual prototyping is

used. This type of prototyping can make software more flexible, robust and allow an easy

integration with the interactive systems in the environment.

On this topic, we covered two types of hybrid prototyping, one that is specific for devices

and other specific for services. We start by presenting examples of the hybrid prototyping

of devices. Virtual devices are an approach used to accomplish this goal. These devices

can be simulations or emulations (recreation of the original look and behavior) of actual

devices, e.g., smartphones, PDAs, sensors. In [5], images of the device’s physical interface

are used to create the virtual device. The use of real/simulated sensors can enable test-

ing specific systems, and their integration in the ubiquitous environment, without actual

physical deployment. The embedding of sensors in virtual devices, e.g., to send a signal of

the user estimated position or show their location in a device via a 2D map, is addressed

in [29]. A emulation framework allows testing the applications, and allows that simulated

hardware devices can interact with the emulated software [31].

32

Hybrid prototyping of services can provide a higher realism, accuracy and precision in ubiq-

uitous systems, since it can use real services, e.g. internet access. Adding real/simulated

services to ubiquitous systems and allowing users to exploit them, enhances the system’s

functionalities and can provide increased user satisfaction when interacting with it. The

most common cases are the integration of internet services, or the use of Bluetooth service

to integrate real devices, or the use of similar protocols with suitable bandwidths for sup-

porting the communication between them and simulated components [37, 5]. Many systems

tend to create their own communication components, using protocols such as TCP-IP or

UPnP [21], or resorting to proxies [25], while other systems integrate existing network sim-

ulators into their framework [31]. The advantages of having this integration are, e.g., not

having additional costs, and giving to users and developers a more enhanced experience.

3.2.2 Evaluation

Evaluation is a key motivation in the immersive prototyping of a system. In the current

case, two types of evaluation interests could be identified. Evaluation focused on the

system and its developers, and evaluation focused on the potential users of the system.

First, several examples of how to conduct controlled experiments and also different ways to

collect evaluation data (user feedback, user experience) are presented. Then, a description

of the evaluation dimensions identified in Section 3.1 is presented.

Controlled experiments

Before a ubiquitous system is deployed in the real world, it should be subjected to exhaus-

tive interaction tests by users, under varied environment settings and context changes.

Controlled experiments can be performed to achieve this. An approach is to replicate the

exact same experiment with different users. As discussed above, a way to do this is through

the use of scripts. All experiments should have the same system configurations, e.g., the

events generated by sensors or the way the system adapts to context changes must be the

33

same for any user that interacts with ubiquitous system.

Another approach, is to change one or several ambient settings in each experiment. This

leads to an understanding of the possible reactions that can happen when the system is

placed in a real environment. These manipulations can go from re-positioning objects

and avatars, to the manipulation of actuators and devices such as, lights, temperatures or

displays, and changes of virtual device states [21, 37, 23]. The more common examples

that were found in the literature were to manipulate lights and temperatures, in order to

see how these changes affect the system. In particularly in [37], it is mentioned that all

of these manipulations, enable creating a more realistic visualization of the proposed real

system.

It is also necessary to carry out experiments to observe the behavior of the system when

deployed in different scenarios, or to observe how the system reacts through time, when

events that happen in the real world are simulated. Particularly regarding time, changes

of context can directly or indirectly influence the action, and even change the behavior

of a user or a object that is subject to assessment. Increasingly, ubiquitous systems are

being developed to function and adapt to different scenarios [21, 9, 37]. In [21], the authors

evaluate the suitability of a device to new environments and their adaptability to different

interactions, more specific, the Philips iPronto device.

Data collection

Data Collection is a increasing concern in the evaluation of ubiquitous systems, so an

important question comes up, “which methods to use to evaluate the users and which

methods use to gather the feedback of their experience?”. Developers can gather user

feedback, either by allowing the user to freely explore virtual environments, or by making

him or she follow or perform a list of tasks and storyboards, e.g., making the user complete

a series of tasks in a virtual device, such as, order a meal, make a phone call, prepare a

presentation [9].

34

There are several methods to perform evaluation tests and to collect data from these

evaluation tests [3, 2]. Next, the methods that appear more often in the studied papers,

and the ones that we think are more relevant to our study, are presented. Video recording or

user observation are examples of methods to gather data about user behavior/performance,

while performing tasks. The use of sensors to collect user performance, and save this data

in log files, is another method that can be used. Conducting a series of interviews with

users, or asking them to do surveys, or sending them online surveys, are methods used to

collect user feedback after the completion of the experiment. A concern to consider is the

problem with using different methods to collect data. Unification of data gathered form

different methods is a solution to that problem. The motivation is to be able to transform

these different types of collected data into a single type of data, in order to more rapidly

properly analyze and compare it with other collected data [13].

System-centric evaluation

System-centric evaluation is focused on evaluating ubiquitous environment’s prototypes.

This evaluation has also as focus to assess the developers themselves, i.e, assess the ability

of the developers to identify unwanted behavior in the ubiquitous system.

Developer-centric evaluation This evaluation is mainly concerned with knowing if

the developer can develop accurate ubiquitous environments. This can be accomplished by

providing them with instructions on how to implement and configure a virtual environment,

and then collect their feedback while performing a predefined prototyping task, in order

to understand how easy it was for them to implement what was being proposed [26, 37].

In [17], a similar method is used to evaluate developers’ performance. They are concerned

with supporting interactive developers in the initial stage of the development. Also, a

quick way to test and analyze their designs is through the use of storyboard analyses

and recording/replay of test experiments. Other approach is to use developers as test

users, in order to determine if they can identify problems in ubiquitous environment, and

35

consequently identify their unwanted behavior.

Environments evaluation Evaluating environments is a crucial task for most develop-

ers/designers. Some ubiquitous systems have the goal to create virtual environments that

are replicas of real environments. These virtual environments must have exactly the same

properties that the real environments have, in order to give to the users a more immerse,

and realistic experience. In order to assess these environments, users that regularly explore

the real environment, should supply feedback to the developers, for them to know if the

environment is reliable enough. Environments also need to be tested and evaluated at the

level of modeling of virtual environments and its objects, in order to create the desired

experience to use. It is necessary to check how the models perform without any specific

interaction and how they react to user interactions or to context changes.

User-centric evaluation

User-centric evaluation focuses on how the users react to the ubiquitous system. Evaluating

the users behavior and their feelings when interacting with it, or evaluating if they can

interact with the system efficiently and perform the tasks they were assigned.

Evaluating user experience User experience can be characterized by how well a person

feels, when she interacts with the system. One of the most important questions about user

experience, that the developers want to answer, is “Did the user have a pleasant experience

when interacted with the system?”. However, this evaluation is not always reliable because

it is subjective, i.e., it depends on the users’ feelings when they are interacting with the

system.

Through user experience evaluation, developers can know if the system that they are build-

ing will create a positive impact in people’s lives. User experience evaluation techniques

are widely used in many of the studies that were analyzed. Particularly in [17, 37, 13], a

36

big importance is given to analyzing and comparing user experience and behavior, allowing

them to eventually redefine the systems depending on the users’ feedback.

Evaluating usability Usability relates to the ability of the user to use a certain object.

In this case, the aim is to know if the ubiquitous system is easy for the user to use.

According to the ISO 9241-11 standard [12], usability is a subset of user experience and

it can answer the question, “Can users accomplish their goals?”, having in consideration

factors as satisfaction, efficiency and learnability. Usability is also a key goal on the process

of developing ubiquitous systems. The more common approach to usability tests is done

through observing and recording a user while he perform tasks. Others usability test

methodologies are described in [22].

Maly et al. [13] built a framework for testing the usability of applications in virtual

environments. The method consists on conducting specific tasks to evaluate usability. The

approach builds on usability testing methodologies for desktop applications, combined with

the evaluation of user behavior in ubiquitous environments.

3.3 Analysis

The relationships between the four dimensions of evaluation and the dimensions related

to the development of ubiquitous systems is presented in Table 3.1. The table should be

read having in consideration that the primary point of analysis are the several types of

evaluation. Each evaluation dimension is analyzed towards each prototyping dimension,

and also to the controlled experiments dimension. With this we want to highlight which

dimensions are more critical for each evaluation dimension. The scale of values chosen

to measure the relationship was: (1)- little influential, (2) - influential, and (3) - very

influential. The values in Table 3.1 are derived from the analysis of the papers mentioned

in this section. This values also emerged based on the percentage of codes collected for

37

each of the dimensions of evaluation, when compared with the percentage of codes for each

of the prototyping dimensions of the papers analyzed.

Developer
evaluation

Environments
evaluation

Evaluating
user

experience

Evaluating
usability

Fidelity of immersion 2 3 3 2

3D modeling and simulation 2 2 2 2

Embodied interaction sup-
port

2 1 3 3

Controlled environment ma-
nipulation

3 2 1 1

Context driven behavior 3 3 2 2

Multi-user support 2 2 1 1

Hybrid device prototyping 2 2 2 2

Controlled experiments 3 3 1 1

Table 3.1: Relation between each evaluation dimension and each prototyping dimension.

From Table 3.1 several conclusions can be reached. Developer-centric evaluation is more

concerned with how to give behavior to the system, and how it reacts to change (be

it context changes or user interactions). The ability to support multiple users with the

purpose of realizing experiments is also an influential aspect of developer centric evaluation.

Nevertheless, the other dimensions are also influential in this type of evaluation.

Regarding the assessment of environments, the more realistic is the environment, the better

is the ability to evaluate the envisaged design. The realization of controlled experiments

in the virtual environment, and how ubiquitous applications or smart objects react to

changes are also among the most influential dimensions to assess environments. Allowing

multiple users to interact with the environment, and supporting the use of virtual/real

devices/services are the remaining influential dimensions in environment evaluation.

38

For the user to have a good user experience, he should feel able to use most of the inter-

actions that he usually uses in reality. The environment should be as realistic as possible,

so that the user feels as embedded as possible in the environment. Regarding usability,

the way users interact with the system and how much they feel immersed in the virtual

environment are the more important dimensions to make user more connected with the en-

vironment, thus providing them a better way to accomplish their tasks. Dimensions as the

possibility of interaction with virtual or real devices/services, and the way the ubiquitous

system reacts to the user, are other influential dimensions to usability evaluation.

3.4 Conclusion

Concluding, this chapter has presented a set of dimensions that address the prototyping

of ubicomp systems and their evaluation. We believe that developers, before creating

ubiquitous systems, should take into account some of the features that have been presented

in here, for better planning the functionality of their systems. However, we are interested in

ubicomp simulations platforms that create ubiquitous environments and that have concerns

with evaluation. Therefore, the ubicomp simulation platforms mentioned in Section 3,

UbiWorld [9], 3DSim [21], TATUS [25], VARU [11], APEX [37], are of particular relevance.

UbiWorld 3DSim TATUS VARU APEX

Prototyping dimensions 23 13 13 9 15

Evaluation dimension 17 5 7 4 10

Table 3.2: Relation between the codes of dimension and the simulation platforms.

In this context, Table 3.2 show the relation between the main groups of dimensions iden-

tified above and the ubiquitous simulation platforms. The codes of each dimension were

grouped into the main groups of dimensions (prototyping and evaluation) for each of the

39

platforms identified.

To summarize, based on Table 3.2 we can conclude that ubiquitous simulation platforms

seem more interested in the dimensions used to characterize the prototyping of ubiquitous

systems, thus seeming more concerned with the process of developing the prototypes, and

with the improvement of the functionalities of the systems.

The fact that fewer codes were identified in the evaluation dimensions, can be explained

by the fact that simulation platforms still give more priority to the prototyping process

than to the evaluation of the prototypes. In what follows two prototypes will be developed

with the goal of supporting evaluation of both the prototypes themselves and the systems

being prototyped.

40

Chapter 4

Using the APEX Framework

In Chapter 2, frameworks for developing ubiquitous environments were presented. APEX

is the framework which will be used for developing our case studies. This chapter is divided

in two main sections. The first section, provides a more detailed description of the APEX

framework. It describes the structure of its architecture, detailing each of its components.

The second section presents the alternatives ways for users to experience the ubiquitous

environments developed with the framework.

4.1 APEX Framework

The APEX framework [37] eases the iterative process of developing ubiquitous environ-

ments prototypes. This is achieved by connecting different components in a unified plat-

form. The framework provides a library of virtual sensors (e.g. presence sensors and light

sensors) and dynamic objects for modeling ubiquitous computing environments, and a

software infrastructure for analyzing and animating the models.

41

4.1.1 Architecture

APEX was developed to provide a framework for rapid prototyping of ubiquitous environ-

ments. It is composed by four components: a virtual environment component, a behavioral

component, a physical component and a communication/execution component. A global

view of the APEX architecture is presented in Figure 4.1. Each of the components is

described below.

Figure 4.1: Logical architecture of the APEX framework

Virtual environment component This component is constituted by a OpenSimulator

server and a viewer component which enables each user to connect to the server. Open-

Simultator enables developers to create environments and customize them to best serve

their interests. The OpenSimulator server also supports multiple users (in the same loca-

tion or not) connected to the same virtual environment. Additionally it is responsible for

controlling the possible interactions and the information in the virtual environment.

Virtual environments can be saved and loaded to different OpenSimulator servers via a

42

specific file type, the OpenSimulator Archives (OAR). These files can be used to save and

restore all that is associated with a virtual environment, i.e., the land, all objects, as well

as its inventory (a database of objects available to be used in the environments). All the

information associated with the objects (position, textures, animations, video and sound) is

also saved in these files. A similar file type, the OpenSimulator Inventory ARchives (IAR)

is specific to save only folders and items that exist in the inventory. Subsequently they can

also be loaded into different OpenSimulator servers. It enables developers to save items,

such as textures, scripts, objects or sounds that exists in a inventory, and subsequently

restore them to enrich a different virtual environment.

The viewer component allows users to view the virtual environment (texture and physics

of objects, and all the information about the environment) running on the OpenSimulator

server. Furthermore, it allows users to interact with the environment by direct (with a

device or a object) or indirect interaction (changes of context). The OpenSimulator server

together with the client viewer permit to manipulate the virtual environment. This can go

from manipulation of objects (changing the physics or texture of an object, e.g. lights), to

the insertion/removal of sound, video or animations on objects. It is also possible to use

scripts, by using the Linden Scripting Language (LSL), to give behavior to avatars and

objects in the virtual environment. To do this, it is only necessary to select the object we

want to give a specific behavior to, and associate a script to it.

It is necessary to have into account choosing a client viewer. The viewers most widely used

and most appropriate to use are the Second Life viewer1 and the Firestorm viewer2. A list

of the alternatives viewers can be found in [1]. Some of the viewers can not fulfill some of

the requirements of the developers, e.g, provide support for mesh objects, or the ability to

interact with a local server.

Most of the communications made by the virtual environment component, is made with the

behavioral component. The virtual environment component can send information related

1http://secondlife.com/support/downloads/ (Accessed: 29/1/2013)
2http://www.phoenixviewer.com/downloads.php (Accessed: 29/1/2013)

43

to a specific object/avatar to the behavioral component, such as the position of the avatar

in the virtual environment. Or, the virtual environment component can receive the results

of the decisions that were made in the behavioral component, and reflects them in the

virtual environment (if an avatar is close enough to a gate, open it automatically).

Behavioral component This component uses CPN models to give behavior to objects

in the virtual environment. These CPN models are created by CPN Tools. The models

help developers to control and model the behavior of any object he desires to. For that

to happen, the developer must insert the model of every dynamic object (devices, sensors)

into a CPN base model. That CPN base model is used in APEX to provide assistance

to modeling new virtual environment simulations. The base model consists of 3 types of

modules:

• A module to establish the connection between the CPN model and the virtual envi-

ronment server (OpenSimulator) and its devices’ modules, and start the simulation;

• A module to receive data from the Opensimulator and update the relevant tokens in

the model;

• Modules to describe the behavior of each device existing in the system

Using a CPN model to driven the behavior, enables CPN Tools to analyze systematically

and exhaustively the behavior of a prototype. The State Space (SS) tool is integrated

in CPN Tools and supports the verification of properties such as liveness or reachability,

as well specific properties defined using the association programming language (CPN ML

languages). This type of analysis falls outside the scope of this work, so it will not be

discussed further. For more information see [34].

The communication of behavioral component is made primarily with the virtual environ-

ment component through the communication/execution component. Symmetrically to the

communication made by the virtual environment component, the main communications

made by the behavioral component are to receive the positions of objects and avatars, or

44

any event associated with an object, and to trigger actions in the virtual environment,

according to the conditions attached to such objects/events.

Figure 4.2 presents an example of a CPN module. This module describes the behavior of a

gate with incorporated sensors, when a user approaches or moves away from it. The gate

only has two states. The gate is opened, when a user is near the gate, and it is closed

when no one is near it.

Figure 4.2: Gate module using a CPN model

Physical component This component is responsible for supporting the connection of

real devices (smartphones, PDAs and sensors) to the APEX framework. This connection,

established using Bluetooth, as can be seen in Figure 4.3, allows the framework to send

and receive data (which can sometimes generate events in the virtual environment) from

a real device. Besides the communication between the physical component and the virtual

environment component, the physical component can also communicate with the other

45

components. The communication between real devices and the other components (virtual

environment and behavioral components) is established through the communication/exe-

cution component.

To use this feature a Bluetooth server application must be installed on each client ma-

chine, and a Bluetooth client application must be installed on the users’ mobile device

(currently Windows Mobile devices are supported). For the communication to be success-

ful, a Bluetooth server must be selected and a user account must be provided in the mobile

application. After this configuration, and after enabling Bluetooth on the mobile device,

the APEX framework automatically detects the mobile device, and associates it with the

previously set up user account.

Figure 4.3: Physical Architecture

This feature can provide a better user experience. In general, this functionality gives users

a better understanding of how the virtual environment works. First because users are

immersed in the virtual environment. And second, because they experience the exchange

of information between the real devices and the virtual environment, gaining a better

understanding of how to interact with the environment and which events are generated

from each interaction.

46

Communication/execution component This component acts like a communication

bridge between all other components. Ensuring, that all communications are conducted

appropriately, and that all the values changed are reflected almost immediately in the

appropriated components. Thus, the communication/execution component maintains con-

sistency between all other components. The component is implemented as a DLL imple-

mented in C#. This DLL is loaded by OpenSimulator when it is initialized.

As previously stated, this component manages the communications made between the

other components. The link between the dynamic objects in the virtual environment and

its representations in the model, are only possible if two conditions are fulfilled. Firstly,

it is necessary to specify the value of an unique identifier in all tokens in the CPN model

that represent a dynamic object. Secondly, is necessary to put identifiers in the dynamic

objects’ properties, with the same values that were placed in the relevant tokens. Scripts

must also be place within the dynamic objects in the virtual environment, for them to

reflect changes according to their state in the CPN model.

Finally, the DLL allows specific commands to be invoked in the viewer of the OpenSimulator

in real time. For example, to execute the loading/saving of a virtual environment, or to

initializes the sensors that exist in the virtual environment (command INIT SENSORS).

4.2 Second Life viewer

Appropriated tools should be provided to developers, in order to facilitate the process of

building environments. Besides that, these tools should provide them means to develop

richer content environments, and allow them to build virtual environments that may re-

semble a concrete, or envisaged, real environment. Creating virtual environments with

rich content, in order to resemble real environments, is one of the ways for assessing the

user experience in the final system. Such environments, should also provide users a better

perception of the possible social interaction and ability to recognize difficulties regarding

47

usability/interaction.

OpenSimulator can interact with several viewers (Second Life client viewers). Most Second

Life viewers, provide the basic features to operate in 3D virtual environments (explore,

interact, etc.), and providing tools to build those environments. But besides that, each

viewer has specific features, that distinguish them from each other. For example, there

are viewers to support specific visualizations (e.g. stereoscopic 3D visualization), viewers

to operate with CAVE environments, and also viewers that target specific groups of users

(closed communities). Below are presented the viewers which were used for developing

this project. Some of the basic steps for constructing 3D virtual environments in Second

Life/Second Life viewer are also described.

4.2.1 Client viewers

After Linden Lab released the source code of the Second Life official viewer, a wide variety

of viewers began to appear3,4. Each viewer has specific characteristics to meet specific

needs of certain groups of users. The Second Life viewer is appropriate for performing

the most basic operations in the virtual environment only. These basic operations are, for

example, to explore the virtual environment (walking around), interact with objects and

with other avatars (talking to them). Customization of an avatar (changing its appearance

and clothes) is also possible, and, if a user has enough privileges, he or she can also build

environments/objects within the virtual world. With Second Life’s official viewer it is

possible to perform other tasks such as, buying items, earning money, among others. The

complete list of features is provided in the tool’s website5. Figure 4.4 shows an example of

the Second Life viewer.

Two other popular viewers are the Firestorm viewer and the Phoenix viewer6, both are

3http://wiki.secondlife.com/wiki/Third Party Viewer Directory (Accessed: 29/1/2013)
4http://opensimulator.org/wiki/Compatible Viewers (Accessed: 29/1/2013)
5http://wiki.secondlife.com/wiki/Features (Accessed: 29/1/2013)
6http://www.phoenixviewer.com/ (Accessed: 29/1/2013)

48

Figure 4.4: Second life official viewer.

a community developed project provided by Firestorm Phoenix Project Incorporated. In

specific, Firestorm viewer (currently the most used) aims to improve the user experience,

by providing new features, and improving usability, functionality and flexibility of the

viewer. It also aims to shorten the learning curve of users, to interact with a Second Life

environment.

One of its most interesting features, and one of the main reasons for being highly used by

the community that works with OpenSimulator, is the possibility to choose the OpenSim

grid (i.e. the server) to which the viewer is connected. So far, available Second Life viewers

are able to access OpenSimulator grids by defining their path when starting the server.

This viewer is the only one that has the specific feature to access different OpenSimulator

grids at runtime, as shown in Figure 4.5.

It is not always easy to build complex objects, starting with the basic objects supplied

by Second Life. However, many viewers have the advantage to offer the ability to import

49

Figure 4.5: Ability to connect to a specific grid.

complex objects. There is some diversity in the type of objects that can be imported in

Second Life, for example images, sounds or animations. The more complex objects (third

party developed objects) can be imported in two ways. Some of the viewers like the Kokua

or Imprudence viewers7, allow importing XML objects. While most of viewers like the

Firestorm viewer, Second Life viewer, among other allows importing mesh8 objects.

Mesh objects can be built using third party tools, such as, Blender, Google Sketchup and

3DS Max. Their addition to a virtual environment, enables the development of more

realistic, complex and accurate virtual environments, providing a better user experience.

A huge amount of mesh objects is available for free in Google 3D Warehouse 9. This is a

repository with many 3D objects, like vehicles, furniture, everyday objects, or buildings.

However, not all combinations of Second Life viewers and OpenSimulator versions, support

7http://blog.kokuaviewer.org/ (Accessed: 29/1/2013)
8http://wiki.secondlife.com/wiki/Mesh/What is mesh%3F (Accessed: 29/1/2013)
9http://sketchup.google.com/3dwarehouse/ (Accessed: 29/1/2013)

50

the visualization of mesh objects. Figure 4.6 shows the use of the combination Phoenix

viewer and 0.7.1 version of OpenSimulator, where is possible to visualize the mesh objects

existing in the virtual environment. While Figure 4.7 shows the use of the combination of

Firestorm viewer and the 0.7.1 version of OpenSimulator, and where it can be observed

that it is not possible to show the mesh objects existing in the virtual environment (or

they are shown with rendering problems).

Figure 4.6: Environment showing mesh objects

Exist also other types of viewers with the property of making users feel more immersed

in a virtual environment. For example, exist viewers for allowing the use for stereoscopic

3D visualization, or viewers to simulate or use in CAVE environments. Below, it is made

a briefly description of each type of viewer. These viewers are already been used in the

APEX framework and it is in line on one of the topics that has been earlier discussed in

Fidelity of immersion.

51

Figure 4.7: Environment not showing mesh objects

The Dale’s SL10 is a viewer that improves the Second Life official viewer, by providing a

feature to support to a stereoscopic 3D visualization. This feature provides to the user

a better user experience, by improving user immersion in the virtual environment. This

viewer provides 3 stereoscopic modes available to be used. In Dale’s SL website11 is provided

more detailed information about stereoscopic modes. A short description is given below.

• In Anaglyph Stereo the sensation of depth is achieve through the use of red/cyan

glasses. Figure 4.8 is an example of this mode;

• Passive Stereo is achieved through the use of two projectors, using polarized filters.

This can also be achieve through the use of Head-Mounted Display (HMD). Passive

Stereo is the mode which provides the most quality to the user;

• Active Stereo requires shutter glasses and one projector, for a user to view image

10http://sl.daleglass.net/ (Accessed: 29/1/2013)
11http://sl.daleglass.net/#stereo (Accessed: 29/1/2013)

52

depth. Stereo effect is achieved by separating the frames shown for each eye.

Figure 4.8: Example of Dale’s SL viewer in anaglyph stereo mode.

CaveSL12, as the name indicates, is a viewer for specific use in large scale immersive dis-

plays, such as a CAVE. One way to bypass the use of a CAVE (for monetary and logistic

difficulties), is to have multiple monitors to show the virtual environment divided between

them, as shown in Figure 4.9. The benefits of using CaveSL are:

• Support to use CAVEs and multi projectors;

• The ease to extend the number of displays used to show the virtual environment;

• Provides immersion, which improves the user experience;

• Solves most implementations difficulties between multiple displays, such as synchro-

nization camera rotation, position and Field Of View.

More information about the possibility of integrating these features (stereoscopic 3D visu-

alization, and multiple display support) with APEX are available in [19].

12http://projects.ict.usc.edu/force/cominghome/cavesl/index.html (Accessed: 29/1/2013)

53

Figure 4.9: Example of CaveSL viewer with three running client viewers.

4.2.2 Second Life user interaction

The previous section presented several of the existing Second Life viewers, each oriented to

specific features. Hereupon, using that viewers it becomes possible for users and developers

to create a virtual environment, as well as to explore and interact with it.

The process starts by creating/adjusting the land where the desired environment will be

built. Second Life viewers and OpenSimulator provides tools to create and adjust the land.

Then, Second Life viewers provide a set of primitive objects (called ”Prim” objects), see

Figure 4.10, that help developers build more complex objects (buildings, chairs, etc.), in

order to enhance the virtual environment. These objects are customizable. Their size and

position can be changed within the environment. Furthermore, the textures of these prim

objects are also configurable. A set of options can be applied to objects to change their

texture, e.g., the possibility to assign/change a color or even a more detailed texture.

One way to create more complex objects is achieved by linking together several primitive

objects into a single and more complex object, e.g. ladders, chairs, as can be seen in

Figure 4.11. Another way to incorporate complex objects in the virtual environment, is

by importing mesh objects (see Figure 4.12). As already discussed, this option is only

available in some Second Life viewers. Regarding the avatars, a few options are available

to customize them, e.g. change their facial and clothing appearances.

54

Figure 4.10: Primitive objects provided by Second Life viewers.

Adding new avatars to a virtual environment is only possible through the use of Open-

Simulator. Exist two ways of adding new avatars to the virtual environment. The first is

by using Non Player Characters (NPCs), which is possible by executing C# scripts in the

OpenSimulator, or by executing specific commands in the OpenSimulator console. The

other alternative, is having real users controlling avatars, and this is also achieved by exe-

cuting a command at OpenSimulator console, that creates a new user account for a specific

virtual environment.

4.3 Conclusion

The APEX framework supports rapid prototyping, making it easier and simpler to develop

complex ubiquitous computing environments. APEX is composed by several components,

each responsible for specific features (physical, behavior, simulation, communication). The

connection between this components, permits that virtual objects and physical devices be

available to the users enabling them to explore/interact with the virtual environment. Also,

this separation of components allows exploring a design from a variety of perspectives. For

example, using CPN models at the modeling component, virtual devices at the virtual

component, and physical devices via Bluetooth at the physical component.

For improving the user experience of these virtual environments, several Second Life viewers

55

Figure 4.11: Linking primitive objects to build a more complex object.

can be used. Each supports specific features, such as CAVE environments or stereoscopic

3D. These viewers also allow developers to build virtual environments, by using resources

provided by the same viewers (Prim objects), by OpenSimulator, or by importing mesh

objects. This makes it possible to create virtual environments as close as possible to

the target physical ubiquitous environments, providing users with a more complete and

enhanced experience.

56

Figure 4.12: Functionality to import mesh objects to virtual environments.

57

58

Chapter 5

Case studies

This chapter presents two case studies implement with the APEX framework. For these

case studies, two virtual environments were built with the purpose of assessing aspects

related to virtual environments and also aspects of usability. While previous work had

focused on the modeling layer [37, 34], and on the viewers [19], here the focus is on the the

simulation, and in its connection to the physical world.

The first case study was develop to replicate, in a virtual environment, a users study

previously carried out in real life. The second case study was developed to test ideas for an

ongoing project of developing an ubiquitous system, which meant integrating the virtual

environment with the software infrastructure already in place for that project.

5.1 First case study

The first virtual environment created was a recreation of the environment described in

[40]. The purpose behind creating this first virtual environment had two reasons. First,

it was used as an initial study of how to model ubiquitous computing environments in

OpenSimulator. Secondly, it was used to support the assessment of whether the behavior

59

of users inside a virtual environment will be similar to their behavior in the corresponding

real environment.

5.1.1 The original experiment

The experience made by Varoudis et al. [40] consisted in analyzing if ambient displays,

used as virtual extension of the limits of human vision in public spaces, influenced the

visual relations between spaces and as consequence, changed people’s movement.

The environment consisted on a corridor with a “T” shape. At the end of the corridor there

was a wall separating the corridor from the next room, as can be see in Figure 5.1. After

the wall, there was a coffee room where coffee was being offered (in order to encourage users

to go through the corridor). In the corridor, there was a display broadcasting what was

happening in the coffee room. The display was placed sometimes on the left, sometimes

on the right, towards the end of the corridor. The purpose of this whole environment was

to see if the position of the display (broadcasting what was happening in the coffee room)

somehow influenced the decision making of the people going through the corridor (whether

they turned the left or right when they arrive at the end of the corridor). A physical

corridor and coffee room were built in order to carry out the experiment.

The results presented by Varoudis et al., show that a ambient display influences user’s

behavior (in the case, the route they took), when showing (broadcasting/real time stream)

the place that the user wants to go. For example, one of the results obtained by Varoudis,

indicates that placing the display on the left wall meant that the percentage of users who

choose to turn left was 73.4%. And with the display placed on the right side, a percentage

of 58.9% of test users choose to turn to the right.

60

Figure 5.1: “T” shaped corridor with ambient display to the right (taken from [40])

5.1.2 Virtual environment proposed

In order to replicate the experiment, a virtual environment was created that is very similar

to the environment in [40]. In our case, the 3D virtual environment was to be presented

to and explored by post-graduate students, so instead of a coffee room, a faithful repre-

sentation of the classroom where the students had lessons was constructed. Consequently,

the display on the wall shows the classroom environment, not a coffee room. A further

change is that, instead of having a live broadcast of what is happening in the classroom,

the display shows the classroom environment by using a video. This change was made to

simplify the implementation of the simulated display, since, given that short experiments

were to be conducted, having a live feed was not deemed very relevant. The display was

implemented by embedding a browser window in the environment.

As in real life, the virtual environment is composed by a corridor with the shape of a “T”,

where the user must choose to turn right or to turn left in order to access a desired space.

The environment is shown in Figure 5.2. As the figure shows, an ambient display is placed

in one wall at the end of corridor (in this case, on the right).

61

Figure 5.2: Example of experimental case

During the experiments with users, two conditions need to be tested. In the first, the

display is placed in the right corner. In the second, it is placed in the left corner. The goal

being to observe if, with the addition of an environment display, users’ routes are changed.

By analyzing and comparing the results from the experiments in the virtual environment

with the results obtained by Varoudis et al., it becames possible to see if anything can

be conclude about the users’ behavior in the same experiments in ”different” environments

(real and virtual). A further goal is focused in analyzing the expressiveness of the APEX

framework. In particular, if the navigation through the virtual environment seems realistic

enough. Preliminary results of a study carried out with students from an Informatics

doctoral programme indicate that indeed similar results are obtained in both the physical

prototype and the virtual world prototype.

5.2 Second case study

The second virtual environment built, had the goal to represent as real and faithfully as

possible the S. Mamede building in Guimarães. S. Mamede is a Arts and Shows Centre and

62

it consists in a building with 3 floors. In the ground floor, there exists a shows room, where

events are held (eg, theater plays, cinema, conferences, etc.), and also an art gallery that

promotes exhibitions of art and photography. At the first floor there is a bar/restaurant,

with a small area to host concerts or literary presentations. This is is a suitable area for

social interaction. The second floor is composed by a library, and can also serve as a study

room.

The first floor of S.Mamede features a system for interaction with public displays: Instant

Places1. Instant Places supports interaction between users and displays using a mobile ap-

plication, as it will be described below. The goal of this case study was to study extensions

to the system. From a prototyping perspective, the main challenge was the integration of

Instant Places with the virtual environment. Thus, we focused our work mainly on building

the first floor of S. Mamede.

5.2.1 Instant Places

Instant Places is a system deployed in public displays, that makes it possible for a user to

interact with the displays, and see new content constantly shown on them. This way, it

allows new forms of expression in public displays. Namely, it allows any user to contribute

with content to be displayed on the public displays. The public display is basically a display

device connected to a network, able to interact and react to events in the environment.

The system supports the interaction of a group of people present in the environment, and

adapts the content shown on public displays, based on social situations and the preferences

of the people are around it.

To interact with the public displays, it is necessary to have an account on the project’s

website. Upon creating and setting up the account, the user can interact with/send content

to all the places that have public displays ”running” Instant Places. Interaction with a

public display it achieved through the Instant Places Android application, available on

1http://www.instantplaces.org/ (Accessed: 29/1/2013)

63

(a) Activity Stream (b) Pins

(c) Posters (d) Presences

Figure 5.3: Example of the four applications of Instant Places.

Google Play2. So far, the interactions that are possible to accomplish with the android

application are to do a check-in and send posters to public displays. A user must be at

a place where there is a public display to do the check-in. This interaction immediately

influences the content that is shown in the display, based on the user preferences. The

other interaction that is possible to accomplish is to share/recommend/send a poster to

the public display, increasing the content that is shown on that display. It is also possible

to collect into a smartphone the posters that are being displayed on the public display in

a specific place, to later share those posters in other place.

At the moment, the content that is shown in the public displays with Instant Places,

consists in four applications: Place Stream, Football Pins, Posters and Presence. Figure 5.3

shows examples of each of these applications:

2https://play.google.com/store/apps/details?id=instant.Places (Accessed: 29/1/2013)

64

• Place Stream: Shows all the events triggered by Instant Places users for a specific

place;

• Football Pins: Shows the football preferences of users that have checked-in in a

specific place. In other words, the public display shows news/images of football clubs

that users have as pins in their preferences;

• Posters: Shows the posters sent by Instant Places users. Users can send their poster

to any place they visit (this can be used, for example, to promote an event);

• Presences: Shows a list of nicknames, and their pictures, of users that recently have

made check-in in a specific place.

5.2.2 Proposed virtual environment

A virtual environment was built that tries to resemble the real environment as much as

possible. All the physical characteristics of the real environment were implemented in the

virtual environment, from the number of tables/chairs, to stairs, as well as every existing

object in the environment. An example of the two environments (real and virtual) is shown

in Figure 5.4.

Our proposal focuses on giving users the possibility to choose which Instant Places applica-

tion they want to see in the screens inside the virtual environment. A new way to interact

with Instant Places system was developed. Besides the already available use smartphones

to choose which Instant Places applications to show on the public display, interaction

through interactive (touch) tables was implemented (in the prototype). Testing this new

interaction technology would be impossible in the real world scenario, due to the high costs

associated with its implementation.

At the architectural level, since the Instant Places infrastructure is already assembled, it

was not necessary to use the behavioral component of the APEX framework. All behavior

will be obtained by integrating the Instant Places framework directly in the Virtual Envi-

65

(a) Real environment (b) Real environment

(c) Virtual environment

Figure 5.4: Example of the real and virtual environment.

ronment component. The architecture we envisaged is shown in Figure 5.5. Next, each of

its components and how they interact with each other is explained in greater detail.

• OpenSimulator: Application server 3D used to ”run” the developed virtual envi-

ronment;

• Website: Represents the public display in the virtual environment. And is respon-

sible for running the several Instant Places applications;

• Web Service: Responsible for manage which content (Instant Place application)

shows in the public display in the virtual world;

66

Figure 5.5: Representation of the architecture.

• Smartphone: A way that enables the users to choose which Instant Places applica-

tion that they want to appear on the public display;

• Second Life Viewer: Second Life client that allows the user to interact with the

virtual environment;

• User: User which will use the SecondLife viewer or the smartphone to choose which

Instant Places application he wants to see.

Users interact with the Instant Place system, through the use interactive tables or through

the smartphones. Interactive tables were constructed using a mixed between mesh objects

and primitive objects. The table was used based on a mesh object. Additionally, primitive

67

objects were placed on the tables. These objects are almost identical to the object created

to simulate the public display in the previous section, but instead of passively showing a

single page they show a set of applications to be selected, and support user interaction.

Each interactive table in the virtual environment shows all Instant Places applications

available for the user choose from. An example, can be seen in Figure 5.6. When a user

selects a Instant Places application from the interactive table, an action is triggered that

sends a request to the web service, in order to change the application that is being displayed

on the public display to the application that the user chose.

(a) Interactive Table (b) Display to choose applications

Figure 5.6: Example of the developed interactive tables.

The process for changing the application that is being displayed on the public display via a

smartphone, is very similar to that of the interaction tables. All Instant Places applications

displayed on the the public display are also available on the smartphone, as can be seen

in Figure 5.7. Thus, when a user selects a specific application, a request is also sent to

the web service, for changing the application that is being displayed on the public display

inside the virtual environment.

The website was integrated into a browser and applied to a primitive object (Prim) of

Second Life, in order to represent the public display in the virtual environment, as can be

seen in Figure 5.8. The website is responsible for presenting the Instant Places applications

to the user. It is constantly making requests to the web service, to verify if a user has made

68

Figure 5.7: Method for choosing an application through a smartphone.

a request for changing the application that is being display in the public display. The web

service receives requests from the users (through the interactive tables or smartphones) for

the application that they want to see, and is responsible for managing requests for displayed

application changes. The requests management logic can have several approaches. For

example, it can give priority to certain requests (based on a counter of the number of

requests per application). The web service also manages the time between application

changes, and also notifies the users when they make requests. Several notification (pop-

ups) can be sent to the user when he request an application:

• If there is no application to be shown in the public display, when a user request an

application, a notification is shown to the user saying that the request was successful

and the application will appear on the screen immediately;

• If there are other requests for applications to be shown in the public display, two

things can happen:

69

Figure 5.8: Public display showing Activity Stream application.

– if the the application that the user requested is already in the queue of applica-

tions to be shown, the user receives a notification saying that there is already a

request to display the requested application and it will be shown within x time;

– if the application had no previous requests, then the user receives a notification

saying that the request was successful, and it is also shown the waiting time

until the requested application appears on the screen;

• Alternatively, if the request failed, the user receives a notification saying that it was

not possible to fulfill his request.

Finally, the 3D applications server (OpenSimulator), is responsible for simulating the vir-

tual environment. It simulates the entire environment (including the public display and all

its content). Through the Second Life client users can explore the virtual environment.

70

Figure 5.9: Test performed by users in the virtual environment.

5.2.3 Evaluation process and Results

With this prototype we want to evaluate specific situations. On the one hand we want to

test the efficiency of the proposed system in supporting users perform certain tasks, and

evaluate the users’ experience while interacting with the system. On the other hand we

want to evaluate how this proposed system behaves when multiple users interacts with

it, requesting (simultaneously or not) the applications in the virtual environment and via

smartphones.

Following this architecture and this system logic, were conducted two sessions of the same

test. A total of 10 persons performed the test, and each test was realized by groups of 5

persons. Figure 5.9 illustrates users interacting with the virtual environment in one of the

test sessions performed. More details about the test and about the persons who performed

them are presented below:

• The age of the persons that carried out the tests were between 22 and 27 years;

• Most of the persons had an academic degree and had interest in technology;

• Each test was performed during 15 minutes;

71

• Users were told that they would explore a restaurant/leisure room. And that their

goal was to try to influence what was shown on the public display;

• The system Instant Places system was explained to them;

• Users that had smartphones were given indications on how they could interact with

the public display in the virtual environment through them;

• After users performed the test, they were asked to fill out two questionnaires (see

Appendix A).

During the test performed by the users, the people responsible for monitoring the test were

taking notes about user’s feelings, about user’s difficulties when interacting with the virtual

environment, and also about possible errors in the development of the virtual environment.

The questionnaires and notes taken by the monitors had as main objectives to analyze

user immersion in the virtual environment, and the usability of the Instant Places system

in the virtual environment. We also wanted to analyze these new ways of interacting with

Instant Places, more specifically whether the choice of applications is a feature that users

find interesting.

Some interesting notes were taken by people who were in charge of monitoring the test.

One of the notes concludes that only a few of the users used their smartphone to select

which Instant Places applications they wanted to see in the public display. In fact only

three persons used the smartphone. Another note states that the three people who had

been at S. Mamede, recognized the virtual environment as the virtual representation of the

S. Mamede environment.

As mentioned above, after the tests, users were asked to fill two questionnaires. One of

the questionnaires used was the System Usability Scale (SUS)3. The SUS questionnaire

is specific for evaluating usability. This is measured by several different usability aspects,

such as the effectiveness and efficiency of the system and the user satisfaction. For

3http://www.measuringusability.com/sus.php (Accessed: 29/1/2013)

72

our specific case, with this questionnaire mainly we wanted to evaluate the usability of the

new features implemented for the Instant Places system, and the usability of the system

itself.

The SUS is a 10 item questionnaire with 5 different responses, ranging from strongly

disagree to strongly agree. The SUS can be seen at Appendix A (first questionnaire).

Scoring with SUS is subject to a few conditions:

• This scales all have values from 0 to 4 (with four being the most positive response).

• Specifically, for questions 1, 3, 5, 7, 9 the score contribution is:

– Strongly Disagree = 0

– Disagree = 1

– Not sure = 2

– Agree = 3

– Strongly Agree = 4

• For questions 2, 4, 6, 8, 10 the score contribution is the opposite:

– Strongly Disagree = 4

– Disagree = 3

– Not sure = 2

– Agree = 1

– Strongly Agree = 0

• The result of the test is calculated by adding up the converted responses for each

user and multiply that total by 2.5. This converts the range of possible values to a

scale from 0 to 100.

The average SUS score is 68, so any score above or around this value can be considered

73

as good usability. After the analysis of the questionnaires filled by users, the average re-

sults obtained from them shows a score of 74. Thus, based on the results obtained, it can

be stated that we obtained better results than the average results in the SUS question-

naires. Concluding, the the set of new features implemented for Instant Places (namely

the combination of tabletop interfaces and smartphones), was considered as having good

usability.

The other questionnaire was built based on the USE questionnaire4. In this second ques-

tionnaire (Appendix A - second questionnaire), we were more interested in evaluating

mostly the usability aspects of the user being inside the virtual environment. We also

made questions about the usability of the Instant Places system, but the majority of the

questions concerned the user and the quality of the immersion provided by virtual environ-

ment. The questions in the questionnaire were grouped into three categories, to simplify

the interpretation of the survey’s results. The categories are:

• System: If the user understood how to interact with ubiquitous system;

• Immersion: If the virtual environment creates an immersive experience in the user;

• User Satisfaction: If the user is pleased after interacting with the virtual environ-

ment and ubiquitous system.

Interpretation of results was based on finding the mode (statistics) of each question of the

survey and therefore of the categories created. In questionnaires that return ordinal data

(agree, strongly agree), it is hard to tell the distances between the different scales. For

example, the distance between neutral and agree may not be the same distance between

agree and strongly agree. Therefore, in this type of questionnaire is recommended to use

the (statistical) mode to interpret the results [32].

In the System and User Satisfaction categories a mode of 2 (agree) was obtained. In the

Immersion category the bimodal 1 (somewhat agree) and 2 (agree) was obtained. While

the number of test subjects is still small to enable statistically valid results, these results

4http://www.stcsig.org/usability/newsletter/0110 measuring with use.html (Accessed: 29/1/2013)

74

are nevertheless very promising. Both for the ability of APEX framework to create virtual

environments and immerse users in it, and to provide a satisfactory experience to the

user, and for the new approach to interacting in the Instant Places system (users easily

understood how to interact with the ubiquitous system). However, the results enabled

us to identify aspects of APEX that should be improved. Improvements at the level of

immersion of the environment, which on one hand it can be enhanced by using the virtual

environments inside a CAVE. And also some issues with users moving inside the virtual

environments. Some issues were specific to the environment created, and others were

because of how Second Life avatars move.

5.3 Conclusion

The virtual environments described in this chapter were based on studies already performed

and ubiquitous systems already developed in the real world. The purpose was that of

assessing aspects related to virtual environments and also aspects of usability. The results

obtained through these initial tests were qualitatively good. The first environment had as

initial objective to serve as study on how to model ubiquitous computing environments in

OpenSimulator. Another objective was to assess if the behavior of users inside the virtual

environment were in a certain way similar to their behavior in the corresponding real

environment. A preliminary evaluation of the results help us to conclude that users usually

take the same decisions both in the physical prototype and the virtual world prototype.

And somehow also helped to strengthen the results obtained in the original experiment.

The second virtual environment was a faithful representation of the S.Mamede environment

at Guimarães. It aimed to test the implementations of new ways to interact with the

Instant Places system. Two questionnaires were conducted on this case, one more focused

on the usability of the ubiquitous system, and the other more focused on the usability of the

virtual environment and user satisfaction. Again the analysis of the preliminary results was

positive. In the questionnaire addressing the ubiquitous system’s usability, results indicate

75

a score above the average for the results with that survey. This leads to a preliminary

conclusion that the ubiquitous system and its new forms of interaction have good usability.

Once the results are further validated, the next step is to inform developers of Instant

Places about the results, in order to support their decision on the possible implementation

of these new forms of interaction with theirs system in the real world. From the second

questionnaire (more focused on the user and on the virtual environment), results were

also obtained that indicate good usability and user satisfaction when interacting within

the virtual environment. However aspects were also found that deserve consideration and

improvement.

76

Chapter 6

Conclusion

6.1 Discussion

Ubiquitous systems present usability challenges in both design and development phases.

User experience, in particular, is a difficult but crucial requirement which is difficult to

measure, demonstrate and assess. The use of early prototypes of the envisaged system is

a common approach to address this problem. However, given their situated nature, the

development of such prototypes may imply design decisions and other associated costs,

that will be very difficult to reverse. To address this, several ubicomp simulation plat-

forms for the rapid prototyping of ubiquitous computing have emerged (see Chapter 2).

These platforms offer different degrees of fidelity for the prototypes, from simple desktop

simulations, to fully immersive experiences in a CAVE environment.

The APEX framework approach is one of the solutions that tries to solve the problems

mentioned above. APEX offers a number of advantages in relation to other ubicomp

simulators, for example multi-user support or exhaustive analysis support. Below, a list of

features is presented:

• support for analysis through the simulation or through the CPN models (exhaustive

77

analysis);

• multi-layered development approach supporting hybrid prototyping;

• multi-user support;

• focus on user’s experience, and on how users will experience a virtual environment.

Other works have addressed the use of models for simulation and analysis [35, 37]. Here, the

focus was on the integration of the virtual world simulations with actual physical services

in order to create immersive hybrid prototypes.

To better understand what is involved in the prototyping of ubicomp environments, we

need to establish how to align the prototypes with the key properties of the target environ-

ment, as well as the specific evaluation goals that they should support. Indeed, immersive

prototyping requires thorough alignment with the key dimensions of the target environ-

ment, and a strong focus on the specific evaluation dimensions, such as users experience.

Hence, in Chapter 3 we provided a framework to guide the alignment between specific

evaluation goals and particular prototype properties (see Section 3.1).

This should provide a relevant contribution towards understanding the potential added-

value of 3D simulation as a tool in the development process of ubiquitous computing

environments. This is a proposal for developers consider before creating ubiquitous systems.

They might take into consideration some of the dimensions that have been presented in

here, to improve the planning and the functionality of their systems.

After the analysis that lead to the framework, two prototypes of virtual environments were

implemented (see Section 5). These virtual environments were built to assess a number

of aspects related mostly to the dimensions of Environments evaluation and User centric

evaluation. By observing the behaviors of users inside virtual environments, and applying

questionnaires, we were able to assess, both aspects related to the systems being prototyped

and their influence on users, and to the prototyping themselves.

After this research, it were implemented two prototypes of virtual environments using

78

APEX. Some problems were detected using APEX framework. Starting with the com-

patibility of OpenSimulator versions using the DLL to run CPN models. And also with

problems between OpenSimulator versions and Second Life viewers when using mesh ob-

jects to fill with content the virtual environments. Virtual environments were built basically

to assess certain behaviors of users inside virtual environments.

The main goal of the first virtual environment was to support a study aimed at understand-

ing if users have the same or similar behaviors and decision making procedures when faced

with similar situations in both the physical and virtual words. An immersive prototype

was created that simulated the same conditions used in a study where a actual physical

environment had to be built. Although more tests would help to strengthen the results

obtained, a posterior user study indicates that users ”inside” virtual environments make

the same or similar decisions to those they make in real environments.

The second virtual environment recreated an actual ubiquitous system which already op-

erates in the real world. The environment recreated conditions that were not possible to

easily test in the physical system (the introduction of interactive tables user interfaces) in

order to carry out tests of new functionalities. On the one hand, the aim was to analyze

the usability of these new functionalities, on the other hand it was also to assess the user

experience of interacting with the virtual environment. The feedback obtained through the

notes taken by monitors and through the questionnaires, in general, helped us to conclude

that the overall ubiquitous environment had a good usability. More specifically, with the

SUS questionnaire, which had a strong focus on the new functionalities of the ubiquitous

system, we obtained better results than the average results of SUS questionnaires. This

indicates that the ubiquitous system, as experienced through the virtual environment, has

good usability aspects. The second questionnaire was more focused on assessing three cate-

gories: a) user satisfaction; b) quality of immersion of the virtual environment; c) and user

perception of the ubiquitous system. Our results show that good results were obtained on

all three categories. This indicates that, overall, the environment provided a satisfactory

experience to the user.

79

Looking back at the two prototypes, it can be said that the prototypes covered most of

the dimensions identified in Section 3.1, with an emphasis on Fidelity of immersion, 3D

modeling and simulation, Multi-user support and Hybrid prototyping.

During the development of the prototypes, some problems were faced using APEX. Starting

with the compatibility of OpenSimulator versions with the DLL implementing the Com-

munication component, to with problems between OpenSimulator versions and Second Life

viewers when using mesh objects to fill the virtual environments with content. to To solve

this, appropriate versions of OpenSimulator and Second Life viewers were identified, in

order to obtain the best use, offered by both these tools.

6.2 Current and Future Work

The work described in this dissertation was developed in the context of the APEX project.

With the virtual environments developed, additional work is ongoing or planned. Work

is being developed for the second case study (by the author), and it is also planned that

more tests will to carry out on the first one (in the context of the project). To capitalize

on the experience gained, the implementation of a new, larger, case study is also starting.

Summarizing, ongoing and planned work follows three main paths:

• New user tests are being conducted on the second case study. This new tests are

being performed both on the virtual and the real environments. In this new exper-

iment the logic of application selection in Instant Places has changed. Instead of

the applications being displayed immediately after their selection, in this experiment

users have a period of 4 minute to vote on the application that they want to see.

At the end of that time, a ranking of the votes is shown and then the applications

are then displayed according to the ranking. It is expected that greater interaction

between users will happen, in order to work together to choose the applications.

• In order to consolidate the results obtained in the first case study is it expected that

80

more user tests will be performed.

• Another virtual environment will be built, to serve as another case study. This

will be a representation of an existing nursing home that exists in Braga. While

previous work on the APEX framework has focused mostly on exploring each of the

components in the framework, this virtual environment will be used to explore the

interaction between the components. Factors to be evaluated are still under study.

81

82

Bibliography

[1] Opensimulator compatible viewers. http://opensimulator.org/wiki/Connecting.

Accessed: 29/1/2013.

[2] Usability evaluation by query techniques. http://www.it.bton.ac.uk/staff/rng/

teaching/notes/UsabilityEvalQuery.html. Accessed: 29/1/2013.

[3] Usability testing. http://www.usability.gov/pdfs/chapter18.pdf. Accessed:

29/1/2013.

[4] Ali Asghar Nazari Shirehjini, Hannes Guddat, S. N. N. S. Platform for

distributed multimedia environments supporting arbitrarily nested team structures.

In Proceedings of SPIE Vol. 5241 Multimedia Systems and Applications VI, edited

by Andrew G. Tescher, Bhaskaran Vasudev, V. Michael Bove, Jr., Ajay Divakaran

(Bellinghm, WA, 2003), SPIE Society of Photo-Optical Instrumentation Engineering,

pp. 169–179.

[5] Barton, J. J., and Vijayaraghavan, V. UBIWISE, A Ubiquitous Wireless Infras-

tructure Simulation Environment. Technical Report HPL-2002-303, HP Laboratories,

Palo Alto, October 2002.

[6] Barton, J. J., and Vijayaraghavan, V. UBIWISE, a simulator for ubiquitous

computing systems design. Technical Report HPL-2003-93, HP Laboratories, Palo

Alto, April 2003.

83

http://opensimulator.org/wiki/Connecting
http://www.it.bton.ac.uk/staff/rng/teaching/notes/UsabilityEvalQuery.html
http://www.it.bton.ac.uk/staff/rng/teaching/notes/UsabilityEvalQuery.html
http://www.usability.gov/pdfs/chapter18.pdf

[7] Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. Surround-screen projection-

based virtual reality: the design and implementation of the cave. In Proceedings of the

20th annual conference on Computer graphics and interactive techniques (New York,

NY, USA, 1993), SIGGRAPH ’93, ACM, pp. 135–142.

[8] Czernuszenko, M., Pape, D., Sandin, D., DeFanti, T., Dawe, G. L., and

Brown, M. D. The immersadesk and infinity wall projection-based virtual reality

displays. SIGGRAPH Comput. Graph. 31, 2 (May 1997), 46–49.

[9] Disz, T., Papka, M. E., and Stevens, R. Ubiworld: An environment integrating

virtual reality, supercomputing, and design. In Heterogeneous Computing Workshop

(1997), pp. 46–57.

[10] Hampson, C. The Visualisation of Adaptive Behaviour in Ubiquitous Computing

Experiments. PhD thesis, University of Dublin, Trinity College, 2006.

[11] Irawati, S., Ahn, S., Kim, J., and Ko, H. VARU Framework: Enabling Rapid

Prototyping of VR, AR and Ubiquitous Applications. In Virtual Reality Conference,

2008. VR’08. IEEE (2008), pp. 201–208.

[12] ISO, Ed. ISO 9241-11: Ergonomic requirements for office work with visual display

terminals (VDTs) – Part 9: Requirements for non-keyboard input devices. 2000.

[13] Ivo Maly, Jan Curin, P. S., and Kleindienst, J. Framework for Visual Analysis

of User Behaviour in Ambient Intelligence Environment. InTech, 2010.

[14] Jensen, K., Kristensen, L. M., and Wells, L. Coloured petri nets and cpn

tools for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.

Transf. 9 (May 2007), 213–254.

[15] Kelley, J. F. An empirical methodology for writing user-friendly natural language

computer applications. In Proceedings of the SIGCHI conference on Human Factors

in Computing Systems (New York, NY, USA, 1983), CHI ’83, ACM, pp. 193–196.

[16] Li, Y., and et al. Rapid prototyping tools for context-aware applications, 2005.

84

[17] Li, Y., Hong, J. I., and Landay, J. A. Topiary: a tool for prototyping location-

enhanced applications. In Proceedings of the 17th annual ACM symposium on User

interface software and technology (New York, NY, USA, 2004), UIST ’04, ACM,

pp. 217–226.

[18] Martin, M., and Nurmi, P. A generic large scale simulator for ubiquitous comput-

ing. Mobile and Ubiquitous Systems, Annual International Conference on 0 (2006),

1–3.

[19] Moreira, R. Master Thesis: Integrating a 3D application server with a CAVE. PhD

thesis, University of Minho, 2011.

[20] Nakanishi, Y. Virtual prototyping using miniature model and visualization for inter-

active public displays. In Proceedings of the Designing Interactive Systems Conference

(New York, NY, USA, 2012), DIS ’12, ACM, pp. 458–467.

[21] Nazari Shirehjini, A. A., and Klar, F. 3dsim: rapid prototyping ambient

intelligence. In Proceedings of the 2005 joint conference on Smart objects and ambient

intelligence: innovative context-aware services: usages and technologies (New York,

NY, USA, 2005), sOc-EUSAI ’05, ACM, pp. 303–307.

[22] Nielsen, J. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1993.

[23] Nishikawa, H., Yamamoto, S., Tamai, M., Nishigaki, K., Kitani, T., Shi-

bata, N., Yasumoto, K., and Ito, M. UbiREAL: Realistic Smartspace Simulator

for Systematic Testing. 2006.

[24] ONeill, E. TATUS A Ubiquitous Computing Simulator. PhD thesis, University of

Dublin, Trinity College, 2005.

[25] O’Neill, E., Klepal, M., Lewis, D., O’Donnell, T., O’Sullivan, D., and

Pesch, D. A testbed for evaluating human interaction with ubiquitous computing

environments. In Proceedings of the First International Conference on Testbeds and

85

Research Infrastructures for the DEvelopment of NeTworks and COMmunities (Wash-

ington, DC, USA, 2005), TRIDENTCOM ’05, IEEE Computer Society, pp. 60–69.

[26] O’Neill, E., Lewis, D., and Conlan, O. A simulation-based approach to highly

iterative prototyping of ubiquitous computing systems. In Proceedings of the 2nd

International Conference on Simulation Tools and Techniques (ICST, Brussels, Bel-

gium, Belgium, 2009), Simutools ’09, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), pp. 56:1–56:10.

[27] Ostkamp, M., Bauer, G., and Kray, C. Visual highlighting on public displays.

In Proceedings of the 2012 International Symposium on Pervasive Displays (New York,

NY, USA, 2012), PerDis ’12, ACM, pp. 2:1–2:6.

[28] Petri, C. A., and Reisig, W. Petri net. Scholarpedia 3, 4 (2008), 6477.

[29] Prendinger, H., Brandherm, B., and Ullrich, S. A simulation framework for

sensor-based systems in second life. Presence: Teleoper. Virtual Environ. 18, 6 (Dec.

2009), 468–477.

[30] Reilly, D., Dearman, D., Welsman-Dinelle, M., and Inkpen, K. Evaluating

early prototypes in context: Trade-offs, challenges, and successes. IEEE Pervasive

Computing 4, 4 (October 2005), 42–50.

[31] Reynolds, V., Cahill, V., and Senart, A. Requirements for an ubiquitous com-

puting simulation and emulation environment. In Proceedings of the first international

conference on Integrated internet ad hoc and sensor networks (New York, NY, USA,

2006), InterSense ’06, ACM.

[32] Robertson, J. Likert-type scales, statistical methods, and effect sizes. Commun.

ACM 55, 5 (May 2012), 6–7.

[33] Rogers, Y. Moving on from Weiser’s Vision of Calm Computing: Engaging UbiComp

Experiences. In UbiComp 2006: Ubiquitous Computing, P. Dourish and A. Friday,

86

Eds., vol. 4206 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2006, ch. 24, pp. 404–421.

[34] Silva, J., Campos, J., and Harrison, M. Formal analysis of ubiquitous comput-

ing environments through the apex framework. In ACM Symposium on Engineering

Interactive Computing Systems (EICS2012) (2012), ACM, pp. 131–140.

[35] Silva, J. L. Master Thesis: Rapid Prototyping of Ubiquitous Computing Environ-

ments. PhD thesis, University of Minho, 2012.

[36] Silva, J. L., Campos, J. C., and Harrison, M. D. An infrastructure for ex-

perience centered agile prototyping of ambient intelligence. In Proceedings of the 1st

ACM SIGCHI symposium on Engineering interactive computing systems (New York,

NY, USA, 2009), EICS ’09, ACM, pp. 79–84.

[37] Silva, J. L., Ribeiro, O. R., Fernandes, J. a. M., Campos, J. C., and

Harrison, M. D. The apex framework: prototyping of ubiquitous environments

based on petri nets. In Proceedings of the Third international conference on Human-

centred software engineering (Berlin, Heidelberg, 2010), HCSE’10, Springer-Verlag,

pp. 6–21.

[38] Singh, P., Ha, H. N., Olivier, P., Kray, C., Kuang, Z., Guo, A. W.,

Blythe, P., and James, P. Rapid prototyping and evaluation of intelligent en-

vironments using immersive video. In Proceedings of MODIE workshop at Mobile

HCI’06 (Espoo, Finland, 12-15 September 2006).

[39] Strauss, A., and Corbin, J. Basics of Qualitative Research: Techniques and

Procedures for developing Grounded Theory. Sage Publications Inc, 1998.

[40] Varoudis, T., Dalton, S., Alexiou, K., and Zamenopoulos, T. Ambient

displays: influencing movement patterns. In Proceedings of the 2011 annual conference

extended abstracts on Human factors in computing systems (New York, NY, USA,

2011), CHI EA ’11, ACM, pp. 1225–1230.

87

[41] Weiser, M. Human-computer interaction. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1995, ch. The computer for the 21st century, pp. 933–940.

88

Appendix A

Questionnaires

89

System	 Usability	 Scale	
	
	 	 	 	 	 	 	 	 	 	
©	 Digital	 Equipment	 Corporation,	 1986.	
	
	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 Strongly	 	 	 	 	 	 	 	 	 	 Strongly	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 disagree	 	 	 	 	 	 	 	 	 	 	 	 agree	
	
1.	 I	 think	 that	 I	 would	 like	 to	 	
	 	 	 use	 this	 system	 frequently	 	
	 	 	 	 	
2.	 I	 found	 the	 system	 unnecessarily	
	 	 	 complex	
	 	 	 	 	
	
3.	 I	 thought	 the	 system	 was	 easy	
	 	 	 to	 use	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	
4.	 I	 think	 that	 I	 would	 need	 the	
	 	 	 support	 of	 a	 technical	 person	 to	
	 	 	 be	 able	 to	 use	 this	 system	 	
	
	
5.	 I	 found	 the	 various	 functions	 in	
	 	 	 this	 system	 were	 well	 integrated	
	 	 	 	 	
	
6.	 I	 thought	 there	 was	 too	 much	
	 	 	 inconsistency	 in	 this	 system	
	 	 	 	 	
	
7.	 I	 would	 imagine	 that	 most	 people	
	 	 	 would	 learn	 to	 use	 this	 system	
	 	 	 very	 quickly	 	 	 	
	
8.	 I	 found	 the	 system	 very	
	 	 	 cumbersome	 to	 use	
	 	 	 	
	
9.	 I	 felt	 very	 confident	 using	 the	
	 	 	 system	
	 	
	
10.	 I	 needed	 to	 learn	 a	 lot	 of	
	 	 	 things	 before	 I	 could	 get	 going	
	 	 	 with	 this	 system	 	 	 	
	
	

	

92

Appendix B

Plan of ongoing test study

93

Application	 Selection:	
Field	 and	 Second	 Life	 User	 studies	

Study	 dimensions	
	
Our	 study	 is	 designed	 on	 three	 dimensions:	
	

-‐ Users:	 we	 are	 going	 to	 observe	 their	 behavior,	 personal	 feelings	 and	 usage	
patterns.	
	

-‐ Environment:	 what	 are	 the	 similarity	 between	 the	 real	 and	 virtual	
environment	

	
-‐ Ubiquitous	 system	 (Second	 Life	 &	 Instant	 Places):	 We	 are	 going	 to	 assess	

the	 system	 responsiveness	

Objectives	 or	 research	 questions	
	
- What	 type	 of	 conflicts	 can	 appear	 in	 using	 this	 system?	
- How	 do	 people	 mediate	 potential	 conflicting	 requests?	
- User	 acceptance	 of	 the	 ubiquitous	 system	 logic	
- Is	 there	 any	 similarity	 between	 the	 virtual	 and	 real	 environment?	

	
- Is	 the	 system	 feedback	 (on	 displays	 and	 mobile	 phones)	 valued	 by	 users	

as	 a	 mean	 to	 foster	 social	 interaction?	
- Proof	 of	 concept:	 does	 the	 system	 work	 for	 people?	 Do	 they	 understand	

the	 mixed	 initiative	 interaction	 model	 or	 scenario?	
- Did	 the	 users	 feel	 immersed	 in	 virtual	 environment?	
- How	 does	 using	 the	 prototype	 change	 people’s	 behavior	 or	 allow	 them	 to	

do	 new	 things?	 	

Usage	 situations	
-‐ At	 least	 5	 users.	 Users	 are	 within	 a	 coffee	 environment	 and	 after	 we	

explained	 them	 the	 system,	 they	 may	 start	 to	 issue	 the	 requests.	 	
-‐ We	 can	 also	 simulate	 requests.	

System	 Logic	
	

-‐ Number	 of	 requests	 per	 application	 is	 stored.	
-‐ Applications	 are	 shown	 decreasingly,	 based	 on	 the	 number	 of	 requests	

per	 application	
-‐ Applications	 are	 shown	 with	 an	 interval	 of	 1-‐2	 minutes	
-‐ We	 can	 alternate	 the	 default	 behavior	 and	 show	 the	 apps	 with	 individual	

requests	 counts	

Logic	 details	
- The	 default	 behavior	 shows	 the	 scheduled	 apps	
- After	 the	 last	 app	 is	 shown	 as	 part	 of	 the	 default	 behavior,	 another	 app	

will	 show	 the	 requests	 counts	 for	 each	 app	
- After	 that,	 another	 app	 will	 present	 the	 requested	 apps	 in	 a	 decreasing	

order	 based	 on	 requests	 	
- And,	 afterwards,	 according	 to	 the	 number	 of	 requested	 apps,	 the	 display	

returns	 to	 the	 default	 behavior.	

Data	 sources	
	

-‐ Observation	 (writing	 down	 the	 social	 behavior	 of	 people	 interacting	 each	
other	 and	 with	 the	 display)	

-‐ Final	 interview	 about	 the	 system	 usage	 and	 how	 people	 succeeded	 to	
interact	 each	 other	

-‐ Questionnaires	

Logs	
(The	 data	 will	 show	 the	 stream	 of	 apps	 presented	 alternating	 between	 default	
behavior	 and	 user	 based	 approach)	
- the	 index	 and	 app	 name	 of	 the	 default	 behavior	
- the	 app	 requests	
- the	 selected	 apps	 based	 on	 requests	

	 	

Other	 notes	
- We	 have	 4	 apps	 (football,	 posters,	 presence	 and	 activity	 stream)	

Interviews	
1. Did	 you	 encounter	 any	 difficulties	 in	 requesting	 your	 preferred	 app?	

(time,	 popularity,	 not	 understand	 how	 the	 system	 works)	
2. Did	 you	 understand	 the	 role	 of	 feedbacks?	 Did	 they	 ease	 the	

understanding	 of	 the	 system	 functionality?	 (know	 the	 time	 to	 vote,	 know	
why	 the	 system	 chose	 that	 app	 to	 present)	

3. Did	 you	 have	 any	 problems	 in	 understanding	 the	 mixed	 initiative	
approach:	 users	 vote	 and	 system	 decide?	 What	 are	 the	 drawbacks	 of	 it?	
What	 are	 its	 advantages?	

4. 	 Is	 this	 solution	 appropriate	 to	 increase	 the	 social	 interaction	 between	
participants?	 Or,	 it	 is	 a	 solution	 concentrated	 on	 individuals?	 (Is	 the	
system	 logic	 and	 approach	 that	 foster	 social	 interaction	 while	 interacting	
with	 the	 system?)	

5. Did	 you	 need	 to	 talk	 to	 the	 other	 and	 establish	 an	 agreement?	 Or,	 you	
clearly	 understood	 how	 you	 can	 influence	 your	 turn,	 i.e.,	 getting	 your	
preferred	 app	 on	 display?	

6. Did	 users	 find	 any	 similarity	 between	 the	 virtual	 and	 real	 environment?	 	
7. Did	 you	 feel	 immersed	 in	 virtual	 environment?	
8. Can	 you	 describe	 your	 experience	 in	 the	 Second	 Life	 virtual	 environment?	
9. How	 difficult	 was	 to	 understand	 the	 system	 and	 the	 way	 to	 influence	 how	

the	 apps	 are	 shown?	 	
10. Can	 you	 give	 us	 a	 feedback	 on	 how	 to	 improve	 the	 logic	 of	 application	

selection?	 	
11. What	 features	 would	 you	 like	 to	 have?	

	
	
	 	

	
Table	 1:	 Sequence	 of	 the	 experiment	 activities	

	
Activity	 Description	 Time	
Instant	 Places	
Tutorial	

During	 this	 phase,	 the	 participants	 can	 watch	 the	
display	 without	 issuing	 any	 requests.	 In	 this	 session,	
they	 are	 instructed	 what	 is	 Instant	 Places	 and	 the	 role	
of	 each	 app.	 We	 will	 show	 them	 how	 to	 request	 and	
app	 by	 using	 a	 laptop	 or	 a	 mobile	 phone	 connected	 to	
the	 Internet.	
For	 instance,	 we	 show	 them	 how	 to	 use	 the	 presence	
app	 and	 activity	 stream.	 These	 two	 apps	 can	 show	
dynamic	 data.	
Subtasks:	 	
- Make	 a	 checkin	 an	 see	 your	 name	 in	 the	

Presence	 app	 and	 Activity	 stream	 app	 	

10m	

App	 Voting/	
Requesting	

They	 got	 an	 idea	 of	 each	 app	 and	 can	 already	 have	
some	 preferences.	 The	 vote	 session	 is	 started.	 	
Two	 sessions:	
- Do	 not	 tell	 the	 other	 what	 app	 you	 would	 like	

to	 see	
- You	 can	 share	 your	 opinions	 and	 agree	 which	

apps	 you	 would	 like	 to	 see	

20m	

Interviews	 In	 the	 end,	 we	 ask	 participants	 about	 the	 usage	 of	 our	
system	 and	 the	 overall	 impressions	

20m	

Spare	 time	 This	 time	 is	 for	 further	 explanations.	 10m	
Total:	 	 60m	
	

	Introduction
	Motivation
	Dissertation goals
	Dissertation structure

	State of the art
	Focus on devices
	Focus on environments
	UbiWorld
	3DSim
	TATUS
	VARU
	APEX

	Conclusion

	Simulation of ubiquitous computing environments
	Methodology
	Dimensions features
	Prototyping
	Evaluation

	Analysis
	Conclusion

	Using the APEX Framework
	APEX Framework
	Architecture

	Second Life viewer
	Client viewers
	Second Life user interaction

	Conclusion

	Case studies
	First case study
	The original experiment
	Virtual environment proposed

	Second case study
	Instant Places
	Proposed virtual environment
	Evaluation process and Results

	Conclusion

	Conclusion
	Discussion
	Current and Future Work

	Questionnaires
	Plan of ongoing test study

