
Universidade do Minho
Escola de Engenharia

Paulo Filipe de Jesus Cruz

Development of an environment for the
generation, mutation and execution of test
cases

Outubro de 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55628339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia
Departamento de Informática

Paulo Filipe de Jesus Cruz

Development of an environment for the
generation, mutation and execution of test
cases

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor José Creissac Campos

Outubro de 2013

 Development of an environment for the generation, mutation and execution of test cases

ii

A special thanks to my family that supported me, to my friends who helped me when I

needed it, especially those who did not understand anything I said, but listened anyway, and to

my supervisor for the opportunity and for being always available to clarify doubts and help me

developing this project.

This work was funded by FEDER funds through the Programa Operacional Factores de

Competitividade- COMPETE and National Funds through FCT – Fundação para a Ciência e

Tecnologia under the project FCOMP-01-0124-FEDER-020554. The work of the author was also

supported by a grant with reference PTDC/EIAEIA/119479/2010_UMINHO.

Development of an environment for the generation, mutation and execution of test cases

iii

ABSTRACT

Development of an environment for the generation, mutation and

execution of test cases

Testing graphic user interfaces (GUI) involves, mainly, lengthy and expensive processes

involving user testing. Finding simpler and easier alternatives to use than these processes

becomes an exciting proposal. This project presents an alternative to existing processes through

the use of Model-based Testing - MBT.

The MBT technique takes advantage of models that describe the correct operation of the

system (for this project task models). The use of MBT may thus become a new approach to

testing GUI's, since the implemented GUI is tested against the model that specifies it the correct

behavior. All inconsistencies found during the tests will be treated as potential errors that must

be corrected.

This report describes the development of a prototype for an environment able to generate

and execute test cases applying MBT to GUI's.

Key words: Model-based testing, Graphic User Interfaces, Task Models,

Application areas: Web interfaces

 Development of an environment for the generation, mutation and execution of test cases

iv

RESUMO

Desenvolvimento de um ambiente para a geração, mutação e execução

de casos de teste

A realização de testes a interfaces gráficas (GUI) envolve, maioritariamente, processos

morosos e dispendiosos. Encontrar alternativas mais simples e fáceis de utilizar do que estes

processos torna-se uma proposta aliciante. Este projeto apresenta uma solução alternativa aos

processos já existentes através da utilização de casos de teste baseados em modelos (Model-

based Testing - MBT).

Esta técnica tira partido de modelos que descrevem o correto funcionamento do sistema

(no caso particular do projecto modelos de tarefas). A utilização do MBT pode assim transformar-

se numa nova abordagem aos testes realizados sobre GUI’s, uma vez que a GUI implementada

será testada contra o modelo especificado que contém o funcionamento correto desta. As

incoerências encontradas nos testes apontam para potenciais erros que deverão ser corrigidos.

Este relatório descreve o desenvolvimento de um protótipo para um ambiente capaz de

gerar, mutar e executar casos de teste para GUI’s aplicando o MBT.

Palavras-chave: Testes baseados em modelos, interfaces gráficas, modelos de tarefas

Área de Aplicação: interfaces gráficas Web

Development of an environment for the generation, mutation and execution of test cases

v

CONTENTS

ABSTRACT III

RESUMO IV

CONTENTS V

LIST OF FIGURES IX

LIST OF TABLES XI

GLOSSARY AND ACRONYMS XII

1. INTRODUCTION 1

1.1 BACKGROUND 1

1.2 PROJECT DESCRIPTION 3

1.3 REPORT STRUCTURE 4

2. SOFTWARE TESTING 5

2.1 SOFTWARE TESTING LIFE CYCLE 6

2.2 TESTING LEVELS 7

2.2.1 TESTING TARGET 7

2.2.2 TESTING OBJECTIVES 8

2.3 TESTING METHODS 11

2.4 MODEL-BASED TESTING 12

2.5 CONCLUSION 14

 Development of an environment for the generation, mutation and execution of test cases

vi

3. GUI MODEL-BASED TESTING 15

3.1 APPLYING MBT TO GUI’S 16

3.1.1 TASK MODELING TOOLS 16

3.1.2 TEST CASES AUTOMATION TOOLS 17

3.2 CONCLUSION 19

4. IMPLEMENTATION AND DEVELOPMENT 20

4.1 PROPOSED APPROACH 20

4.2 TASK MODELS WITH CTT (CONCURRTASKTREE) 22

4.3 TEST CASES 25

4.3.1 TEST CASES CONFIGURATION 25

4.3.2 TEST CASES GENERATION 29

4.4 TEST CASES MUTATION 32

4.5 TEST CASES EXECUTION 33

4.6 CONCLUSION 37

5. TESTING USER INTERFACES 38

5.1 TAP PORTUGAL – SEARCH FLIGHTS AND HOTELS 38

5.1.1 TASK MODEL 38

5.1.2 CONFIGURATION FILES 40

5.1.3 TEST CASES 41

5.1.4 TEST CASES EXECUTION 43

5.1.5 MUTATED TEST CASES 45

5.1.6 MUTATED TEST CASES EXECUTION 46

5.2 MICROSOFT OUTLOOK (ONLINE) 48

5.2.1 TASK MODEL 48

5.2.2 CONFIGURATION FILES 50

Development of an environment for the generation, mutation and execution of test cases

vii

5.2.3 TEST CASES 51

5.2.4 TEST CASES EXECUTION 53

5.2.5 MUTATED TEST CASES 54

5.2.6 MUTATED TEST CASES EXECUTION 55

5.3 CONCLUSION 57

6. CONCLUSIONS 58

6.1 OBJECTIVES ACHIEVED AND LIMITATIONS 58

6.2 FUTURE WORK 59

REFERENCES 60

APPENDIXES 62

I. TAP CASE STUDY 62

Task Model 62

Generated Code Example 63

II. MICROSOFT OUTLOOK CASE STUDY 73

Task Model 73

Generated Code Example 74

III. UNUSED TERESA OPERATORS 84

Operator: Optional Task 84

Operator: Iterative task 87

Operator: Order Independence 88

Operator: Concurrent with Info Exchange 91

Operator: Disabling 93

 Development of an environment for the generation, mutation and execution of test cases

viii

Operator: Suspend/Resume 95

Development of an environment for the generation, mutation and execution of test cases

ix

LIST OF FIGURES

FIGURE 1 - STLC STAGES AND PERFORMED ORDER (ADAPTED FROM [9]) .. 6

FIGURE 2 - V-MODEL (ADAPTED FROM [12]) ... 10

FIGURE 3 - MODEL-BASED TESTING PROCESS (ADAPTED FROM [12]) ... 14

FIGURE 4 - PROCESS OF GENERATING AND EXECUTING TEST CASES ... 21

FIGURE 5 - SEARCHING ALPHA AND INTERCITY TRAINS IN CP WEB PAGE ... 21

FIGURE 6 – ALFA AND INTERCITY TRAINS SEARCH IN CP .. 25

FIGURE 7 - MAPPING FILE STRUCTURE ... 26

FIGURE 8 - TEST CASES CONFIGURATION FILE STRUCTURE .. 26

FIGURE 9 - EXAMPLE OF FILLING THE CONFIGURATION FILES ... 27

FIGURE 10 - PATH FOUND FOR THE CP EXAMPLE ... 30

FIGURE 11 - SUCESSFULL TEST CASE EXECUTION .. 34

FIGURE 12 - TEST RESULTS PRESENTED IN VISUAL STUDIO 2010 .. 35

FIGURE 13 - GENERATED LOG FILE FOR THE EXECUTED TEST CASE ... 36

FIGURE 14 - GENERATED GRPAH FOR THE TEST CASE .. 36

FIGURE 15 - SEARCH FOR FLIGHTS (ONE WAY ONLY) IN TAP WEB PAGE ... 39

FIGURE 16 - TAP TASK MODEL SAMPLE .. 39

FIGURE 17 - MAPPING THE INTERFACE INTO THE TASK MODEL ... 40

FIGURE 18 - CONFIGURATION FILES FOR THE ONLY ONE WAY FLIGHTS ... 41

FIGURE 19 - PATHS FOUND FOR TAP TASK MODEL.. 42

FIGURE 20 - TAP TEST CASE EXECUTION EXAMPLE .. 44

FIGURE 21 - TEST RESULTS PRESENTED IN VISUAL STUDIO 2010 .. 45

FIGURE 22 - GENERATED LOG FILE ... 45

FIGURE 23 - EXEMPLE OF AN EXECUTION OF A MUTATED TEST CASE.. 47

FIGURE 24 - TEST RESULTS SHOWN IN THE VISUAL STUDIO FOR A MUTATED TEST 47

FIGURE 25 - LOG FILE GENERATED FOR THE MUTATED TEST CASE EXECUTED 48

FIGURE 26 - OUTLOOK TASK MODEL SAMPLE (SEND AN EMAIL) .. 49

FIGURE 27 - SENDING AN EMAIL IN OUTLOOK .. 49

FIGURE 28 - MAPPING BETWEEN THE INTERFACE AND THE OUTLOOK TASK MODEL 50

FIGURE 29 - CONFIGURATION FILES FOR SEND EMAIL OPTION .. 50

FIGURE 30 - EXAMPLE OF PATHS FOUND FOR OUTLOOK TASK MODEL ... 51

FIGURE 31 - OUTLOOK SEND EMAIL TEST CASE EXECUTION ... 53

file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012977
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012979
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012981
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012982
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012983
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012985
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012987
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012989
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012990
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012991
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012992
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012996
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012997
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371012999
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013000
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013002
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013003
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013005

 Development of an environment for the generation, mutation and execution of test cases

x

FIGURE 32 - TEST RESULTS PRESENTED IN VISUAL STUDIO 2010 .. 54

FIGURE 33 - GENERATED LOG FILE ... 54

FIGURE 34 - EXAMPLE OF AN EXECUTION OF A MUTATED TEST CASE ... 56

FIGURE 35 - TEST RESULTS SHOWN IN THE VISUAL STUDIO FOR A MUTATED TEST 56

FIGURE 36 - LOG FILE GENERATED FOR THE MUTATED TEST CASE EXECUTED 57

LIST 1 - CODE SNIPPET FOR TRAINS SEARCH IN CP .. 31

LIST 2 - MUTATED TEST CASES GENERATED FOR EACH TYPE OF MUTATION IDENTIFIED 33

LIST 3 - GENERATED TEST CASES FOR TAP TASK MODEL .. 43

LIST 4 - EXAMPLES OF MUTATED TEST CASES FOR TAP TASK MODEL .. 46

LIST 5 - EXAMPLE OF TEST CASES GENERATED .. 53

LIST 6 - EXAMPLE OF MUTATED TEST CASES FOR THE OUTLOOK EXAMPLE.. 55

file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013007
file:///C:/Users/paulocruz/SkyDrive/Dissertação/Dissertacao-paulocruz-TOSH.docx%23_Toc371013010

Development of an environment for the generation, mutation and execution of test cases

xi

LIST OF TABLES

TABLE 1 - SOFTWARE TESTING LIFE CYCLE PHASES (ADAPTED FROM [10]) 7

TABLE 2 - TYPE OF TASKS 22

TABLE 3 - CTT OPERATORS 23

TABLE 4 – KEYORDS DEFINED 24

TABLE 5 - CORRESPONDENCES BETWEEN THE HTML ELEMENTS AND WATIN CLASSES 28

TABLE 6 - CORRESPONDENCES BETWEEN THE HTML ELEMENTS AND WATIN CLASSES

(CONTINUATION) 29

 Development of an environment for the generation, mutation and execution of test cases

xii

GLOSSARY AND ACRONYMS

AGILE Methodology that promote the planning, development and delivery of a

software product.

CTT ConcurrTaskTrees

GUI Graphic User Interface

MBT Model-based Testing

ORACLE Model from a software system

STLC Software Testing Life Cycle

SUT System Unter Test

TASK NOTATION Hierarchical decomposition into sub-tasks that must be done to achieve

an objective.

HTML HyperText Markup Language. A language for creating web pages and

other information that can be displayed in a web browser

 Development of an environment for the generation, mutation and execution of test cases

 1

1. INTRODUCTION

This report and the project to which it refers were carried out for the Dissertation of the

2nd year of the Master's Degree in Informatics Engineering of the Department of Informatics,

School of Engineering, University of Minho. The project is also associated with HasLab (High-

Assurance Software Laboratory), INESC TEC.

1.1 Background

What is software quality? The definition of software quality is not that simple since a

software product has a lot of characteristics that can be considered crucial. The quality of a

software artifact can be understood as the totality of characteristics of the system, component or

process that affect its ability to satisfy stated or implied needs (requirements or customer/user

needs) [1].

The quality of user interfaces (from the point of view of the user) can be seen as its

usability. The principles of usability are described in ISO 9241-11 [2]. A graphical user interface

that respects the principles of usability will allow users to achieve their goals with effectiveness

(accuracy and completeness with which these goals can be achieved), efficiency (level of effort

required) and satisfaction, in a particular context of use (subjective rating on criteria such as

discomfort experienced, liking for the product, satisfaction with product use, or acceptability of

the workload when carrying out different tasks).

These days, Graphical User Interface (GUI) are a key point for communication between

user and system and this means that tests must be performed on the interface layer to

guarantee its proper functioning. Software testing is very important to ensure the quality of the

developed system. When we put a system under test the main goal is to find software bugs,

 Development of an environment for the generation, mutation and execution of test cases

2

errors or inconsistencies in the functionalities that were implemented. Normally, the test effort is

performed after the requirements (of the system) are fully defined and the coding process almost

or completely finished. However with the adoption of AGILE 1 software development

methodologies the testing effort tends to follow the development of the system [3]. It is also

important to note that software testing involves considerable costs in terms of time and money.

Fortunately, there are several techniques to perform tests on a software system that help to

minimize these costs. The chosen one for this project in particular was Model-based Testing.

Model-based testing (MBT) techniques offer the possibility of automating the testing

process by making a comparison between the model of a software system (the oracle) and the

implemented version of the same system. Techniques such as MBT, by making use of models to

analyse the running system, are concrete examples that “modeling is a simple way of capturing

knowledge about the system and then reutilizing this knowledge as the system grows” [4]. In the

context of this project a model of a software system can be seen as a description of its behavior.

The inputs accepted by the interface, the outputs it generates, and the control logic behind them.

Several authors have explored the use of models, trying to find a simple and economic

way for testing the interface layer of a software system [5, 6]. The possibility of exploring task

models for the generation of oracles has also been studied [7]. These techniques were developed

in order to improve the quality of generated test cases, but since a task model only considers the

expected behavior of the user, the latter study explores modifications to the oracle to be able to

detect problems that may occur due usage errors in the interface layer. That work, however, is

still preliminary.

1 An AGILE methodology promote the planning, development and delivery of a software product in a time-boxed

iterative approach and encourages easy and rapid response to changes in the project scope.

 Development of an environment for the generation, mutation and execution of test cases

 3

The current project arises from the need to create a tool capable of generating and

executing test cases in order to test the behavior of web applications. To simulate a scenario in

which the user makes mistakes, the possibility of creating mutations on the generated test cases

will also be explored.

1.2 Project Description

The work was developed under a research grant from the “PBGT – Pattern Based GUI

Testing” project. This project aims to carry out research on the development and validation of

test strategies based on models applied to interfaces. It is important to develop an environment

for the generation, mutation and execution of test cases able to fulfill this objective. The

developed environment must automate the testing process applied to graphical interfaces.

This project aims to develop a tool capable of generating and executing test cases, as well

as mutating these test cases in order to test the behavior of the application in case of operating

errors. Thus we can improve the ability to detect errors of this kind of technique and increase the

quality assurance that the technique allows.

Given that graphical user interfaces are the key point of computer systems these days and

that the use of the Web had a tremendous growth, the creation of applications that can generate

test cases starting from the specification of the graphic interface (task models, in the case of this

project) makes a time consuming process, as the generation of different test cases, a simple task

with little effort by the software tester. This work brings a new use to already existing tools and

frameworks with the objective to create a standard in the test case automation for the web.

 Development of an environment for the generation, mutation and execution of test cases

4

1.3 Report Structure

This report is constituted by six chapters as described:

 Chapter 1 – Introduction: This chapter has presented the background of the

project as well as the problem to solve.

 Chapter 2 – Software Testing: This chapter presents the background needed to

understand the concepts used during the project.

 Chapter 3 – GUI Model-based Testing: This chapter justifies the use of Model-

based testing as well as presenting tools that can help in the application of MBT.

 Chapter 4 – Implementation and Devepment: This chapter presents the

proposed approach to resolve the problem presented in Chapter 1 as well as the

implemented solution.

 Chapter 5 – Case Studies: This chapter presents the examples created using the

developed tool.

 Chapter 6 – Conclusions: This chapter describes all the work done by referencing

the objectives achieved and how they can be improved in the future.

 Development of an environment for the generation, mutation and execution of test cases

 5

2. SOFTWARE TESTING

Computers are nowadays a key player in business, education or recreational activities,

responsible for the creation of millions of jobs around the world. This makes it necessary to

ensure that the applications they run actually perform the tasks for which they were designed.

The “software should be predictable and consistent, offering no surprises to users” [8]. To

guarantee that these software applications carry out their functions properly and do not perform

actions that should not occur it is necessary to perform tests.

Software testing can be seen as an investigation that provides objective information on

the quality of the product. It can also be understood as an independent view of the software, or

as a process of validating a software product, in which it must be verified if the implemented

software meets the requirements that guided its design and development. If it works as expected

and if satisfies the needs of stakeholders.

With the adoption of AGILE software development methodologies the testing effort tends

to follow the development of the system, because testing is not a simple activity and must be

included in the development and maintenance of the software product. Developing a software

system always implies risks and a problem if identified too late may involve too many costs in its

resolution. One of the objectives of testing software is to identify errors, software bugs or faults,

and the sooner the better. But even a tested software product is not 100% free of errors. Because

testing is an expensive process, it is not always possible to test every aspect of the product. The

problems not found will increase the software maintenance costs.

 Development of an environment for the generation, mutation and execution of test cases

6

2.1 Software Testing Life Cycle

Considering software testing as an iterative process several phases can be identified in

which different tasks are performed. These different phases together form the Software Testing

Life Cycle – STLC (see Figure 1). These phases cover the whole process of testing a system,

from identifying requirements and planning the tests, through to executing them and reporting

the results.

Figure 1 - STLC stages and performed order (adapted from [9])

Different techniques are associated to each phase of the STLC, these activities and the

associated phase can be viewed in the Table 1. The left column lists the phases identified in

Figure 1, and the right column the relevant activities for each phase.

Software engineers must be aware that there are also many methods for testing a software

system (described in section 2.3). Even a simple program can generate, theoretically, an infinite

set of tests. This means that selecting tests can be a difficult task. Testing a software product will

require the identification of which values are acceptable as input and output, which sometimes is

not possible. The software engineer must also be able to identify if the observed behavior is

consistent with the expected performance.

 Development of an environment for the generation, mutation and execution of test cases

 7

PHASE ACTIVITIES

Requirements Analysis/ Design

Review

 Review the software requirements/design (if they

already exists)

 Interaction with stakeholders

 Understand the requirements in detail

Test Planning

 Plan the test once gathered the general idea of what

need to be tested

 Determine cost estimated for tests

Test Designing
 Creation, verification, validation and rework of test

cases and test scripts

Test Environment Setup

 Decide the software and hardware conditions under

which the product will be tested (replicate the end-

users’ environment)

Test Execution
 Execute the test scripts in the test environment and

verify if they pass

Test Reporting
 Analyze testing artifacts and present them to the

stakeholders

Table 1 - Software Testing Life Cycle phases (adapted from [10])

2.2 Testing Levels

2.2.1 Testing Target

“Software testing is usually performed at different levels along the development and

maintenance process” [1] this means that the test target can vary. Test can be executed in a

single module, a group of modules (related to each other) or the entire system.

 Development of an environment for the generation, mutation and execution of test cases

8

The levels defined in the Software Engineering Body of Knowledge [1] are Unit-,

Integration-, and System Testing. They are distinguished by the target that they are associated

with.

 Unit testing refers to tests that verify the functionality of a specific software piece,

which is tested separately from the rest of the system. Depending of the context unit

tests can be performed in a single module or in a specific program function. Usually, unit

testing needs access to the code that will be tested and support of debugging tools.

 Integration testing is used to verify the interfaces between software components.

Usually it is tested if the different components are properly integrated with each other.

Integration testing is an ongoing activity. In each phase of development of the product

the software engineers should only focusing on the level they are integrating and

disregard the lower-levels (which already have been integrated) [1].

 System testing like the name implies tests a completely integrated system to verify that

it meets its requirements. At this stage of testing the majority of functional malfunctions

should been already identified and resolved in unit and integration testing levels.

2.2.2 Testing Objectives

Tests can be conducted taking into account different objectives. Testing efforts can be

aimed at verifying if functional specifications are properly implemented, but several nonfunctional

properties of the system can be tested as well.

Depending on the objectives to be achieved with the tests, different levels of testing were

identified by A. Abran et al [1].

 Development of an environment for the generation, mutation and execution of test cases

 9

 Acceptance/Qualification testing: Acceptance testing verifies the system behavior

against the customer’s requirements.

 Installation testing: After accomplishment of system and acceptance testing, the

software can be verified upon installation in the target environment.

 Alpha and beta testing: Before the software is released, it is given to a small

representative set of potential users for trial use, either in-house (alpha testing) or

external (beta testing), which report problems with the product.

 Conformance testing/ Functional testing/ Correctness testing: Validating

whether or not the observed behavior of the tested software conforms to its

specifications.

 Reliability achievement and evaluation: In helping to identify faults, testing is a

means to improve reliability. By contrast, by randomly generating test cases according to

the operational profile, statistical measures of reliability can be derived.

 Regression testing: According to IEEE610.12-90 [11], regression testing is the

“selective retesting of a system or component to verify that modifications have not

caused unintended effects”.

 Performance testing: Verify that the software meets the specified performance

requirements, for instance, capacity and response time.

 Stress testing: Stress testing exercises software at the maximum design load, as well

as beyond it.

 Back-to-back testing: A single test set is performed on two implemented versions of a

software product, and the results are compared.

 Recovery testing: Recovery testing is aimed at verifying software restart capabilities

after a “disaster.”

 Configuration testing: In cases where software is built to serve different users,

configuration testing analyzes the software under the various specified configurations.

 Development of an environment for the generation, mutation and execution of test cases

10

 Usability testing: This process evaluates how easy it is for end-users to use and learn

the software, including user documentation.

 Test-driven development: Test-driven development is not a test technique per se,

promoting the use of tests as a surrogate for a requirements specification document

rather than as an independent check that the software has correctly implemented the

requirements.

In practical terms tests are typically conducted at four main levels Unit-, Integration-,

System- and Acceptance Testing. An example of use of these four levels of testing is the V-Model.

The V-Model (Figure 2) is a modified version of Waterfall method (Development Software

Model). The V-Model process associates to each development stage of the software development

process one software testing level.

Figure 2 - V-Model (adapted from [12])

 Development of an environment for the generation, mutation and execution of test cases

 11

2.3 Testing Methods

Different methods can be applied to test a given software system. Static testing

techniques’ main goal is to improve the quality of the software under test finding errors and bugs

in the initial stages of software development. To do this these techniques don’t need to run the

code, only need to examine it.

Unlike static testing dynamic testing techniques execute the code under inspection.

The main purpose of this testing is to confirm if the implemented software system operates in

conformance with the business requirements established. It involves giving input values and

checking if the output is as expected by executing specific test cases that can be executed

manually or with the use of automated processes. Dynamic testing techniques are usually divided

into two different classes: white-box and black-box.

White-box testing techniques are used to test internal structures or components of the

software under survey. Executing this type of technique requires knowledge of the internal code

structure of the software but also good programming skills so that it is possible to design test

cases. The tester must choose which inputs allow certain paths to be executed. For example,

inputs that will allow that both if and else statements of a method will be executed. The software

tester should also determine the appropriate outputs.

Black-box techniques are used to test functional and non-functional features of the

software without any knowledge of its internal implementation. The tester uses external

descriptions of the software like Requirements Specifications or Design Documents of the system

to develop the test cases, this means that the tester only knows what the software is supposed to

do and not know how it does it. Black-box testing techniques include Mode-based Testing (which

will be described next).

 Development of an environment for the generation, mutation and execution of test cases

12

2.4 Model-based Testing

For the purpose of the project being carried out the technique chosen to test user

interfaces was model-based testing (MBT), which as previously mentioned fits the techniques of

Black-box testing. This technique makes use, as its names implies, of a model of the System

Under Test (SUT), which describes how the software is supposed to behave. The developed

model is then used to “generate tests cases and can also be used as the oracle that checks

whether the implementation under test passes the test” [4]. MBT can be executed during the

Unit-testing phase, but for this project will be applied for the entire system (System Testing). In

terms of testing objectives MBT can be used in Regression testing comparing the model of a

previous version of a system with its new implementation, and also in Acceptance or

Conformance testing. If appropriate, MBT should be incorporated in all of STLC phases.

Modeling is an efficient approach of capturing knowledge about a system and makes it

possible to reuse this knowledge as the system develops [13]. This way “the test designer writes

an abstract model of the SUT and then the model-based testing tool generates a set of tests

cases from that model, instead of manually writing hundreds of test cases (sequences of

operations)” [14].

The generation of test cases can be accomplished in two distinguished ways offline or

online where, in both techniques, test cases are generated by exploring a model of the SUT. In

the offline approach the test case is generated before it is executed while in the online approach

the test case is generated as the test executes.

The use of a tool that generates test cases means that different tests cases can be

generated simply by changing the selection criteria. This process (Figure 3) can be divided,

according to [14], into five main steps:

 Development of an environment for the generation, mutation and execution of test cases

 13

1. Model the SUT and/or its environment

2. Generate abstract tests from the model

3. Concretize the abstract test to make them executable

4. Execute the tests on the SUT and assign verdicts

5. Analyze the test results

In the first step an abstract model of the SUT must be written, this model must be

smaller and simpler than the SUT. The created model needs to be checked to verify if it’s

consistent with the requirements and if it has the expected behavior. For the second step

abstract tests are generated from the model. This step involves an interaction with the tests

generation tool being utilized, in which the user chose the test criteria to generate tests from the

model. The third step consists in transforming the abstract tests into executable ones. The

generated tests are expressed in terms of the model (abstract). It is necessary to transform them

into tests to be executed on the system (concrete). For example, choosing an option (in the

model) can be realized by pressing a button or selecting an option in a menu (in the interface).

An executable test communicates directly with the SUT. In the fourth step the test results

must be registered and it should be verified if the results are consistent with the expected output

from the system as dictated by the model. An important note is that in online testing steps 2, 3

and 4 are usually merged into one single step. In the fifth and final step the results from the tests

are analyzed (comparing the test results with the model) to understand what went right or wrong

[14].

 Development of an environment for the generation, mutation and execution of test cases

14

2.5 Conclusion

This chapter has presented the background in Software Testing needed to understand the

project. The testing technique to be used – Model-based Testing was also introduced.

Figure 3 - Model-based testing process (Adapted from [12])

 Development of an environment for the generation, mutation and execution of test cases

 15

3. GUI MODEL-BASED TESTING

A GUI must allow their users to be able to achieve their goals efficiently and effectively.

This concept has the name of Usability [2]. To ensure that a GUI fulfills the premise of usability is

necessary that it be subject to tests. The main techniques for user interface testing are based on

the observation of the behavior and actions of users when they interact with the system interface.

The testers while observing the users must detect errors in the interface usage, as well as

determinate if the interface serves its objectives. It should be noted that the users in the tests

may be interacting with a version of the system or only a prototype [15]. To speed this process

there are tools that enable, in an automatic way, to capture the actions of the users of the

system, however the tester still must check and validate the logs created by the tool.

Usability tests based on observation of the users are very expensive and there are not

always users available for carrying them out. On the other hand, techniques based on observing

the user are not focused on systematically finding implementation errors. They are more focused

on interface design errors. To find the maximum implementation errors possible the use of

testing techniques that test the system exhaustively and preferably in an automatic way is

required. This is where MBT can be helpful.

We can have a model that predicts all possible uses (obtained by modeling the behavior

of the interface) and this will enable us to test all possible user behaviors at the user interface.

The issue is that it is typically unfeasible to generate all possible tests. If we model the expected

behavior of the user, the number of tests will be less, but we will be missing error behaviors.

Hence, the idea of the project is to start with the expected behavior and add the more likely

errors that might happen.

 Development of an environment for the generation, mutation and execution of test cases

16

The greatest difficulty to apply MBT to interfaces is the mapping between the abstract

model and the concrete interface since is necessary to interact with the interface to obtain the

required information to create the model.

3.1 Applying MBT to GUI’s

A research was carried out on tools that support the testing process to be developed for

GUI’s, i.e., tools capable to support the development of models and the generation of test cases

from the same models, as well as the execution of the test cases in the running application.

3.1.1 Task Modeling Tools

A simple approach for the representation of user interaction with a system is the use of

task models. Task models enable us to express how the user should interact with the system to

achieve a certain objective. The more common type of task model is a hierarchical

decomposition of tasks into the sub-tasks that must be performed to achieve a particular goal [7].

Different tools that support the creation of task models can be used such as TERESA, MARIAE or

HAMSTERS, which are described next.

CTT belongs to the family of hierarchical task analysis notations. Task analysis is the

analysis of how a task is accomplished, including description of both manual and mental

activities and other assumptions that can be important like duration or frequency.

TERESA is an environment for designing interactive applications for multiple platforms,

from desktop, mobile, vocal or multimodal to digital TV, which uses task models written in the

ConcurTaskTrees (CTT) notation. From logical descriptions of user interfaces TERESA is capable

of generating implementations that adapt to the interaction resources available, in several

implementation languages [16]. The CTT notation allows the creation of task models that can be

 Development of an environment for the generation, mutation and execution of test cases

 17

used as oracles in model-based testing context. Although TERESA has been discontinued MARIAE

was presented as its successor. Other option is the CTT Environment (CTTE) which is an

environment for editing and analysis of task models very similar to TERESA, but with less

features.

MARIA Environment (MARIAE) offers a solution capable of taking advantage of task

models (in CTT notation) and user interface models (represented in the MARIA language) for the

design and development of interactive applications based on Web services for numerous types of

platforms (desktop, smartphones, vocal, multimodal, ...). This tool is able to import, in an

automatic way, service and annotation descriptions and supports interactive association of basic

system tasks with Web services operations. Next, a series of semi-automatic transformations are

applied, which explore the information in such service and annotation descriptions to derive

usable multi-device service front ends [17].

HAMSTERS (which stands for Human-centered Assessment and Modeling to Support

Task Engineering for Resilient Systems) is a task modeling language that provides a supporting

tool. Its creation was inspired by existing tools and notations (CTT, for example) and tries to

gather the best of each [18]. Note that the development of the tool is not yet finished.

The chosen tool was TERESA because their successors MARIAE and CTTEnvironment,

when the study was conducted, presented limitations that preclude their use as expected.

HAMSTERS was not chosen because it was in an early stage of its development.

3.1.2 Test Cases automation tools

There are also tools that interact with the GUI and from a model created by them or by the

test engineer automatically generate and/or execute test cases.

Selenium is a portable software testing framework used for web applications. Selenium

provides an Integrated Development Environment (Selenium IDE). Selenium IDE is a Firefox

 Development of an environment for the generation, mutation and execution of test cases

18

extension and is able to create Selenium test cases. The Selenium IDE can be used to record,

edit and debug test scripts. The test scripts are written in Selenese, the test scripting language

used by Selenium. This language provides commands for actions performed in browsers (like

click in a link or select an option) and also for retrieving data from the resulting pages. Selenium

is able to write tests in a number of popular programming languages, including C#, Java, Groovy,

Perl, PHP, Python and Ruby.

MISTA (Model-based Integration and System Test Automation) is a model-based test

generation and execution tool. MISTA uses lightweight high-level Petri nets as a visual modeling

notation. This tool supports several programming languages such as Java, C, C++, C#, HTML,

and VB and different testing frameworks like JUnit, NUnit, Selenium IDE or Robot Framework.

MISTA can be used for offline test execution but also supports on-the-fly testing and online

execution of generated tests through Selenium WebDriver or a RPC protocol (JSON-RPC or XML-

RPC).

WatiN stands for Web Application Testing in .NET. WatiN is a framework that allows the

execution of tests in web applications through Internet Explorer (6 and above) and Firefox (2 and

3). WatiN is inspired by Watir (Web Application Testing in Ruby) which is an open source family of

Ruby libraries for automating web browsers. Watir unlike WatiN is available for Internet Explorer,

Firefox, Chrome, Opera and Safari. WatiN is developed in C# and its main goal is to automate

tests with Internet Explorer and Firefox using .Net. WatiN can open IE or Firefox instances and

then find the page elements by multiple attributes in order to carry out tests.

The possibility of using MISTA involved a change of task models to models based on Petri

nets. The hypothesis was studied but due to limitations of the version available for free to the

public this idea was dropped. Because it is based in C#, one of the more popular programming

languages currently, WatiN use becomes easy and simple to understand. For this, WatiN was

picked instead of Selenium IDE. Using C# also makes it possible to use Microsoft Visual Studio

 Development of an environment for the generation, mutation and execution of test cases

 19

as development environment and integrate WatiN frameworks with already existing Visual Studio

test configurations.

3.2 Conclusion

In this chapter was presented how MBT can be used to create an automated testing

process for web applications. Was also presented the decision on which tools and frameworks to

be used to build a prototype capable of generating, mutating and executing test cases from task

models.

 Development of an environment for the generation, mutation and execution of test cases

20

4. IMPLEMENTATION AND DEVELOPMENT

4.1 Proposed Approach

Following the approach in [7] the process consists in using a state machine generated

through a task model as an oracle of the model-based testing process. Initially it is necessary to

create the task model. Then, using TERESA a file is generated that represents a finite state

machine. This representation is called Presentation Task Sets (PTS). Additionally it is necessary

to define the mapping between the task model and the interface, as well as the input values to be

used for the generation of the test cases. For each of these two needs a configuration file is

created. The Variables configuration file defines the mapping, while the Parameters configuration

file defines the input values.

With the three files above (PTS, Variables and Parameters) created the application to be

developed should create a graph. With this graph, test cases are generated according to the

model. If desired, test cases corresponding to mistaken operations executed in the interface can

also be designed. The test cases are generated in C#. Once the code with the test cases is

generated, they can be performed using the WatiN framework.

As previously mentioned, by being based on a task model, test cases capture how

designers and developers expect that the user will use the interface. These are, however, the

most predictable interactions, so can potentially be tested even manually. Moreover, often

problems occur because users deviate from the expected behavior. To test this possibility the

introduction of errors in the test cases must be considered. Unlike previous studies where errors

were introduced directly in the model [19], it was decided to introduce errors in the test cases.

Introducing errors in test cases and not in the model makes it possible to maintain a history of

versions of the models used and for each model the set of test cases (with and without errors).

 Development of an environment for the generation, mutation and execution of test cases

 21

Figure 4 shows the testing process developed, which will be explained in detail in the

following chapters. As an illustrative example the search service of the Alpha and Intercity trains

(Figure 5) from CP - Comboios de Portugal2 - will be used. More complex examples will be

presented in Section 5. This example is only used due to its simplicity, which facilitates the

understanding of the testing process developed.

Figure 4 - Process of generating and executing test cases

2 Available at: http://cp.pt/

Figure 5 - Searching Alpha and Intercity trains in CP web page

http://cp.pt/

 Development of an environment for the generation, mutation and execution of test cases

22

4.2 Task Models with CTT (ConcurrTaskTree)

A simple approach to represent user interaction with a system is as said before, the use

of task models. A task model allows the representation of activities to be performed to achieve a

certain goal. The support tool of choice for the design of task models is TERESA. This tool

supports the CTT notation (ConcurTaskTrees) [20] and provides, in addition to the creation of a

task model, the generation of a finite state machine (in form of Presentation Task Sets - PTS) that

represents the behavior of the model.

CTT is a language that supports Hierarchical Task Analysis. Thus, a CTT model is a tree

in which the hierarchical decomposition of tasks into subtasks that must be performed to achieve

a specific goal (the tree root) is carried out. Different interactions may be represented by one of

the four possibilities provided by the language, as illustrated in Table 2.

TYPE DESCRIPTION

Interaction Task

Represents user interaction with the system.

Application Task

Represents tasks that must be performed by the system.

User Task

Represents user decision points.

Abstraction Task

Represents abstract tasks (i.e. the combination of subtasks

into a higher level task)

Table 2 - Type of tasks

All types mentioned above, except abstract tasks, should appear as leaves of the tasks

models that are to be built. An abstract task should be used to structure the model and must

appear only as an internal node of the tree.

 Development of an environment for the generation, mutation and execution of test cases

 23

In addition to different types of tasks the language also provides operators to model tree

traversal (i.e. how to combine different sub-tasks at the same level in the tree). The available

operators and their purpose can be found in Table 3.

OPERATOR DESCRIPTION

[Task]
Optional task operador: The task is optional so it might not be

executed

Task * Iterative operator: The task is repeated.

Task1 [] Task2 Choice operator: Choose which of two tasks will be performed.

Task1 |=| Task2

Order Independence operator: The two tasks have to be

performed, but when one starts the other has to wait for the first to

finish its execution.

Task1 ||| Task2
Independent current operator: Two tasks can be executed

concurrently

Task1 |[]| Task2

Concurrent with Information Exchange operator: Two tasks can

be performed concurrently, but need to be synchronized as they will

exchange information with each other.

Task1 [> Task2
Deactivation operator: When the task on the right is activated the

one on the left is deactivated.

Task1 |> Task2

Suspende/Resume operator: The task of the right can stop the task

on the left. Once the task on the right finishes its execution, the task of

the left continues its execution from the point where it was interrupted.

Task1 >> Task2
Enabling operator: The task on the right is executed when the task

on its left finishes its execution.

Task1 []>> Task2

Enabling with Information Passing operator: The task of the right

begins to run once the task on its left finish its execution. The task on

the left transmits information to the task on the right.

Table 3 - CTT Operators

 Development of an environment for the generation, mutation and execution of test cases

24

As it can be seen in the table, most operators are applied to pairs of tasks. There is no

limit to the number of children a node can have. The only requirement is that all nodes must be

related to their adjoining nodes by one of the operators. Operators in the table are presented in

decreasing order of priority.

In order to facilitate the automatic generation of test cases, a set of rules to name the

sub-tasks in the model were defined (adapted from [7]). All tasks are obliged to have a name (the

tool allows tasks not to have a name). The name of the tasks must then be composed of a

keyword and a variable. Keywords are used to define the type of action the user or system will

perform. Table 4 lists the defined keywords and their respective function.

KEYWORD DESCRIPTION

Start variable Initialize a new task.

Enter variable Introduce a value into a textbox in the current web page.

Press variable
Press a button/link, select a radio button option or check a

checkbox option in the current web page.

Show variable Show a specific web page.

Display variable Verify a value in the current web page.

Table 4 – Keyords defined

The task model in Figure 6 represents the search for Alfa and intercity trains in CP’s

webpage. In this example only the search from origin to destination was modeled and not both

origin-destination and destination-origin. To simplify the testing process (to only have a path

navigating the tree) only the enabling operator (>>) was used. Other operators are used in the

cases studies presented in Section 5.

 Development of an environment for the generation, mutation and execution of test cases

 25

Figure 6 – Alfa and intercity trains search in CP

For a valid train search is necessary to fill the origin (Enter origin) and destination (Enter

destination) fields with valid train station names, and also select a valid date (Enter date). Once

these are filled it is then necessary to press the OK button (Press confirmation). With correct

values in the fields a new page will be shown with the trains options (Show results). In case of

error a notification is displayed in the browser but the element is not represented in HTML (an

alert window is used) and cannot be mapped to the model, hence we have decided not to model

it here.

4.3 Test Cases

4.3.1 Test Cases Configuration

As stated above, from the task model it is possible, using TERESA, to generate a finite

state machine called a PTS representing the behavior of the model. Together with the PTS is also

necessary to define two configuration files. A file mapping variables in the model to elements in

the interface (see Figure 7) contains, for each variable in the model what kind of HTML element

to find on the web page, how to find it (which attribute), etc.. This file must contain the definition

of all the variables in the task model. An additional variable must also be included in this file –

 Development of an environment for the generation, mutation and execution of test cases

26

urlStart. This variable is important to define the Web Page where we want to find the HTML

elements.

For each variable in the model there is a line in the file (see syntax in Figure 7):

 Variable: name of the task in the task model.

 Keyword: one of the keywords: Press, Enter, Show, Display.

 ElementType: Class WatiN that mapps the HTML element (to be explain

later).

 FindBy: the attribute through which we want to find the HTML element on

the web page.

 ValueToFind: the value of the attribute.

 Parameter: the parameter is only available and required for Label, Textbox

and Textarea elements, and is used to indicate which values to use for input

(Textbox and Textarea)/ expected in the output (Label). Instead of concrete

values, in this file the name of a parameter is indicated. The value of the

parameter must be defined in the test cases configuration file.

The input values to be used during testing are stored in another configuration file (see

Figure 8). Thus, the software tester can define different test cases from the same behavior (by

changing the input values).

urlStart?URL
Variable?KeyWord=ElementType=FindBy!ValueToFind[=parameter]
...

Figure 7 - Mapping file structure

NumberOfTestCases
parameter?value
...

Figure 8 - Test Cases configuration file structure

 Development of an environment for the generation, mutation and execution of test cases

 27

The file contains a sequence of test cases. Each test case is a sequence of assignments of

values to the parameter used in the mapping file. The content of the file is as follow:

 NumberOfTestCases: the number of tests that are defined.

 Parameter: the parameter used in the mapping file.

 Value: the value that we want to see in the HTML element.

For the example of Figure 6, the configuration files being created would have the contents

shown in Figure 9. In the example, the variable confirmation is a button and the HTML element

is found in the Web page through the attribute Value with the value "OK" (<input type="submit"

value="OK"/>). In the same example it is also possible to observe that the variable origin is a

textbox, which should be found on the Web page by the attribute Name and the value

“departStationName”. As indicated the value to be filled in the text box is set in the setOrigin

parameter.

Observing the parameters configuration file, we can see that two test cases are defined.

Each assigns different values to the setOrigin, setDestination and setDate parameters.

Variables Configuration File:

urlStart?http://cp.pt
cpHomePage?http://cp.pt
origin?Enter=TextFieldExtended=Name!departStationName=setOrigin
destination?Enter=TextFieldExtended=Name!arrivalStationName=setDestination
date?Enter=TextFieldExtended=Name!departDate=setDate
confirmation?Press=Button=Value!OK
results?http://venda.cp.pt

Parameters Configuration File:

2
setOrigin?porto - campanha
setDestination?braga
setDate?2013-10-08
setOrigin?braga
setDestination?Lisboa - Oriente
setDate?2013-10-09

Figure 9 - Example of filling the configuration files

 Development of an environment for the generation, mutation and execution of test cases

28

The identification of the type of HTML element to be used in the configuration file of the

variables is important. The developed tool generates code to automatically test the user interface.

WatiN is used because it provides the functionality to interact programmatically with the interface,

allowing the simulation of user events in order to execute the test cases without requiring human

intervention. The correspondences between the HTML elements and proper class in WatiN can

be found in Tables 5 and 6 3

It is important to note that the inclusion of the keyword in the configuration file is due to

the fact that it is extremely important to determine how the code will be generated. Depending on

the keyword, generated code will vary. For example, for the Enter keyword code will be generated

for the setting the value of the corresponding HTML element. If the keyword is Press the code will

be generated for clicking the HTML element.

HTML ELEMENT WATIN CLASS

<a/> Link

<area/> Area

<button/>

<input type=button/>

<input type=reset/>

<input type=submit/>

Button

<div/> Div

<form/> Form

<frame/>

<iframe/>
Frame

<frameset/> FrameCollection

Table 5 - Correspondences between the HTML elements and WatiN Classes

3 Adapted from: http://watin.org/documentation/element-class-mapping-table/ (last visited in 13/07/2013)

http://watin.org/documentation/element-class-mapping-table/

 Development of an environment for the generation, mutation and execution of test cases

 29

HTML ELEMENT WATIN CLASS

<input type=image/>
Image

<input type=checkbox/> CheckBox

<input type=file/> FileUpload

<input type=hidden/>

<input type=password/>

<input type=text/>

<textarea/>

TextField

<input type=radio/> RadioButton

<label/> Label

<option/> Option

<p/> Para

<select/> Select

 Span

<table/> Table

<tbody/> TableBody

<td/> TableCell

<tr/> TableRow

Table 6 - Correspondences between the HTML elements and WatiN Classes (continuation)

4.3.2 Test Cases Generation

The developed tool used an internal structure in the form of a graph, which stores all the

information contained in the files. With this graph the tool is able to find paths between various

nodes (derived from the PTS states) and with that information create test cases. Each node

represents a method with one or more actions to be performed on the website (for which the

model was designed). Each path found (Figure 10) defines the correct order of calling each

 Development of an environment for the generation, mutation and execution of test cases

30

method generated (List 1). Note that one method will be generated for each task in the task

model with the keywords Show, Enter, Press and Display (the latter was not used in this

example).

Figure 10 - Path found for the CP example

public void cpHomePage(string url)
{
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new

 System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method cpHomePage: The page was not found: " +
 url);
 }
 Environment.Exit(0);
 }
 }
 catch(Exception e)
 {
 using (System.IO.StreamWriter file = new
 System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing cpHomePage(): " +
 e.Message);
 }
 Environment.Exit(0);
 }
}

public void origin(string setOrigin)
{
 try

{
 TextField departStationName = browserInstance.TextField(Find.ByName
 ("departStationName"));

 departStationName.Value = setOrigin;
 }
 //...
}

1 [Show
cpHomePage]

2 [Enter
origin]

3 [Enter
destination]

4 [Enter date]

5 [Press
confirmation]

6 [Show
results]

 Development of an environment for the generation, mutation and execution of test cases

 31

//...

public void confirmation()
{
 try
 {
 Button OK = browserInstance.Button(Find.ByValue("OK"));
 OK.Click();
 }
 //...
}

public void results(string url)
{
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new

 System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method results: The page was not found: " +
 url);
 }
 Environment.Exit(0);
 }
 }

//...
}

[TestMethod]
public void testMethod1()
{
 cpHomePage("http://cp.pt");
 origin("porto - campanha");
 destination("braga");
 date("2013-10-08");
 confirmation();
 results("http://venda.cp.pt");
}

[TestMethod]
public void testMethod2()
{
 cpHomePage("http://cp.pt");
 origin ("braga");
 destination ("Lisboa - Oriente");
 date("2013-10-09");
 confirmation ();
 results("http://venda.cp.pt");
}

List 1 - Code snippet for trains search in CP

 Development of an environment for the generation, mutation and execution of test cases

32

4.4 Test Cases Mutation

In order to test the system under user error conditions, the possibility of changing

(mutating) the test cases to represent user error was studied. There are three main types of user

errors [21]:

 Slips – a change in the order of execution of two actions.

 Lapses – the omission of an action.

 Mistakes - performing an action with a wrong value.

Following these types of errors, three different methods were developed to perform

mutations in the test cases. The introduction of errors is performed with the information found in

the paths in the graph. Slip type errors are generated swapping the order of execution of two

methods of the path found. The choice of which position to be swapped is made randomly.

The generation of Lapse errors appeals also to the random choice of a method. However

unlike Slip errors, in this type of error the method chosen is eliminated from the path.

Finally, Mistake errors are generated only in methods that take input parameters. In this

case, a character is inserted in one of the input parameters of the method (both randomly

chosen). Examples of generating mutated test cases can be seen in List 2 (compare with the first

test cases in List 1).

//Slip Mutation
[TestMethod]
public void mutatedTestMethod1()
{
 cpHomePage("http://cp.pt");
 confirmation();
 destination("braga");
 date("2013-10-08");
 origin("porto - campanha");
 results("http://venda.cp.pt");
}

 Development of an environment for the generation, mutation and execution of test cases

 33

//Lapse Mutation
[TestMethod]
public void mutatedTestMethod2()
{
 cpHomePage("http://cp.pt");
 origin ("porto - campanha");
 date("2013-10-08");
 confirmation();
 results("http://venda.cp.pt");
}

//Mistake Mutation
[TestMethod]
public void mutatedTestMethod3()
{
 cpHomePage("http://cp.pt");
 origin("por#o - campanha");
 destination ("braga");
 date("2013-10-08");
 confirmation();
 results("http://venda.cp.pt");
}

List 2 - Mutated test cases generated for each type of mutation identified

In the first mutated test case the order between filling the origin station and pressing the

button (confirmation method) has been changed. The second case tests forgetting to fill the

destination station (which was deleted from the test case). Finally, the third case simulates an

error filling the origin station.

4.5 Test Cases Execution

WatiN (Web Application Testing in. NET) is a framework that, as previously mentioned, can

open instances of a Web browser (Internet Explorer 6 or higher and Firefox 2 and 3) and then

find page elements by multiple attributes. Using this framework it is then possible to run the test

cases (Figure 11). In case of success an entry is written to a log file to mention that the method

was performed without any problem. In cases where an abnormality is detected, test execution is

completed and an entry is written to the log file where it is possible to visualize what happened

wrong during test execution. Among the anomalies may be, for example, a failure when trying to

find the HTML elements on the Web page under test.

 Development of an environment for the generation, mutation and execution of test cases

34

It must be noted that these abnormalities do not necessarily mean an error from the

implementation. This will have to be determined by analysis of the case. For example, due to the

introduction of errors in the test cases, it is possible that if the test fails because the interface

does not allow execution of the case as defined (for example, when there is no password or the

user name is wrong if we are conducting a test to a login system). Unless the task model

provides these possibilities, the aim is for the test to fail. For the case described, when the values

defined in the test were correct the tests cases were successfully performed.

[TestMethod]
public void testMethod1()
{
 cpHomePage("http://cp.pt");
 origin("porto - campanha");
 destination("braga");
 date("2013-10-08");
 confirmation();
 results("http://venda.cp.pt");
}

Figure 11 - Sucessfull test case execution

 Development of an environment for the generation, mutation and execution of test cases

 35

A software tester needs to analyze the results of the tests. For that he can visualize the

results presented in Visual Studio (Figure 12) and the generated log file (Figure 13). Using Visual

Studio (VS) brings the possibility of making use of testing options integrated in it. For this project

the WatiN framework was used in a VS Test Project. The log file generated for each entry states

the method that was executed and the result of its execution.

For a graphical representation of the test cases the software tester also has access to a

graph generated by the tool (Figure 14). This graph is merely informative of the sequence that

the test case has followed.

Figure 12 - Test Results presented in Visual Studio 2010

 Development of an environment for the generation, mutation and execution of test cases

36

Figure 14 - Generated grpah for the test case

Method cpHomePage: The page was found: http://cp.pt
Method origin: The correct value was found in departStationName
Method destination: The correct value was found in arrivalStationName
Method date: The correct value was found in departDate
Method confirmation: The action OK was successfully executed.
Method results: The page was found: http://venda.cp.pt

Figure 13 - Generated log file for the executed test case

 Development of an environment for the generation, mutation and execution of test cases

 37

4.6 Conclusion

This chapter has presented the proposed approach to the Model-based Testing of web

applications’ user interfaces. The modeling language used to describe the oracle, and the

configuration files to create the test cases were described, as was the approach used to consider

user error in the testing phase. A small example has been used to illustrate the approach. More

examples are provided in the next chapter.

 Development of an environment for the generation, mutation and execution of test cases

38

5. TESTING USER INTERFACES

This chapter presents two case studies designed to demonstrate the application of the

developed tool. The first case study depicts the search of flights and hotels on the TAP website.

The second case is about the use of some features of the online version of Microsoft Outlook.

For each case study a task model, configuration files and samples of generated code are

presented.

5.1 TAP Portugal – Search flights and hotels

The TAP Portugal example tests the flights and hotels search functionality provided at

TAP’s web site4 (see Figure 15).

5.1.1 Task Model

The excerpt from the task model in Figure 16 represents the tasks necessary to conduct to

search for flights (only one way) on TAP web page (Figure 15). To perform this type of search it is

necessary to select the "Só ida" option and fill, at least, the fields “De”, “Para“ and “Partida”.

The complete task model can be found in Appendix I.

4 Available at: http://www.flytap.com/Portugal/pt/Homepage

http://www.flytap.com/Portugal/pt/Homepage

 Development of an environment for the generation, mutation and execution of test cases

 39

Figure 16 - TAP Task Model sample

Figure 15 - Search for flights (one way only) in TAP web page

 Development of an environment for the generation, mutation and execution of test cases

40

5.1.2 Configuration Files

The configuration files are a key point for code generation because it is in them that the

mapping between the interface and the task model is specified. Figure 17 illustrates this

mapping, showing how each task in the model (on the right) corresponds to some element in the

user interface. Boxes with the same color denote related elements. The respective configuration

files can be viewed in Figure 18. Only one set of input parameters is being specified. In this case,

corresponding to a search for flights from Porto to Barcelona on November 6, 2013.

 Figure 17 - Mapping the interface into the task model

 Development of an environment for the generation, mutation and execution of test cases

 41

5.1.3 Test Cases

Once the configuration files step is completed, the process of generating code can start.

The tool will start by creating a graph structure to be able to find execution paths. The paths

found will be our test cases with the correct order of execution of the methods generated. The

paths for the TAP example can be seen in Figure 19 (the second path matches the example

presented in Figures 15 and 16).

Variables Configuration File:

urlStart?http://www.flytap.com/Portugal/pt/Homepage
homePage?http://www.flytap.com/Portugal/pt/Homepage
ida?Press=RadioButton=Id!IDA
origem_ida?Enter=TextField=Name!fromCity=cidadeOrigem
destino_ida?Enter=TextField=Name!toCity=cidadeDestino
data_ida?Enter=TextField=Name!data_partida=dataIda
reservar?Press=Span=Text!Reserve Ja
results? http://book.flytap.com

Parameters Configuration File:
1
cidadeOrigem?Porto, Portugal
cidadeDestino?Barcelona, Espanha
dataIda?06/11/2013

Figure 18 - Configuration files for the only one way flights

 Development of an environment for the generation, mutation and execution of test cases

42

Figure 19 - Paths found for TAP task model

Once the paths are found the test cases can be generated as presented in List 3. The full

listing of the generated code can be found in Appendix III.

1 [Show
homePage]

2 [Press
hotel]

12 [Enter
destino_hotel]

13 [Enter
checkin]

14 [Enter
checkout]

15 [Press
reservar_

hotel]

16 [Show
resultados_

hotel]

1 [Show
homePage]

2 [Press
ida]

9 [Enter
origem_ida]

10 [Enter
destino_ida]

11 [Enter
data_ida]

7 [Press
reservar]

8 [Show
resultsl]

1 [Show
homePage]

2 [Press
idaEvolta]

3 [Enter
origem_ida

Evolta]

4 [Enter
destino_ida

Evolta]

5 [Enter
dataPartida]

6 [Enter
dataRegr

esso]

7 [Press
reservar]

8 [Show
results]

 Development of an environment for the generation, mutation and execution of test cases

 43

[TestMethod]
public void testMethod1_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 hotel();
 destino_hotel("Barcelona");
 checkin("06/11/2013");
 checkout("13/11/2013");
 reservar_hotel();
 resultados_hotel("http://book.flytap.com");
}

[TestMethod]
public void testMethod2_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 ida();
 origem_ida("Porto, Portugal");
 destino_ida("Barcelona, Espanha");
 data_ida("06/11/2013");
 reservar();
 results("http://book.flytap.com");
}

[TestMethod]
public void testMethod3_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 idaEvolta();
 origem_idaEvolta("Porto, Portugal");
 destino_idaEvolta("Barcelona, Espanha");
 dataPartida("06/11/2013");
 dataRegresso("13/11/2013");
 reservar();
 results("http://book.flytap.com");
}

List 3 - Generated test cases for TAP task model

5.1.4 Test Cases Execution

Figure 20 shows the execution of the test case that performs the search of flights for

Barcelona from Porto on the specified date.

 Development of an environment for the generation, mutation and execution of test cases

44

Figure 20 - TAP test case execution example

[TestMethod]
public void testMethod2_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 ida();
 origem_ida("Porto, Portugal");
 destino_ida("Barcelona, Espanha");
 data_ida("06/11/2013");
 reservar();
 results("http://book.flytap.com");
}

 Development of an environment for the generation, mutation and execution of test cases

 45

The results of the test cases executed can be viewed (an entry for each test case) in

Visual Studio (Figure 21). If everything goes as plan the Visual Studio shows the test as Passed.

The log file (Figure 22) can also give information to the software tester.

Figure 21 - Test results presented in Visual Studio 2010

5.1.5 Mutated Test Cases

If during the code generation the tester chose an option to mutate the test cases, for

each test case a mutated test case will be created. Note that for each run only one type of

mutation can be chosen. List 4 shows examples of mutated test cases, for each type (Slip, Lapse

and Mistake), generated by the tool for the TAP task model.

Method homePage: The page was found:
http://www.flytap.com/Portugal/pt/Homepage
Method ida: The action IDA was successfully executed.
Method origem_ida: The correct value was found in fromCity
Method destino_ida: The correct value was found in toCity
Method data_ida: The correct value was found in data_partida
Method reservar: The action Reserve_Ja was successfully executed.
Method results: The page was found http://book.flytap.com

Figure 22 - Generated log file

 Development of an environment for the generation, mutation and execution of test cases

46

//Slip Mutation
[TestMethod]
public void mutatedtestMethod1_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 reservar_hotel();
 destino_hotel("Barcelona");
 checkin("06/11/2013");
 checkout("13/11/2013");
 hotel();
 resultados_hotel("http://book.flytap.com");
}

//Lapse Mutation
[TestMethod]
public void mutatedtestMethod2_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 ida();
 origem_ida("Porto, Portugal");
 destino_ida("Barcelona, Espanha");
 data_ida("06/11/2013");
 results("http://book.flytap.com");
}

//Mistake Mutation
[TestMethod]
public void mutatedtestMethod3_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 idaEvolta();
 origem_idaEvolta("Porto, Portugal");
 destino_idaEvolta("Barcel#na, Espanha");
 dataPartida("06/11/2013");
 dataRegresso("13/11/2013");
 reservar();
 results("http://book.flytap.com");
}

List 4 - Examples of mutated test cases for TAP task model

5.1.6 Mutated Test Cases Execution

In the example shown in Figure 23 the first mutation from List is being tested. We can

observe that the results page is not shown because the action of pressing the reservation is

executed before the required fields were filled in (“Destino”, “Check-in” and “Check-out”), which

causes the test to fail.

 Development of an environment for the generation, mutation and execution of test cases

 47

Figure 24 shows the result of the execution of the mutated test case in Visual Studio 2010

with the value Aborted. This means that the test was not executed with success because the

expected result from the method resultados_hotel was not found. To better understand why the

test fail the log file (Figure 25) should be analyzed. Note that the test is supposed to fail because

the results cannot be presented if the reservar_hotel is not executed.

Figure 24 - Test results shown in the Visual Studio for a mutated test

[TestMethod]
public void mutatedtestMethod1_1()
{
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 reservar_hotel();
 destino_hotel("Barcelona");
 checkin("06/11/2013");
 checkout("13/11/2013");
 hotel();
 resultados_hotel("http://book.flytap.com");
}

Figure 23 - Exemple of an execution of a mutated test case

 Development of an environment for the generation, mutation and execution of test cases

48

5.2 Microsoft Outlook (Online)

As a second example of application of the tool, Microsoft Outlook (online) will be used.

5.2.1 Task Model

The excerpt from the task model in Figure 26 represents the tasks necessary to send an

email on Outlook (Figure 27). More specifically, to send an email in Outlook it is necessary to

click in “New”. After that a new page will be presented to the user. In that page it is required that

at least the textbox “to” be filled (in this example the textbox “subject” can also filled) and that

the “Send” button be clicked. It should be noted that it is necessary to be logged in Outlook to

perform these actions. The complete task model can be found in Appendix II.

One aspect that distinguishes this example from the previous one is that the concurrency

and choice operators are being used in this case. See tasks “Edit” and “NewEmail Options” in

Figure 26.

Method homePage: The page was found:
http://www.flytap.com/Portugal/pt/Homepage
Method hotel: The action HOTEL was successfully executed.
Method checkin: The correct value was found in checkin_date
Method checkout: The correct value was found in checkout_date
Method resultados_hotel: The page was not found: http://book.flytap.com

Figure 25 - Log file generated for the mutated test case executed

 Development of an environment for the generation, mutation and execution of test cases

 49

Figure 27 - Sending an email in Outlook

Figure 26 - Outlook task model sample (send an email)

 Development of an environment for the generation, mutation and execution of test cases

50

5.2.2 Configuration Files

The mapping between the interface and the task model is presented in Figure 28. The

respective configuration files can be viewed in Figure 29.

Figure 28 - Mapping between the interface and the outlook task model

Variables Configuration File:

urlStart?http://www.flytap.com/Portugal/pt/Homepage
newMessage?Press=Link=Id!NewMessage
to?Enter=TextFieldExtended=Class!cp_primaryInput cp_anyInput
t_urtc=mail
subject?Enter=TextField=Name!fSubject=message
sendMessage?Press=Link=Id!SendMessage
newEmailPage?https://dub111.mail.live.com

Parameters Configuration File:
1
user?example@hotmail.com
pass?******
message?MBT
mail?example@sapo.pt

Figure 29 - Configuration files for send email option

 Development of an environment for the generation, mutation and execution of test cases

 51

5.2.3 Test Cases

As before, once completed the configuration files step the process of generating code can

start. Two of the eight paths found for the Outlook example can be seen in Figure 30 (the colored

circles mean the continuation of the path). In this example the operator ||| is used. This means

that the two tasks can be executed concurrently. To simulate this two test cases were generated

with the order of the tasks changed. Consider, for example, that the tasks A and B are executed

concurrently and after task C is executed. Two different test cases will be generated: A > B > C

and B > A > C. An example of code generated can be found in Appendix IV.

Figure 30 - Example of paths found for Outlook task model

1 [Show
loginPage]

2 [Enter
username]

2 [Enter
password]

3 [Press
iniciarSes

sao]

4 [Press
inboxFold

er]

5 [Show
inboxPag

el]

6 [Press
newMessa

ge]

7 [Show
newEmail

Page]

8 [Enter to]

8 [Enter
subject]

9 [Press
sendMessa

get]

10 [Press
logoutl]

11 [Press
signout]

1 [Show
loginPage]

2 [Enter
password]

2 [Enter
username]

3 [Press
iniciarSes

sao]

4 [Press
inboxFold

er]

5 [Show
inboxPag

el]

6 [Press
newMessa

ge]

7 [Show
newEmail

Page]

8 [Enter
subject]

8 [Enter
to]

9 [Press
saveDraft]

10 [Press
logoutl]

11 [Press
signout]

 Development of an environment for the generation, mutation and execution of test cases

52

 Once the paths are found the test cases can be generated as presented in List 5.

[TestMethod]
public void testMethod1_0()
{
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 sendMessage();
 logoutMenu();
 signout();
}

[TestMethod]
public void testMethod2_0()
{
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
}

[TestMethod]
public void testMethod3_0()
{
 loginPage("http://outlook.com");
 password("*******");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");

 Development of an environment for the generation, mutation and execution of test cases

 53

 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
}

List 5 - Example of test cases generated

5.2.4 Test Cases Execution

Figure 31 shows the execution of a test case that sends an email.

The results of the test cases executed can be viewed in Figure 32. If everything goes as

plan Visual Studio shows the test as Passed. As before, the log file (Figure 33) can also give

information to the software tester.

[TestMethod]
public void testMethod2_1()
{

 //...
 newMessage();
 newEmailPage(
 "https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 sendMessage();
 //...
}

Figure 31 - Outlook send email test case execution

 Development of an environment for the generation, mutation and execution of test cases

54

Figure 32 - Test results presented in Visual Studio 2010

5.2.5 Mutated Test Cases

List 6 shows examples of mutated test cases generated by the tool, one for each type of

error, for the Outlook task model.

//Slip Mutation

[TestMethod]
public void mutatedtestMethod1_1()
{
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 password("*******");
 inboxFolder();
 iniciarSessao();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 sendMessage();
 logoutMenu();
 signout();
}

Method newMessage: The action NewMessage was successfully executed.
Method newEmailPage: The page was found: https://dub111.mail.live.com
Method to: The correct value was found in
cp_primaryInput_cp_anyInput_t_urtc
Method subject: The correct value was found in fSubject
Method sendMessage: The action SendMessage was successfully executed.

Figure 33 - Generated log file

 Development of an environment for the generation, mutation and execution of test cases

 55

//Lapse Mutation

[TestMethod]
public void mutatedtestMethod2_1()
{
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
}

//Mistake Mutation

[TestMethod]
public void testMethod3_0()
{
 loginPage("http://outlook.com");
 password("*******");
 username("exa#ple@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
}

List 6 - Example of mutated test cases for the outlook example

5.2.6 Mutated Test Cases Execution

In the example shown in Figure 34, we can observe that the outlook user home page is

not shown because the user login is filled incorrectly, which causes the test to fail.

 Development of an environment for the generation, mutation and execution of test cases

56

Figure 34 - Example of an execution of a mutated test case

Figure 35 shows the result of the execution of the mutated test case in Visual Studio

2010 with the value Aborted. This means that the test was not executed with success. To better

comprehend why the test failed the log file (Figure 36) should be analyzed. Note that this was the

intended results since the login was filled incorrectly.

Figure 35 - Test results shown in the Visual Studio for a mutated test

[TestMethod]
public void testMethod3_0()
{
 loginPage("http://outlook.com");
 password("*******");
 username("exa#ple@hotmail.com");
 iniciarSessao();
 //...
}

 Development of an environment for the generation, mutation and execution of test cases

 57

5.3 Conclusion

This chapter has presented two examples of testing a user interface. The tool worked as

expected. Given that this is just a prototype the existing limitations can always be corrected in the

future. One of the improvements is to extend the scope of the Display keyword. Currently the

generated code for Display only checks if a given text is present in the HTML element, however if

the text shown is dynamic, ie, varies depending on the error, it is not possible to test this event.

Due to this limitation, it was decided that the keyword Display would not be a part of the test

cases, ie, the method is created, but is not used in the test cases.

Being an approach based on method calls nothing limits the software tester to create his

own test cases and make use of methods for the keyword Display and the others by entering

valid values and/or invalid inputs.

Method loginPage: The page was found: https://login.live.com
Method username: The correct value was found in login
Method password: The correct value was found in passwd
Method iniciarSessao: The action Iniciar_sessao was successfully
executed.
An error was found while exectuing inboxFolder(): Could not find SPAN
element tag matching criteria: Attribute 'innertext' matches '^ *Inbox
*$' at
https://login.live.com/ppsecure/post.srf?wa=wsignin1.0&ct=1382894379&rv
er=6.1.6206.0&sa=1&ntprob=-
1&wp=MBI_SSL_SHARED&wreply=https:%2F%2Fmail.live.com%2F%3Fowa%3D1%26owa
suffix%3Dowa%252f&id=64855&snsc=1&cbcxt=mail&bk=1382894380

Figure 36 - Log file generated for the mutated test case executed

 Development of an environment for the generation, mutation and execution of test cases

58

6. CONCLUSIONS

This dissertation described an approach (using Model-based testing) to test web

applications. This approach makes use of task models to check the behavior of these

applications is in accordance with the behavior in the model. Although the approach does not

guarantee a faithful representation of the actions of users, since each user can interpret and

perform the same actions in various ways, it is capable of identifying problems in the

implementation of the system and of providing information regarding how the GUI responds to

actions that were not planned or were performed incorrectly. As result of this work, a paper was

accepted for publication at Interacção 2013 [22].

6.1 Objectives achieved and limitations

The current tool allows the software tester to perform a wide range of test cases. There are

however a number of ways in which the development should be continued.

A first aspect is related to the processing of task models. In order to simplify the state

machine generated, and to bypass some limitations in the generation of PTS, it was decided to

treat only the >>, []>>, ||| and [] operators. Although these operators are those which

comprise most cases and, in our experience, are sufficient to express most models (for example,

a cyclic task necessarily has to be reduced to a finite number of iterations) in the future it is

intended to extend the approach to eliminate this limitation, in order to be able to recognize and

treat all existing operators. The unused operators and the reason why they were not used in the

developed models can be found in Appendix V.

Regarding validation of system responses, this is currently done at the level of the window

(ie, if the current window has the elements necessary for the continuation of the interaction or

 Development of an environment for the generation, mutation and execution of test cases

 59

not). In order to make the process even more automated the Display keyword was introduced.

The implementation of this reserved word means the possibility of defining in the test cases the

expected value of a particular user interface element in response to action user.

6.2 Future work

To overcome the limitations identified above a number of improvements to the tool should be

considered. The most relevant include:

 The implementation of different algorithms to search for paths in the graph, allowing

the software tester to define different coverage criteria. These could include obvious

algorithms such as traversing all nodes or all connections in the graph, but also

some more problem oriented ones like all possible user actions or all possible

system responses in the task model.

 Generating the graphs from other models in addition to CTT task models, ensuring

that the application is not limited only to models written in CTT.

 Supporting the semi-automatic generation of configuration files, which currently must

necessarily be created manually. This could be achieved by implementing a tool to

interactively map user interface elements to tasks in the CTT model.

 Development of an environment for the generation, mutation and execution of test cases

60

REFERENCES

[1] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, Software Engineering Body of
Knowledge. 2004.

[2] ISSO 9241-11:1998, “Ergonomic requirements for office work with visual display
terminals (VDTs) - Part 11: Guidance on usability,” 1998.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K.
Schwaber, J. Sutherland, and D. Thomas, “Agile Manifesto.” [Online]. Available:
http://agilemanifesto.org/.

[4] J. Jacky, V. Margus, C. Colin, and S. Wolfram, Model-Based Software Testing and Analysis
with C#. Cambridge University Press, 2007.

[5] A. C. R. Paiva, C. P. Faria, N. Tillmann, and R. A. M. Vidal, “A Model-to-implementation
Mapping Tool for Automated Model-based GUI Testing,” 7th Int. Conf. Form. Eng.
Methods, ICFEM 2005, Manchester, UK, Novemb. 1-4, 2005. Proc., vol. 3785, pp. 450–
464, 2005.

[6] P. a Brooks and A. M. Memon, “Automated gui testing guided by usage profiles,” Proc.
twentysecond IEEEACM Int. Conf. Autom. Softw. Eng. ASE 07, p. 333, 2007.

[7] J. L. Silva, J. C. Campos, and A. C. R. Paiva, “Model-based User Interface Testing With
Spec Explorer and ConcurTaskTrees,” Electron. Notes Theor. Comput. Sci., vol. 208, pp.
77–93, 2007.

[8] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. Wiley Publishing,
2004, p. 225.

[9] V. Rungta, “Software Testing Life Cycle STLC.” [Online]. Available:
http://www.guru99.com/software-testing-life-cycle.html.

[10] “Software Testing Life Cycle (STLC) | Software Testing Fundamentals.” [Online].
Available: http://softwaretestingfundamentals.com/software-testing-life-cycle/.

[11] “IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software Engineering
Terminology, IEEE.” 1990.

 Development of an environment for the generation, mutation and execution of test cases

 61

[12] S. Mathur and S. Malik, “Advancements in the V-Model,” Int. J. Comput. Appl., vol. 1, no.
12, pp. 29–34, 2010.

[13] L. Apfelbaum and J. Doyle, “Model Based Testing,” Procedings 10th Int. Softw. Qual.
Week, pp. 1–14, 1997.

[14] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. San
Francisco, USA, Morgan Kaufmann, 2007.

[15] M. Y. Ivory and M. a Hearst, “The state of the art in automating usability evaluation of
user interfaces,” ACM Comput. Surv., vol. 33, no. 4, pp. 470–516, 2001.

[16] “Multimodal TERESA - Tool for Design and Development of Multi-platform Applications.”
[Online]. Available: http://giove.isti.cnr.it/teresa.html.

[17] “MARIAE.” [Online]. Available: http://giove.isti.cnr.it/tools/MARIAE/home.

[18] “Hamsters WEB.” [Online]. Available:
http://www.irit.fr/recherches/ICS/softwares/hamsters/.

[19] A. Barbosa and A. C. R. Paiva, “Test Case Generation from Mutated Task Models,” EICS
'11 Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive computing
systems, pp. 175–184, 2011.

[20] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models,” Proceeding INTERACT ’97 Proc. IFIP TC13 Interantional Conf.
Human-Computer Interact. Chapman Hall, Ltd. London, UK, 1997, p. Pages 362–369.

[21] J. Reason, “Human Error,” Cambridge Univ. Press. 1990. xv, 302 p., 1990., 1990.

[22] P. J. Cruz and J. C. Campos, “Ambiente de geração, mutação e execução de casos de
teste para aplicações Web,” Interacção, 2013.

[23] A Hartman and K. Nagin. 2004. “The AGEDIS Tools for Model Based Testing,” In
Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and
analysis (ISSTA'04), ACM, New York, NY, USA 129-132.

[24] A. Barbosa, A.C.R Paiva. and J.C. Campos, “Test case generation from mutated task
models,”. Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems (EICS '11). ACM, New York, NY, USA, 175-184.
DOI=10.1145/1996461.1996516 http://doi.acm.org/10.1145/1996461.1996516,
2011.

http://eics-conference.org/
http://eics-conference.org/
http://doi.acm.org/10.1145/1996461.1996516

 Development of an environment for the generation, mutation and execution of test cases

62

APPENDIXES

I. TAP CASE STUDY

This appendix lists the task model as well as an example of generated code for the TAP case

study presented in section 5.1.

Task Model

 Development of an environment for the generation, mutation and execution of test cases

 63

Generated Code Example

using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using WatiN.Core;
using WatiN.Core.Native;

namespace TestProject
{
 [TestClass]
 public class Test
 {
 Browser browserInstance;
 string url = "http://tap.pt";

 [TestInitialize]
 public void WithAnInstanceOfThebrowserInstance()
 {
 browserInstance = new IE(url);
 }

 [TestCleanup]
 public void ShutdownbrowserInstanceWhenDone()
 {
 browserInstance.Close();
 browserInstance = null;
 }

 public void homePage(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method homePage: The page was not found: " + url);
 }
 Environment.Exit(0);

 Development of an environment for the generation, mutation and execution of test cases

64

 }
 else
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method homePage: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing homePage(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void idaEvolta()
 {
 try
 {
 RadioButton flighttype_return =
browserInstance.RadioButton(Find.ById("flighttype_return"));

 flighttype_return.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method idaEvolta: The action flighttype_return was
successfully executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing idaEvolta(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void ida()
 {
 try
 {
 RadioButton IDA = browserInstance.RadioButton(Find.ById("IDA"));

 IDA.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method ida: The action IDA was successfully executed.");
 }

 Development of an environment for the generation, mutation and execution of test cases

 65

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing ida(): " + e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void hotel()
 {
 try
 {
 Button HOTEL = browserInstance.Button(Find.ById("HOTEL"));

 HOTEL.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method hotel: The action HOTEL was successfully executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing hotel(): " + e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void origem_idaEvolta(string cidadeOrigem)
 {
 try
 {
 TextField fromCity =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("fromCity"));
 fromCity.Value = cidadeOrigem;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method origem_idaEvolta: The correct value was found in
fromCity");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing origem_idaEvolta(): " +
e.Message);

 Development of an environment for the generation, mutation and execution of test cases

66

 }
 Environment.Exit(0);
 }
 }

 public void destino_idaEvolta(string cidadeDestino)
 {
 try
 {
 TextField toCity =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("toCity"));
 toCity.Value = cidadeDestino;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method destino_idaEvolta: The correct value was found in
toCity");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing destino_idaEvolta(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void dataPartida(string dataIda)
 {
 try
 {
 TextField data_partida =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("data_partida"));
 data_partida.Value = dataIda;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method dataPartida: The correct value was found in
data_partida");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing dataPartida(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void dataRegresso(string dataVolta)
 {
 try

 Development of an environment for the generation, mutation and execution of test cases

 67

 {
 TextField data_regresso =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("data_regresso"));
 data_regresso.Value = dataVolta;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method dataRegresso: The correct value was found in
data_regresso");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing dataRegresso(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void reservar()
 {
 try
 {
 Span Reserve_Ja = browserInstance.Span(Find.ByText("Reserve Ja"));

 Reserve_Ja.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method reservar: The action Reserve_Ja was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing reservar(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void results(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method results: The page was not found: " + url);
 }

 Development of an environment for the generation, mutation and execution of test cases

68

 Environment.Exit(0);
 }
 else
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method results: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing results(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void origem_ida(string cidadeOrigem)
 {
 try
 {
 TextField fromCity =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("fromCity"));
 fromCity.Value = cidadeOrigem;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method origem_ida: The correct value was found in
fromCity");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing origem_ida(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void destino_ida(string cidadeDestino)
 {
 try
 {
 TextField toCity =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("toCity"));
 toCity.Value = cidadeDestino;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method destino_ida: The correct value was found in toCity");
 }

 Development of an environment for the generation, mutation and execution of test cases

 69

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing destino_ida(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void data_ida(string dataIda)
 {
 try
 {
 TextFielExtended data_partida =
browserInstance.TextFielExtended(Find.ByName("data_partida"));
 data_partida.Value = dataIda;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method data_ida: The correct value was found in
data_partida");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing data_ida(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void destino_hotel(string hotel)
 {
 try
 {
 TextField hotel_destination =
browserInstance.TextField(Find.ByName("hotel_destination"));
 hotel_destination.Value = hotel;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method destino_hotel: The correct value was found in
hotel_destination");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {

 Development of an environment for the generation, mutation and execution of test cases

70

 file.WriteLine("An error was found while exectuing destino_hotel(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void checkin(string dataCheckin)
 {
 try
 {
 TextField checkin_date =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("checkin_date"));
 checkin_date.Value = dataCheckin;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method checkin: The correct value was found in
checkin_date");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing checkin(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void checkout(string dataCheckout)
 {
 try
 {
 TextField checkout_date =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("checkout_date"));
 checkout_date.Value = dataCheckout;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method checkout: The correct value was found in
checkout_date");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing checkout(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void reservar_hotel()

 Development of an environment for the generation, mutation and execution of test cases

 71

 {
 try
 {
 Span Reserve_Ja = browserInstance.Span(Find.ByText("Reserve Ja"));

 Reserve_Ja.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method reservar_hotel: The action Reserve_Ja was
successfully executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing reservar_hotel(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void resultados_hotel(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method resultados_hotel: The page was not found: " +
url);
 }
 Environment.Exit(0);
 }
 else
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method resultados_hotel: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing resultados_hotel(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 [TestMethod]
 public void testMethod1_1()

 Development of an environment for the generation, mutation and execution of test cases

72

 {
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 hotel();
 destino_hotel("Barcelona");
 checkin("06/11/2013");
 checkout("13/11/2013");
 reservar_hotel();
 resultados_hotel("http://book.flytap.com");
 }

 [TestMethod]
 public void testMethod2_1()
 {
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 ida();
 origem_ida("Porto, Portugal");
 destino_ida("Barcelona, Espanha");
 data_ida("06/11/2013");
 reservar();
 results("http://book.flytap.com");
 }

 [TestMethod]
 public void testMethod3_1()
 {
 homepage("http://www.flytap.com/Portugal/pt/Homepage");
 idaEvolta();
 origem_idaEvolta("Porto, Portugal");
 destino_idaEvolta("Barcelona, Espanha");
 dataPartida("06/11/2013");
 dataRegresso("13/11/2013");
 reservar();
 results("http://book.flytap.com");
 }
 }
}

 Development of an environment for the generation, mutation and execution of test cases

 73

II. MICROSOFT OUTLOOK CASE STUDY

This appendix lists the task model as well as an example of generated code for the

Microsoft Outlook case study presented in section 5.2.

Task Model

 Development of an environment for the generation, mutation and execution of test cases

74

Generated Code Example

using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using WatiN.Core;
using WatiN.Core.Native;

namespace TestProject
{
 [TestClass]
 public class Test
 {
 Browser browserInstance;
 string url = "http://outlook.com";

 [TestInitialize]
 public void WithAnInstanceOfThebrowserInstance()
 {
 browserInstance = new IE(url);
 }

 [TestCleanup]
 public void ShutdownbrowserInstanceWhenDone()
 {
 browserInstance.Close();
 browserInstance = null;
 }

 public void loginPage(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method loginPage: The page was not found: " + url);
 }
 Environment.Exit(0);
 }
 else
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method loginPage: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing loginPage(): " +
e.Message);

 Development of an environment for the generation, mutation and execution of test cases

 75

 }
 Environment.Exit(0);
 }
 }

 public void username(string user)
 {
 try
 {
 TextField login =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByName("login"));
 login.Value = user;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method username: The correct value was found in login");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing username(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void password(string pass)
 {
 try
 {
 TextField passwd = browserInstance.TextField(Find.ByName("passwd"));
 passwd.Value = pass;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method password: The correct value was found in passwd");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing password(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void iniciarSessao()
 {
 try
 {
 Button Iniciar_sessao = browserInstance.Button(Find.ByValue("Iniciar sessão"));

 Development of an environment for the generation, mutation and execution of test cases

76

 Iniciar_sessao.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method iniciarSessao: The action Iniciar_sessao was
successfully executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing iniciarSessao(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void inboxFolder()
 {
 try
 {
 Span Inbox = browserInstance.Span(Find.ByText("Inbox"));

 Inbox.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method inboxFolder: The action Inbox was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing inboxFolder(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void inboxPage(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method inboxPage: The page was not found: " + url);
 }
 Environment.Exit(0);
 }
 else

 Development of an environment for the generation, mutation and execution of test cases

 77

 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method inboxPage: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing inboxPage(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void newMessage()
 {
 try
 {
 Link NewMessage = browserInstance.Link(Find.ById("NewMessage"));

 NewMessage.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method newMessage: The action NewMessage was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing newMessage(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void newEmailPage(string url)
 {
 try
 {
 if (!browserInstance.Url.Contains(url))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method newEmailPage: The page was not found: " + url);
 }
 Environment.Exit(0);
 }
 else
 {

 Development of an environment for the generation, mutation and execution of test cases

78

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method newEmailPage: The page was found: " + url);
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing newEmailPage(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void to(string mail)
 {
 try
 {
 TextField cp_primaryInput_cp_anyInput_t_urtc =
browserInstance.ElementOfType<TextFieldExtended>(Find.ByClass("cp_primaryInput cp_anyInput
t_urtc"));
 cp_primaryInput_cp_anyInput_t_urtc.Value = mail;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method to: The correct value was found in
cp_primaryInput_cp_anyInput_t_urtc");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing to(): " + e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void subject(string message)
 {
 try
 {
 TextField fSubject = browserInstance.TextField(Find.ByName("fSubject"));
 fSubject.Value = message;

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method subject: The correct value was found in fSubject");
 }

 }
 catch (Exception e)
 {

 Development of an environment for the generation, mutation and execution of test cases

 79

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing subject(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void sendMessage()
 {
 try
 {
 Link SendMessage = browserInstance.Link(Find.ById("SendMessage"));

 SendMessage.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method sendMessage: The action SendMessage was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing sendMessage(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void saveDraft()
 {
 try
 {
 Link SaveDraft = browserInstance.Link(Find.ById("SaveDraft"));

 SaveDraft.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method saveDraft: The action SaveDraft was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing saveDraft(): " +
e.Message);
 }
 Environment.Exit(0);
 }

 Development of an environment for the generation, mutation and execution of test cases

80

 }

 public void logoutMenu()
 {
 try
 {
 Link c_melink = browserInstance.Link(Find.ById("c_melink"));

 c_melink.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method logoutMenu: The action c_melink was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing logoutMenu(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void signout()
 {
 try
 {
 Link c_signout = browserInstance.Link(Find.ById("c_signout"));

 c_signout.Click();

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method signout: The action c_signout was successfully
executed.");
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing signout(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 public void loginError(string error)
 {
 try
 {
 Div errorDiv_first = browserInstance.Div(Find.ByClass("errorDiv first"));
 try

 Development of an environment for the generation, mutation and execution of test cases

 81

 {
 if (errorDiv_first.Text.Equals(error))
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("Method errorDiv_first: The correct value was found
in errorDiv_first");
 }
 }
 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing loginError(): " +
e.Message);
 }
 Environment.Exit(0);
 }

 }
 catch (Exception e)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\WatiN\CaseStudy\TestProject\log.txt", true))
 {
 file.WriteLine("An error was found while exectuing loginError(): " +
e.Message);
 }
 Environment.Exit(0);
 }
 }

 [TestMethod]
 public void testMethod1_0()
 {
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 sendMessage();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod2_0()
 {
 loginPage("https://login.live.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();

 Development of an environment for the generation, mutation and execution of test cases

82

 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod3_0()
 {
 loginPage("http://outlook.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 subject("MBT");
 to("example@sapo.pt");
 sendMessage();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod4_0()
 {
 loginPage("http://outlook.com");
 username("example@hotmail.com");
 password("*******");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 subject("MBT");
 to("example@sapo.pt");
 saveDraft();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod5_0()
 {
 loginPage("http://outlook.com");
 password("*******");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 sendMessage();
 logoutMenu();
 signout();
 }

 Development of an environment for the generation, mutation and execution of test cases

 83

 [TestMethod]
 public void testMethod6_0()
 {
 loginPage("http://outlook.com");
 password("*******");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 to("example@sapo.pt");
 subject("MBT");
 saveDraft();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod7_0()
 {
 loginPage("http://outlook.com");
 password("*******");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 subject("MBT");
 to("example@sapo.pt");
 sendMessage();
 logoutMenu();
 signout();
 }

 [TestMethod]
 public void testMethod8_0()
 {
 loginPage("http://outlook.com");
 password("*******");
 username("example@hotmail.com");
 iniciarSessao();
 inboxFolder();
 inboxPage("https://dub111.mail.live.com");
 newMessage();
 newEmailPage("https://dub111.mail.live.com");
 subject("MBT");
 to("example@sapo.pt");
 saveDraft();
 logoutMenu();
 signout();
 }
 }
}

 Development of an environment for the generation, mutation and execution of test cases

84

III. UNUSED TERESA OPERATORS

This appendix lists the TERESA operators that were not used due to some

inconsistencies found. However it should be noted that the correction of these inconsistencies

can make the operators viable to the developed tool.

Operator: Optional Task

Example Model 1

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 <task name="D"/>
 </ETS>
 <ETS number="3">
 <task name="E"/>
 </ETS>
</ETSlist>

 Development of an environment for the generation, mutation and execution of test cases

 85

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

The optional task “C” in the transitions is not shown this creates a problem when

constructing the graph because this task will never be used. Although being optional, the PTS

generated should give information between what states it should be executed. For this example,

should be created two different transitions the states 1(TS1) and 2 (TS2):

 A > C > D > E

 A > D > E

Example Model 2

 Development of an environment for the generation, mutation and execution of test cases

86

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 </ETS>
 <ETS number="3">
 <task name="D"/>
 </ETS>
 <ETS number="4">
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS3 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS4 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

The optional task “E” is not shown on the transitions, but the state that execute that task

is (state 4 – TS4). However this creates a problem with the graph because nothing in the PTS

generated says that the task “E” is optional, and with this PTS it is always executed.

 Development of an environment for the generation, mutation and execution of test cases

 87

Operator: Iterative task

Example Model 1

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 </ETS>
 <ETS number="3">
 <task name="D"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

 Development of an environment for the generation, mutation and execution of test cases

88

Problem

Although it is said that the task “D” is iterative in PTS nothing is said about it. Being an

iterative task all the tasks that are placed on the model to be performed then will not be realized.

In this example in the model we can visualize the task “E” but this task is not shown in the PTS.

Operator: Order Independence

Example Model 1

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 <task name="C"/>
 </ETS>
 <ETS number="2">
 <task name="D"/>
 </ETS>
 <ETS number="3">
 <task name="E"/>
 </ETS>
</ETSlist>

 Development of an environment for the generation, mutation and execution of test cases

 89

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

In the transitions he task “A” is not shown. Using this operator the task A can be

executed before task “C” and “D” or after, but always before task “E”. This creates a problem

when constructing the graph because the task “A” will never be executed.

Example Model 2

 Development of an environment for the generation, mutation and execution of test cases

90

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 <task name="D"/>
 </ETS>
 <ETS number="3">
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

The problem is the same from de Example Model 1, only the task that will not be

executed is “C” instead of “A”.

 Development of an environment for the generation, mutation and execution of test cases

 91

Operator: Concurrent with Info Exchange

Example Model 1

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 <task name="D"/>
 </ETS>
 <ETS number="3">
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

 Development of an environment for the generation, mutation and execution of test cases

92

Problem

The task “C” is not shown in the transitions, but to task “E” be executed both tasks (“C”

and “D”) must be executed. The order could be “C” then “D” or vice-versa.

Example Model 2

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 <task name="E"/>
 </ETS>
 <ETS number="3">
 <task name="D"/>
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>

 Development of an environment for the generation, mutation and execution of test cases

 93

 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

Task “B” (in the PTS only tasks “C” and “D”) and task “E” can are concurrent and

exchange information, this means that we can execute different permutation between tasks “C”,

“D” and “E”:

 C > E > D

 C > D > E

 E > C > D

 E > D > C is not valid in this context because “D” must be executed always after

“C” (using the operator >>)

Operator: Disabling

Example Model 1

 Development of an environment for the generation, mutation and execution of test cases

94

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 <task name="C"/>
 </ETS>
 <ETS number="2">
 <task name="D"/>
 </ETS>
 <ETS number="3">
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="D"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

Problem

Using this operator the task “A” can be or not executed. But in the transitions the only

possible scenario is the one where it is not executed.

 Development of an environment for the generation, mutation and execution of test cases

 95

Operator: Suspend/Resume

Example Model 1

Generated PTS

<ETSlist>
 <ETS number="1">
 <task name="A"/>
 </ETS>
 <ETS number="2">
 <task name="C"/>
 <task name="E"/>
 </ETS>
 <ETS number="3">
 <task name="D"/>
 <task name="E"/>
 </ETS>
</ETSlist>

<DynamicBehaviour>
 <Rule>
 <TaskSet> TS2 </TaskSet>
 <Transition>
 <Task name ="C"/>
 </Transition>
 <TaskSet> TS3 </TaskSet>
 </Rule>
 <Rule>
 <TaskSet> TS1 </TaskSet>
 <Transition>
 <Task name ="A"/>
 </Transition>
 <TaskSet> TS2 </TaskSet>
 </Rule>
</DynamicBehaviour>

 Development of an environment for the generation, mutation and execution of test cases

96

Problem

Although all tasks can be represented the right behavior is not the one in the PTS. The

task “E” can stop the execution of the tasks “C” or “D”, but once finished its execution the tasks

“C” or “D” continue its execution. For example:

 C > E > C > D

 C > D > E > D

