
Universidade do Minho
Escola de Engenharia

Pedro Vasconcelos Castro Lopes Faria
Remote Electronic Voting
Studying and Improving Helios

Dezembro de 2012



Universidade do Minho

Remote Electronic Voting

Doutor José Carlos Bacelar Almeida



Remote Electronic Voting
Studying and Improving Helios

Pedro Vasconcelos Castro Lopes Faria
(pg17684@alunos.uminho.pt)

Dissertation submitted in partial fulfillment of the requirements for the degree of
Master in Informatics Engineering at the University of Minho, under the

supervision of

José Carlos Bacelar Almeida

Departamento de Informática
Escola de Engenharia

Universidade do Minho

Braga, December 30, 2012





Abstract

A former North American President once said that the ballot is stronger than
the bullet. In fact, the most civilized and organized way for a people express
their opinion is by voting. However, there are people with bad intentions that
affect voting and elections, being normal situations of coercion, collusion, fraud
or forgery that disturb and cause alterations in the outcome of a vote. Thus,
it becomes necessary to find ways to protect the voters, through vote secrecy
and transparency, so that in end of a voting, democracy and justice prevail.
Since the secret ballot papers until the electronic voting machines, passing
through punched cards, technology in voting systems is evolving to ensure a
greater security in elections, as well as greater efficiency, lower costs and other
characteristics wanted in this type of systems. Nowadays, remote electronic
voting is seen as the ultimate goal to achieve. The difficulty of developing
such system is to ensure that it meets all the security requirements without
infringing each other and without compromising the usability of the system
itself. Thus, cryptography becomes an essential tool for obtaining security and
integrity on electronic voting systems.

This master thesis focuses on the world of electronic voting, in particular,
the remote electronic voting. The objective is to find a system of this kind, with
real world applications, to be studied and analyzed in a security point of view.
Hence, we made a research on voting and, more deeply, a research on electronic
voting schemes, in order to learn how to conceive it, which include the different
stages that compose an election, types of voting and the entities involved,
and what requirements to fulfill, both the security and functional. Because
cryptography is used in most schemes, a detailed study was also performed on
the primitives most common in protocols of electronic voting. However, there
are not many schemes that pass from theory to practice. Fortunately, we found
Helios, a well known scheme that implements various cryptographic techniques
for everyone, under certain assumptions, be able to audit polls conducted with
this system. A study was performed in order to explain how it was constructed
and to identify its strengths and weaknesses. We also present some ongoing
work by different people to improve Helios. Finally, we propose improvements
on our own, to fight against coercion, to decrease the levels of assumptions and
overcome corruption issues. Furthermore, we propose measures to protect the
virtual voting booth and a mobile application to cast votes.



Resumo

Um antigo Presidente norte americano disse um dia que o voto é mais forte que
a bala. De facto, a forma mais civilizada e organizada de um povo exprimir as
suas opiniões é através de votações. Infelizmente, também este mundo é afec-
tado por pessoas com más intenções, sendo normais as situações de coação,
conluio, fraude ou falsificação que perturbam e causam alterações no resultado
de uma votação. Assim, torna-se necessário arranjar formas de proteger os
votantes, através de segredo de voto e transparência, de forma que, no final, a
democracia e justiça de uma votação prevaleçam. Desde dos boletins de papel
secreto até às máquinas de voto electrónico, passando pelas punched cards,
a tecnologia em sistemas de votação vem evoluindo de modo a garantir uma
maior segurança em eleições, assim como maior eficiência, menor custos e out-
ras caracteŕısticas que se querem neste tipo de sistemas. Nos dias de hoje, o
voto electrónico remoto é visto como o grande objectivo a cumprir. A grande
dificuldade de se desenvolver tal sistema é garantir que o sistema cumpra todos
os requisitos de segurança sem que se violem entre si e sem que isso prejudique
a usabilidade do sistema em si. Assim, a criptografia torna-se uma ferramenta
essencial para se obter segurança e integridade em sistemas de voto electrónico.

Esta tese de mestrado foca-se no mundo do voto electrónico, mais especi-
ficamente o voto electrónico remoto. O grande objectivo seria arranjar um
sistema desse tipo, que tivesse aplicação real, para ser estudado e analisado
do ponto de vista de segurança. Fez-se então uma pesquisa necessária sobre
votações e, mais aprofundada, uma sobre esquemas de voto electrónico, de
modo a aprender como se concebem, tanto as fases que a constituem como as
entidades que normalmente fazem parte, e quais os requisitos a cumprir, tanto
os funcionais como os de segurança. Como a criptografia entra em grande parte
dos esquemas, também um estudo aprofundado foi realizado sobre as primiti-
vas mais comuns em protocolos de voto electrónico. No entanto, não existem
muitos esquemas que passem da teoria à prática. Felizmente, encontrou-se o
Helios, um sistema que põe em prática diversas técnicas criptográficas para que
qualquer pessoa, dentro de certas assumpções, possa auditar votações conduzi-
das por este sistema, ficando a privacidade nas mãos do Helios. Um estudo foi
realizado de modo a explicar como foi constrúıdo e identificar os seus pontos
fortes e fracos. Também são apresentados alguns trabalhos em curso sobre este
sistema. Finalmente, propõem-se outros tipos de melhoramentos que visam:
combater coação, diminuir o ńıvel das assumpções e ultrapassar problemas
de corrupção. Propõem-se ainda medidas para proteger a cabine virtual de
votação e uma aplicação móvel.



Acknowledgments

First of all, I want to thank Professor José Carlos Bacelar Almeida for the
overall support, the research guidance and also for all the suggestions that
improved this dissertation. I am also grateful to: Professor Manuel Barbosa,
for suggesting Helios as a case study; Professor José Valença, for interesting
discussions about e-Voting; and to Gonçalo Hermenegildo from MULTICERT,
for giving me an insight about voting in Portugal.

To all my friends, roommates and Confraria do Matador, thank you for
your support and positive thinking. I also want to thank the SSaaPP project
members for their understanding and patience during the last stage of this
work. A special thanks to Leonel, I am very grateful for all the help you pro-
vided and for the endless discussions we had about security.

I wish to thank Vânia. You always kept me happy during the darkest hours.

And finally, I don’t have the words to describe how much thankful I am to
my parents and sister. Thank you for everything.





Preface

This document is a master thesis in Informatics Engineering (area of Cryp-
tography and Security) submitted to Universidade do Minho, Braga, Portugal.

Notes to the reader:

• All links were checked at end of writing this document - 30 December.

• Throughout the document the academic plural appears often in the text
to describe the work developed. This form was intentionally used for two
reasons: first, some of the work here presented was done in cooperation;
and second, the plural can help the reader to feel more closely connected
with the work done.

• Some images may be hard to understand. In the electronic version of
this document, they are links if one wishes to download and see them in
full size.

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Electronic Voting 9
2.1 Pros and Cons of e-voting . . . . . . . . . . . . . . . . . . . . . 10
2.2 Conceptual Perspective . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Voting and Ballot Types . . . . . . . . . . . . . . . . . . 12
2.2.2 Generic Model . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Entities Involved . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Voting Requirements . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Security properties . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 General Requirements . . . . . . . . . . . . . . . . . . . 22

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Cryptographic Primitives 25
3.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 ElGamal . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Exponential ElGamal . . . . . . . . . . . . . . . . . . . . 28

3.2 Mix-Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Other primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Re-Encryption . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Deniable Encryption . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . 34
3.4.4 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Schemes and designs . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Cramer, Gennaro and Schoenmakers scheme . . . . . . . 38
3.5.2 The Fujioka et al. Voting Scheme . . . . . . . . . . . . . 39
3.5.3 Boneh and Golle’s mix-net . . . . . . . . . . . . . . . . . 40

ix



x Contents

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Helios 45
4.1 The IACR Contest . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 The Contestants . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Why Helios? . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Pre-election Stage . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Post-voting and Results . . . . . . . . . . . . . . . . . . 59

4.3 Backstages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Pre-election Constructions . . . . . . . . . . . . . . . . . 60
4.3.2 Encrypting Ballots . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Tallying and Decryption . . . . . . . . . . . . . . . . . . 65

4.4 Assumptions & Improvements . . . . . . . . . . . . . . . . . . . 65
4.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Improvements . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Improvements 71
5.1 Working against coercion . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 One possible solution . . . . . . . . . . . . . . . . . . . . 73

5.2 Pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 The need of registration . . . . . . . . . . . . . . . . . . 78
5.2.2 Independent entities . . . . . . . . . . . . . . . . . . . . 79

5.3 Corrupted RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Zero Knowledge Sets . . . . . . . . . . . . . . . . . . . . 82
5.3.2 How does it fit . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Protecting the booth . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1 Phishing attack . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Code Signing . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Adding more mobility . . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Summary and final notes . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions 93

A Complements 103
A.1 Brief History of Voting Technologies . . . . . . . . . . . . . . . . 103

A.1.1 Secret Paper Ballot . . . . . . . . . . . . . . . . . . . . . 103
A.1.2 Lever machine . . . . . . . . . . . . . . . . . . . . . . . . 104
A.1.3 Punchcards . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.1.4 Optical Scan . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents xi

A.1.5 Direct-recording Electronic . . . . . . . . . . . . . . . . . 105
A.2 Additional Lessons on Cryptography . . . . . . . . . . . . . . . 106

A.2.1 Hard Problems . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.2 Paillier Encryption . . . . . . . . . . . . . . . . . . . . . 107
A.2.3 Informally Explaining ZKP . . . . . . . . . . . . . . . . 108
A.2.4 Blind Schnorr Signature . . . . . . . . . . . . . . . . . . 109
A.2.5 Guillou-Quisquater identification scheme . . . . . . . . . 110

A.3 Less Important Figures . . . . . . . . . . . . . . . . . . . . . . . 112
A.3.1 Helios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.3.2 Mobile Figures . . . . . . . . . . . . . . . . . . . . . . . 112



xii Contents



List of Figures

2.1 General diagram of voting activities . . . . . . . . . . . . . . . . 16

3.1 The user delegates, safely, mathematical computations to the
untrusted computer. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 ElGamal Encryption . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Mix-net example. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Classical RSA Signature . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Blind RSA Signature . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Proving the equality of two discrete logarithms. . . . . . . . . . 35

3.7 Fujioka et al. voting scheme. . . . . . . . . . . . . . . . . . . . 40

4.1 Set of parameters to create an election. . . . . . . . . . . . . . . 55

4.2 Creating questions and corresponding rules. . . . . . . . . . . . 56

4.3 Choosing the next Pope. . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Final results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Moments before the election is finished. . . . . . . . . . . . . . . 67

5.1 Different periods of coercion time. . . . . . . . . . . . . . . . . . 73

5.2 Registration with two passwords. . . . . . . . . . . . . . . . . . 75

5.3 Amount of time needed to successfully coerce a voter. . . . . . . 76

5.4 New entity introduced in Helios. . . . . . . . . . . . . . . . . . . 78

5.5 Registration stage. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Publishing electors list. . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Voting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Summing the Zero-Knowledge Sets (ZKS) protocol. . . . . . . . 83

5.9 Embedding the ZKS protocol. . . . . . . . . . . . . . . . . . . . 85

5.10 Result of signed scritps. . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Minimal representation of the application’s packages. . . . . . . 89

5.12 Home frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.13 Picking options. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.14 Encrypting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.15 Inserting the credentials. . . . . . . . . . . . . . . . . . . . . . . 91

xiii



xiv List of Figures

A.1 Ballot box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Lever Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.3 Datapunch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.4 Optical Scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.5 DRE Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.6 Paillier Encryption. . . . . . . . . . . . . . . . . . . . . . . . . 108
A.7 The cave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.8 Classical Schnorr Signature . . . . . . . . . . . . . . . . . . . . 110
A.9 Blind Schnorr Signature . . . . . . . . . . . . . . . . . . . . . . 111
A.10 Guillou-Quisquater identification scheme. . . . . . . . . . . . . 111
A.11 Login page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.12 Home page of the election. . . . . . . . . . . . . . . . . . . . . . 112
A.13 After uploading the list of voters. . . . . . . . . . . . . . . . . . 112
A.14 Adding trustees warning. . . . . . . . . . . . . . . . . . . . . . . 112
A.15 Waiting for the upload of the public key. . . . . . . . . . . . . . 113
A.16 Invitation to participate in the election as a trustee. . . . . . . . 113
A.17 Checking the secret key. . . . . . . . . . . . . . . . . . . . . . . 113
A.18 Voting instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.19 Encrypted vote fingerprint. . . . . . . . . . . . . . . . . . . . . . 113
A.20 Auditing a ballot. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.21 Confirmation of credentials. . . . . . . . . . . . . . . . . . . . . 113
A.22 Upload of the secret key. . . . . . . . . . . . . . . . . . . . . . . 113
A.23 Final verification. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.24 Smart ballot tracker with the administrator’s point of view. . . . 114
A.25 Default booth home. . . . . . . . . . . . . . . . . . . . . . . . . 114
A.26 Successful warning. . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Examples

2.1 Single candidate ballot example . . . . . . . . . . . . . . . . . . 12
2.2 Multiple candidate ballot example . . . . . . . . . . . . . . . . . 12
2.3 Eurovision ballot example . . . . . . . . . . . . . . . . . . . . . 13
2.4 Referendum ballot example . . . . . . . . . . . . . . . . . . . . 13
2.5 Write-in ballot example . . . . . . . . . . . . . . . . . . . . . . 13
2.6 A three round election . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Preferential ballot example . . . . . . . . . . . . . . . . . . . . . 14
2.8 Single transferable vote . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Example of a list of voters . . . . . . . . . . . . . . . . . . . . . 57
4.2 Example of a generated pair of keys. . . . . . . . . . . . . . . . 58
4.3 Election structure . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 ElGamal Encryption (ElGamal) public key structure . . . . . . 61
4.5 Question structure . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Vote structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Encrypted answer structure . . . . . . . . . . . . . . . . . . . . 63
4.8 Individual and Overall Proofs . . . . . . . . . . . . . . . . . . . 64
5.1 New voter structure jointly with election information. . . . . . . 76
5.2 Conversion of JSON structure to Java class. . . . . . . . . . . . 90

xv



xvi List of Examples



Acronyms

API Application Programming Interface

BB Bulletin Board

BS Blind Signature

CA Certificate Authority

DE Deniable Encryption

DoS Denial-of-Service

DDH Decision Diffie-Hellman

DLP Discrete Logarithm Problem

DRE Direct-recording Electronic

DS Digital Signature

E2E End-to-End

e-voting Electronic Voting

EEG Exponential ElGamal Encryption

ElGamal ElGamal Encryption

HTML HyperText Markup Language

HE Homomorphic Encryption

i-voting Internet Voting

IACR International Association for Cryptologic Research

JS JavaScript

JSON JavaScript Object Notation

xvii



xviii List of Examples

mixnet Mixed Network

PKC Public-key Cryptography

RA Registration Authority

RSA Rivest, Shamir and Adleman

SBT Smart Ballot Tracker

SHA Secure Hash Algorithm

SS Secrete Sharing

URL Uniform Resource Locator

ZKP Zero-Knowledge Proof

ZKS Zero-Knowledge Sets



Chapter 1

Introduction

The first lesson is this: take it from me, every vote counts.

Al Gore

The above quote came four years after one the biggest scandals regard-
ing elections. It was the year 2000, and it opposed Al Gore against George
W. Bush for the position of the President of the United States1. What was
later known as the Florida recount, started with different television companies
announcing different winners before the polling was over. In a close race, in
which the winner won by less than 500 from 6.000.000 votes, there was a lot
of controversy involved in the tallying stage. Even a few years later, some
independent studies continue to give different winners for that election. But,
leaving aside conspiracy theories, some problems were actually found involving
voting technologies. The biggest was on the usability and design of ballots2,
where using the called butterfly ballots resulted in casting wrong votes. This
and other problems, urge the need to make reforms on the voting system of
that country.

More recently, last year in Russia a wave of protest arose all over the
country. It started precisely with the 2011 Russian legislative elections , where
a large number of people, under the slogan “For Fair Elections”, contested
the election results3 by claiming that most of the major problems that affect

1Complete story of the presidential election and scandal: http://en.wikipedia.org/

wiki/United_States_presidential_election,_2000
2(In Portuguese) The problem: http://www.publico.pt/Cultura/

quando-o-design-corre-mal-1559435.
32011-2012 Russian Protests: http://en.wikipedia.org/wiki/2011%E2%80%932012_

Russian_protests.

1

http://en.wikipedia.org/wiki/United_States_presidential_election,_2000
http://en.wikipedia.org/wiki/United_States_presidential_election,_2000
http://www.publico.pt/Cultura/quando-o-design-corre-mal-1559435
http://www.publico.pt/Cultura/quando-o-design-corre-mal-1559435
http://en.wikipedia.org/wiki/2011%E2%80%932012_Russian_protests
http://en.wikipedia.org/wiki/2011%E2%80%932012_Russian_protests


2 1. Introduction

elections had happened4, such as:

• Election fraud and falsification of several partial election results;

• Obstruction of observers;

• Illegal campaigning;

• Multiple voting;

• Coercion with threats of violence;

But even small organizations, cities or villages are susceptible to corruption in
elections. For instance, currently, more than one fifth of the surveyed voters
in Açores are “ghost-voters”, i.e. dead people with permission to vote5. If
this at first sight may not seem like a big deal, one may think that the extra
votes would be simply discarded, given corruption it may lead to other severe
problems. For instance, one may use the extra votes for vote buying or ballot
stuffing.

There are many more examples of fraud, corruption, mistakes or deceptions
regarding real-world elections. To overcome these problems, new voting types,
voting systems and new technologies are always emerging in order to create
truly fair and transparent elections. But new solutions promote new ways of
corruption, so they are always temporary and subject to improvement. For
instance, regarding voting technologies, if lever machines and punchcards are
history, the Direct-recording Electronic (DRE) voting machine, was already
introduced over 20 years ago and is still suffering changes. In turn, although
it was the first to appear, paper ballots have not yet loose importance in
voting systems, being normally the first choice when creating elections. Even
so, some countries have already established elections that ran exclusively on
Electronic Voting (e-voting) machines, being Brazil the first country to run
government elections solely in DRE machines. Estonia in turn, is seen as the
most technologically advanced country when the matter is voting systems.
In spite the lack of security and the still not achieved security requirements,
they already conducted online elections, a kind of remote e-voting, which by
now is seen as the greatest and last goal of voting systems. Unfortunately,
some countries are still far from conducting such elections, due to financial
difficulties, high standards for security requirements or even legal issues. For

4Guardian news: http://www.guardian.co.uk/global/2011/dec/10/

russia-elections-putin-protest.
5The complete story: http://www.publico.pt/Pol%C3%ADtica/

mais-de-um-quinto-dos-recenseados-nos-acores-sao-eleitoresfantasma-1566193.

http://www.guardian.co.uk/global/2011/dec/10/russia-elections-putin-protest
http://www.guardian.co.uk/global/2011/dec/10/russia-elections-putin-protest
http://www.publico.pt/Pol%C3%ADtica/mais-de-um-quinto-dos-recenseados-nos-acores-sao-eleitoresfantasma-1566193
http://www.publico.pt/Pol%C3%ADtica/mais-de-um-quinto-dos-recenseados-nos-acores-sao-eleitoresfantasma-1566193


1.1. Motivation 3

example, in the Constitution of the Portuguese Republic, the 121th article
states: the right to vote in national territory is exercised in person6.

1.1 Motivation

Online elections is already a service wide explored in the market. From a quick
research, one is able to find several companies, such as SimplyVoting, Election
Buddy or Votenet7, that provide solutions whose goal is to achieve the main re-
quirements of elections: secrecy and democracy. But since “in business, silence
is golden”, most companies, to protect their business, fall into the mistake of
making end-users to blindly trust that their votes are not tampered or their
privacy violated. Such conclusion is pointed out in [Gerck et al., 2002], where
they also claim that e-voting is not like any other electronic commerce, since
they meet different criteria. For instance, a receipt from an electronic trans-
action cannot be like a receipt from a casted vote, since it could lead to severe
problems.

Thus, there is a need to create systems that can be fully audited by any-
one who uses it. Even for security reasons, is not good to rely on obscurity.
Using an interesting analogy of [Schneier, 1996], taking a letter, locking it in
a safe, and hide it somewhere in the world for one to crack it is not achieving
security. On the other hand, provide documentation of the safe, its “source
code” and all kind of specifications and one still not be able to crack it, that
is achieving security. The same principles should be followed when designing
voting systems. Here, cryptography plays an important role, providing the
tools necessary to create protocols where the voting requirements are fulfilled,
and each end-user will be able to verify it.

Nevertheless, there is always a need of an assumption of trust in order to
prove the security of an e-voting scheme. The problem with most of online
voting services is the high level assumption of trusting in the system for all
integrity and privacy matters related to elections. In literature, is common to
find authors that express concern about it, and not only in e-voting schemes.
One practical solution is the inclusion of external entities on the designs to
split or share responsibilities of election’s roles, and can be seen in famous
e-voting schemes, such as [Fujioka et al., 1993, Benaloh and Tuinstra, 1994].
Thus, many schemes may guarantee its safety without having too strong as-

6 (In Portuguese) Constitution: http://www.fd.uc.pt/CI/CEE/OI/Constituicao_

Portuguesa.htm.
7Company’s websites: http://www.simplyvoting.com/ http://electionbuddy.com/

http://www.votenet.com/

http://www.fd.uc.pt/CI/CEE/OI/Constituicao_Portuguesa.htm
http://www.fd.uc.pt/CI/CEE/OI/Constituicao_Portuguesa.htm
http://www.simplyvoting.com/
http://electionbuddy.com/
http://www.votenet.com/


4 1. Introduction

sumptions.

Finally, there is a special problem regarding remote electronic elections,
more concretely Internet Voting (i -voting) that uses personal computers as
voting booths, which is the one of the main reasons why the remote e-voting
hypothesis seems so unreal among renown experts, or that it will take years,
or even decades, to achieve in a large scale [Gerck et al., 2002]. The problem is
that since personal computers are involved, there is no way to guarantee that
they are not tampered, with no virus, worms, spyware or any kind of malware.
There are solutions, as the use of Live CDs, but since there is no protected
environment, one is only capable of postponing the problem. Nevertheless, we
believe that if the postponement is great enough, it is justifiable to create and
apply security techniques and add them to voting systems.

1.2 Objectives

The main objective of this work is to create, or improve, measures that assure
security on a remote e-voting system. With that in mind, the path to reach
that goal will consist in:

• Entering deeply on the e-voting world. Understand the usual require-
ments and the security properties of general voting systems. Understand
also the workflow of an election and learn both the entities and the voting
types involved.

• Studying the cryptographic primitives that are usually used to improve
security on e-voting systems. For each item found, see how it is applied
in a scheme and the advantages that it brings.

• Researching remote e-voting systems, more concretely i -voting systems.
From the available systems found, choose one based on the documen-
tation, on the tests performed, on its characteristics and cryptographic
techniques involved. Also, the chosen system must open-source, in order
to work on it and perform changes if necessary.

• Inventing new ways to improve or modify the security on the chosen
system in order to overcome the limitations, faults or fails encoutered on
that system.



1.3. Contributions 5

1.3 Contributions

This work presents an overview of the e-voting world, with special attention
to the conceptual perspective of an election and the voting requirements. Hav-
ing a good understanding of how an election works would be an essential and
necessary step for evaluating and making changes on a system. Therefore,
the conceptual perspective covers the different kind of voting types, the main
stages of an election and the entities involved.

This work also presents the most used primitives when creating e-voting
protocols. So for each one of three main primitives, an informal explanation,
with the help of simple analogies, was given, a well cited scheme was chosen
to demonstrate its utility and a technique that applies it was described. For
the rest of the primitives, a detailed description was presented. Nevertheless,
they are of crucial importance to understand the rest of the work.

Helios was the chosen system to work on, due to its characteristics, easy
of use and the fact of being open-source. Based on the documentation, source
code, papers documenting attacks and uses, thesis, and numerous tests, we
present a description of the workflow and techniques used in this system. We
also present several ongoing works that aim to improve security on Helios,
which include decreasing the level of assumptions of this system and overcome
encountered flaws. Finally, we try to improve the system on our own, by:

• Improving coercion-resistance in Helios : based on other schemes, we
choose to modify the system to have two kind of passwords for the voter
to use in different kind of situations. This do not solve the problem, but
may increase greatly the protection of the voter. Unfortunately, this also
leaves some open problems, specially the discussion of whether is more
relevant to have universal verifiability or coercion-resistance.

• Adding an extra entity to the system: using the approach of divide to
conquer, used in many schemes, this idea occur to solve the biggest as-
sumption of Helios, “Trust Helios for privacy”, and a small contradiction
detected, when using private elections, if using Helios alone, the access
to the virtual booth is not anonymous.

• Resolving a particular corruption problem: regarding the registration
stage, we design a solution based on a Zero-Knowledge Proof (ZKP), to
help to prevent fake voters from entering in an election.

• Improving authenticity and integrity on virtual booths : add a feature
whose goal is guaranteeing that the booth in which the voter is casting



6 1. Introduction

his vote is authentic. The solution was conceived with code signing.

• Improving mobility : A prototype on an Android application for Helios
was developed. The goal of this tool was to provide a native application
that allow voting from a smartphone without recurring to the phone’s
slow browser.

1.4 Roadmap

This work is divided into 6 Chapters. The first chapter, the current one,
presents an introduction to all the work undertaken for this dissertation.

Chapter 2 introduces the e-voting world. It starts by describing the ad-
vantages of e-voting systems. Then, explains how an election works by
presenting the most used voting types, the entities that are usually found
in an e-voting system and a detailed stages of an electronic election. This
chapter ends with a list of security properties and general requirements
of this kind of systems.

Chapter 3 presents the cryptographic primitives most used on voting schemes.
It gives emphasis to the three most used: Homomorphic Encryption
(HE), Blind Signature (BS) and Mixed Network (mixnet). For each
one of these primitives, it describes one well known scheme that use
the primitive and a detailed technique that implements it. The chap-
ter also presents four other primitives: ZKP, Deniable Encryption (DE),
Re-Encryption and Secrete Sharing (SS).

Chapter 4 first starts by presenting a contest for e-voting systems and de-
scribes the contestants. Then, this chapter analyses a remote e-voting
system called Helios. By using an example, it describes how an elec-
tion works and what is possible to do. Next, the backstage of Helios
is explained, mentioning the techniques involved. Finally, some security
assumptions and current works on this system are presented.

Chapter 5 is divided in five sections. The first explains how a new measure
to improve coercion-resistance was created. The second introduces a new
entity to the system that will provide a significant decrease on the biggest
assumption of Helios. The third deals with a registration problem and
the corruption that may derive from it. The fourth with lack of trust in a
virtual booth and how to guarantee it. Finally, the last section presents
a prototype of an Android application.



1.4. Roadmap 7

In the last chapter we present the conclusion of this dissertation, summa-
rizing the developed work and describing what can be done in the future based
on it.



8 1. Introduction



Chapter 2

Electronic Voting

At the bottom of all the tributes paid to democracy is the
little man walking into the little booth with a little pencil,
making a little cross on a little bit of paper.

Sir Winston Churchill, 1944

Democracy, like many other concepts, has its origin in ancient Greece. It
is usually described as a type of political regime in which the power to rule
and make decisions belongs to “the people”. There are two forms of democ-
racy: direct democracy, in which people express their will in each particular
subject; and the most common form of democracy, the so-called representative
democracy, in which they express their will by electing a set of representatives,
which in turn make the decisions for them. But both forms of democracy have
one crucial point in common: they depend on processes of choice made by the
people. This process is generally performed by voting.

Thus, voting can be described as a decision process, in which voters, i.e.
those previously designated to participate in the voting process, express their
opinion through a predetermined choice. The vote then becomes an important
process to the preservation of democracy. However, to avoid pressure on vot-
ers and coercion by others, it is necessary that the vote is secret. Therefore,
there is a need to create mechanisms and schemes that result in systems that
ensure the privacy of voters in order to increase fairness in elections, and thus
preserve democracy.

In this chapter, an overview about voting, with more emphasis in Electronic
Voting (e-voting), will be presented. It will start with a brief analysis of pros
and cons of using e-voting systems in Section 2.1. In Section 2.2, a conceptual

9



10 2. Electronic Voting

perspective of a general voting system will be given, referring various types of
voting, a generic model of a voting system and some common entities involved
in it. Section 2.3 will be divided into two subsections, both talking about voting
requirements: one to security properties and the other to general requirements.
Finally, section 2.4 will summarize this chapter. A small extra section about
the history of voting technologies is given in Appendix A.1.

2.1 Pros and Cons of e-voting

Although the discussion of pros and cons of e-voting may lead to an exten-
sive debate, this section will only briefly summarize points of advantages and
disadvantages that can be easily found in the literature.

Preparation. Starting with the preparation of an election, e-voting may
require a big initial investment for equipment, cost of planning and testing
phases. On the other hand, classical paper ballots are easier to understand, do
not require complex testing and equipment is far more simple. But this only
regards one first election. For further elections, e-voting will not require the
initial investment, since the equipment already exists, the planning may be
adapted and the testing may have already been done. In turn, classical paper
ballot must need new equipment, at least for ballots, and has higher costs of
manpower. Moreover, in e-voting is possible to make last minute changes, for
example changing the layout of the ballot, and that may not imply having
extra costs.

Voting process. Regarding the voting process, e-voting also offers several
advantages. The first is the higher level of usability when comparing with paper
ballots. It may prevent the casting invalid ballots, since that ballot may be
evaluated when filling it. With electronic ballots, ambiguity may be eliminated,
since the ballot may contain far more information than the paper version.
Concerning people with disabilities or difficulties, electronic ballots can be
easily modified to improve the usability according to the person’s disability,
for instance audio ballot for blind people or extra languages for foreign voters.
Another advantage is that e-voting will probably speed up the voting process,
e.g no waiting lines for submitting a ballot. An important feature of e-voting
is the possibility of re-voting, i.e. modify the first casted vote, which in the
classical paper ballots is not possible. Finally, voting can be made from any
poll station, and ultimately, can even be made in home.



2.2. Conceptual Perspective 11

Vote counting and results. In several e-voting systems is possible to pro-
tect the integrity of an election under some assumptions, which on the other
kind of voting systems, the voter must blindly trust on the election’s results.
However, e-voting systems are technically more evolved. Hence, for the ma-
jority of the voters the whole election’s process may by a huge black box. In
other words, most people will not understand what is happening and why they
can trust in the system. Fraud and tampered results are harder to obtain with
e-voting systems. Mainly because modifying a digital ballot is not so trivial
when comparing with its paper version. Digital ballots are also easily stored
and can be audit in a later stage of the election. Recounting is another pro
argument, since it is an easy process with no high costs attached. On the other
hand, if it is harder to corrupt elections, it is also harder to find corruption.
Tampering ballots can be made is such a low level that it makes almost im-
possible to track corrupted ballots to auditors. When using paper ballots, the
entire process can be seen, from the moment that the voter cast a vote, to the
transportation of the ballot box and tallying. Even so, e-voting brings more
benefits, for instance the time for tallying is way more faster when comparing
with paper ballots, and the results far more accurate, because errors are more
likely to happen when the count is made by humans than by machines.

Other con arguments. Since software is involved with electronic machines,
there is always the chance of a particular voting booth be tampered. The
machines are prone to hacking and any kind of malware, such as worms, virus,
trojan or phishing attacks. Finally, an error in a centralized system may affect
and compromise an entire election.

2.2 Conceptual Perspective

As much as a voting system uses the latest developments/resources regarding
web servers, cryptographic techniques, everything related to security, it will
never be safe if it does not have a strong security model behind it, i.e. if the
model is inconsistent and the tools are not correctly used it becomes impos-
sible to guarantee the safety of the system. Thus, it is necessary to define a
model that pay attention to every entity and requirement of the system.

In this section, we will introduce the reader to different types of polls, to
a generic description of a e-voting system and to a set of the normally used
entities and a description of their roles.



12 2. Electronic Voting

2.2.1 Voting and Ballot Types

When modelling a voting system, the type of voting may influence the archi-
tecture of the system and technical characteristics, such as security or data
storage. Therefore, it is essential to consider any kind of voting to have a well
prepared system. In this subsection, several of the most used voting types are
introduced.

Single candidate selection This is the most common type of voting, and
can be mostly found in government elections. From a set of two or more
candidates, the voter can choose at most one, or he can leave his vote
blank. In the end, wins the candidate with a higher number of votes.
Example 2.1 simulates a ballot.

Candidate Vote
Alice
Bob
Eve X

Example 2.1: Single candidate ballot example

Multiple candidate selection A bit different from the previous case. Now
the voter, from a set of candidates, has a minimum and a maximum of
possible selections. Like the previous example, wins the candidate with
a higher number of votes. Examples can be viewed in 2.1 and 2.2.

Candidate Vote
Alice X
Bob
Eve X

Example 2.2: Multiple candidate ballot example

Weighted multiple candidate selection Given an X number of points, a
voter may distribute them in a list of candidates. It may have some rules
associated, such for example, the voter can not give all the points to a
single candidate. With its popularity increasing, a example of its use in
the real world can be seen popular show Eurovision Song Contest, where
a country award a set of points from 1 to 8, then 10 and finally 12 to
other songs in the competition. An illustration of the vote is simulated
in 2.3.



2.2. Conceptual Perspective 13

Country Votes
Albania
Austria 3
Belgium
. . .
United Kingdom 5
Ukraine 10

Example 2.3: Eurovision ballot example

Vote changing (a.k.a. Re-Voting) More a property than a type of voting,
Vote changing elections allow a voter to change his vote until the dead-
line, where it is casted. This kind of voting usually increases the security
complexity of a voting system.

Referendum Commonly used in political affairs, where the people is called to
directly decide on a problem, a referendum is a particular kind of voting.
It may be seen as a “yes or no” question, just like in Example 2.4, where
the voter can even left his vote in blank, if he can not decide.

Question Yes No
Should the driving age be lowered to 16? X
Should the drinking age be lowered to 12? X

Example 2.4: Referendum ballot example

Write-in A Write-in vote is a kind of open vote. The voter answers to a
decision writing his choice in a ballot. Although it is useful and necessary
in some situations, for instance when the voter’s choice is not on the set
of the candidates and there is a field called “Other” where the voter can
write his choice, these kind of votes are usually hard to cast and evaluate.
Example of a Write-in ballot in 2.5.

Candidate Vote
Alice
Bob
Eve

Other Charlie

Example 2.5: Write-in ballot example



14 2. Electronic Voting

Runoff voting Generally, some elections require that the winner must be
elected with more than 50% of the casted votes. As a result, the concept
of a Runoff voting was born. This kind of election is a continuous process,
where after each round, the weakest candidate is eliminated until there
is one with more votes than the sum of the remaining votes. Table 2.8
exemplifies a three round election.

Candidate Vote
Alice 15%
Bob 35%
Charlie 10%
Eve 40%

Candidate Vote
Alice 25%
Bob 35%
Eve 40%

Candidate Vote
Alice (winner) 60%
Eve 40%

Example 2.6: A three round election

Preferential voting Similarly to the Weighted multiple candidate selection,
in the Preferential voting the voter also has the opportunity to give to
each candidate a different preference. Ordinarily, the voter order the list
according to his preference, as we can see illustrated in table 2.7.

Candidate Vote
Alice 1
Bob 4
Charlie 3
Eve 2

Example 2.7: Preferential ballot example

Single transferable voting This kind of voting mixes the last two voting
types and allows multiple winners. It is seen as the most fair voting
type, since it minimizes the waste votes, i.e. votes that were discarded
since did not choose any of the winners. It has several counting methods,
depending on goal of the election. The following example simulates an
election with this kind of voting 1.

Imagine an election to nominate the three best chess players of the world.
From a set of 10000 voters, each one of them fills a preferential ballot
and submit to a ballot box. Then, a quota must be defined. In this case,
it will be the Droop quota:

votes needed to win =
valid votes cast

winners+ 1
+ 1

1Flash animation: http://archive.fairvote.org/media/bc-stv-full.swf.

http://archive.fairvote.org/media/bc-stv-full.swf


2.2. Conceptual Perspective 15

Thus, the quota will be 2501. Then, a count is made for each preference
and the result will be the first table of Example 2.8. Since only one person
has win, the surplus of votes will divided according to the preferences of
the extra votes. In this case the surplus was 3000, in which 2001 votes
have as second preference Dave and 999 Eve. Dave will be the second
winner with 3001 votes, and the 500 extra votes are equally divided
between Bob and Charlie. Because no winner is found, the candidate
with less votes is removed and his votes are divided between the other
two final candidates. In the end, Eve has more votes than Bob, so she is
the third and last winner.

Candidate Vote
Alice 5501
Bob 2000
Charlie 699
Dave 1000
Eve 800

Candidate Vote
Alice (win) 2501
Bob 2000
Charlie 699
Dave 3000
Eve 1799

Candidate Vote
Alice (win) 2501
Bob 2250
Charlie 949
Dave (win) 2501
Eve 1799

Candidate Vote
Alice (win) 2501
Bob 2250
Charlie (lost) 0
Dave (win) 2501
Eve 1799

Candidate Vote
Alice (win) 2501
Bob (lost) 2408
Charlie (lost) 0
Dave (win) 2501
Eve (win) 2590

Example 2.8: Single transferable vote

2.2.2 Generic Model

To give a general overview of how a voting system works, we present a generic
model based in some different schemes, studies and projects[Mägi, 2007, Ryan
et al., 2009, Sampigethaya and Poovendran, 2006, Mercuri, 2001, Cranor and
Cytron, 1997, Aditya et al., 2004b]. A general view of the activities involved
in a election is summed up in Figure2.1.



16 2. Electronic Voting

Auditing

Registration Voting TallyingSet-up

Figure 2.1: General diagram of voting activities

The next list describes each stage. It is important to note that this is an
attempt to describe the behavior of an election in the most abstract possible
way, in order to cover all voting schemes. Thus, the technical stages that
generally fall into e-voting systems (e.g. data storage) will not be described.

Set-up is also known as Announcement stage, is the initial stage where the
voting parameters are initialized. This covers the candidates, the voters,
the authorities, the type of the election (e.g. counting rules or ballot
validity rules) and voting procedures.

Registration is the phase where is generated the election list, i.e. the public
list with all the eligible voters. For this purpose, each voter must register
accordingly to different criteria defined in the previous stage, which will
determinate their eligibility.

Voting starts with the authentication of the voter. If he is an eligible one,
he will have access rights to vote. To do so, first the user needs to
authenticate, using some kind of credentials, for example, an identity
document. Afterward, there are two steps to a voter be able to cast his
vote:

• Voter choice - the step in which the voter picks his candidate. It
should be done in a private place, to avoid any kind of intimidation
or coercion by a malicious party.

• Vote submission - in an anonymously way, to ensure that his vote is
untraceable, the voter save his vote. In the secret paper ballot, this
is done by folding the ballot and inserting it in a sealed ballot-box.

Tallying is the set of the actions necessary to compute the voting final result.
To achieve the result, it goes through three processes:



2.2. Conceptual Perspective 17

• Ballot Collecting - after the voting stage, the ballots are gathered.
This process varies depending on the technology that is being used.
For instance, in a secret paper ballot, the ballots are collected after
an authorized entity opened the sealed ballot-box.

• Ballot Validation - each one of the votes collected previously is
validated. This way only correct ballots are counted in the final
result.

• Compute/publish tally - the valid votes are counted and tabulated,
accordingly to the counting rules (as seen in Subsection 2.2.1). Later
on, after the results of each polling station is aggregated, the final
result is published.

Auditing is a phase to check the good functioning of the system. It may
occur in parallel with the election and it is done by an authorized entity,
which has, as an assignment, the following:

• Verifying the Announcement stage - check if the set up has been
done correctly. One example may be verifying the existence of bias
regarding candidates.

• Verifying the Registration stage - verifies if every possible eligible
voter is in fact eligible.

• Verifying the Voting stage - see if every vote has been made accord-
ing to the rules.

• Verifying the Tallying stage - verifies if the final tally is the right
result. For instance, may check for signs of double voting.

2.2.3 Entities Involved

In addition to the previous definitions and descriptions, it is also important
to describe a few entities that belong in most voting systems. Some of these
entities are not mandatory, some only take part in a voting system if its task
is needed, and some may even make the role of others beyond their own. With
this in mind, the next list provides a overview of the most common entities.

• Voter - the voter is the main entity that belongs in every voting sys-
tem. One should not try to predict his behaviour and model a system
based on that. Instead, the system should be prepared to any kind of
action/behaviour of the voter, being or not ethical.

• Authority - the authorities are the entities responsible to manage, secure
and judge elections. A common mistake when modelling a voting system,



18 2. Electronic Voting

which leads to a great lack of security, is to trust in a single entity to
be responsible for all of those roles. Therefore, the authorities usually
divide into:

– Administrator - the entity that manage the election. Usually re-
sponsible to spread ballot forms, publishing voting related informa-
tion, recruiting local officials, announcing the final result, etc.

– Collector - the collector task is to aggregate and tally the votes. A
common security requirement is that his relation with the adminis-
trator should be collusion-proof.

– Mixer - this entity is ordinarily a computer server whose only as-
signment is to shuffle a great number of votes, in order to make
them untraceable.

– Talliers - usually, the tallier and the collector are the same entity.
Has the task of processing the votes and compute the final tally.

– Trustees - the trustees have as a sole purpose to prevent that the
security of a system depends on the honesty of only one entity. For
instance, in a tallying stage of an election, it could be only possible
to count the votes if all trustees are present. Schemes that have
only one trustee can be considered susceptible to corruption.

– Bulletin board - some e-voting schemes may need Bulletin Board
(BB). This entity is usually a server and its job is to post public
information in order to the election be universally verifiable.

• Candidates - the entities that compete in an election. They do not
interact directly with a voting system and can assume many different
forms, such as political parties, Yes/No (for public referendums), real
people, etc.

• Auditors - when an election is over, there is a need to guarantee that
the system has not been tampered. Hence, a special entity, in this case
the auditor, has the job to audit and verify every voting phase, checking
for system anomalies and collusions of the other entities. His work is
inversely proportional to the level of security of the system. They are
also known as scrutineers.

• Adversaries - the adversaries are the malicious entities that must be
considered in any system. For instance, they could be:

– Corrupted entity - one of previous entities that interferes or modifies
the system only for personal gain;



2.3. Voting Requirements 19

– Crackers - malicious hackers that attack the system at the behest
of someone;

– Coercers - entities that force voters to vote in a certain way;

– Bribers - someone that pays a voter to corrupt his judgement, in
this case the ballot.

2.3 Voting Requirements

Throughout the time [Jones, 2009, Grimm et al., 2006, Gerck et al., 2002,
Adida, 2006], the requirements of voting systems have been a subject of dis-
cussion. As a result, there are considerable differences in the voting systems
available on the market, designed and conceived according to the needs that
the developers considered more important. Some opt to give more importance
to requirements related to accessibility or mobility, e.g. “the voting system
must be simple to understand and operate”, some choose requirements re-
garding security above all, e.g. “the voting system must guarantee anonymity
of the voter , and some even choose to specialize in different kind of elections.
Nevertheless, there is some agreement regarding the basic requirements.

In 1993, Michael Shamos [Shamos, 1993] suggest, in form of command-
ments, a few fundamental security requirements for e-voting systems, listed
next in decreasing order of importance:

i. Thou shalt keep each voter’s choices an inviolable secret.

ii. Thou shalt allow each eligible voter to vote only once, and only for those
offices for which she is authorized to cast a vote.

iii. Thou shalt not permit tampering with thy voting system, nor the ex-
change of gold for votes.

iv. Thou shalt report all votes accurately.

v. Thy voting system shall remain operable throughout each election.

vi. Thou shalt keep an audit trail to detect sins against commandments ii -iv,
but thy audit trail shall not violate commandment i.

Each one of the six commandments refers to one (or more) security proper-
ties. Some of those properties are still debatable, whether they are relevant to a
voting system, or even if one contradicts another. The forthcoming subsections
present a set of the most important properties of an e-voting system, the first
regards the security ones and the latter is related to the general requirements
that are usually evaluated in a e-voting system.



20 2. Electronic Voting

2.3.1 Security properties

The following set of definitions were chosen taking into account its informality,
abstraction and acceptance. This is because some authors diverge on the
definitions, and even adapt them to their own voting schemes.

Correctness Voting schemes must be error-free. The votes must be correctly
recorded and tallied. Votes of invalid voters should not be counted in the
tally. [Sampigethaya and Poovendran, 2006]
This property is also known as Accuracy. An underlying property can
be deducted from it:

• Integrity: in the context of an election system is the property that
guarantees that the result of the election is not manipulated or al-
tered in any way. This means that all the steps involved in process-
ing the votes preserve the actual information and not a tampered
one. [Ryan et al., 2009]

Privacy In a secret ballot, a vote must not identify a voter and any trace-
ability between the voter and its vote must be removed. Maximal privacy
is achieved by a voting scheme, if the privacy of a voter is breached
only with a collusion of all remaining entities (voters and authorities).
[Sampigethaya and Poovendran, 2006]

Uncoercibility In order to avoid coercion, a voting system needs to satisfy
two properties, Receipt-freeness and Coercion-resistance. Although the
goal of these properties is the same, both meet different criteria, as de-
fined by [Ryan et al., 2009]:

• Receipt-freeness: is the requirement that voters are not able to prove
to a third party how they voted. In other words, voters should not
have, or be able to generate, evidence of how they voted. This is
important to avoid vote selling, or demonstrating to a coercer after
the election that the voter has voted in a particular way. A receipt
can provide evidence that some vote was cast, but not which vote
was cast.

• Coercion-resistance: means that the system provides mechanisms
that would foil any potential coercer, who is in a position to require
a voter to vote in a particular way. Even if the voter is interacting
with the coercer during the voting process, the coercer should not be
able to establish whether the vote was cast in the way demanded.

Verifiability is the need to verify if the results are correct. It can be expressed
in two forms:



2.3. Voting Requirements 21

• Individual Verifiability (a.k.a. Ballot casting assurance) Each eligi-
ble voter can verify that his vote was really and correctly counted.
[Rjaskova, 2002]

• Universal Verifiability Any participant or passive observer can check
that the election is fair, i.e. the published final tally is really the sum
of the votes. [Rjaskova, 2002]

Later, in [Ryan et al., 2009], the authors had the need to add a notion of
End-to-End (E2E) verifiability, which means that the verification, indi-
vidual or universal, can be made by anyone. This is the strongest notion
of verifiability, and currently is the main goal of many e-voting schemes.

Robustness This is concerned with resilience in the face of random faults as
well as deliberate attempts to disrupt the election, such as denial of ser-
vice attacks. One aspect of this is an ability to recover from cheating when
it is detected. Another aspect is the ability to run the election even in the
face of a minority of dishonest election authorities, for example tellers
refusing to decrypt ciphertexts, or mix servers failing to operate. Tech-
niques such as fault tolerance, threshold cryptography and voter-verifiable
paper audit trails can be used to provide robustness. [Ryan et al., 2009]

Democracy is a set of security properties related to the proper functioning
of a voting system:

• Prevention of Multiple Voting: This ensures that all voters are al-
lowed to vote only once, such that each voter has equal power in
deciding the outcome of the voting. [Aditya et al., 2004a]
This property is sometimes known as Unreusability or Uniqueness.

• Completeness: A secret ballot protocol is said to be complete if
the ballot of an eligible voter is always accepted by the adminis-
trator. [Juang and Lei, 1997]

• Eligibility: Only authorized voters are allowed to vote, preventing
fraudulent votes from being counted in the tally stage. [Aditya et al.,
2004a]

Fairness No participant can gain any knowledge, except his vote, about the
(partial) tally before the counting stage (The knowledge of the partial
tally could affect the intentions of the voters who have not yet voted).
[Rjaskova, 2002]



22 2. Electronic Voting

2.3.2 General Requirements

Adding to the previous security properties, there are also some non-functional
and general requirements to improve the quality of a voting system. The next
list describes some of the most considered requirements:

Usability This property is the set of functional requirements related to user-
interfaces. For instance, a vote-casting interface should protect the voter
from accidentally cast a wrong vote. [Mercuri, 2001]

Auditability Every system should offer measures to an entity be capable of
checking the correctness and integrity of an election. This entity could
be a specialized one, but the ideal is for everyone, regardless of being an
active part or not of the election, be able to audit the system. This ideal
is also known as open-audit.

Efficiency When evaluating a system with this property, one must consider,
regarding the technologies and schemes associated to the system, aspects
of efficiency, e.g. storage complexity or communication complexity. [Ot-
suka and Imai, 2010]

Scalability The complexity of the protocols used in a voting scheme, is a ma-
jor factor in its practical implementation. An efficient voting scheme
has to be scalable with respect to storage, computation, and communi-
cation needs as a fraction of the number of voters. [Sampigethaya and
Poovendran, 2006]

Availability Since there is a timely nature of elections, availability for the
duration of the voting session, as well the tabulation period, is critical.
At any time, some kind of backup should be available. [Mercuri, 2001]

Flexibility (or Maintainability) The scheme is adaptable in terms of number
of authorities or security/efficiency trade-off choice. It should also be
able to choose from all kind of tallying methods. [Sako and Kilian, 1995]

Fault Tolerance A voting system must ensure that certain capabilities (such
as ballot data retention) remain available in the event of failures (like
power failure, hardware failure, or software error). The voting system
must be capable of remaining in a secure state after a failure so that its
relevant security policies continue to be enforced. [Mercuri, 2001]

Convenience A system is convenient if it allows voters to cast their votes
quickly, in one session, and with minimal equipment or special skills.
[Cranor and Cytron, 1997]



2.4. Summary 23

Mobility A system is mobile if there are no restrictions (other than logistical
ones) on the location from which a voter can cast a vote. [Cranor and
Cytron, 1997]

2.4 Summary

This chapter gave an overview of the e-voting world. Section 2.1 justifies the
need of research in this area, by showing numerous advantages of choosing
electronic elections over other technologies, specially paper ballot, and the dif-
ficulties of using it. As stated in [Gerck et al., 2002], the e-voting technology
is still far from being universally acceptable. Other voting technologies, like
optical scan (see Appendix A.1), offer reasonable balances of security, ease of
use, cost, simplicity and reliability.

A conceptual perspective of e-voting elections has been given in Section 2.2.
It starts by presenting some of the most used voting types. It is important
to note that a good voting system must provide some of those voting types.
Then, a generic model of an election is presented and tries to cover all the
election stages. For last, some entities that usually belong in voting systems
are presented.

The final section talks about voting requirements. The general require-
ments and the security properties are defined according to the most complete
definition found in literature. This consisted in a big problem, since there is
no complete standard list for voting requirements. Thus, for each property
found, it was decided to choose the definition most concise and cited. A com-
mon problem during this stage was finding properties that contradict other
properties. In the next chapter, the reader will see how cryptography enters
in e-voting schemes to achieve the properties discussed in this chapter.



24 2. Electronic Voting



Chapter 3

Cryptographic Primitives

Let us never forget that government is ourselves and not
an alien power over us. The ultimate rulers of our democ-
racy are not a President and senators and congressmen
and government officials, but the voters of this country.

Franklin D. Roosevelt

Lately, the voting system world is trying to enter in the digital information
era. But one of the main reasons that it had not achieved such goal, is the
lack of security concerning it. There are numerous universities, companies and
investigators trying to create the ultimate system. One of the resources that
many of them rely on, is cryptography, which plays an important role on most
of the voting schemes proposed so far.

The goal of this chapter is to give the reader a decent background on
cryptographic primitives focusing on the three most followed philosophies when
creating Electronic Voting (e-voting) protocols:

• Based on Homomorphic Encryption (HE), in Section 3.1;

• With the use of Blind Signature (BS), which is described in Section 3.3;

• And finally, using Mixed Network (mixnet), as seen in Section 3.2.

Later, Section 3.4 will explain other primitives that are recurrently used, but
without the same frequency. Finally, an example of an e-voting scheme will be
presented in Section 3.5 for each one of the main primitives. It is recommended
that the reader that has good knowledge of the area proceed to the next
chapter.

25



26 3. Cryptographic Primitives

3.1 Homomorphic Encryption

Homomorphic Encryption (HE) is a kind of encryption used when one wishes
to compute some specific operations over a ciphertext which returns the same
ciphertext as the one returned by the encryption of the result of those same
operations over the plaintext. As stated in [Fontaine and Galand, 2007], there
are a lot of different situations where this kind of encryption could be proved
useful, for instance: e-voting, electronic auctions, lottery protocols, water-
marking or fingerprinting protocols, secure multi-party computation, etc.

As an example, consider the delegation of computation to an untrusted
computer. Thanks to HE, it is possible to achieve the following scenario,
where one has two messages, x1 and x2, and wants the untrusted computer to
compute x1 · x2, as seen in Figure 3.1.

x1 x2

Encrypts

E(x1)E(x2)computes

E(x1) · E(x2)

E(x1 · x2)
Decrypts

x1 · x2

UserUntrusted Computer

Figure 3.1: The user delegates, safely, mathematical computations to the untrusted
computer.

In this case, the untrusted computer will never learn the values of x1 and x2,
as well as the value of its multiplication. Of course, it is hard to achieve both
security and fully homomorphic properties in the same encryption algorithm.
But there are some well known cryptosystems that preserve homomorphic
properties for some operations, for instance, the Rivest, Shamir and Adle-
man (RSA) signature described in 3.3. Another cryptosystem that is partially
homomorphic is the ElGamal, as can be seen in the next subsection.



3.1. Homomorphic Encryption 27

3.1.1 ElGamal

The ElGamal Encryption (ElGamal) was created by Taher Elgamal in 1984,
at the same time as the less known ElGamal signature, both published in
[El Gamal, 1985]. It is an algorithm on the asymmetric key encryption category
and its security depends on the hardness of resolving the Discrete Logarithm
Problem (DLP) (see Appendix A.2.1).

Alice

generator: g
generates: Gq

x ∈ {0, ..., q − 1}

computes: h = gx

s = cx1

m′ = c2 · s−1

Bob

has: G, q, g

generates: y ∈ {0, ..., q − 1}
compute: s = hy

m → m′ ∈ G
c2 = m′ · s

(c1, c2) = (gy ,m′ · hy)

= (gy ,m′ · (gx)y)

h

(c1, c2)

Figure 3.2: ElGamal Encryption

As shown in Figure 3.2, the ElGamal is a scheme between two parties,
Alice and Bob. This kind of Public-key Cryptography (PKC) consists of three
stages:

• Key generation - After the generation of a multiplicative cyclic group G
of order q and with generator g, Alice chooses a random x, which will be
the private key, from {1, ..., q − 1} and computes h = gx. Finally, she
publishes h along with G, q, g.

• Encryption - the next step starts with Bob choosing a y from {1, ..., q−1}
and computing c1 = gy. He proceeds to calculate the shared secret s = hy

and converts the message m into a element m′ of G. The last action of
Bob is to the second commitment c2 = m′ · s and send the ciphertex
(c1, c2) to Alice.

• Decryption - decrypting the ciphertext involves the calculation, this time
by Alice, of the shared secret s = cx1 . Afterwards, she computes m′ =
c2 · s−1 and converts it into the plaintext message m.



28 3. Cryptographic Primitives

The multiplicative homomorphism property, as the one needed by the User
in Figure 3.1, can be proven in ElGamal:

E(m1) · E(m2) = (gy1,m1 · hy1) · (gy2,m2 · hy2) =
(gy1+y2, (m1 ·m2)hy1+y2) = E(m1 ·m2)

3.1.2 Exponential ElGamal

The Exponential ElGamal Encryption (EEG) was created due to the need of
additive homomorphism in several protocols[Adida, 2006]. The difference from
the standard ElGamal lies on minor changes in the Encryption and Decryption
stage:

• Encryption - instead ofm, Bob uses gm
′
when creating c2, which results in

gm
′ · s. The stage ends in the same way, with Bob sending the ciphertext

(c1, c2) to Alice.

• Decryption - decrypting is also similar with the regular ElGamal. The
additional step is to calculate the discrete logarithm of c2 · s−1.

Again, an homomorphism, this time the additive, can be proven using EEG:

E(m1) · E(m2) = (gy1, gm1 · hy1) · (gy2, gm2 · hy2) =
(gy1+y2, (gm1+m2hy1+y2) = E(m1 +m2)

Other additive homomorphism can be seen in the Paillier Encryption scheme
(appendix A.2.2).

3.2 Mix-Nets

Introduced by David Chaum in 1981 [Chaum, 1981], mixnet has been a great
solution for many security problems regarding anonymity. Roughly speaking,
mixnet can be seen as a black box that takes a sequence of messages as an in-
put and returns it encrypted and in a different order. In the world of e-voting,
it turns useful to disguise the order of incoming of votes. Thus, through a se-
ries of permutations from several different black boxes, the order of incoming
votes becomes practically irrelevant, decoupling the voter from the vote and
providing anonymity.

Figure 3.3 shows the case of a message m and its transformations when
passing through a mixnet. Each box, under the name of Ex, corresponds to a
mixer, as the one described in Subsection 2.2.3, responsible to permute each



3.2. Mix-Nets 29

received message and encrypt it with his own key. Hence, m goes from the
fifth position to the first and becomes m1 = E1(m). Then, in the mixer E2,
goes to the fourth slot, and it is encrypted again. And so on, until the final
mixer returns the message m3 = E3(E2(E1(m))).

m

E1

m1

m2

E2 E3

m3

Figure 3.3: Mix-net example.

The biggest advantage of this cryptographic primitive is the joint work of
several mixers and the level of trust that comes from them. For instance,
from K mixers, if K− 1 are dishonest and collude with each other, the mixnet
will still be provably secure if the remaining mixer does his job honestly and
correctly. This primitive does not exist on its own, i.e. it is the joint work
of several other primitives, such as HE, Zero-Knowledge Proof (ZKP) or re-
encryption, that create mixnet. In the work of [Adida, 2006], one can find a
dedicated space to mixnet, together with a complete table of compared designs
of this still well researched primitive.

Additional Notes

Overcoming the anonymity, or untraceability, problem is the main purpose
of mixnet. But in some cases, like e-voting schemes, it is needed a proof of
correctness. This requirement usually adds complexity to the design of mixnet
and affects the scheme on which it is involved. To help the evaluation of such
schemes, a categorization of the security level of mixnet is made, as stated in
[Adida, 2006].

Levels of privacy. Regarding the privacy of mixnets, since its design de-
pends on simpler cryptographic techniques, i.e. standard encryption algo-
rithms or more common primitives, its security will depend on computational
assumptions of those techniques. Thus, one has to evaluate the level of the



30 3. Cryptographic Primitives

proofs, which are defined according to the amount of leakage that the proof
may have:

• Complete & independent - taking Figure 3.3 as an example, message m
can be permuted to any other slot. Additionally, if a subset of transfor-
mations between input and output of a mixer is revealed, the proof of
correctness will not affect the remaining messages.

• Complete but dependent - differs from the previous level in a way that if
the subset is revealed, additional correspondences may be leaked by the
proof.

• Incomplete - the proof leaks information about correspondences, for in-
stance, when proving the shuffling on E1, a verifier may know that m
has gone from the fifth slot to the first.

Levels of soundness. Proving the correctness of a mixnet can be made us-
ing ZKP (will be described in 3.4.3) or other mechanisms that a verifier may
learn something about the shuffling. If using ZKP, a prover with bounded
computational resources has a negligible chance of successfully proving an in-
correct shuffle. Otherwise, a regular prover may have some more probability
cheating a verifier.

This issues are both linked and affects the usability of a mixnet. Achieving
the maximum level of security is hard and if achieved, it may be proved useless
due to high computational requirements. Nevertheless, in e-voting, for keeping
the election results uncompromised, because of the large amount of messages
involved, an intermediate level of privacy can be enough without compromising
the election results.

3.3 Blind Signatures

In literature can be found numerous ways to explain blind signatures, gener-
ally making use of analogies. The best way to illustrate the concept is with an
example taken from the original paper written by by D. Chaum when he first
introduced it (can be found in [Chaum, 1982]).

In a voting election by secret ballot, in which the voters send their vote
by mail, there is an entity called trustee who is responsible for managing the
election. His concern is to ensure everyone who votes are authorized to do so.
On the other hand, each voter is concerned about the privacy of his vote, even



3.3. Blind Signatures 31

from the trustee, that one malicious entity may be able of corrupting it, and
also the possibility that his vote is not counted.

The solution to this problem is to combine two envelops: One regular enve-
lope and one made of carbon paper1 inside it (analogy of the blind signature’s
implementation). The protocol between the voter and the trustee is split in
three stages:

i) In the first stage, the voter fills a ballot with a random id and puts it
inside of a carbon paper envelope, which in turn will be inside of a regular
envelope (envelope A). He then writes his address and the trustee’s
address in envelope A and sends it.

ii) The second stage begins with the trustee checking if the sender can vote.
If he does, the trustee opens envelope A. Next, he discards envelope A
and signs the carbon paper envelope, which is implying that the ballot
inside the carbon paper envelope will be marked with his signature. He
puts it inside a new envelope (envelope B) with the voter address and
sends it.

iii) Finally, the voter opens envelope B and discards it, opens the carbon
paper envelope and discards it, put the ballot in a anonymous envelope
(envelope C) with only trustee’s address and sends it to him.

When all voters have been through this process and sent their envelope C,
the trustee gathers all the votes and verifies each one of them, searching for his
signature. He then publishes the results and put in public display all the votes.

At the end, the voter’s concerns are resolved because they can see if their
vote is right and because trustee could not, in any moment, violate the voter’s
privacy and check for it (the voter search for his vote by its random id). In
turn, the trustee’s concern is also resolved because only the votes with his
signature are validated.

Blind RSA Signature

The RSA algorithm is one of the most known and used algorithms for
PKC, which was invented in 1977. Its use extends to Digital Signature (DS)
and its security is based on presumed difficulty of the factoring problem (see
Appendix A.2.1).

1For better plainness: http://en.wikipedia.org/wiki/Carbon_paper.

http://en.wikipedia.org/wiki/Carbon_paper


32 3. Cryptographic Primitives

As shown in Figure 3.4, a standard RSA signature scheme usually consists
on three phases: the request, the signing and the verifying phase. A Signer
generates a large public number n product of two large and secret primes p
and q, and a pair of keys (e, d), the public key and the private key respectively.
It is also important to mention that the private key d is the multiplicative
inverse of e modulo (p− 1)(q − 1).

Signer

public: e, n

secret: d

signs:
h = H(m)

σ = hd (mod n)

User

public: m

verifies:
h = H(m)

σe = h (mod n)

m

σ

Figure 3.4: Classical RSA Signature

The scheme starts with the Signer and a user agreeing on a public hash
function H. Then, the user makes a request by sending a message m to
the Signer. Next, the Signer creates a signature σ by signing m, σ =
H(m)d(mod n), and sends it to the user. Finally, the user checks its valid-
ity by verifying the equation σe = H(m) (mod n).

The blind RSA signature differs from the regular DS on the request and
verifying phases. In the request phase, instead of sending m to the Signer, the
user “blinds” it by creating and sending m′ = H(m) · re(mod n). The Signer
normally signs m′ creating signature σ′ = m′d (modn) and sends it to the user.
The user extracts σ by dividing σ′/r. This works by verifying that σ = σ′/r =
m′d /r (modn) = (H(m) · re)d /r (modn) = H(m)d · red /r (modn) = H(m)d.
Figure 3.5 shows the transformation of the RSA signature.

Another example of blind signature transformations, specifically of the
Schnorr Signature, can be found in appendix A.2.4.



3.4. Other primitives 33

Signer

public: e, n

secret: d

signs:

σ′ = m′d (mod n)

User

secret: r, h = H(m)

public: m′ = H(m) · re(modn)

verifies:

σ = σ′ / r = m′d / r (modn) =

(H(m) · re)d / r (mod n) =

H(m)d ·red/r(modn) = H(m)d

m′

σ′

Figure 3.5: Blind RSA Signature

3.4 Other primitives

Generally, the three previous primitives are the most required when designing
new e-voting schemes. But in most cases, they do not answer to all the re-
quirements needed of those designs. In this section, a brief description of some
other primitives will be given.

3.4.1 Re-Encryption

Re-encryption is a technique used to add new secrecy (or re-randomization) a
ciphertext without violating the integrity of the plaintext. In e-voting, its use
is normally related to the use of mixnet. As seen in Figure 3.3, the permu-
tation of the first mixer will be useless if m = m1, i.e., matching the input
and output of the first mixer, one could easily conclude how the permutations
occurred.

Thus, to achieve new secrecy, a re-encryption of m is needed. An exam-
ple of an encryption algorithm that achieve it, described more completely in
[Boneh and Golle, 2002], is ElGamal. Remember (see Subsection 3.1.1) that a
ciphertext returned by this cryptosystem is E(m; r) = c = (gr,m·yr), in which
the secret key is x and the public key is y = gxmodp. Due to the homomorphic
properties of ElGamal, previously demonstrated, the re-encryption of c with a
new secrecy r′, i.e. RE(c; r′), is equal to c ·E(1, r′), i.e. E(m; r+ r′). Next, is
the demonstration of this fact:

E(m; r + r′) = RE(c; r′)
(gr+r

′
,m · yr+r′) = c · E(1; r′)

(gr+r
′
,m · yr+r′) = (gr,m · yr) · (gr′ , 1 · yr′)



34 3. Cryptographic Primitives

(gr+r
′
,m · yr+r′) = (gr · gr′ ,m · yr · 1 · yr′)

(gr+r
′
,m · yr+r′) = (gr+r

′
,m · yr+r′)

3.4.2 Deniable Encryption

The concept of Deniable Encryption (DE) was explored in [Canetti et al.,
1996]. Imagine the classical secret communication between Alice and Bob,
which exchange encrypted messages with one another. Then, Eve, the eaves-
dropper, registers the traded messages from Alice and later forces her to give
the secret key of the communication. Alice, without any other option, is forced
to reveal the key and all the secret conversation between her and Bob is ruined.

The previous situation will probably happen without DE. But with this
primitive a new end to this story could happen. If the communication between
Alice and Bob was made recurring to DE, when forced to give her key, Alice
could provide a fake one. Thus, when Eve use it to decrypt the messages
that she stolen from Alice, she would decrypt clear messages but not the real
messages traded by Alice. A well known deniable encryption algorithm is the
One-time Pad, i.e., for any ciphertext produced by this cipher, one can create
several valid messages and keys that result on the same ciphertext, as long as
it has the same length.

There are several different applications to DE, for instance multiparty com-
putation. To e-voting, its use is dedicated to prevent coercion (see Subsec-
tion 2.3.1). DE allows the voter to create a fake receipt to fool any adversary
that tries to coerce him.

3.4.3 Zero-Knowledge Proofs

A recurrent problem in security systems is proving knowledge of something
without revelling crucial information. To resolve such problems, a crypto-
graphic primitive was invented under the name of Zero-Knowledge Proof (ZKP).
It is a protocol between a prover and a verifier, and it states that a ZKP is a
proof that yield nothing beyond the validity of the assertion. Thus, a verifier
only gains conviction in the validity of the assertion[Goldreich, 2002]. A spe-
cific type of ZKP are the interactive zero-knowledge proof-of-knowledge, which
consists in a sigma protocol (three communications) between two parties: the
commitment ; the challenge; and finally the proof. In appendix A.2.3, a story
helps to understand the ideas of ZKP.

There is not a single ZKP protocol. Each one is constructed according



3.4. Other primitives 35

to specific properties of what is intend to prove. But all correctly formed
protocols obey to the following three properties:

• Completeness - if the statement is true, a honest verifier will be con-
vinced of that fact by an honest prover.

• Soundness - if the statement is false, no dishonest prover can only con-
vince the honest verifier that it is true with very small probability.

• Zero-Knowledge - most importantly, in any case, no dishonest verifier
can learn anything about what is intended to prove.

Chaum-Pederson protocol. Figure 3.6 shows an example of a ZKP pro-
tocol2 introduced in [Chaum and Pedersen, 1993] and it is used to prove the
existance of a Decision Diffie-Hellman (DDH) tuple, or more precisely, the
equality of discrete logarithms.

Prover

generates:
s ∈ Zq

Verifier

generates:
c ∈ Zq

verifies:
gt = awc ∧ yt = buc

(a, b) = (gs, ys)

c

t = s+ cr

Figure 3.6: Proving the equality of two discrete logarithms.

This protocol has utility if one, for example, wishes to prove the re-encryption
of a message m. Using ElGamal, as in the example of Subsection 3.1.1, one cre-
ates the ciphertexts ct1 = (c1, c2) = (gt,m·yt) and ct2 = (d1, d2) = (gu,m′ ·yu).
If ct2 is the re-encryption of ct1, then they are both encryptions of the same
message. This means that proving that ct2 is the re-encryption of ct1 is the
same that proving the tuple (g, y, d1

c1
, d2
c2

) = (g, y, gu−t, m
′

m
yu−t) is a DDH tuple

of the form (g, gx, gr, gxr). A honest prover will eventually prove the knowl-
edge of r, which is the randomness used to create ct2.

2An interesting set of ZKP can be found in: http://www.cs.ut.ee/~lipmaa/crypto/

link/zeroknowledge/pok.php .

http://www.cs.ut.ee/~lipmaa/crypto/link/zeroknowledge/pok.php
http://www.cs.ut.ee/~lipmaa/crypto/link/zeroknowledge/pok.php


36 3. Cryptographic Primitives

Finally, an example of another ZKP, the Guillou-Quisquater identification
scheme, can be found in Appendix A.2.5.

3.4.4 Secret Sharing

When evaluating the safety and security of a cryptosystem, it is normal that
all the structure rests on a crucial point. This point is usually a secret key,
something unique that is only known by one person. But some systems may
require that the secret cannot be trusted to a single person. That is why the
idea of Secrete Sharing (SS) was introduced in the cryptographic world.

To see the importance of such primitive, a good example was given in
[Schneier, 1996]. Imagine that Alice invents an application to launch nuclear
missiles. That application rests on a single key, but Alice does not want a sin-
gle employee to have it, fearing that he may be crazy and initiate the launch
just for fun. Recurring to SS, Alice chooses five employees and gives each one a
key. She then creates a mechanism that requires at least three from those five
employees to insert their keys and launch the missile. Now, three employees
must go crazy, together, to launch a nuclear bomb just for fun.

And Alice can even adopt more complex mechanisms. To an officer, named
Bob, that “worths” two employees, is given another key. Since he values more
than the regular employees, Alice can adapt the mechanism to launch the
missile with two inserted keys if one of them belongs to Bob.

Threshold Cryptosystem. A kind of SS that can do all of Alice’s ideas,
and more, mathematically is called a threshold cryptosystem. The simple case
of wanting a secret code divided into k keys, such that t of them can be used
to reconstruct it, is called a (t,k)-threshold scheme.

In [Gennaro et al., 1999], they suggest a protocol for distributed key gen-
eration, the main difficulty in SS. This protocol is for cryptosystems based
on the DLP, such as ElGamal (see Subsection 3.1.1). For instance, it may be
used in the e-voting scheme that will be presented in Subsection 3.5.1. The
protocol, between n Players, goes as follows:

Generating x:



3.4. Other primitives 37

1. Each player Pi performs a so-called Perdersen-VFF3 protocol of a
random value zi as a dealer:

(a) Pi chooses two random polynomials fi(z), f
′
i (z) over Z, of de-

gree t:
fi(z) = ai0 + ai1 + ...+ aitz

t f
′
i (z) = bi0 + bi1 + ...+ bitz

t

Let zi = ai0 = fi(0). Pi broadcasts Cik = gaikhbik mod p for
k = 0, ..., t. Pi computes the shares sij = fi(j) and s

′
ij = f

′
i (j)

for j = 0, ..., n and sends sij, s
′
ij to player Pj.

(b) Each player Pj verifies the shares received from the other play-
ers. For each i = 0, ..., n, Pj checks if:

gsijhs
′
ij = Πt

k=0(Cik)
jk mod p

If the check of i fails, Pj broadcasts a complaint against Pi.

(c) Each player Pi who, as a dealer, received a complaint from
player Pj, broadcasts the values sij, s

′
ij that satisfies the previ-

ous equation.

(d) Each player marks as disqualified any player that either:

• received more than t complaints in step (b) or

• answered to a complaint in step (c) with values that falsifies
the equation from (b).

2. Next, the second step starts with every player building the set of
non-disqualified players, which will be known as U .

3. The distributed secret value x is not explicitly computed by any
player, but it equals x = Σi∈ U zi modq. Then, each player sets
his share of the secret as xi = Σi∈ U sji mod q and the value x

′
i =

Σi∈ U s
′
ji mod q.

Extracting y = gx mod p:

1. Extracting the public shared key is for every qualified player, i.e.,
every Pi ∈ U . To do so, each one exposes yi = gzi mod p via
Pedersen-VFF:

(a) Each player Pi broadcasts Aik = gaik mod p for k = 0, ..., t.

(b) Each Pj verifies the values broadcast by the other players in U ,
in particular, for each i ∈ U , Pj sees if:

gsij = Πt
k=0(Aik)

jk

If the check fails for any Pi, Pj complains against him by broad-
casting the values sij,s

′
ij that satisfies the equation of the gen-

eration’s step (b) but do not satisfy this previous equation.

3This name was picked by the authors to mention the protocol described in [Pedersen,
1992]



38 3. Cryptographic Primitives

(c) Finally the reconstruction of y, with every valid player comput-
ing zi, fi(z), Aik for k = 0, ..., t in the clear. The protocol ends
with every player setting yi = Ai0 = gzi mod p, and computing
y = Πi∈ U yi mod p.

3.5 Schemes and designs

In literature there are a large variety of proposed e-voting schemes. As men-
tioned before, they mainly follow three philosophies, so in this section we will
present one well known scheme for each of them. The only criteria was to
choose a scheme that was simple to understand.

3.5.1 Cramer, Gennaro and Schoenmakers scheme

The following scheme is an example of how HE can be used in e-voting schemes.
This example also uses two primitives, ZKP and SS. There are many other
schemes that use HE, such as [Benaloh and Tuinstra, 1994, Benaloh and Yung,
1986].

In [Cramer et al., 1997], it is proposed a scheme that consists in three
stages: Initialization; Vote Casting; and Tallying. The protocol involves three
different entities, the voters, a set of authorities and a Bulletin Board (BB). A
special characteristic of this scheme is that no direct communication between
the voter and the authorities is made. Before explaining it, is worth noting
that the next description of this scheme only allows a “yes/no” kind of ballot
(see Subsection 2.2.1), the authors later explained how to add multiple choices.

Initialization. Before the election starts, all authorities agree on a key gen-
eration protocol for SS. Using an ElGamal cryptosystem, each authority re-
ceives his part of the shared secret Aj : sj of s and they all publish the public
key y = gs.

Vote Casting. Every voter will now interact with the BB. First, they choose
which vote they want to cast, whether it will fall on m0 = G or m1 = 1/G.
Then, they randomly generate α ∈ Zq and create the ciphertext (x, y) =
(gα, hα · Gb), in which b ∈ {−1, 1}. They proceed to cast their vote, sending
the ciphertext (x, y) to the BB, along with a proof that the ciphertext is well
formed. This proof is the non-interactive version of ZKP known as the Chaum-
Pedersen protocol (also described in 3.4.3), and has the objective to compare
two discrete logarithms. Hence, they use it to prove logg(x) = logh(g/m).



3.5. Schemes and designs 39

Tallying. After the election ends, the authorities, together, check every proof
and its validity. They then form the product (X, Y ) = (Πl

i=1xi,Π
l
i=1yi). Next,

each one of the authorities computes and broadcasts to BB Wj = Xsj together
with the correspondent proof logg(hj) = logX(Wj). Finally, all the authorities,
together, decrypt W = Y/Xs. The result of W will be equal to GT , where
T is the difference between the number of “yes” and “no” votes. Thus, the
discrete logarithm of W will give the value of T , T = logG(W ).

HE was a crucial piece on this design. The privacy property only is guaran-
teed thanks to the homomorphic properties presented in the used techniques,
and not a single vote is decrypted alone. Nevertheless, this scheme is not
perfect. Some problems regarding coercion (see Subsection 2.3.1) have been
pointed out, and also some computations can turn out to be over expensive,
in particular the calculation of T .

3.5.2 The Fujioka et al. Voting Scheme

The classical [Fujioka et al., 1993] was one of the firsts to ever use BS in an
e-voting scheme. Among other schemes, we can find for example [Kim et al.,
2001, Ohkubo et al., 1999]. This scheme consists in six stages and has three
entities involved: the Voter Vi; the Administrator; and Collector. The next
list describes the stages that occur accordingly with Figure 3.7:

1. Preparation - The first stage starts with a Voter Vi creating a ballot xi,
which is the encryption of the vote vi using a key ki. He then blinds the
ballot with a random ri and creates a message ei = X(xi, ri). Finally, he
signs it, si = σi(ei) and sends (idi, ei, si) to the election’s Administrator.

2. Administration - The Administrator is responsible to validate each re-
quest to vote. To do so, he checks if the received idi is an eligible voter
and if he has never requested to vote before. If the Administrator do not
find any problems, he signs over the blinded message diσA(ei) and sends
it as a certificate to Vi. Otherwise, he rejects the request. After all the
requests, the Administrator publishes a list with every blinded message,
identifications and signatures ((idi, ei, si)), and starts the voting stage.

3. Voting - Being confirmed as an eligible voter, Vi proceeds to cast his
vote. He first retrieves the Administrator signature yi = λ(di, ri). Then,
after checking the validity of yi, he cast his vote by sending (xi, yi) to
the Collector through an anonymous channel.



40 3. Cryptographic Primitives

4. Collecting - The Collector, after verifying the Administrator’s signature
from every received pair (xi, yi), publishes a list with the correct votes
and a number l, i.e., (li, (xi, yi)).

5. Opening - After the collecting stage is over, Vi checks if his ballot is on
the list. Then, if it is there, he sends his key ki along with the respective
number l to the collector, also through an anonymous channel.

6. Counting - Finally, using the received ki, the Collector opens every ballot
and publish the results, with every public information (li, xi, yi, ki, vi),
and everyone can verify it.

Administrator

administration

Voter Vi

preparation

voting

opening

Counter

collecting

counting

idi, ei, si

di

xi, yi

l, ki

Figure 3.7: Fujioka et al. voting scheme.

This scheme demonstrates the use of BS and has been subject of study
and research, as well as inspiration to many other e-voting schemes. But
over the years some attacks have been discovered against this scheme. For
instance, in [Rjaskova, 2002], the author explains how a corrupt Administrator
can simulate votes from abstained voters. The same author also shows how
the receipt-freeness (see Subsection 2.3.1) is another property violated. And
even more problems can be found in implementing the anonymous channels,
the last two communications on Figure 3.7. Nevertheless, this scheme is still
good to demonstrate the utility of BS.

3.5.3 Boneh and Golle’s mix-net

There are plenty of schemes using mixnets, such as [Aditya et al., 2004a,
Chaum et al., 2005]. The following scheme, proposed in [Boneh and Golle,



3.5. Schemes and designs 41

2002], uses several primitives and techniques presented before, namely:

• Re-encryption with ElGamal from Subsection 3.4.1;

• ZKP and the Chaum-Pedersen protocol shown in Subsection 3.4.3;

• SS and a simpler version of the example presented in Subsection 3.4.4.

The protocol consists in five steps, since the setup stage until the decryption
of each message submitted. It works between a set of users, mixers, and a BB:

Setup. Before protocol begin, a set of mixers M fulfill a key generation pro-
tocol for SS of an ElGamal cryptosystem, in order to each Mj has his
share xj of the secret.

Submission of inputs. After the setup:

• The mixers publish the public ElGamal parameters (g, q, y);

• Each user submit his ciphertext of the message m encrypted with
ElGamal. It other words, each Ui sends his Ci = (gri ,mi ·yri), along
with a proof of knowledge of mi, to BB;

• Finally, the mixers agree on a security parameter α > 0, usually
less than five. Higher values, as one will conclude later on step
Verification, will result in less privacy for the user.

Re-encryption and Mixing. In this stage, each mixer will re-encrypt and
shuffle the list of ciphertexts, one at a time:

1. Mj takes the set of n ElGamal ciphertexts, C, in the form Ci =
(gri ,mi · yri), from the BB;

2. Then, adds new secrecy to all ciphertexts of C, in which Ci becomes

C
′
i = (gr

′
i ,mi · yr

′
i);

3. Last, Mj returns, to BB, ϕj(C), where ϕ is a random permutation
chosen by Mj. The mixer Mj is required to remember, and keep
secret, the permutation used and the randomness added to the ci-
phertexts until the verification step is over. Each final set produced
will be known as Cj on the verification stage.

Verification. If any of the mixers abort, the protocol is over and no results
are produced. If not, they all proceed to jointly generate a random
string s which will be used to generate random challenges. The string is
generated as follows: Each Mj selects a random string sj and commits



42 3. Cryptographic Primitives

it. After all commitments are received, the final random string s will be
s = Xor(sj). Afterwards, each one of the mixers will be audited by the
rest of them:

1. First, each Ci from Cj is checked to see if it is properly formatted.

2. Then, Mj, using Chaum-Pedersen, proves that Πn
i=1mi = Πn

i=1m
′
i,

i.e. despite of the added secrecy, both ciphertexts were encrypted
using the same message.

3. The rest of the mixers collaborate to generate α sets S1, ..., Sα,
where each set Si is a subset of indexes {1, ..., n}. Each set is gen-
erated independently from one another, in the following manner:
every index 1 ≤ k ≤ n is included in Si independently at random
with probability 1/2. The randomness is derived from the string s.

4. The sets S1, ..., Sα are given to mix server Mj.

5. Mj must produce α subsets S
′
1, ..., S

′
α of {1, ..., n} such that, for all

1 ≤ i ≤ α, |Si| = |S ′i| and, using Chaum-Pedersen, Πk∈Simk =
Πk∈S′i

m
′

k.

6. If Mj fails in the previous step, he is accused of cheating. The
remain mixers will inspect the transcript of the verification, and if
Mj is confirmed as a cheater, he is banned and all the other restart
the mixing.

Decryption. Finally, a sufficient number of mixers jointly performs a thresh-
old decryption of the final set of ciphertexts and provides the correspon-
dent ZKP of correctness.

3.6 Summary

In this chapter, an overview about cryptographic primitives was given. The
described primitives enter in the majority of schemes that have been proposed
so far4.

An interesting observation on the studied schemes, was that mixnet are
becoming the favorite choice among the researchers to propose new schemes.
BS has lost some importance, probably due to problems regarding anonymity,
which ironically can be overcome using mixnet, and thus lost its utility. But

4Although an incomplete work and never published, the following article has been of
enormous help to understand how the cryptographic world was applied to solve the e-voting
problem: “Survey on Electronic Voting Schemes” by Fouard, Duclos and Lafourcade.



3.6. Summary 43

BS is still a well researched area because of its use in electronic-cash. More-
over, HE is the preferred method when putting theory in practice, as can be
seen in the next chapter, in despite of the lack of flexibility and adaptability.

There is no primitive that can solve all security problems, neither a scheme
that can be adapted to all kind of elections. In the next chapter, some systems
that use some of the above mentioned primitives will be described, and in
particular a system that uses HE combined with ZKP and SS.



44 3. Cryptographic Primitives



Chapter 4

Helios

Those who vote decide nothing. Those who count the vote
decide everything.

Joseph Stalin

Putting the ideas of the previous chapters in practice is a difficult task. In
fact, in the literature, it is hard to find practical implementations of suggested
Electronic Voting (e-voting) schemes. Moreover, most of those implementa-
tions are usually proof of concept, and not real systems with real tests in real
situations. Even more complicated is to find real systems devoted to remote
voting. Some emerging contests are appearing to change this scenario. They
propose the creation of remote e-voting systems with mandatory requirements
that aim to protect the voter.

This chapter starts with a description of a contest by the International As-
sociation for Cryptologic Research (IACR), a non-profit organization dedicated
to cryptologic research. The rest of the chapter describes the Helios system,
the winner of the contest. An overview of this system is given in Section 4.2
and most of the used techniques are described in Section 4.3. Finally, some
security assumptions and recent research works on this system are presented
in 4.4.

4.1 The IACR Contest

In the Spring of 2008, the IACR board published a call for presentations and
demos of e-voting systems. Their hope was to replace the mail-based sys-

45



46 4. Helios

tem with a capable cryptographic e-voting system1 and thus achieve the goals
of having a secure system for its internal elections, to enhance the research in
this area and to study the impact on public policy issues to e-voting in general.

For a fair competition, the committee came up with a list of the minimum
satisfying requirements and evaluation criteria2. The basics ones mostly con-
cern usability and met the ones described in Subsection 2.3.2, such as: the
system must be user-friendly, at least from the voters’ point of view; the sys-
tem must be easy to maintain and manage; the system must be accessible,
available, and reliable. With these requirements, they established the ground
rules to accept only usable systems and discard the ones that, even if they
were completely safe, were not suitable for this contest (for instance, scalabil-
ity problems).

More importantly, the IACR and the rest of the committee also listed some
security requirements, which match the definitions on 2.3.1:

• Eligible voters must be able to vote exactly once. The system must be
able to verify that voters are members of the IACR (match the definition
of Democracy).

• Individual votes must remain secret. The system must prevent attackers
from learning how individual members voted (match the definition of
Privacy).

• The system must have universal verifiability of the integrity of the elec-
tion outcomes. Namely, the system must allow open audit, where ev-
eryone can verify that only valid votes were counted and the tally is
accurate, and every voter can verify that his vote was counted (match
the definition of Verifiability along with Correctness).

Other considerations concerning security, but in a viewpoint of attacks,
were mentioned (due to the complexity and difficulty of creating systems that
prevents the following attacks, these requirements/properties were not manda-
tory):

• Denial-of-Service (DoS) attack: it is a kind of attack that attempts
to make a system’s (machine or network) resources unavailable for the
clients. The proposed system should offer measures of resistance to DoS
attacks, and making it possible to fix system outages in brief period of
time (for instance, re-locating servers, distributed servers, etc).

1The call: http://www.iacr.org/elections/eVoting/cfp.html
2The complete requirements: http://www.iacr.org/elections/eVoting/

requirements.html

http://www.iacr.org/elections/eVoting/cfp.html
http://www.iacr.org/elections/eVoting/requirements.html
http://www.iacr.org/elections/eVoting/requirements.html


4.1. The IACR Contest 47

• Vote modification: the system should have ways to prevent virus or any
kind of malware that has as its purpose modify the client’s vote.

• Correlation-based attack: a type of attack that makes correlations be-
tween votes. For example, if one knows how someone votes for director,
may deduct how he will vote for president. The IACR committee sug-
gests a simple way to avoid this by splitting races.

• Receipt-freeness: as described in 2.3.1, there are problems associated
with knowing how one votes. Therefore, the committee values the sys-
tems that presents mechanisms that fight these problems. A way sug-
gested, was to allow voters to cast “fake votes” that would be discarded
in the tallying stage (see 2.2.2) and therefore not affect the final result.
This methology imply that even if the attackers are able to monitor the
client’s machine in order to obtain the receipt, they would still not be
able to prove how that person voted.

• Level of trust: not being exactly an attack, the level of trust is an inter-
esting point of analysis of every e-voting system. When modelling such
system, it is usually required that at least one entity must be trusted in
order to achieve security. Thereby, to not depend on the integrity of a
single entity’s task, it is recommended by the committee to divide the
responsibility into several entities. For instance, vote decryption could
be a task shared by several Trustees.

Finally, the IACR committee stressed out some differences between how
they face an election and how usually the public-sector elections occur. Re-
garding the resistance to coercion and vote-selling properties (see Subsection
2.3.1), even though they are crucial aspects for the public-sector elections, to
preserve fairness and democracy, for small companies and private elections a
weaker property is required. Nevertheless, a special attention to this problem
is needed, as upheld in the previous receipt-freeness bullet. Another differ-
ence when comparing with public-sector elections, is the absence of paper trail,
which is normally used to be examined if the need appears. For the commit-
tee, an electronic version is enough. Concerning the robustness of the system,
it was not demanded a completely full proof solution (for instance, the DoS
attack mentioned above), but instead a flexible system that may be able to
extend a voting deadline for some time if these kind of attacks happen.

Summing up, the IACR committee were not looking for a solution that
could be used in a country elections (in fact, it is rare to find a country that
trusts only on an e-voting system), but a practical and implemented solution
for local use.



48 4. Helios

4.1.1 The Contestants

In August of 2008, the teams that proposed e-voting systems had the chance
to present them to a jury. Throughout this subsection, it will be given a brief
description of each one of the systems, based on the presentations, technical
papers and, when possible, the system itself.

Civitas

From the Department of Computer Science of the Cornell University came
the so called Civitas3. This system was implemented in Jif (a security-typed
programming language that extends Java) and it was based on the well cited
article [Juels et al., 2005], improving the proposed scheme which led to new
technical advances in secure registration protocols and a scalable vote storage
systems [Myers et al., 2008].

The design model consists in an ordinary voting model, with the normal
stages of an election, and with five kind of agents: the voters ; the supervisor,
which administers an election; the registrar authorities, that authorizes vot-
ers; registration tellers, which generates credentials that voters use to cast their
votes; tabulation tellers, responsible to tally the votes and provide anonymity.
Each one of the agents (with the exception of the voters) use an underlying
log service that records all the information needed to audit the election. Con-
cerning the threat model, they assume that the adversary can always perform
any polynomial time computation and may corrupt all but one of each type
of election authorities. At some time during the election, the adversary may
even coerce on any way the voter and control the network.

Regarding the security requirements, the Civitas team ensure that they
satisfy the requested properties, and put the emphasis on how they solve the
problem related to coercion. To fight it, they use techniques described in
[Juels et al., 2005], which consist in using fake credentials. In some situations,
described in [Myers et al., 2008], the voter can undetectably use a fake creden-
tial to cast a vote, thus deceiving the coercer. With regard to the anonymity
property, they used Mixed Network (mixnet) (section 3.2), operated by the
tabulation tellers. To resolve the verifiability requirement, they used Zero-
Knowledge Proof (ZKP) (Subsection 3.4.3).

Civitas have a list of assumptions to prove the security of the system,

3Official site of the voting system Civitas: http://www.cs.cornell.edu/Projects/

civitas/

http://www.cs.cornell.edu/Projects/civitas/
http://www.cs.cornell.edu/Projects/civitas/


4.1. The IACR Contest 49

specially to maintain the coercion-resistance property. For instance, they as-
sume that the channels from the voter to the ballot boxes are anonymous.
Besides these assumptions, some issues were detected and were targeted for
improvements. Technical issues include: web interfaces; testing; threshold
cryptography; and anonymous channel integration. On the side of research
problems: distribute trust in voter client; eliminate in-person registration; cre-
dential management; and application-level DoS.

Adder

Adder voting system was developed in the University of Connecticut, and
adopts a strong voting-oriented cryptographic primitive, the homomorphic en-
cryption (section 3.1). The system has three components: a bulletin board
server, developed in C++; an authentication server, with the back-end also
written in C++; and a client software (either a Java applet in a Web-browser
or a stand-alone program) [Kiayias et al., 2006].

Three entities interact with the system: as usual, the voters; authorities,
entities in charge for both maintaining the security and privacy of the elec-
tion; and administrators, which are responsible to create and manage elec-
tions. The system hopes to achieve some security properties described in
section 2.3.1, namely: universal verifiability; privacy; and transparency (not
mentioned before, but is described as some kind of End-to-End (E2E) verifi-
ability). The authors also acknowledge that a crucial requirement for remote
e-voting, coercion-resistance, is not treated, making it an open problem for
future upgrades. Another deficiency of this system is the lack of mechanisms
for individual vote verification.

Unfortunately, the source-code of this system was not available. Thereby,
it was not possible to test the usability and flexibility of the Adder voting
system.

Scratch, Click and Vote

This third system was developed in Poland, more concretely, in the Wro-
claw University of Technology [Kutylowski and Zagorski, 2008]. The approach
of this team was to develop an hybrid e-voting system based on previous work
by [Ryan et al., 2009](Prêt à Voter), [Chaum et al., 2008b] (Punchscan) and
[Cichoń et al., 2008] (ThreeBallot). By being a hybrid voting system, several
actions may require to be in-person actions (e.g. it is suggested that the usual
registration stage would be in-person), while other actions are made through



50 4. Helios

electronic means (vote casting). As a result, this may complicate the deploy-
ment of the system.

Together with the voter, there are two main entities in this system: the
election authority, which prepares the ballots; and the proxy, responsible for
producing the coding cards. Both pieces of paper combined form a complete
ballot and using the techniques described in the articles mention above, turns
the ballot securely random. When casting the vote on a computer, a virus or
any kind of malware will not learn anything from the voter choices. The only
cryptographic primitive needed is the signature of the ballot by the election
authority. To achieve this, they use Blind Signature (BS) (section 3.3).

Besides the difficulties of deploying such system, there are some issues
regarding usability. According to the authors, one reason is that the voter
must click next to every candidate, to choose whether is he voting for him or
not. The other reason is that he needs to find his candidate on a permuted
list of candidates. Despite this, most of the security properties are guaranteed.
The major drawback is vote-selling, which is possible if the buyer has access
to the ballot, the coding card used and the record of a voting session from the
voter’s computer. The assumption that guarantees the good functioning of the
system is that both authorities do not collude. It is also important to mention
that this system does not have distributed trust, a consideration made by the
IACR committee.

Easiest Election

Completely based on [Ryan et al., 2009], the Easiest Election was de-
veloped by a group of e-voting enthusiasts, including some authors from the
previous mentioned article that worked as advisors. This has the advantage
that most voting types described in Subsection 2.2.1 can be deployed. Only
the ones with an interaction like write-in votes cannot provide privacy to the
voters. The system was not complete at the time of the contest, and appar-
ently neither afterwards4 , but some description of how things would work can
be found on the official website5 and on the presentation.

Concerning the entities involved with this system, one can infer by the fact
that is based on the Prêt à Voter system, that this system has: voters, the

4After trying to test the application without success, and checking that the existing
elections had zero casted votes, in http://vote.easiestelection.com/, it was concluded
that the work was not finished or that it had been moved to another project.

5Official website: http://www.easiestelection.com/

http://vote.easiestelection.com/
http://www.easiestelection.com/


4.1. The IACR Contest 51

entity that cast the vote and may verify its correctness later; election author-
ity, which is in charge of distributing ballot forms, recruiting local officials,
publishing information, and so forth (in an electronic way, they are usually
represented as servers); auditors, which provide expert opinions on evidence
of proper functioning of the system; and help organizations, independent or-
ganizations that help the voters on non-private matters regarding voting or
checking procedures. Cryptographic techniques are used in two occasions.
The first is on the creation of ballots, resulting in encrypted ballots with a
unique id. The second, more complex, happens when a voter submits his vote.
Using mixnet (section 3.2), the system shuffles the votes, breaking the link
between the voter and the ballot, which results in anonymity for the voter. If
it uses a k number of mixnets, the system will be tamper-proof if at least one
of the k is honest.

As mentioned before, and differently from other systems, in Easiest Election
each ballot is unique. Therefore, an assumption that ballots cannot be forged
must be made. The authors refer some other assumptions that were made
to prove the correctness of the system, such as privacy of the polling booth
in which the voter marks and cast his vote. Another assumption regards the
bulletin board, which they assume that the published information is reliable.
Finally, an assumption concerning the electoral committee is made. The list
of eligible voters provided by them must be correct.

SVIS

Not much of information could be found about the SVIS voting system. It
was developed by several members of Japanese companies and, according to
the presentation, use mixnets (section 3.2) for handling the anonymity prob-
lem. Also accordingly to the presentation, the system, as an e-voting solution,
is not portable. Among the problems that the IACR reported is the authen-
tication of the voters, which may suggest that an automatic registration was
not implemented or that this system would be hybrid.

Punchscan

Punchscan was an international open-source project of a voting system
leaded by David Chaum and had the participation of several North American
universities. Later, it evolved to Scantegrity6, which is still a widely used vot-

6Punchscan: http://www.punchscan.org/
and Scantegrity: http://scantegrity.org/

http://www.punchscan.org/
http://scantegrity.org/


52 4. Helios

ing system. Like some systems previously described, this is an hybrid system.
The solution is oriented for optical-scan machines (see section A.1) and does
not make use of complex cryptographic primitives, but instead, some tricks to
substitute its job[Popoveniuc and Hosp, 2010].

Regardless of being hybrid, hence requiring some in-person operations, this
system was presented to inspire remote and electronic versions of itself. Begin-
ning with the entities involved, there are three that interact with the system:
as usual, the voter, which authenticates himself as legitimate voter and pro-
ceeds to cast his vote according to his preferences; the election authority, the
entity that manages the election (generation and decryption of ballots); the
candidates, the competitors that also have the role of auditors, challenging
the authority during the course of the election to check for its integrity and
consistency.

Roughly speaking, the trick behind Punchscan is on the creation of ballots.
Each ballot is composed of two pieces of paper, both marked with the same
id . On one piece, it is written the list of candidates, with a random tag, in a
random order. The tag cannot be seen unless the voter marks it as his choice.
Afterwards, a tag is revealed and he may optionally write it on the second
piece of paper. To cast his vote, the voter separates both pieces and inserts
the one with the marked choice on the optical-scan machine, saving the other
piece as a receipt7. Note that the receipt does not reveal the choice of the
voter, thus preventing vote selling and coercion.

The security properties defined in section 2.3.1 are preserved as long as
several assumptions are made. In [Chaum et al., 2008a], the authors divide
the assumptions in two sets, one concerning the privacy, for instance “no record
devices in polling booths” or “strict management of access to ballot boxes”, and
the other the integrity of the election, for example “auditors will not collude
with election officials” or “an effective voter registration system is used”.

Helios

Finally, an Internet Voting (i -voting) solution (Browser only) was submit-
ted by Ben Adida, from the Harvard University, with the so called Helios
system8. Its development was aimed for small elections of online communities,
student government, and other environments where trustworthy and secret

7This description regards the ballot from the Scantegrity system. The ballot from Punch-
scan is slightly different, but the principles are the same.

8More on Helios: http://www.heliosvoting.org/

http://www.heliosvoting.org/


4.1. The IACR Contest 53

ballots were required but coercion was not a serious threat. The web server
was implemented in Django, a Python web-framework, and on the client side
most operations, including those related to cryptography, were implemented
with JavaScript (JS) and HyperText Markup Language (HTML) technologies.
This system was inspired on [Benaloh, 2006], which in turn was based on [Sako
and Kilian, 1995].

As this system was chosen to be studied and researched, a complete de-
scription of it will be given on the following sections.

4.1.2 Why Helios?

Accordingly to the statement issued by the IACR board9, the Punchscan and
Helios voting systems were picked as the finalists for the contest. But since the
Punchscan team gave up, only the demo by Helios was provided. Due to the
characteristics of the system, such as being completely remote and web based,
the existence of documentation and technical papers, modern cryptographic
protocols involved, easy testing and modification, and being open-source, this
was the natural choice as the system to be further studied/used in this project.

Other systems, like Punchscan or Scratch, Click & Vote, also have good
qualities, but since they are hybrid, it would complicate the testing phases.
Adder and Easiest Election did not put their system’s code available, which
by itself has proved a major obstacle when studying them. Civitas was an
interesting system, but comparing with Helios, it was at an earlier stage of
development, having more technical problems. From SVIS, no information or
source code was found.

Another reason to such choice, is the fact that Helios system has been used
in some serious elections. The most relevant is described in [Adida et al., 2009],
where the system was used to elect the president of the Université catholique
de Louvain. A research from the Undergraduate Student Government from
the Princeton University concerning reforms in elections10, quoted Professor
Olivier Pereira saying the reasons why Helios was chosen11:

Three reasons motivated this choice. First, voters have a high

9Statement (“The 2010 IACR demo election”): http://www.iacr.org/elections/

eVoting/
10A reference to that research: http://usg.princeton.edu/component/content/

article/207-august-4-a-clear-direction.html
11Later, on the same year, Helios system turned out to be used on the Princeton Under-

graduate Student Government elections.

http://www.iacr.org/elections/eVoting/
http://www.iacr.org/elections/eVoting/
http://usg.princeton.edu/component/content/article/207-august-4-a-clear-direction.html
http://usg.princeton.edu/component/content/article/207-august-4-a-clear-direction.html


54 4. Helios

level of control at each stage, and we can verify that everything is
operating correctly, and thanks to the internet, a voter can verify
that her vote has been recorded. This system produces the weighted
count of the ballots submitted by voters, nobody (nor even a com-
puter) can ever determine who voted for whom. Finally, the system
makes it virtually impossible to vote incorrectly: first, the voter is
prompted to confirm his vote, and then he has the opportunity to
vote again if he thinks he is having a problem or made a mistake
(that is one of the great peculiarities of the system).

4.2 Overview

Helios is on its third version, constantly improving on the security measures
and used techniques, aiming to a greater modularity, flexibility and scalability
to allow different kinds of elections to different kinds of communities. In order
to understand the discussions and implementations on further chapters, in this
section a complete description about Helios, with emphasis in its workflow, will
be given, mostly based on: the available documentation12; on technical papers
since the first version of Helios [Adida, 2008, Adida et al., 2009]; on encoun-
tered attacks [Küsters et al., 2012, Estehghari and Desmedt, 2010]; and finally
inspecting the source code and conducting tests.

To simplify the explanation of the system, we consider the following sce-
nario: after the Camerlengo confirms the death of the Pope, the Cardinal with
most power, known as the Dean, summons the College of Cardinals to elect the
new Bishop of Rome (Pope). Due to high costs of travels, the Dean chooses a
cheaper way to elect the new Pope by using the Helios systems, allowing the
Cardinals to vote from a remote location. The adversary, or malicious entity,
will be known as Cardinal Lucifer.

4.2.1 Pre-election Stage

The function of the Dean in this election is to work as the election’s Adminis-
trator. Before handling election related matters, the Dean must authenticate in
an Helios server, which can be made through modern mechanisms like twitter,
google, facebook and even yahoo, or by registering in the system (Figure A.11,
note that this authentication process is not related with the one made by the
voters in a later stage of the election). Although the mechanisms are capa-
ble, if Lucifer, has access to Dean’s credentials, he could impersonate him and

12Documentation site: http://documentation.heliosvoting.org

http://documentation.heliosvoting.org


4.2. Overview 55

manage the election according to his will. Assuming that those problems will
not happen, the Dean is able to create the virtual Conclave.

Figure 4.1: Set of parameters to create an election.

Election Details. As seen in Figure 4.1, there is a set of parameters needed
to define the Conclave’s general information:

• Short name - is the election’s identification name. The name chosen will
be part of the generated Uniform Resource Locator (URL) which will
reference the election.

• Name - the official name of the election.

• Description - corresponds to the information about the Conclave.

• Type - there are two types: referendum and election. Does not have a
direct influence on the server’s, or election’s, behaviour.

• Use voter aliases - using voter aliases provides an extra layer of privacy.
This feature was added in [Adida et al., 2009] with two purposes:

1. In case someone manage to decrypt the votes that are published
during the election, it would still be impossible to link the vote to
the corresponding voter.

2. Some organizations may require that the voting server and authen-
tication server are two different entities. This way, if the voting
server is compromised, it would not contain any information of the
election participants.

https://www.dropbox.com/s/cquo3j9899kfonn/03%20parameters.png


56 4. Helios

• Private - this option modifies the behaviour of the election in two ways. If
it is private, than all the information, including the results, is confidential
and it is the administrator’s job to create the voters list. If it is public,
the information is available to anyone, but the administrator can still
decide whether the election is for anyone, or it is for only a set of people.

After defining that set of parameters, the Dean is re-directed to the home
page of the election (Figure A.12). Without any special order, still remains
crucial steps to completely prepare the Conclave and to finally freeze the elec-
tion.

Questions. The next possible step is to create a set of questions regarding
this election. Figure 4.2 exemplify how the process is done. In this case, the
Dean asks the electors to choose the 267th Pope and gives a list of possible an-
swers. Then, he decides whether the final result should be relative or absolute.
The last thing to decide is the number of possible answers to cast in a bal-
lot, which in this election, the Dean allows one to three choices or a blank vote.

Figure 4.2: Creating questions and corresponding rules.

When comparing between the voting types defined in 2.2.1 and the possible
combinations of this feature, one can conclude that there are some limitations
in Helios. For instance, using Helios, the Dean could not organize elections
that resort to the Preferential voting or the Write-in voting types. Later, in
the next section, it will be explained why.

Voters & Ballots. After the Dean defines the crucial question about who
will be the Pope, he proceeds to create a list of voters. To do so, he must

https://www.dropbox.com/s/9ec9gl6juld3wav/05_define_questions.png


4.2. Overview 57

upload a file with a specific syntax as seen in Example 4.1. This file contains
the list of voters in which each line corresponds to a specific voter, divided in
alias , e-mail , name.

� �
1 pedrofaria , pedro.faria .80 @gmail.com , Pedro Faria

2 pedrolopes , pedro_faria_22@hotmail.com , Pedro Lopes

3 vanialages , vania.mlages@gmail.com , Vania Lages

4 filipafaria , filipa.v.faria@gmail.com , Filipa Faria� �
Example 4.1: Example of a list of voters

After the upload, Helios does the parsing of the file and refreshes the web
page with the new data. The refreshed page will contain the names of the
voters, as well as generated alias to each one and a Smart Ballot Tracker that
will be used in the future (Figure A.13).

Trustees. In previous versions of Helios, the Dean would have to blindly
trust that the system would not decrypt individual votes. Now, he is able to
have more trustees (definition in Subsection 2.2.3), in addition to the system
itself, using a kind of Secrete Sharing (SS), which will be explained later, in
Subsection 4.3.1. However, this action of adding trustees, if used incorrectly,
could jeopardize the entire election. Thus, a warning is made by Helios every
time the Dean wants to add a trustee (Figure A.14).

Continuing the example, the Dean decided to add a Cardinal as a second
trustee to the election. For this task, a simple e-mail with a particular gener-
ated URL and invitation to the Cardinal is sent. Then, the election will be in
a kind of stationary state (as seen in Figure A.15) until the Cardinal uploads
his public key or the Dean decided to remove him as a trustee.

Independent Steps. In this stage, only the Cardinal invited as a trustee
will be involved. After receiving the invitation (Figure A.16), he follows the
URL to the page where he will be asked to generated a new pair of keys. After
generating the keys, as many times as he wants, he saves them. In this case,
saving is writing the keys in JavaScript Object Notation (JSON) format on an
empty file, as seen13 in Example 4.2.

Afterwards, the Cardinal uploads the public key to the Helios server. Mean-
while, a fingerprint14 of the public key, resultant from the function Secure Hash

13In this example, in order to maintain some clarity about it, the numbers were “com-
pressed”. Real-life numbers should have, in some cases, 2048 bits.

14Usually, the fingerprints in Helios are strings encoded in base-64.



58 4. Helios

� �
1 {

2 "public_key": {

3 "g": "148874922249"..."36318763589660808533",

4 "p": "163286320840"..."00238405503380545071",

5 "q": "613295662483"..."23435508370458778917",

6 "y": "380725418459"..."62972109814856710919"

7 },

8 "x": "171622450"..."632245368824456728"

9 }� �
Example 4.2: Example of a generated pair of keys.

Algorithm (SHA) over the key15, is presented to the Cardinal. It is important
that the Cardinal records that fingerprint because is his job to check if in fact
his key is being used. He may verify the validity of the fingerprint and his
secret key by using another feature of Helios (as seen in Figure A.17).

Freezing the election. Returning to the Dean’s point of view, all is left is
to freeze the election. This means that it will trigger a set of actions, such as:

• The election starts;

• The voters list becomes immutable;

• It is not possible to modify or create new questions;

• No trustees can be added;

• An email may be sent to every voter;

• It is now possible to cast votes.

4.2.2 Voting

After the election is prepared by the Dean, each eligible cardinal will proceed to
cast his vote. From an invitation received (this election is private), he follows
an URL to the virtual voting booth. The first view is a welcome page with
the instructions of the voting procedure (Figure A.18), which consists in three
steps:

1. Selecting the answers - The voter will first pick the cardinals that he
believes are best suited to be the next Pope. He may select up to three
cardinals, as seen in Figure 4.3, which is the number of choices limited
by the Dean in the previous stage of the election.

15By default, the function used is SHA-256



4.2. Overview 59

Figure 4.3: Choosing the next Pope.

2. Encryption - After confirming the choices, the voter’s browser will pro-
ceed to the encryption of the ballot. At the end of this step, a bal-
lot tracker, a digest of the encrypted ballot, is given to the voter (Fig-
ure A.19). Note that at this time, the voter didn’t authenticated himself
to Helios. In other words, anyone aware of the election could performed
these operations.

3. Submitting - Before cast his ballot, the voter is faced with two possibili-
ties, either he audit the encrypted ballot or he submits it. If he chose to
audit, a complete description of the ballot, with plaintexts and cipher-
texts, is shown to him. Then, he can use the description and a feature
of Helios (or an independent one) to confirm the correctness of the en-
cryption (Figure A.20). Afterwards, the voter is conducted back to step
2, and he could repeat this operation over and over again until he is
fully convinced of the Helios’ honesty. When convinced, and after a new
encryption of the ballot, the voter can authenticate himself and cast his
vote (Figure A.21). Afterwards, the voter can keep track of his vote by
cheking the Smart Ballot Tracker (SBT) (Figure A.24).

4.2.3 Post-voting and Results

The current version of Helios removed the “end date” of the election. Thus,
the Dean is in charge of ending the election. The tally is then computed by
Helios, but the results will be encrypted until each trustee share is portion of
the secret key(Figure A.22). At this moment, the Dean must send a warning
to each one of them to upload their portion of the secret. This is a crucial
stage, because, in the current version of Helios, the missing of a single trustee
will completely ruin the election (the results cannot be retrieved). When all
the shares are combined, the Dean is able to release the final results as shown

https://www.dropbox.com/s/y7bnt18wiaukaaf/27_pick.png


60 4. Helios

in Figure 4.4. An e-mail is sent to each participant announcing the results
and, if there is a winner, white smoke will be visible.

Figure 4.4: Final results.

4.3 Backstages

Before starting to explain the underlying operations performed by Helios, it
is worth recalling some of its characteristics. First, although this system im-
plements some few techniques to prevent coercion, the voters are still liable
to receive threats or bribes by malicious entities. In other words, the se-
curity property “coercion-resistance” from Subsection 2.3.1 is not achieved.
Another characteristic is that Helios was implemented to be fully open-audit.
This means that all data stored by Helios can be retrieved through a kind of
Application Programming Interface (API), and can easily be audited or ver-
ified. Helios preserves E2E verifiability, needed to assure the integrity of the
elections created in this system. Finally, Helios uses Homomorphic Encryp-
tion (HE) as the main cryptographic technique to ensure the security of this
voting system.

This section will follow the same structure as the previous section. For
each stage, a description of the techniques used will be given, with emphasis
on the cryptographic techniques used.

4.3.1 Pre-election Constructions

As it was mentioned in Subsection 4.2.1, after the Dean freezes the election,
all the parameters must be defined. Using the API, those parameters will
result in JSON object of Example 4.3. The <PUBLIC KEY> and <QUESTION>

https://www.dropbox.com/s/kjgdwokeo1aat7u/44_nextpope.png


4.3. Backstages 61

tags corresponds to other JSON structures that will be explained later. The
first step to audit the election is to confirm that the message digest of that
structure is the same as the one presented on the website. This will assure the
integrity of the public key and the other election parameters involved on the
encryption of ballots.� �

1 {

2 "cast_url": "http ://188.82.103.165:8000/ helios/elections /737

eea50 -0625 -11e2 -a16b -1 c659dec9333/cast",

3 "description": "Who will be the 267th Pope?",

4 "frozen_at": "2012 -09 -24 09:03:52.125605",

5 "name": "Conclave #267",

6 "openreg": false ,

7 "public_key": <PUBLIC_KEY >,

8 "questions": [<QUESTION >],

9 "short_name": "popenumber267",

10 "use_voter_aliases": true ,

11 "uuid": "737eea50 -0625 -11e2 -a16b -1 c659dec9333",

12 "voters_hash": null ,

13 "voting_ends_at": null ,

14 "voting_starts_at": null

15 }� �
Example 4.3: Election structure

Key Generation. In order to create the public key pk of the election, each
trustee, together with Helios, will generate an ElGamal Encryption (ElGamal)
public key pki, which will be composed by the prime p, the prime-order q, the
generator g and the public value yi. The value x of y = gxmodp will be secretly
saved by each trustee. Afterwards, all pki will be combined, multiplying the
public values yi. The result, pk, will be stored in Helios server as the JSON
structure in Example 4.4 16.� �

1 {

2 "g": "0966798589660808533",

3 "p": "1503697493474682071",

4 "q": "78917",

5 "y": "7865248494343439092"

6 }� �
Example 4.4: ElGamal public key structure

16Once again, the numbers were shortened for ease of understanding of the example. For
instance, the value y is a 2048 bit long prime number.



62 4. Helios

Questions. At this point, the Dean has only to define the questions of the
election. As it was mentioned before, Helios uses HE to tally the final result
of the election. Thus, the voting types implemented by Helios were created in
order to make it possible to use the homomorphic properties in the tallying
stage (see Section 3.1). This is the reason why the Dean was not able to
chose a different kind of voting back in Subsection 4.2.1. The structure from
Example 4.5 was generated according to the question created by the Dean.� �

1 {

2 "answer_urls": [null , null , null , null , null , null , null ,

null , null , null],

3 "answers": ["Cardinal Peter Kodwo Appiah Turkson",

4 "Cardinal Angelo Scola",

5 "Cardinal Tarsicio Bertone",

6 "Cardinal Jorge Mario Bergoglio",

7 "Cardinal Angelo Bagnasco",

8 "Cardinal Christoph Sch\u00f6nborn",

9 "Cardinal Marc Ouellet",

10 "Cardinal Timothy Dolan",

11 "Cardinal Albert Malcolm Ranjith",

12 "Cardinal Norberto Rivera Carrera"],

13 "choice_type": "approval",

14 "max": 3,

15 "min": 0,

16 "question": "Pick the 267th Pope!",

17 "result_type": "absolute",

18 "short_name": "Pick the 267th Pope!",

19 "tally_type": "homomorphic"

20 }� �
Example 4.5: Question structure

4.3.2 Encrypting Ballots

The encryption of each ballot is made locally in the voter’s browser. No com-
munication during this stage is supposed to happen. Another requirement is
that the access to the virtual booth should be anonymous17 in order to prevent
some attacks where the knowledge of the voter is required, such as imperson-
ation. In fact, the only time the voter should present some of his information
is at the step of the vote’s submission, where the only available information is
the encrypted vote.

17This does not happen in Helios’ private elections.



4.3. Backstages 63

Each vote structure saved in Helios is composed by several encrypted an-
swers, the election fingerprint and the election ID, as shown in Example 4.6.
According to the documentation, the only purpose of the ID is for convenience
when generating some HTML pages. On the other hand, the fingerprint is im-
portant because it will link the vote to the election. Thereby, each encrypted
answer has been formed according to this fingerprint, which means that when
verifying the votes, one can compare the fingerprints and see, for instance, if
no question or choice has been changed. The final attribute of this structure
is an array of encrypted answers, one for each question of the election.� �

1 {

2 "answers": [<ENCRYPTED_ANSWER >],

3 "election_hash": "WUxMeT4UQekAYsS4Xeeb/soIK47/JTbOrMwQvXTs9RU

",

4 "election_uuid": "737eea50 -0625 -11e2-a16b -1 c659dec9333"

5 },� �
Example 4.6: Vote structure

The encrypted answer structure is far more complex, as can be seen in
Example 4.7, which is the result of an encrypted answer from the previous
example. This structure has three attributes:

• choices - is an array in which the number of elements is equal to the
number of choices of each question. Each element is an Exponential
ElGamal Encryption (EEG) ciphertext, composed by an “alpha” and
“beta”, which respectively corresponds to c1 and c2 of the EEG descrip-
tion in Subsection 3.1.2. The ciphertext was created with the election’s
public key and a particular randomness for each element.� �

1 {

2 "choices": [

3 {"alpha": "1454391040", "beta": "9197231515"},

4 {"alpha": "8983218606", "beta": "1826285502"},

5 ...

6 {"alpha": "9746932504", "beta": "9780504308"}

7 ],

8 <Individual_Proofs >

9 <Overall_Proof >

10 }� �
Example 4.7: Encrypted answer structure

• individual proofs - demonstrated in Example 4.8, this attribute is an
array that also contain the same number of elements as the previous



64 4. Helios

attribute. Each element contains disjunctive ZKP that the respective el-
ement in choices encrypts either a 0 or a 1, i.e. prevents a malicious voter
to encrypt a value bigger than one, which in turn could cause a tremen-
dous impact on the final result, as will be explained later. The ZKP
involved is the Chaum-Pedersen protocol described in Subsection 3.4.3.
Comparing with Figure 3.6, the attribute “challenge” is c, the “response”
is t, and the “commitment”, which contains “A” and “B”, is the pair
(gs, ys).

• overall proofs - This is also an array, but the number of elements is equal
to the maximum number of possible choices, plus one. For instance,
recalling the previous example, each cardinal could choose at least three
candidates to be the next Pope. For each number of possible choices,
{0, 1, 2, 3}, an ZKP will be generated, making, in this case, a total of
four. The ZKP used is the same as before. This proof will guarantee the
cardinal did not chose more than the limit set by the Dean.� �

1 "individual_proofs": [

2 [{"challenge": "332889775",

3 "commitment": {"A": "1055566340", "B": "105207753264"},

4 "response": "47706"},

5 {"challenge": "431463304",

6 "commitment": {"A": "2837462863", "B": "142091740803"},

7 "response": "18979"}],

8 ...

9 ],

10 "overall_proof":[

11 {"challenge": "212991023",

12 "commitment": {"A": "6312567672", "B": "782646636317"},

13 "response": "48028"},

14 ...

15 ]� �
Example 4.8: Individual and Overall Proofs

Auditing. Recall that the voter in the voting stage could choose to inspect
the validity of the formed encryption. This time, the structure produced will
have the information of the structure in Example 4.6 plus all the randomnesses
used to encrypt the answers. This way, a voter can verify has many times he
wants if the encryptions are well formed and whether in fact it corresponds
to his choices. To prevent the verified encrypted ballot could be used has a
receipt to vote selling, this vote will become useless and impossible to cast.
On the other hand, it could be posted in a Bulletin Board (BB) for public
checking.



4.4. Assumptions & Improvements 65

4.3.3 Tallying and Decryption

To compute the tally, the Helios server will simply put in use the additive
homomorphism of each EEG ciphertext. As demonstrated in Subsection 3.1.2,
by multiplying all the ciphertexts corresponding to a candidate, the result will
be the encryption of the sum of all the votes. For instance, in the general ex-
ample, by multiplying the first element of the attribute answer of each casted
vote, the result will be number of cardinals that vote for the candidate “Peter
Turkson”, as can be seen in Figure 4.3. This way the final result can be com-
puted without revealing a single vote.

Decrypting the tally implies having the knowledge of the secret key that
corresponds to election’s public key used to encrypt the votes. Thus, after
computing the tally, all the trustees involved must upload their secret key in
order to combine them and thereby create the election’s secret key, so that is
possible to decrypt the tally.

Auditing. With the API of Helios, all the public data of the election is
available to public. Helios also provides one tool to check the integrity of that
data, assuring the voters that even if the administrators were corrupt, they
could not produce a fake tally. The tool takes as input the election URL and
using the API will retrieve all the information regarding (Figure A.23):

• Election - check the parameters of the election, comparing with the public
fingerprint, and all the voters who took part in the election.

• Ballots - for each voter, the tool will download the last casted vote. Then,
for every question, will check for the correctness of the options and the
global values, making use of the ZKP presented in 4.3.2.

• Trustees - to verify if the public key was well formed and if the trustees
presented are in fact the trustees supposed to protect the election.

• Tally - to inspect the vote count and if the encryption was made using
the correct key.

• Final Result - compare the final result published with the final result
inspected.

4.4 Assumptions & Improvements

The number one rule when creating an e-voting scheme is that it is impossible
to create a secure system without making a few assumptions. For instance,



66 4. Helios

it is impossible to create a completely remote e-voting scheme in order to
guarantee coercion-resistance without compromising the rest of the security
properties (see Subsection 2.3.1). In fact, to assure coercion-resistance, at least
the assumption “the voter must have a single moment of privacy” is required.
This section is divided in two: the first part will describe the assumptions made
by Helios; and the second part will present some works and improvements over
Helios, in order to change its assumptions or add new capabilities or features.

4.4.1 Assumptions

The first motto of Helios was “trust Helios for privacy, trust no one for in-
tegrity”. This principle still remains on its third version and it is the base
for the most important assumption when using Helios as a secure voting sys-
tem: trust Helios. Trusting Helios assumes that the server is not corrupted,
otherwise the following problems could occur:

• Single ballot decryption - as described in Subsection 4.2.3, in order to de-
crypt the final tally, all the trustees must upload their private knowledge
of the election’s secret key, so Helios is able to do it. In the end, Helios
will have all the encrypted votes, the links to its owners and the secret
key. So no measure exists that prevents a corrupt Helios to decrypt those
single votes. Note that the secret key to decrypt a single vote is the same
as the secret key to decrypt the tally.

• Ballot stuffing - Figure 4.5 shows the election’s state moments before the
end. As can be seen, four out of nine voters did not cast their votes at
that moment, and two of them will not cast it ever. This opens a issue
in case of a corrupt Helios, because it could impersonate inactive voters
and cast their votes at free will and no one, except those voters, would
find out.

Safe computer. Recalling now the voting stage in Subsection 4.2.2. The
operation to cast a vote is done through the browser of a voter’s personal
computer. Thus, the privacy of the voter is directly related to that browser/-
computer’s integrity, which in turn is prone to virus, worms, spyware or any
other kind of malware. Therefore, another assumption is required in Helios:
all voters cast their votes in uncorrupted browsers/computers. In the next
chapter, an attack regarding this assumption will be explained.

Computational Privacy. As it was explained before, the choices are en-
crypted using EEG (see Subsection 3.1.2). Like most of other cryptographic



4.4. Assumptions & Improvements 67

Figure 4.5: Moments before the election is finished.

techniques, its defense is based on a known hard problem, which in this case
is the Discrete Logarithm Problem (DLP). This means the protection of using
EEG does not result in everlasting privacy. Depending on the values involved,
it might take decades or centuries to decrypt it by using means of cryptanalysis.

4.4.2 Improvements

Since Helios is being actively studied by the academic and scientific community,
it is normal that some new suggestions, or even implementations, arise in
order to improve this system. The following paragraphs briefly describe recent
works, some of which are still in progress, that try to solve some of the Helios
problems.

Usability. In [Karayumak et al., 2011] and [Karayumak, 2010], studies on
usability had been made18. Some problems related to the site’s aspect were
pointed, such as a mix of links and buttons, inconsisting wording when de-
scribing each step of the voting stage or the fact that there is no back buttons.
Another lack of guidance and consistence was found when changing between
the steps of re-encrypting the ballot and verifying its encryption in the voting
stage and auditing the election. According to their research, the steps were
too confuse and error prone, which cause most of voters to skip those steps.
To see the importance of a good usability in a election, if most voters do not
verify their votes, the election’s integrity can not be assured. This problem is
considered a major con argument against E2E verifiable e-voting schemes.

18Other usability tests performed can be found in: http://www.jannaweber.com/?p=129.

https://www.dropbox.com/s/5imrkchafxtwig4/34_aftersometime.png
http://www.jannaweber.com/?p=129


68 4. Helios

Provable ballot privacy. An attack against Helios has been found and
demonstrated in [Cortier and Smyth, 2011] and more specifically in [Smyth,
2012]. This attack is known as the “Replay Attack” and consists in copying
casted votes. Imagine the following scenario: in an election with three voters,
Alice, Bob and Mallory. Mallory wants to know who is the chosen candidate
by Alice. Since Alice will not reveal her vote, Mallory copies the casted vote
of Alice. In the end, Mallory will know that the candidate that receives two
or three votes will be the candidate chosen by Alice. But, as stated in the
Helios documentation19, this attack only matters if a great number of voters
are willing to give up their votes in order to invade the privacy of a single voter.

Nevertheless, some counter measures had been created to repel this attack.
The first suggested was to delete duplicated fingerprints in the smart ballot
tracker (remember Figure 4.5). This measure has the setback of being easily
overcome because since the fingerprint is computed over a JSON structure
(Example 4.7), it can be corrupted, for instance, by inserting an extra space.
Hence, the value of the fingerprint will be different but the cryptograms will
not. Currently, Helios is adopting more complex measures to detect copies
and sub-copies of encrypted ballots. In [Bernhard et al., 2011], a more for-
mal approach to solve this problem is presented. Basically, they adapt known
algorithms that prevents a special attack, known in literature as “chosen ci-
phertexts attack”, to the Helios e-voting scheme. They also modify the ZKP
in order to prove the correction of the encryption.

Mixnet with Helios. As mentioned before, one limitation of Helios was the
fact that only a few voting types were permitted. Another flaw was the cre-
ation of a ciphertext per candidate in the ballot encryption. As a result, ballot
encryptions for a great number of candidates would translate in a great num-
ber of randomnesses, ciphertexts, individual proofs and overall proofs. Thus,
in [Bulens et al., 2011], the authors go back to the first philosophy followed by
Helios, the use of mixnet e-voting schemes, and create a variant of this system.

Apart from the cryptographic techniques involved, there were significant
changes on the Helios workflow. The major difference is the two kind of
trustees, the shuffling trustees and the decryption trustees, which consequently
changed how the generation of the election parameters were performed as well
as the decryption stage. Moreover, they put in use a secure submission aug-
mented cryptosystem in order to avoid some kind of replay attacks. In the
lessons learned from this variant of Helios, the authors give emphasis to the

19More precisely in: http://documentation.heliosvoting.org/

attacks-and-defenses.

http://documentation.heliosvoting.org/attacks-and-defenses
http://documentation.heliosvoting.org/attacks-and-defenses


4.5. Summary 69

fact that HE is still a better choice if there is a small number of candidates.
Otherwise, mixnet has a better performance and has the advantage of provid-
ing a wider set of voting types. Nevertheless, a future plan already mentioned
in the official site of Helios, is to incorporate this feature in future versions.

Everlasting privacy. Still not published, the ongoing work by Jeroen van
de Graaf et al.20 was presented in SecVote2012 summer school. This work
tries to overcome the computational assumptions regarding privacy property.
According to them, it is preferable to have an unconditional privacy of the
ballots with an computational integrity of the tally than the opposite. In the
motivational examples, they show the case where after decades of trying, an
evil dictator gets elected democratically. Then, after years of cryptanalysis,
he decrypts the election ballots where he lost and goes after the voters who
voted against him. Regarding Helios, this is true for its first version, where
the name of the voter was placed next to the ballot submitted in the BB.

The basic idea is to use Pedersen commitments as an alternative way to
encode the votes. The use of HE still remains but with a few changes. Some
secret channels are needed to provide secret knowledge in order to decrypt the
votes, with the use of the Paillier encryption (see appendix A.2.2). However,
some assumptions still exists, such as “the Paillier encryption is semantically
secure”. As it was mentioned above, this is an ongoing work, and it still does
not have a practical implementation.

4.5 Summary

The first section of this chapter presented a contest which aimed to create a
secure remote e-voting system. It is interesting to compare the requirements
of the contest with the requirements found and studied in chapter 2. One
can easily conclude that the security of a e-voting system can not rely only in
cryptographic matters. Nevertheless, they are essential to provide security.

A remote e-voting system - Helios - is presented in detailed. This system is
not perfect, but is one of the most prized and researched that can be found in
literature. Its principal characteristics: be E2E verifiable, which will protect
the election’s integrity, and oriented to low coercion elections, i.e. this system
was implemented for elections where coercion is not a relevant issue. Of course,
due to that fact, this system could not be used for high stake elections, such

20Presentation: http://secvote.uni.lu/slides/jvdgraaf-everlastpriv.pdf.

http://secvote.uni.lu/slides/jvdgraaf-everlastpriv.pdf


70 4. Helios

as government elections.

Finally, the assumptions that guarantees the security of Helios, along with
works that aim to improve it, can be found in the last section. The next
chapter will be about other improvements and ideas on this system.



Chapter 5

Improvements

Eddy: I assume he will still be carrying when he comes
back from the job.
Soap: Oh, you assume, do ya? What do they say about
assumption being the brother of all f*ck-ups?
Tom: It’s the mother of f*ck-ups, stupid!

Lock, stock and two smokin’ barrels

Up to this point, Chapter 2 gave a detailed overview of the Electronic Vot-
ing (e-voting) world. Next, in Chapter 3, the majority of cryptographic prim-
itives used in e-voting protocols were presented, to achieve the requirements
and security properties of the previous chapter. Finally, Chapter 4 shows how
those primitives were employed in a successful e-voting system called Helios,
an End-to-End (E2E) open-audit system, whose biggest goal is to protect an
election’s integrity. In this chapter, we put into practice the knowledge ac-
quired during the study presented in the previous chapters. Our goal is to
create or modify features of Helios in order to improve security and usability
of this system. Thus, the following sections will describe some changes made
to the system and what results are expected from them. In:

• Section 5.1: presents how a double-password scheme could increase pro-
tection against coercion and vote selling.

• Section 5.2: a new entity is introduced to decrease the level of trust in
Helios and provide anonymity when a voter accesses the virtual booth.

• Section 5.3: employs a cryptographic primitive to deal with a problem
found with the above solution.

• Section 5.4: using a technique called code signing, more guarantees of
authenticity and integrity are added to the voting booth.

71



72 5. Improvements

• Section 5.5: presents a prototype of an Android application, which aims
to be a new kind of voting booth.

Finally, Section 5.6 makes a brief summary of this chapter and mention
some other ongoing work.

5.1 Working against coercion

As it was mentioned throughout the previous chapter, Helios was not conceived
to achieve coercion-resistance. This section presents measures to fight coercion
in Helios. It is divided in two parts: starts by describing simple attacks and
available counter-measures to protect voters. Then, in Subsection 5.1.2, a
solution is proposed, based on changes to the Helios workflow. We explain
how the solution works, describing some details of implementation and finally
discuss the implications of the proposed solution.

5.1.1 The problem

The following paragraphs describe situations in Helios that may lead to terrible
problems in elections that use this system.

• Vote buying - continuing with the example of Section 4.2, imagine that
Lucifer wants to buy some votes to support his favorite candidate. To
do it, he would approach some cardinal and offer a bribe if that cardinal
proves to vote in his candidate. In turn, the cardinal would cast his vote,
i.e. he would follow the steps described in Subsection 4.2.2, right in front
of Lucifer. If the resultant fingerprint maintains until the end of the
election, in other words if it appears in the Smart Ballot Tracker (SBT),
Lucifer will know that the cardinal voted in his favorite candidate and he
will give him the bribe. Note that Lucifer can approach as many voters
he wants, in order to corrupt them, because he only needs a small period
of time during the available time to cast a vote, as shown in Figure 5.1
a).

• Threats and bullying. Now Lucifer intimidates a certain cardinal to vote
in a particular way. Like the previous situation, he can approach at
any time one of the voters and coerce him. Helios may already provide
measures to fight low coercion, but for clarity, consider the following two
levels:

– Bullying - if Lucifer only coerces a cardinal during a small period
of time during the election, as seen Figure 5.1 a), that cardinal still



5.1. Working against coercion 73

beginning end

beginning end

coercion

coercion

beginning end

coercion

a)

b)

c)

Figure 5.1: Different periods of coercion time.

has the opportunity to re-vote and change the casted vote at a later
time. But Lucifer can still be succeed if he coerces the cardinal
during all the time of the election, as seen if Figure 5.1 c), or in the
last momment b). Note that the original Helios will always update
the SBT.

– Threats - considering a higher level of coercion, if Lucifer threats
a cardinal, he only needs to make sure that the cardinal will not
change the vote until the election ends, just like the vote buying
situation.

5.1.2 One possible solution

There are several ways suggested in literature to provide coercion-resistance
in e-voting schemes. The solution we have developed to Helios was inspired
in [Clark and Hengartner, 2011]. To overcome the problem we modify the
workflow of the system, by creating a registration stage before the election is
created. Like most improvements in Helios, this solution has also assumptions,
namely:

1. We continue to trust Helios for privacy

2. The registration is made in a secure way, e.g. in person.

3. When the voter is alone, he will seize the opportunity to cast a vote.

Continuing with the general example, each cardinal is invited to register in
Helios. This registration will be independent of any election and the cardinal
must fill a typical form with his information and a set special passwords. This



74 5. Improvements

set of passwords will be composed by one called secured pass and a coerced pass,
and all of them should be easy to remember, specially in stressed situations.
Helios will then store the passwords in a secure way, for instance, by saving
their fingerprints instead of the real value. This stage will end before the
election starts. Afterwards, it will proceed normally with the Dean preparing
the election and inviting all cardinals to participate. When each cardinal access
the voting booth and proceed to cast his vote, instead of credentials he will be
asked to insert one password. Helios will count only the votes submitted with
the secured pass, hence the need to trust Helios.

How it will affect coercion? First, this approach will affect Helios’ be-
haviour, depending on the type of password submitted. Note that it is in-
tended to modify the Helios to a minimum in order to not remove the features
of its original version, so the voting booth will have no differences. Neverthe-
less, fooling the coercer requires changes in the SBT, as it will be explained
accordingly to the following situations:

• No coercion - the cardinal simply inserts the secured pass when it is asked
to cast the vote. In the SBT, the fingerprint will be normally placed next
to the cardinal’s alias. If the cardinal do not insert an valid password,
Helios will not warn him, but the ballot will be ignored. If the cardinal
re-votes with the secured pass, Helios will refresh the SBT.

• Minimum period - during the time of the election, Lucifer will approach
a cardinal and coerce him to vote in a certain way. When the password
is asked, the cardinal will submit the coerced pass and cast the encrypted
ballot. Helios is now warned that the cardinal is under threat, so it will
update the smart ballot tracker to apparently accept the ballot. Since
this is a small time period, when Lucifer leaves to coerce another voter,
the cardinal may re-vote in a desired way. Helios will not update the
SBT with the valid vote, which makes Lucifer uncertain whether the
cardinal has changed his vote or not. In case of a second coercion attack,
the cardinal submits again an encrypted ballot with the coerced pass. In
other words, after the first submission with the coerced pass, Helios will
only update the SBT if the ballot is submitted using that password.

• Last moment - this solution still solves the coercion problem if Lucifer
coerces the cardinal moments before the election ends. But to solve it, a
weak assumption is needed: during the free time, the voter cast a valid
vote (assumption 3). If the cardinal casts one valid vote prior to the
coercion time it will still be counted when submitting a ballot with the
coerced pass. Helios will refresh the SBT only to fool Lucifer.



5.1. Working against coercion 75

• Maximum period - this situation results in the same problem as if the
previous assumption fails. This solution cannot solve it. If the coercion
time is the same as the duration of the election, the cardinal cannot
fool Lucifer and vote in the way he wants. On the other hand, this
solution still brings advantages when comparing with the original Helios.
Like the cardinal, Lucifer cannot has his vote convincingly submitted
because, like the previous situations, he does not have the guarantees
that the encrypted ballot was submitted using the secured pass. Most
likely, this scenario will end in abstention by the cardinal, with Helios
knowing why. Another benefit of this solution when comparing with the
original version, is that one coercer can only successfully make one voter
to abstain, since he needs to spend all the duration of the election with
that voter.

Implementation details. The first problem regards the registration stage.
Instead of following the second assumption, it was decided to keep the invita-
tion by e-mail, for the sake of clarity. This invitation will lead to a registration
form where the voter will choose the two kind of passwords (Figure 5.2).

Figure 5.2: Registration with two passwords.

Internally, the voter structure was improved to receive two more attributes,
the coerced pass and secured pass. Only the digest of those passwords are
stored. Together with an instance of an Helios’ election, a new JavaScript
Object Notation (JSON) structure is formed, as seen in Example 5.1.

Visually, no alterations were needed. This was a naive implementation, only
to be considered as a proof of concept. There were other personal information,
regarding the voter, ready to be stored, such as phone number, in order to help
authorities deal with coercing situations. But this required a more complex
approach to this problem, therefore it was left for future work.

Online registration. The registration was conceived to be in-person, but
is interesting to see how the e-mail feature could complicate the attack of a



76 5. Improvements

� �
1 {

2 "election_uuid": "90ae293e -f94a -11e1-b06d -12313 f028a58",

3 "name": "Leonel Braga",

4 "uuid": "53f3df48 -b57f -4f3f -9eed -a810efe018d2",

5 "voter_id_hash": "L5lHLWFz6rlMWhxCxNRDIKkz7K6lO6CKXH5z+OnINMc"

,

6 "voter_type": "password",

7 "secured_pass": "soQYAIT5bLwKIYfLrECOAioaoPQg7o6LjjBCu0b6yg8",

8 "coerced_pass": "hrkV/MYdFMp+hynqiiMTk32oBVZ/Xzu5nhs2m9m6HnI"

9 }� �
Example 5.1: New voter structure jointly with election information.

coercer. He would need to spend at least the last moment of the registration
stage until the start of the election, assuming that the voter will complain to
the authorities. To better see the impact of what this implies, imagine that
the ellipsis of Figure 5.3 means weeks, i.e. the time between the end of the
registration stage and the start of the election. Moreover, this time could
be extended if there were means to fool the coercer in the registration stage.
Nevertheless, the solution makes coercion impractical, or at least too costly.

electionregistration

coercion

...

Figure 5.3: Amount of time needed to successfully coerce a voter.

Of course, for a system be considered secure, all scenarios, even the im-
practicable ones, must be taken into account. But in case of large elections,
for instance government elections, a few coerced voters would not make much
of a difference.

Con arguments and open problems. There is a longstanding battle be-
tween the authors who defend that the most important security property that
a system must preserve is verifiability and the authors who defend complete
privacy. Apparently, when designing an e-voting scheme, achieving one of the
properties implies making the other very hard to obtain. This is precisely what
is happening with the solution proposed. If on one hand the changes improved
the defenses against coercion, on the other they may jeopardize the verifia-
bility of the election. More specifically, it is still possible to check individual
encryptions for correctness, but in turn, verifying the tally cannot be made by
the coercer. That is, the coercer cannot know which votes are being counted



5.2. Pseudonyms 77

since he is able to calculate the receipts of the SBT and check for his coerced
vote. Summing up, the E2E universal verifiability (see Subsection 2.3.1) is
damaged by the presented solution.

Hence, a big open problem is how to achieve the damaged property and
still preserve the anti-coercion measures. The assumption to leave the integrity
of the tally to the hands of Helios is too strong. Adding an external author-
ity in charge of checking the integrity lead to the usual problems of collusion.
Removing the receipts, i.e. remove the fingerprints of the ballots, may lead
to a solution for universal verifiability but harms the individual verifiability
property. Hence, one can conclude that improving coercion-resistance in He-
lios has no trivial solution without compromising the rest of security properties.

Another con argument may be the poor usability of this solution. It is
required that the voter memorises two different passwords and Helios cannot
warn him if he accidentally uses a bad one. This goes against the definition of
usability from Subsection 2.3.2, where it claims that the interface should help
the voter from accidentally cast wrong votes.

5.2 Pseudonyms

When studying Helios, a contradiction in the voting stage was found. In the
pre-election stage (Subsection 4.2.1), the Dean may choose to create a pri-
vate election. By doing so, it prevents external entities to access the election’s
home page and the voting booth, and thus protects all the data related to
that election. In order to eligible voters access the booth, they must insert
the same credentials that they use to later cast a ballot. But accordingly to
the documentation, the access to a booth should be anonymous, to prevent
a corrupt Helios from giving a tampered booth to a targeted voter. Recall
that for that voter, the biggest defense against a tampered booth was that
the authentication was made only after the ballot encryption, which does not
prevail in private elections.

This section presents a possible solution to defend targeted voters and tries
to prevent the problems that may happen with a corrupted Helios. Subsec-
tion 5.2.1 explains the need of registration to achieve anonymity and how it
was used to overcome a different problem. The next subsection propose a solu-
tion with similarities with the previous one, but with a few changes that may
decrease the level of trust on the entities involved.



78 5. Improvements

5.2.1 The need of registration

The registration problem has already been approached in [Adida et al., 2009],
but with a different motivation. According to the authors, their motivation
was the potential risk of ballot stuffing, especially considering balanced elec-
tions. Since no registration is needed on the original Helios, inactive voters
can have their votes submitted by a corrupted version of Helios. The authors
assume that if a voter wants to register in an election, then he will be an active
part of the election and will get a permission to vote. Hence, there will be no
credentials to inactive voters.

Since their solution was specific for one case, the university election, they
used the university’s authentication infrastructure to vote on behalf of voters,
as seen in Figure 5.4. Thus, this new entity must be trusted, since he is in
charge of submitting ballots. There is no detailed description: of how it was
implemented, besides the use of oAuth protocol1; of the data exchanged in the
communications between the entities; about the registration process and how
it was conceived.

Alice

Helios

Custom Auth

Encrypted vote
+ credentials

Encrypted vote +
“Alice” + HMAC

Figure 5.4: New entity introduced in Helios.

Registration. According to the authors, every potential voter receives an e-
mail with a link to a secure registration website. Then, the voter authenticates
with his university credentials. A random alias is assigned to him, along with a

1Protocol description can be found in http://oauth.net/

http://oauth.net/


5.2. Pseudonyms 79

password. A document signed by the university’s central authority is given to
the voter as a proof of registration. Finally, the voter is registered and is able to
cast votes on the election. This process gives a lot of power to the university’s
central authority. It centralizes the knowledge of the alias, passwords, and IDs
of the voters. It can impersonate any voter, at any time during the election.
A trust assumption is needed in order to prove the security of this scheme.
Moreover, the contradiction still maintains. The access to a private booth is
done using the same credentials that are used to cast a vote.

5.2.2 Independent entities

The solution proposed in this subsection consists in creating an extra entity
independent of Helios, and it will be described comparing with the workflow
presented in 4.2. The new entity will be called Registration Authority (RA), as
seen in Figure 5.5, and is responsible for managing pseudonyms and passwords
among the voters.

Pre-election Stage. Recall when the Dean uploads a list containing all
the cardinals supposed to participate in the election (Example 4.1). Then,
Helios sends a list of valid tokens to RA, and for voters, instead of sending
an e-mail with credentials to enter in the election, Helios will send a link
for the virtual booth, which is the same for every voter, a registration link
with a particular token ti and an end date for the registration process. Helios
will then use a mechanism of Public-key Cryptography (PKC), say ElGamal
Encryption (ElGamal), and publish a public key for the users encrypt their
future pseudonym. Note that this key has nothing to do with the key that
encrypts the ballot.

Helios

Voter

tokens list

registration
ce

rt
efi

ca
ti

on

RA

t i

ac
ce

ss
pa

ss

b
ooth

link
+
t
i

link

Figure 5.5: Registration stage.



80 5. Improvements

Afterwards, each voter will use the token ti received and use it to register
with the RA. The token will act as an ID to prevent multiple registrations
by one voter and as an authorization to get the general password to access
the booth . Throughout the registration, the voter will choose his pseudonym
that encrypts with the Helios public key, and the vote casting password. In
the end, a certificate signed by the RA must be returned to the voter, to act
as a proof of registration, along with the above mentioned access password.

Freezing the election will also have additional actions when comparing to
the original Helios. The system will first interact with the RA, by requesting
all the voters who registered with the RA that used valid tokens and the
generated password to permit accesses to the booth. The RA returns the list
of encrypted pseudonyms and respective passwords, but without the tokens
used to register, along with access password. This action will be the last of
the RA on this election, as shown in Figure 5.6. Helios will end this stage by
publishing the list of the encrypted pseudonyms that are authorized to cast a
ballot.

Helios RAeligible voters

request

publish

SBT

Figure 5.6: Publishing electors list.

Helios

Voter

SBT

fingerprint

cast
vote ch

ec
k

Figure 5.7: Voting.

Voting. Every voter that registered in the election may now verify if his en-
crypted pseudonym is published on the SBT. If it is not, he has a proof that
he is an authorized voter by presenting the certificate returned by the RA. He
then accesses, anonymously, the voting booth with the access password given
by RA. Since this password is the same for everyone, Helios cannot know
who entered the booth. To cast a vote, the voter will authenticate using the
decrypted pseudonym. Figure 5.7 sums the voting process.



5.2. Pseudonyms 81

A new verifying stage. The remaining election will be running the same
way as if it happened using the original Helios. The trustees, tally and de-
cryption do not have any difference. But after the end of the election, a new
verifying stage is needed to prevent Helios from creating fictional voters. Thus,
after the voting, RA must check that the number of certificates he produced is
greater or equal to the number of casted votes. In other words, Helios cannot
produced valid credentials without the risk of being found out.

Assumptions. Due to the biggest assumption of the original Helios, that
one must trust the system to not decrypt single ballots and thus violate the
voter’s privacy, it was decided that the solution must be designed in order
to decrease the level of trust on Helios. Hence, the chosen approach was to
create a new entity, RA, in charge of “half” the responsibilities of Helios.
Nevertheless, a crucial assumption is needed in order to prevent that a fake
election fools the voters: no collusion between Helios and RA. It is almost
equivalent to say that at least one of those entities is honest. Still, it is a much
weaker assumption than “Trust Helios”. Moreover, this solution has several
advantages when comparing with the original Helios and it is prepared for
some individual corruptions, for instance:

• Unlike the original, if this Helios is corrupt and decrypts single ballots,
it will not be able to say who voted for whom. Moreover, he cannot link
voter to pseudonym, and therefore voter to ballot.

• Unlike the original, a corrupt Helios cannot say who is accessing the
private booth.

• Even if RA finds the access token to enter the private booth, he is still
not able to impersonate voters since he has no way to link decrypted
pseudonyms to passwords during the available time to cast ballots.

• A corrupt Helios cannot add new pseudonyms with a vigilant RA.

• Since the registration is made by active voters, ballot stuffing by Helios
has high probability of being discovered.

• Helios cannot risk to impersonate a voter during the registration stage
since he has no way to figure out if the voter is active or not.

Credential selling and open problem. If vote selling during the voting
stage can be prevented using the technique from Section 5.1, there are some
problems regarding the credential selling. Since the access to the registration
site is anonymous, the RA has no way to know if the person is authentic or not.



82 5. Improvements

The only possible way to ensure the authenticity of that person is registration
in-person. Even using smartcards or other kind of technology, there is no way
to remotely guarantee authenticity. Moreover, in this solution there is no way
to prevent RA from creating fictional voters. He may have problems with
accessing the booth, but it would imply that every voter in the election must
be honest. In the next section, a solution to this problem is proposed.

5.3 Corrupted RA

The previous solution leaves an open problem: since RA receives all tokens
of registration, how to prevent that, at the end of the registration stage, a
corrupted RA do not use the unclaimed credentials for self gain. For instance,
it could create several pseudonyms that Helios would not discover if they were
valid or not. Moreover, even if the access to the virtual booth is prevented,
RA could sell the unused credentials to some corupted voter. In this section,
a solution is presented using a kind of Zero-Knowledge Proof (ZKP).

5.3.1 Zero Knowledge Sets

To find a solution to this problem, it helped detecting more precisely where
is the flaw. Remember that RA is supposed to only give the access booth
password to eligible voters. Hence, he needs to identify the valid tokens. On
the other hand, because he has the set of valid tokens, he is able to produce
fake credentials. Summing up, we want a way for RA being able to verify if
a token belongs to the set of valid tokens. The answer was found in [Micali
et al., 2003], where the authors constructed a ZKP for membership, or not, to
a set, which they called Zero-Knowledge Sets (ZKS).

Recall ZKP from Subsection 3.4.3. As detailed there, these kind of proofs
are between a Prover and Verifier, where in this case, the Prover wishes to
prove to Verifier whether an element belongs to a set or no, in a way that
achieves soundness, completness and zero-knowledge. Since the construction
of the ZKS proposed in [Micali et al., 2003] deals with complex schemes, such
as Merkel’s authentication trees, that fall outside the scope of this thesis, it was
decided to exemplify it using another construction found in literature. More
precisely we will consider the protocol presented in [Xue et al., 2008], which
is proven secure in the “random oracle model” and “strong RSA assumption”.
This construction is composed in four stages: setup, commit, prove, verify.
Figure 5.8 sums how the protocol works.



5.3. Corrupted RA 83

Prover
setup stage

commit stage

prove stage

Verifier

request

verify stage

c

x ∈ S ?

cx ∨ (cx, d, π)

Figure 5.8: Summing the ZKS protocol.

Setup stage. Before starting the protocol, there is a need to define public
parameters and public functions. Regarding the functions, there will be two
kind of hash functions H, which is an hash function that maps a string of
length k + 1 to a prime number, where k is a security parameter. Thus, H0

will be H0(x) = H(x||0) and H0 will be H1(x) = H(x||1). After agreeing
on the security parameter k, the Prover and Verifier will take as input and
generate the public parameters n, which is an k-bit size Rivest, Shamir and
Adleman (RSA) modulus, i.e. a product of two safe primes, and g, a randomly
chosen generator.

Commit stage. The Prover must commit the set in order to prevent changes
afterwards. Thus, to commit a set S = {x1, x2, ..., xm}, the Prover randomly
chooses a binary string y of k-bit size and computes:

u = H1(y) · H0(x1) · H0(x2) · ... · H0(xm)

c = gu mod n

The prover will save privately S,u and y, and sends, or publishes, the commit
c.

Prove stage. Proving will be different whether if an element x belongs to
the set or not. Therefore, if:

• x ∈ S: The Prover will compute px = H0(x), ux = u/px, cx = guxmodn,
and sends cx to the verifier.

• x /∈ S: The Prover will compute px = H0(x). Then, he will choose a
pair (a, b) ∈ Z×Z such that a · u+ b · px = 1, computes cx = ca mod n



84 5. Improvements

and d = g−b mod n. The Prover will then send cx, d and a proof π

PK{(α, β) : (c1 = cα ∧ d = gβ)}

to the verifier.

Verify stage. Since there is two kinds of proofs, there will be also two kind
of verifications that the Verifier needs to do. If he receives:

• cx: this response will imply that x ∈ S. In order to verify, the Verifier
will compute px = H0(x), and then check if

cpxx = c (mod n)

• (cx, d, π): in this case, the Prover asserts that x /∈ S. The Verifier will
then compute px = H0(x) and check wheter

cx = dpx · g (mod n).

If it does, he will check if π is a proof that the Prover knows a and b such
that cx = ca modn and d = g−b mod n.

5.3.2 How does it fit

Some changes are needed in the workflow presented in Subsection 5.2.2 in order
to prevent the creation of fake credentials by RA. In the end, one can see the
changes made by comparing Figure 5.9 with 5.5. The first change is when the
administrator uploads the list of voters. Instead of sending a list of tokens to
RA, Helios will publish a commitment of that list to a Bulletin Board (BB),
which may be seen as the commit stage of the ZKS protocol presented above.
Afterwards, whenever someone registers with a token ti, RA will complete the
ZKS protocol with Helios over a secure and private channel. Depending on
whether the token is valid or not, RA will return to the voter a certificate of
registration and the password to access the booth.



5.4. Protecting the booth 85

Helios RA

Voter

rest of ZKS protocol

t i

a
cc

es
s

p
as

s

ce
rt

ifi
ca

ti
o
n

BB

co
m

m
it

Figure 5.9: Embedding the ZKS protocol.

In essence, we accomplish anonymous registration. This new approach
to the registration stage will solve the corruption problem and keeping some
advantages of the old scheme:

• RA cannot produce fake credentials, even if he finds the link to the virtual
booth.

• Ballot stuffing and vote selling by RA is prevented.

• An adversary is still not able to fool RA, in order to receive fake creden-
tials or the token to access the virtual booth.

5.4 Protecting the booth

Like it was mentioned in the introduction of this thesis, the biggest con ar-
gument against Internet Voting (i -voting) systems, is that there is no way
to provide virtual booths to the voters that are tamper proof. This leads to
high level assumptions, which is a reason enough to prevent its use in a high
stake elections. For instance, Helios assumes that the voter casts his vote in a
trusted platform. When used in the International Association for Cryptologic
Research (IACR) contest, there were severe critics to its use, which culminated
in a well documented attack in [Estehghari and Desmedt, 2010]. The attack
used a well known flaw of a tool used by Helios, which enable a scripting attack



86 5. Improvements

to change the randomness used when computing the ElGamal ciphertexts. Af-
terwards, the Helios team fixed the flaw, but the attack served as a warning
of the amount of problems that such service has to take into account.

Nevertheless, the path towards the creation of a secure i -voting system
should not stop when facing such problems. New solutions arise everyday
to prevent them, some simple, as the use of secured connections, and some
complex, as creating static code analyzers. In [Adida et al., 2009], the authors
suggest a simple way to help preventing casted ballots on tampered computers.
They provide Live CDs for every voter who suspects that his computer might
have been compromised with virus. However, there are some kind of attacks
that do not depend on a compromised computer. In this section, we give an
example of such attack and propose a solution that helps to prevent it.

5.4.1 Phishing attack

Phishing is a kind of a social engineering attack that aims to steal personal
information of a victim. Like the term suggests, the attack starts with a lure or
deceit to fool the victims. Typically, phishing attacks are targeted to customers
of banks and online payment services. In those cases, the attacker, claiming
to be a representative or an employee of the bank, sends a fraudulent e-mail
with an Uniform Resource Locator (URL) to a forged website, very similar
to the real one. When accessing that website, the customer will involuntarily
give his access codes to the attacker. Afterwards, the attacker can, at very
least, impersonate the customer when accessing the original bank’s website.
Although this attack is very successful, there are several ways to prevent it.
For instance:

• Attention to details - changes on the URL or on the workflow and inter-
actions.

• Augmented authentication systems - for instance, SMS codes of confir-
mation.

• Use of certificates - for secure and authenticated connections.

However, these standard solutions do not apply in case if the attacker
is Helios itself. Imagine that Helios wants to change the randomness that
encrypts the ballots. Doing so, he will be able of decrypting them even if there
are trustees involved in the election. Thus, when a voter accesses the virtual
booth, Helios will send tampered JavaScript (JS) scripts that normally would
provide randomness on the encryption. Since the attack will only affect the



5.4. Protecting the booth 87

encryption scripts, the user will not be able to verify changes on the workflow.
Since the attack is not related with authentication mechanisms, its level of
security does not affect the attack. And finally, the use of certificates only
serves to protect against attacks from third parties. Hence, we propose a
solution that may solve this particular problem, but in turn, will affect the
workflow of the election, specially how it is prepared.

5.4.2 Code Signing

To better understand the approach to this problem, it helps putting questions
from the voters’ point of view:

1. How can I know if the received code has not been tampered?

2. How can I know that the code was written from a supposed source?

3. How can I know if the code received is equal for any other voter and not
a “special” version?

The answer to the first and second questions is using a technique called code
signing [Schiavo, 2010]. This technique uses PKC to guarantee integrity and
authenticity of the received code. The complete process involves an exter-
nal entity usually called Certificate Authority (CA). After Helios2 produce
the necessary code to create the virtual booth, he will sign each one of the
needed scripts using a certificate issued by the CA, in order to create a Digital
Signature (DS), as seen in Figure 5.10.

Figure 5.10: Result of signed scritps.

Then, when a voter wants to check the validity of the received code, he will
have the means to do it, by verifying if the certificate was issued by a trusted

2In this case, Helios is the “author” of the created code.

http://dl.dropbox.com/u/992320/Figures/script_signing.png


88 5. Improvements

CA and if the digest of each script matches the correspondent DS. Solving the
last of the voters’ concerns involves changing the preparation of the election.
Now, the DS will be publish in a secure BB by Helios at any time before the
election starts. Thus, the voter will know that the version he received is the
same as the one signed before the election had started and that any other voter
will be verifying the code with the same DS.

5.5 Adding more mobility

For last, recall that to evaluate an e-voting systems, just like in the IACR
contest from Section 4.1, not only security matters. So, it was decided to im-
prove the mobility requirement of Subsection 2.3.2. We developed a prototype
Android application to let voters cast their ballots using their smartphones.
The first decision to make was choosing the approach:

1. Adapt and optimize the Helios website to the Android’s browser.

2. Implement an application to work with the Helios’ Application Program-
ming Interface (API).

The choice fell on the second approach due to the following reasons. First,
when studying Helios, it was used an Android’s browser to cast a vote. From
the experience, it took almost a minute to encrypt a ballot with one question
and three candidates. A native application will have better performances. The
second reason is that although Helios is increasing in modularity, there are still
a few dependencies and unnecessary repeated code, which result in a harder
maintenance and testing. Recall that Helios is an open-source project with a
lot of changes since its first version. Moreover, the fourth version of Helios is
probably coming out anytime soon, accordingly to its documentation3. Finally,
although adapting views is easier, we wanted to seize the opportunity to work
directly with the cryptographic tools, even if, at the end, the result was far
from being efficient and robust. The next subsection gives an overview of the
application and some of the interesting details, and the last subsection shows
some figures and descriptions of the prototype.

Overview Recall the several JSON structures presented throughout Chap-
ter 4, mainly in Section 4.3. Since our approach was to take advantage of the
Helios’ API, we modeled our tool to create objects directly related to those
structures. All the set resultant from that approach jointly with a Client class

3Some of the documentation of the future Helios v.4: http://documentation.

heliosvoting.org/verification-specs/helios-v4.

http://documentation.heliosvoting.org/verification-specs/helios-v4
http://documentation.heliosvoting.org/verification-specs/helios-v4


5.5. Adding more mobility 89

formed the mVoting package. Two other packages were created, the CryptoAPI
package, to deal with cryptographic operations, and the HttpAPI, responsible
for the web communications. Figure 5.11 shows how the application is cur-
rently organized.

mVotingHttpAPI

CryptoAPI

Client
HttpCom

ElGamalE

Election

EncryptedAnswer

CastedVotes

Question ElGamal Ciphertext

ZK Proofs

Commitments

Utilities

ElGamal PK

CookieMan

Answers

Figure 5.11: Minimal representation of the application’s packages.

The following list concerns the most interesting details of the implementa-
tion:

• As it was mentioned above, for each JSON structure, we developed
a correspondent Java class, as shown partially in Example 5.2, which
uses the Encrypted Answer from Example 4.7 and transforms it to the
Encrypted Answer class.

• The usage of the Gson4 library to convert between JSON structures
and Java objects. The library provides simple methods like to JSON()

and from JSON(), ideal for the development. Simple usage would be
Question e = gs.fromJson(teste, Question.class);.

• The communication with the Helios server is done by making GET and
POST requests. All the respective methods are in the HttpCom class, which
mostly makes use of the Java.net.HttpURLConnection. The main diffi-
culty, which is not yet perfectly solved, is the management of the sessions.
By now, the solution provided is using the Java.net.CookieManager on
the CookieMan class. Unfortunately, due to some technical difficulties
when creating cookies, we could only submit encrypted ballots with
hard coded connections.

4Google-Gson: http://code.google.com/p/google-gson/.

http://code.google.com/p/google-gson/


90 5. Improvements

• Finally, regarding the CryptoAPI package, it is worth mention that in-
cludes several utilities on the Utilities class, for instance “ready-to-
use” hash functions, and the tools necessary to encrypt ballots with the
ElGamalE class.

� �
1 {

2 "choices": [

3 {"alpha": "..", "beta":

".."},

4 {"alpha": "..", "beta":

".."},

5 ...

6 {"alpha": "..", "beta":

".."}

7 ],

8 <Individual_Proofs >

9 <Overall_Proof >

10 }� �

� �
1 package mvoting;

2 import ...

3 /** ... */

4 public class

Encrypted_Answer {

5 public ArrayList <

ElGamal_Ciphertext >

choices;

6 public ArrayList <

ZK_Proof >

individual_proofs;

7 public ArrayList <

ZK_Proof >

overallproof;

8 ...

9 }� �
Example 5.2: Conversion of JSON structure to Java class.

Views and activities Finally, in this subsection we show the different views
of the virtual booth. Each one was created to be as much similar as possible
to the browser’s version. Each tag represents the information to be changed
when generating an particular election booth.

Figure 5.12: Home frame. Figure 5.13: Picking options.

https://www.dropbox.com/s/h0utf6b7x5tvgm0/n1.png
https://www.dropbox.com/s/wyik7x3u7ie0iw6/n2.png


5.6. Summary and final notes 91

Figure 5.14: Encrypting. Figure 5.15: Inserting the credentials.

5.6 Summary and final notes

In this chapter we present several proposals to improve the Helios system.
It is important to note that this does not detract value from it, since it is
difficult to find a system that is better prepared and conceived than Helios.
Before summarizing what problems we addressed and the chosen techniques
to overcome them, it is interesting to note that there were other things also
considered, for instance:

• The trustees problem: recall that in the current version of Helios, if by
any reason one of the trustees “loses” his share of the secret, then there
is no way to decrypt the final tally. This is an interesting problem to
solve, since, as it was mentioned in Subsection 3.4.4, the best scenario
of Secrete Sharing (SS) is to have a defined threshold of trustees needed
to decrypt a ciphertext. We did not approach this problem since it is
already a feature promised for Helios v.4. Apparently, their solution uses
Lagrange coefficient.

• Developing an entire API: Helios provides an API for anyone who wishes
to verify the correctness of an election. In fact, the solution presented in
Section 5.5, has a lot of information hard coded. In other words, it does
not offer flexibility and may not even work with small changes on Helios.
Our idea is why not provide an API that offers support for anyone that
wishes to develop a virtual booth on their own? This would also benefit
the problem of Section 5.4, provided that the premiss “a greater supply
of booths means a smaller chance of using a tampered one” is valid.

https://www.dropbox.com/s/bpxu2i8p2q8vv68/n4.png
https://www.dropbox.com/s/8hzxl9zeb16z5r8/n6.png


92 5. Improvements

Summing up, we start by fighting coercion. Helios does not provide coercion-
resistance measures, so with a double scheme password, we, at very least, ex-
tended significantly the amount of time needed to an adversary be able of
coercing a voter. Next, we introduce a new entity to the system. Despite of
not being a new approach, [Adida et al., 2009] also has an external authority
to deal with registrations, our goal was completely different. In our design, we
remove the assumption of trusting Helios for privacy, replacing it by a lower
assumption of no collusion. This design leaved an open problem which we
try to solve with the use of ZKS, a kind of ZKP which goal is to prove that
an element belongs to a set without revealing any information other than that.

Finally, to increase security and reliability on Helios regardless the e-voting
scheme involved, we create a feature that applied code signing to all the scripts
that compose the virtual booth. This way, each voter may check the validity of
the booth, whether it was sent by a trusted entity or not. For last, an Android
application was implemented with sole purpose of adding mobility to Helios
voting system.



Chapter 6

Conclusions

Abstention means you stayed at home or went to the
beach. By casting a blank vote, you’re saying you have
a political conscience but you don’t agree with any of the
existing parties.

Jose Saramago

In this chapter, we present a brief summary and the conclusions of our
work. We end this thesis by stating what we expect to do in the future with
this work’s contributions.

Conclusions on the presented work. Our goal for this thesis was to
study and improve a remote Electronic Voting (e-voting) system. Thus, it
was necessary to approach the e-voting problem from the beginning. We first
presented a conceptual perspective by showing: different kinds of voting; the
main stages of an election; and the usual entities involved in elections. Next,
we presented the general requirements and the security properties that a vot-
ing system should achieve. All the definitions were based on a large set of
articles found in literature. Regarding general requirements, the definitions
found were adapted for voting systems, but they could easily be generic for
almost any kind of electronic system. In turn, the security properties had a
significant degree of difficulty in finding proper definitions. The main reason
was the lack of standards to define them. Nevertheless, we chose the most con-
cise definitions for each property or requirement found. A general conclusion
found in literature states that is impossible to achieve universal verifiabil-
ity and coercion-resistance without strong assumptions. Concerning remote
e-voting, this problem aggravates since most of those assumptions are physical.

93



94 6. Conclusions

Cryptography is essential to design e-voting schemes, specially the Internet
Voting (i -voting) type. From the research made, we identified several crypto-
graphic primitives that belong to most e-voting protocols. The next list sums,
in a rough way, how the schemes could be classified:

• Using Homomorphic Encryption (HE): Schemes that use this primitive
usually have the advantage of not needing to decrypt single ballots. This
could also be translated in computational benefits. On the other hand,
most of these schemes are limited on the number of available voting
types.

• Using Blind Signature (BS): This primitive has the advantage of provid-
ing secrecy in a ballot only known by a voter. They are not limited by
any voting type. Employing BS usually imply several different entities.
Depending of course on the design, this could bring problems regarding
collusion and achieving receipt-freeness.

• Using Mixed Network (mixnet): Primitives such Zero-Knowledge Proof
(ZKP), Secrete Sharing (SS) and Re-Encryption are usually needed to
create mixnet protocols. Its original goal was to provide anonymity, and
despite its computational limitations, is the most employed primitive in
recent schemes.

Among the available systems to study, Helios was the obvious choice. This
system has already been chosen to be used in elections of significant impor-
tance. Other reasons include: being open-source; fully i -voting; and enough
documentation. Helios use HE in its design. It offers privacy under the as-
sumption “Trust Helios” and complete integrity of the results. No measures for
coercion-resistance were provided. There are several ongoing works that aim
to improve Helios: improving usability; achieving everlasting privacy; provable
ballot privacy; and adding features to provide mixnet. For walking towards a
complete secure Helios, it was necessary modify its scheme in order to lower the
assumptions and provide mechanisms to protect the voter. From the changes
performed on the scheme, we believe to have:

• Provided anti-coercion measures - we modify the scheme in order
to have two passwords when casting a vote: the secured-pass for casting
under normal circumstances; and the coerced-pass, to cast under situa-
tions of coercion. The resultant system turns coercion impractical. Only
in extreme cases a coercer is able to illegally cast a vote. Unfortunately,
the assumptions needed are too strong. We needed to extend the “Trust
Helios” for integrity too and a secure registration stage.



95

• Lowered Helios crucial assumption - we added an extra entity re-
sponsible to manage the electors. Since a pseudonym is used instead of
a real name when casting a vote, Helios will no longer be able to bind a
voter to a vote. Like the previous changes, this also has an assumption,
“No collusion between Helios and the extra entity”. However, is a weak
assumption when comparing to the original one. Some other advantages
result in adding the new entity as presented before.

• Anonymous registration - The major drawback of the previous solu-
tion was concerned the possibility that the new entity became corrupt.
This lead to problems such as ballot stuffing or credential selling. Our
solution to this problem was using Zero-Knowledge Sets (ZKS). This
primitive combined with minor changes in the previous scheme prevent
the extra entity of being corrupt without being discovered.

Changing the scheme is not the only way to improve security in Helios.
Empowering the system with security techniques, such as the use of certificates
or secure connections, is necessary. Without making an analysis regarding this
kind of security, we tried to contribute by using code signing, a technique to
protect and maintain the authenticity of the source code. At the end of this
work, we believe there is still much room to improve Helios, for instance in
most of the general requirements. Finally, our final conclusion is that while
there is no consensual solution to the e-voting problem, or more specific the
remote type, a voting system should provide solutions to any kind of security
level or voting types.

Future work. A very important conclusion in [Adida et al., 2009], states
that:

The biggest lesson, of course, is that no matter the voting system,
each election is a significant project on its own. One cannot simply
install a piece of software and expect an election to run smoothly.

We agree that there are some elections with peculiarities which makes prac-
tically impossible to develop a secure voting system that applies to all kinds
of elections. Nevertheless, each system should be designed to handle the max-
imum possible types. Here, modularity plays an important role, since it is
necessary for a system to be adaptive without high costs. We generally see
modularity applied in voting systems to provide different types of voting. He-
lios for instance, provides Referendum and Multiple Candidate Selection. But,
as stated in our previous conclusion, we believe that we should extend the mod-
ularity to cover different types of security, as the ones proposed in this work.



96 6. Conclusions

With this in mind, our next step is to develop a system from the scratch,
having Helios as inspiration for what it achieved. In this new system, we also
wish to incorporate the idea of an Application Programming Interface (API)
to develope different kinds of voting booths.



References

Ben Adida. Advances in cryptographic voting systems. PhD thesis, Cambridge, MIT,
MA, USA, 2006. AAI0810143. Cited on pages 19, 28 and 29.

Ben Adida. Helios: web-based open-audit voting. In Proceedings of the 17th con-
ference on Security symposium, SS’08, pages 335–348, Berkeley, CA, USA, 2008.
USENIX Association. Cited on page 54.

Ben Adida, Olivier De Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.
Electing a university president using open-audit voting: analysis of real-world
use of helios. In Proceedings of the 2009 conference on Electronic voting technol-
ogy/workshop on trustworthy elections, EVT/WOTE’09, pages 10–10, Berkeley,
CA, USA, 2009. USENIX Association. Cited on pages 53, 54, 55, 78, 86, 92
and 95.

Aditya, Lee, Boyd, and Dawson. An efficient mixnet-based voting scheme providing
receipt-freeness. In International Conference on Trust and Privacy in Digital
Business (TrustBus), LNCS, volume 1, 2004a. Cited on pages 21 and 40.

Riza Aditya, Colin Boyd, Edward Dawson, and Byoungcheon Lee. Implementation
issues in secure e-voting schemes. In E Kozan, editor, Proceedings of Abstracts
and Papers (On CD-Rom) of the Fifth Asia-Pacific Industrial Engineering and
Management Systems (APIEMS) Conference 2004 and the Seventh Asia-Pacific
Division Meeting of the International Foundation of Production Research, pages
1–14, Gold Coast, Australia, 2004b. Queensland University of Technology. Cited
on page 15.

Josh Benaloh. Simple verifiable elections. In Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop, EVT’06, pages 5–5, Berkeley, CA, USA, 2006. USENIX Association.
Cited on page 53.

Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, STOC ’94, pages 544–553, New York, NY, USA, 1994. ACM. ISBN
0-89791-663-8. doi: 10.1145/195058.195407. Cited on pages 3 and 38.

97



98 References

Josh C Benaloh and Moti Yung. Distributing the power of a government to enhance
the privacy of voters. In Proceedings of the fifth annual ACM symposium on
Principles of distributed computing, PODC ’86, pages 52–62, New York, NY,
USA, 1986. ACM. Cited on page 38.

David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan Warin-
schi. Adapting helios for provable ballot privacy. In Proceedings of the 16th Euro-
pean conference on Research in computer security, ESORICS’11, pages 335–354,
Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-23821-5. Cited on
page 68.

Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications to
voting. In ACM Conference on Computer and Communications Security, pages
68–77, 2002. doi: 10.1145/586110.586121. Cited on pages 33 and 40.

Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based elections
with helios. In Proceedings of the 2011 conference on Electronic voting technolo-
gy/workshop on trustworthy elections, EVT/WOTE’11, pages 6–6, Berkeley, CA,
USA, 2011. USENIX Association. Cited on page 68.

Ran Canetti, Cynthia Dwork, Moni Naor, and Rafi Ostrovsky. Deniable encryption.
Cryptology ePrint Archive, Report 1996/002, 1996. Cited on page 34.

David Chaum. Blind signatures for untraceable payments. In CRYPTO’82, pages
199–203, 1982. Cited on page 30.

David Chaum and Torben P. Pedersen. Wallet databases with observers. In Pro-
ceedings of the 12th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’92, pages 89–105, London, UK, UK, 1993. Springer-Verlag.
Cited on page 35.

David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. In Proceedings of the 10th European conference on Research
in Computer Security, ESORICS’05, pages 118–139, Berlin, Heidelberg, 2005.
Springer-Verlag. Cited on page 40.

David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-
niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman.
Scantegrity ii: end-to-end verifiability for optical scan election systems using invis-
ible ink confirmation codes. In Proceedings of the conference on Electronic voting
technology, EVT’08, pages 14:1–14:13, Berkeley, CA, USA, 2008a. USENIX As-
sociation. ISBN 888-8-88888-888-8. Cited on page 52.

David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan Popove-
niuc, Alan T. Sherman, and Poorvi L. Vora. Scantegrity: End-to-end voter-
verifiable optical-scan voting. IEEE Security & Privacy, 6(3):40–46, 2008b. Cited
on pages 49 and 105.



References 99

David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, February 1981. ISSN 0001-0782. doi:
10.1145/358549.358563. Cited on page 28.

Jacek Cichoń, Miroslaw Kutylowski, and Bogdan Weglorz. Short ballot assumption
and threeballot voting protocol. In Proceedings of the 34th conference on Current
trends in theory and practice of computer science, SOFSEM’08, pages 585–598,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-540-77565-X, 978-3-540-77565-
2. Cited on page 49.

Jeremy Clark and Urs Hengartner. Selections: Internet voting with over-the-shoulder
coercion-resistance. IACR Cryptology ePrint Archive, 2011:166, 2011. Cited on
page 73.

Veronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of ballot
secrecy. In Proceedings of the 2011 IEEE 24th Computer Security Foundations
Symposium, CSF ’11, pages 297–311, Washington, DC, USA, 2011. IEEE Com-
puter Society. ISBN 978-0-7695-4365-9. doi: 10.1109/CSF.2011.27. Cited on
page 68.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Proceedings of the 16th annual inter-
national conference on Theory and application of cryptographic techniques, EU-
ROCRYPT’97, pages 103–118, Berlin, Heidelberg, 1997. Springer-Verlag. ISBN
3-540-62975-0. Cited on page 38.

L.F. Cranor and R.K. Cytron. Sensus: a security-conscious electronic polling system
for the internet. In System Sciences, 1997, Proceedings of the Thirtieth Hawaii
International Conference on, volume 3, pages 561 –570 vol.3, jan 1997. doi:
10.1109/HICSS.1997.661700. Cited on pages 15, 22 and 23.

Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York, Inc. Cited
on page 27.

Saghar Estehghari and Yvo Desmedt. Exploiting the client vulnerabilities in inter-
net e-voting systems: hacking helios 2.0 as an example. In Proceedings of the
2010 international conference on Electronic voting technology/workshop on trust-
worthy elections, EVT/WOTE’10, pages 1–9, Berkeley, CA, USA, 2010. USENIX
Association. Cited on pages 54 and 85.

Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption for
nonspecialists. EURASIP J. Inf. Secur., 2007:15:1–15:15, January 2007. ISSN
1687-4161. Cited on page 26.



100 References

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret Voting
Scheme for Large Scale Elections. In ASIACRYPT ’92: Proceedings of the Work-
shop on the Theory and Application of Cryptographic Techniques, pages 244–251,
London, UK, 1993. Springer-Verlag. Cited on pages 3 and 39.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure Dis-
tributed Key Generation for Discrete-Log Based Cryptosystems. 1999. doi:
10.1007/3-540-48910-X 21. Cited on page 36.

Ed Gerck, C. Andrew Neff, Ronald L. Rivest, Aviel D. Rubin, and Moti Yung. The
business of electronic voting. In Proceedings of the 5th International Conference on
Financial Cryptography, FC ’01, pages 243–268, London, UK, UK, 2002. Springer-
Verlag. ISBN 3-540-44079-8. Cited on pages 3, 4, 19 and 23.

Oded Goldreich. Zero-Knowledge twenty years after its invention. Electronic Collo-
quium on Computational Complexity, 2002. Cited on page 34.

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer,
and Marcel Weinand. Security requirements for non-political internet voting. In
Robert Krimmer, editor, Electronic Voting, volume 86 of LNI, pages 203–212. GI,
2006. ISBN 978-3-88579-180-5. Cited on page 19.

Douglas W. Jones. Early requirements for mechanical voting systems. In Proceed-
ings of the 2009 First International Workshop on Requirements Engineering for
e-Voting Systems, RE-VOTE ’09, pages 1–8, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-4100-6. doi: 10.1109/RE-VOTE.2009.3.
Cited on pages 19 and 103.

Juang and Lei. A secure and practical electronic voting scheme for real world envi-
ronments. TIEICE: IEICE Transactions on Communications/Electronics/Infor-
mation and Systems, 1997. Cited on page 21.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of the 2005 ACM workshop on Privacy in the electronic
society, WPES ’05, pages 61–70, New York, NY, USA, 2005. ACM. ISBN 1-
59593-228-3. Cited on page 48.

Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and Melanie Volkamer. Us-
ability analysis of helios - an open source verifiable remote electronic voting sys-
tem. In Proceedings of the Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE), page 5, Berkeley, CA, USA, 2011. USENIX
Association. Cited on page 67.

M. Fatih Karayumak. Usability analysis and interface improvement of the end to
end verifiable remote-electronic voting system helios. Diploma thesis, Technische
Universitat Darmstadt, 2010. Cited on page 67.



References 101

Aggelos Kiayias, Michael Korman, and David Walluck. An internet voting system
supporting user privacy. In ACSAC, pages 165–174, 2006. Cited on page 49.

K. Kim, J. Kim, B. Lee, and G. Ahn. Experimental design of worldwide Internet
voting system using PKI. 2001. Cited on page 39.

Miroslaw Kutylowski and Filip Zagorski. Scratch, click and vote: E2e voting over the
internet. Cryptology ePrint Archive, Report 2008/314, 2008. Cited on page 49.

Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash attacks on the verifia-
bility of e-voting systems. IACR Cryptology ePrint Archive, pages 116–116, 2012.
Cited on page 54.

Triinu Mägi. Practical Security Analysis of E-Voting Systems. PhD thesis, Tallinn
University of Technology, 2007. Cited on page 15.

Rebecca T. Mercuri. Electronic vote tabulation checks and balances. PhD thesis,
Philadelphia, PA, USA, 2001. AAI3003665. Cited on pages 15 and 22.

Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 80–, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-
2040-5. Cited on page 82.

Andrew C. Myers, Michael Clarkson, and Stephen Chong. Civitas: Toward a secure
voting system. In IEEE Symposium on Security and Privacy, pages 354–368.
IEEE, May 2008. Cited on page 48.

Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki
Okamoto. An improvement on a practical secret voting scheme. In Proceedings
of the Second International Workshop on Information Security, ISW ’99, pages
225–234, London, UK, UK, 1999. Springer-Verlag. Cited on page 39.

Akira Otsuka and Hideki Imai. Unconditionally secure electronic voting. In David
Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh,
Miroslaw Kutylowski, and Ben Adida, editors, Towards Trustworthy Elections,
volume 6000 of Lecture Notes in Computer Science, pages 107–123. Springer,
2010. ISBN 978-3-642-12979-7. Cited on page 22.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Proceedings of the 11th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’91, pages 129–140, London, UK, UK,
1992. Springer-Verlag. ISBN 3-540-55188-3. Cited on page 37.

Stefan Popoveniuc and Benjamin Hosp. An introduction to punchscan. In Towards
Trustworthy Elections, pages 242–259, 2010. Cited on page 52.



102 References

Jean-jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis C. Guillou, Marie Annick Guillou, Gäıd Guillou, Anna Guillou,
Gwenolé Guillou, Soazig Guillou, and Thomas A. Berson. How to Explain Zero-
Knowledge Protocols to Your Children. 1989. doi: 10.1007/0-387-34805-0 60.
Cited on page 108.

Zuzana Rjaskova. Electronic voting schemes, 2002. Cited on pages 21 and 40.

Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.
Prêt à voter: a voter-verifiable voting system. Trans. Info. For. Sec., 4(4):662–
673, December 2009. ISSN 1556-6013. doi: 10.1109/TIFS.2009.2033233. Cited
on pages 15, 20, 21, 49, 50 and 105.

Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme: a practical solu-
tion to the implementation of a voting booth. In Proceedings of the 14th annual in-
ternational conference on Theory and application of cryptographic techniques, EU-
ROCRYPT’95, pages 393–403, Berlin, Heidelberg, 1995. Springer-Verlag. ISBN
3-540-59409-4. Cited on pages 22 and 53.

Krishna Sampigethaya and Radha Poovendran. A framework and taxonomy for
comparison of electronic voting schemes. Computers & Security, 25(2):137–153,
2006. Cited on pages 15, 20 and 22.

Jay Schiavo. Feature: Code signing for end-user peace of mind. Netw. Secur.,
2010(7):11–13, July 2010. ISSN 1353-4858. doi: 10.1016/S1353-4858(10)70093-3.
Cited on page 87.

Bruce Schneier. Applied cryptography - protocols, algorithms, and source code in C
(2. ed.). 1996. Cited on pages 3 and 36.

Michael Shamos. Electronic Voting - Evaluating the Threat, 1993. Cited on page 19.

Ben Smyth. Replay attacks that violate ballot secrecy in helios. IACR Cryptology
ePrint Archive, pages 185–185, 2012. Cited on page 68.

Rui Xue, Ning-Hui Li, and Jiang-Tao Li. Algebraic construction for zero-knowledge
sets. J. Comput. Sci. Technol., 23(2):166–175, March 2008. ISSN 1000-9000. doi:
10.1007/s11390-008-9119-x. Cited on page 82.



Appendix A

Complements

A.1 Brief History of Voting Technologies

Throughout this section, we introduce some of those mechanisms, in order to
show the evolution of voting systems. It is important no note that the use
of one of those mechanisms do not preclude the use of another on the same
elections. In fact, it is very common to see them working together to overcome
some disadvantages that one of them may have. The use of several different
mechanisms on a same election are usually called a “hybrid system”.

A.1.1 Secret Paper Ballot

Commonly known in literature as the Australian Ballot [Jones, 2009], due to its
origins in Australia, around 1850, the secret ballot was the first voting method
of the “modern world”. Apart from being the oldest, the general scheme of
the secret paper ballot is still the most worldwide used.

Figure A.1: Ballot box.

Using an election as an example, in this
method, the voter starts by authenticating
himself with an official authority. If he is ver-
ified as an able voter, i.e. he is registered and
still has not voted before, he is given a paper
ballot and conducted to a private cabin to
vote. This way, the voter is free to secretly
make his choice, not suffering intimidation or
bribery from third parties. His choice is made
by filling a paper ballot, usually writing the
name of the candidate or picking a check-box.
It is important to mention that the ballots must be specifically designed to

103



104 A. Complements

eliminate any bias and also to prevent anyone from connecting voter to his
ballot. Made his choice, he proceeds to place his vote, without revealing any
of its info, in a sealed box.

A.1.2 Lever machine

Lever machines were the first kind of direct-recording voting systems. These
mechanical machines were based on late 1800s patents by Thomas Edison and
others. As the name suggests, these kind of systems do not work with any
kind of receipts, i.e. the lever machines left no record of an individual voter’s
intent. Thus, when one votes, his vote is directly recorded on the counting
mechanism and there is no need of reading or interpreting the vote.

After the process of authentication (in this case it works in a similar way
as the secret paper ballot), the voter is conducted to a lever machine. When
he enters the machine, he pulls a lever, closing the door of the machine and
unlocking the voting levers, guaranteeing the voter’s privacy. There is a set
of levers, each one of them corresponds to a candidate. The voter can make
his choice, freely to change his mind if the machine has already a pulled lever.
Then, if the machine has only one pulled lever, he is able to pull an external
lever. This lever will process the vote, rotating a wheel that works as a counter,
open the door and lock the levers, which in turn return to its initial positions1.

A.1.3 Punchcards

Lever machines had the huge drawback of being large and expensive machines.
Consequently, inventors start looking for cheaper and more usable solutions.
Punchcards were the next choice as voting technologies around 1950s 2. These
kind of tools employ a card (or cards) and a small device for creating votes.
Voters punch holes in the cards opposite their candidate or ballot issue choice.
This was only the mechanism for filling a ballot. Casting it would be like paper
ballots, where a voter would place his card in a sealed ballot box.

There are two kinds of punchcards: the “votomatic” card and the “datavote”
card, as seen in Figure A.3. Punchcards had the advantage of automatic and
quick tallying of votes. Nevertheless, there were some problems regarding its
use, such as verifying the vote or malfunctioning machines that let half holes
in the card.

1See http://inventors.about.com/library/weekly/aa111300b.htm.
2A complete history of Punchcard:http://whatis.techtarget.com/tutorial/

history-of-the-punch-card.html

http://inventors.about.com/library/weekly/aa111300b.htm
http://whatis.techtarget.com/tutorial/history-of-the-punch-card.html
http://whatis.techtarget.com/tutorial/history-of-the-punch-card.html


A.1. Brief History of Voting Technologies 105

Figure A.2: Lever Machine. Figure A.3: Datapunch.

A.1.4 Optical Scan

Optical scan machines3 were also invented around 1950s. In this technology,
voters usually fill a circle or complete an arrow to mark their choices in a ballot.
Afterwards, they cast the ballot by inserting it in a machine. The machine
itself will count the votes and store it in several memory cards. Later, the
ballots will be available for checking the validity of the results.

The sophistication of these machines have evolved in such way that are
usually considered as the best tool for conducting elections4. In fact, two of the
most prominent voting systems use this technology in their e-voting schemes:
Prêt à Voter [Ryan et al., 2009] and Scantegrity [Chaum et al., 2008b].

A.1.5 Direct-recording Electronic

The last significant contribution to voting technologies was the Direct-recording
Electronic (DRE), which is kind of the electronic version of the Lever ma-
chine. DRE machines were the first to employ and explore advanced crypto-
graphic techniques, regarding voting problems, specially when combined with
networked systems, where anonymity between communications are required.
Their use has been studied extensively, hoping to achieve the ultimate secure
system. Nevertheless, these devices are becoming massively used, replacing
the older technologies.

The DRE machines is user-friendly, providing several advantages when
compared with the other technologies. The voter is faced with a ballot dis-
played in the screen and makes his choice simply by pressing buttons or even a

3For more information: http://en.wikipedia.org/wiki/Optical_scan_voting_

system
4Technology news: http://www.eweek.com/c/a/Government-IT/

Optical-Scanners-Winning-War-of-Voting-Machines/

http://en.wikipedia.org/wiki/Optical_scan_voting_system
http://en.wikipedia.org/wiki/Optical_scan_voting_system
http://www.eweek.com/c/a/Government-IT/Optical-Scanners-Winning-War-of-Voting-Machines/
http://www.eweek.com/c/a/Government-IT/Optical-Scanners-Winning-War-of-Voting-Machines/


106 A. Complements

touchscreen, which when pressed, it triggers processes that records the vote’s
information. After the election is over, it calculates a tabulation of the voting
data stored in a removable memory component and a printed copy.

Figure A.4: Optical Scan.

Figure A.5: DRE Machine.

A.2 Additional Lessons on Cryptography

With this section, it is intent to provide additional information about the
cryptographic primitives described in Chapter 3.

A.2.1 Hard Problems

Hard computational problems are the base for every secure protocol created
concerning Public-key Cryptography (PKC). According to the European Net-
work of Excellence in Cryptology5, these problems may be categorized into six
different groups:

1. Discrete Logarithms

2. Factoring

3. Product Groups

4. Pairings

5. Lattices

5More information about hard problems: http://www.ecrypt.eu.org/wiki/index.

php/Main_Page

http://www.ecrypt.eu.org/wiki/index.php/Main_Page
http://www.ecrypt.eu.org/wiki/index.php/Main_Page


A.2. Additional Lessons on Cryptography 107

6. Miscellaneous

The following descriptions are for specific hard problems related to previous
techniques described in Chapter 3.

Discrete Logarithm Problem (DLP). Given h ∈ G, we want to compute
x such that h = gx.

This problem belongs to the first group. Its use can be found in several
protocols, for instance Schnorr signatures, DSA signatures and the ElGamal
Encryption (ElGamal) encryption, as shown in 3.1.1. The best known al-
gorithm for DLP in general is the parallel Pollard rho method, which has
complexity O(

√
r).

RSA Problem. Given a positive integer n which is the product of at least
two primes, an integer e coprime with ψ(n) and an integer c, we want to find
and integer m such that me = c (mod n).

This problem belongs to the second group. Its use can be found in the
example of the RSA signature in Section 3.3. Although there is some discor-
dance in literature, some researchers argue that this problem can be reduced to
another problem called Factoring Problem. If so, the best known algorithm to
solve it is the Number Field Sieve, which has complexity LN(1/3, c) for some
constant c.

A.2.2 Paillier Encryption

The Paillier cryptosystem is another case of an encryption scheme with ho-
momorphic properties, more specifically, the additive homomorphism, just like
Exponential ElGamal Encryption (EEG). It was invented by Pascal Paillier
and is a kind of PKC. Its security is based on the hardness of computing nth

residue classes. Figure A.6 sums up how the scheme works.



108 A. Complements

Alice

pk = (n, g)
sk = (λ, µ)

m =
L(cλ mod n2) · µmod n

Bob

m ∈ Zn
gen: r ∈ Z∗n

c = gm · rn mod n2

pk

c

Figure A.6: Paillier Encryption.

To generate the public key pk and secret key sk, Alice must choose two
large primes p and q such that the great common divisor between p · q and
(p− 1) · (q − 1) is equal to one. Next, she computes n = p · q and λ, which is
the least common multiple for q and p. Then, she generates g ∈ Z∗n2 . Finally,
she calculates µ = (L(gλmodn2))−1 modn where L(u) = (u− 1)/n. The pair
(n, g) will be the pk and the pair (λ, µ) will be the sk.

A.2.3 Informally Explaining ZKP

In literature, there is a story invented by Jean-Jacques Quisquater to help
non-cryptographers understand the ideas of ZKP [Quisquater et al., 1989]. It
starts with two young children, Pedro (the prover) and Vânia (the verifier),
finding a cave (Figure A.7). After exploring for a while, they both found that
the cave is circular, but they were unable to go around it because of a secret
locked red door.

A

B

Figure A.7: The cave.

Two weeks later, Pedro, being a
smart little fellow, discovers the code
to open the red door. Vânia, envious
of Pedro’s newfound knowledge , asks
for the code and says that she is even
willing to trade something with him
for that information. After closing
the deal, Vânia, who is always sus-
picious of Pedro, says that she will
not do her part of the deal until she
is certain that Pedro knows the code.
Pedro swears that he will tell her the



A.2. Additional Lessons on Cryptography 109

code, but never before she fulfills her
part of the deal, because it is not the first time that he comes out empty-
handed. So they both design a scheme in which Pedro can prove that he
knows the code without revealing it.

First, they label the paths that leads to the red door as A and B. Vânia
will wait outside until Pedro enters the cave and goes, following randomly A
or B path, near the red door. Afterwards, Vânia enters the cave and screams,
randomly, the path that she wants Pedro to return from the red door. Pedro,
who is very honest, opens the door, if necessary, and returns from the chosen
path.

However, Vânia still does not trust Pedro. After all, there was a 50%
chance that Pedro had chosen to follow the right path since the begging. So
they repeat the process over and over again, and Pedro always came out from
the right path. After 20 repetitions, the probability of Pedro being a liar was
near 0% ((1/2)20 = 0.000000954).

Finally, Vânia trusts Pedro enough to know that he really knows the code.
In the end, she receives the code, but Pedro never got his share of the deal
because of his “bad attitude” problems. He should never have called her a
”stubborn little lady”... Twenty times.

A.2.4 Blind Schnorr Signature

Another transformation of regular Digital Signature (DS) to BS can be
seen in the so called Blind Schnorr Signature.

Let G be a subgroup of Z∗n of order q, for some value n and some prime p,
and a generator g ∈ G. These are the parameters agreed by a Signer and a
user in a Schnorr signature scheme. They also agree on a public hash function
H, whose domain is {0, 1}∗ and range is Zq, and the Signer generates a number
x 6= 0, which will be his secret key, and calculates y = gx, which in turn will
be his public key.

The scheme starts with the user requesting a message m signed by the
Signer. Initially, the Signer computes a random k ∈ Z∗q , calculates and sends
the commitment r = gk (mod p). He proceeds by calculating e, which is the
result of H over the concatenation of m and r. Finally, the Signer computes



110 A. Complements

Signer

generates: k ∈ Z∗q
computes: r = gk (mod p)

y = gx(mod p)

signs:
e = H(m||r)

s = (k − xe)

User

public: m

computes: e = H(m||r)

computes:
r′ = gs · ye (mod p)
e′ = H(m||r′)

verifies:

e = e′

r

m

s

Figure A.8: Classical Schnorr Signature

s = (k − xe) and sends the signature (s, e) to the user. The user calculates
r′ = gs · ye (mod p). The concatenation of m and r′ will be the argument for
the hash function H, which results in e′. The final comparison e = e′ will
prove the authentication of the signature s sent to the user.

The blind Schnorr signature follows the same steps as the regular Schnorr
signature until the Signer sends the commitment r. After receiving it, the
user generates two random elements α, β ∈ Zq and computes an r′ = r · g−α ·
y−β (mod p). Afterwards, he calculates an e′, which is the hash function H
over the concatenation of m and r′ modulo q, and e = e′ + β, and sends
e to the Signer. Finally, the Signer returns s such that gs · ye = r (mod p).
The user can later verify the authenticity of the returned value by calculating
s′ = s − a (mod q) and checking if e′ is equals to returned value of H over
the concatenation of m and gs

′ · ye′ (mod p).

A.2.5 Guillou-Quisquater identification scheme

The Guillou-Quisquater is an example of the many uses of ZKP. It is
an identification scheme based on the Rivest, Shamir and Adleman (RSA)
problem, as seen in subsection3.3. Figure A.10 demonstrates how the protocol
works.



A.2. Additional Lessons on Cryptography 111

Signer

generates: k ∈ Z∗q
computes: r = gk (mod p)

y = g−x(mod p)

signs:

s = (k + xe)

User

generates: α, β ∈ Zq
secret: m

computes:
r′ = r · gα · yβ(mod p)

e′ = H(m||r′)

e = e′ − β(mod q)

verifies:
gs · ye ?= r(mod p)

computes:

s′ = s + α(mod q)

r

e

s

Figure A.9: Blind Schnorr Signature

Prover
knows: x such that
xe = y mod n
pk = (n, e, y)
sk = x
generates:
r ∈ Z∗n
α = re

γ = r · xβ

Verifier

generates:
β ∈ {0, 1}

verifies:
γe = α · yβ

α

β

γ

Figure A.10: Guillou-Quisquater identification scheme.

This process can be repeated n times until de verifier is satisfied with the
odds. An interesting use for this protocol is in problems related to anonymous
access control. The verification step can be proven as follows:

γe = α · yβ



112 A. Complements

(r · xβ)e = α · yβ
re · xeβ = re · yβ

xeβ = yβ

xeβ = xeβ

A.3 Less Important Figures

This section contains the figures with less importance in this thesis, but with
interesting information worth to show. It will be divided according to the
different themes approached throughout the dissertation.

A.3.1 Helios

Figure A.11: Login page.
Figure A.12: Home page of the elec-
tion.

Figure A.13: After uploading the list
of voters.

Figure A.14: Adding trustees warn-
ing.

A.3.2 Mobile Figures

https://www.dropbox.com/s/ffb6za6ksp5xcvm/01_login.png
https://www.dropbox.com/s/ju76w1zlrx9aop2/04_prepared.png
https://www.dropbox.com/s/5a588bcwyprhfev/09_created_voters.png
https://www.dropbox.com/s/9786g6hzuncbs2g/11_trustee_warning.png


A.3. Less Important Figures 113

Figure A.15: Waiting for the upload
of the public key.

Figure A.16: Invitation to participate
in the election as a trustee.

Figure A.17: Checking the secret key. Figure A.18: Voting instructions.

Figure A.19: Encrypted vote finger-
print.

Figure A.20: Auditing a ballot.

Figure A.21: Confirmation of creden-
tials. Figure A.22: Upload of the secret key.

https://www.dropbox.com/s/orqqemjmw0vhhth/12_added_trustee.png
https://www.dropbox.com/s/qgu79pl7d0ldc8t/13_trustee_received.png
https://www.dropbox.com/s/lqyamt1cn8azvy9/18_check_sk.png
https://www.dropbox.com/s/za6jkehwwvagv1z/26_voting1.png
https://www.dropbox.com/s/8f4n0nvl8ggaaba/29_submitorverify.png
https://www.dropbox.com/s/a29o0akb1wh2tx7/46_verifier.png
https://www.dropbox.com/s/37j7scyywljnbia/31_confirmed.png
https://www.dropbox.com/s/7ujjwrui8jkly8m/40_secondstep.png


114 A. Complements

Figure A.23: Final verification.
Figure A.24: Smart ballot tracker
with the administrator’s point of
view.

Figure A.25: Default booth home. Figure A.26: Successful warning.

https://www.dropbox.com/s/yydvy4fym8wpbyg/47_finalaudit.png
https://www.dropbox.com/s/5imrkchafxtwig4/34_aftersometime.png
https://www.dropbox.com/s/s24fo9pbu0u1to5/n3.png
https://www.dropbox.com/s/m45l6kajj68tuhm/n5.png

	Introduction
	Motivation
	Objectives
	Contributions
	Roadmap

	Electronic Voting
	Pros and Cons of e-voting
	Conceptual Perspective
	Voting and Ballot Types
	Generic Model
	Entities Involved

	Voting Requirements
	Security properties
	General Requirements

	Summary

	Cryptographic Primitives
	Homomorphic Encryption
	ElGamal
	Exponential ElGamal

	Mix-Nets
	Blind Signatures
	Other primitives
	Re-Encryption
	Deniable Encryption
	Zero-Knowledge Proofs
	Secret Sharing

	Schemes and designs
	Cramer, Gennaro and Schoenmakers scheme
	The Fujioka et al. Voting Scheme
	Boneh and Golle's mix-net

	Summary

	Helios
	The IACR Contest
	The Contestants
	Why Helios?

	Overview
	Pre-election Stage
	Voting
	Post-voting and Results

	Backstages
	Pre-election Constructions
	Encrypting Ballots
	Tallying and Decryption

	Assumptions & Improvements
	Assumptions
	Improvements

	Summary

	Improvements
	Working against coercion
	The problem
	One possible solution

	Pseudonyms
	The need of registration
	Independent entities

	Corrupted RA
	Zero Knowledge Sets
	How does it fit

	Protecting the booth
	Phishing attack
	Code Signing

	Adding more mobility
	Summary and final notes

	Conclusions
	Complements
	Brief History of Voting Technologies
	Secret Paper Ballot
	Lever machine
	Punchcards
	Optical Scan
	Direct-recording Electronic

	Additional Lessons on Cryptography
	Hard Problems
	Paillier Encryption
	Informally Explaining ZKP
	Blind Schnorr Signature
	Guillou-Quisquater identification scheme

	Less Important Figures
	Helios
	Mobile Figures



