
Universidade do Minho
Escola de Engenharia

Marta R. A. Matos
Network Inference: extension of a linearprogramming model for time-series data

Setembro de 2013

Universidade do Minho
Escola de Engenharia

Marta R. A. Matos
Network Inference: extension of a linearprogramming model for time-series data

Setembro de 2013

Tese de MestradoMestrado em Engenharia Informática
Trabalho realizado sob orientação deProfessora Doutor Rui MendesDoutora Bettina Knapp

Acknowledgements

I want to thank both my supervisors: Rui Mendes for his support, and Bettina Knapp,
for all her patience and dedication. In particular, for the huge amount of time she
invested on me, and for all the discussions we had. I also want to thank Lars Kaderali
for hosting me at his group – at the Institute for Medical Informatics and Biometry
(IMB) –, for the excellent conditions provided, and for the insightful discussions.
Furthermore, I would like to focus that my stay at IMB was a very enriching ex-
perience. Not only did I learn a lot about network inference in general, but I also
came into contact with other research topics related to Bioinformatics/Computational
Biology/Systems Biology, which helped to broaden my horizons.

Finally, I want to thank Jorge Leitão for asking the right questions, and I acknowl-
edge the Erasmus scholarship 2012-1-PT1-ERA02-12586 (11.3) 217/2012 for financial
support during my eight month Erasmus Placement.

i

Abstract

With the widespread availability of high-throughput technologies, it is now possi-
ble to study the behavior of dozens or even hundreds of gene/proteins through a
single experiment. Still, these experiments provide only the gene/protein expres-
sion values, telling nothing about their interactions with each other. To understand
these interactions, network inference methods need to be applied. By understanding
such interactions, new light can be shed into biological processes and, in particular,
into disease’s mechanisms of action, providing new insights for drug design: which
genes/proteins should be targeted in order to cure/prevent a specific disease.

In this thesis, we developed and tested two alternative extensions for a previously
developed model based on linear programming. Such model infers signal transduction
networks from perturbation steady-state data. The extensions now developed take
advantage of perturbation time-series data, which further improves the resolution of
causal relationships between genes/proteins.

In a first phase, we use artificial networks with simulated data to test the perfor-
mance of both extensions in different conditions. Additionally, we compare their per-
formance to the original model and to a state-of-the-art model for perturbation time-
series data, DDEPN. Overall, our second extension exhibits a better performance,
and significantly higher sensitivity. This extension assumes a given gene/protein can
only influence its targets if it is in an active form.

In a second phase, we use two experimental datasets related to ERBB signaling
and evaluate the resulting networks: 1) by finding literature support for the inferred
edges, and 2) by using a network assembled with Ingenuity IPA as true network to
do a quantitative assessment. Our results are further compared to DDEPN and the
original model in a quantitative way. Quantitatively, our second model extension is
shown to perform better than both the original model and DDEPN. Qualitatively,
we find literature support for most of the inferred edges in both datasets, while also
inferring a few plausible edges for which no literature evidence was found.

ii

Resumo

Com o uso generalizado de tecnologias de alto rendimento como os microarrays de
ADN, torna-se comum estudar dezenas ou mesmo centenas de genes/proteínas numa
única experiência. Contudo, estas experiências apenas nos permitem determinar a
expressão dos genes/proteínas e nada nos dizem sobre as interações entre os mesmos.
Assim, torna-se necessário o uso de métodos de inferência de redes, de modo a estudar
as interações entre genes/proteínas. Ao perceber estas interações, não só é possível
perceber melhor os processos biológicos em geral, como também o modo como actuam
as doenças, de forma a desenvolver novos medicamentos.

Nesta tese de mestrado, desenvolvemos e testámos duas extensões para um mod-
elo baseado em programação linear. Este modelo infere redes de transdução de sinal
a partir de experiências de RNAi em que as medidas são feitas após a perturbação,
quando a rede se encontra em estado estacionário. Com as extensões desenvolvidas
nesta tese é possível tirar partido de séries temporais de dados provenientes de exper-
iências de RNAi, o que permite distinguir relações de causalidade entre proteínas.

Numa primeira fase, usamos redes artificiais e dados simulados para testar a per-
formance de ambas as extensões em diferentes condições. Além disso, comparamo-las
com o modelo original e com um modelo recente, DDEPN, que usa séries temporais de
dados de experiências em que a rede a inferir é perturbada. Em geral, a nossa segunda
extensão obtém melhores resultados, principalmente em termos de sensibilidade. Esta
extensão assume que só proteínas activas podem influenciar outras proteínas.

Numa segunda fase, usamos dois conjuntos de dados experimentais e avaliamos os
resultados obtidos: 1) procurando referências na literatura para as ligações inferidas,
e 2) usando uma rede de referência para fazer uma avaliação quantitativa e estab-
elecer comparações com o modelo original e o DDEPN. Quantitativamente, a nossa
segunda extensão obtém melhores resultados do que o modelo original e o DDEPN.
Qualitativamente, encontrámos suporte na literatura para a maioria das ligações in-
feridas pela segunda extensão. Inferimos ainda algumas ligações bastante plausíveis,
embora não tenhamos encontrado suporte para estas.

iii

Contents

Acknowledgements i

Abstract ii

Resumo iii

Nomenclature vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Approaches to Network Inference in Biology 5
1.2 Thesis objective and organization . 15

2 A Linear Programming Approach to Network Inference 16
2.1 Linear programming . 16

2.1.1 Simplex algorithm . 19
2.2 Linear programming applied to network inference from RNAi data . . 23
2.3 Linear programming applied to network inference from RNAi time-

series data - an extension . 27

3 Methods 32
3.1 Prediction of removed entries in Cross-Validation step 32
3.2 Network generation . 33
3.3 Data Simulation . 34
3.4 Experimental Data . 39

3.4.1 ERBB regulated G1/S cell cycle transition 39
3.4.2 ERBB signaling cascade . 40

iv

CONTENTS

3.5 Results processing and evaluation . 41
3.5.1 lpNet and lpNet-dyn/2 . 41
3.5.2 DDEPN . 41

3.6 Experimental Setup and Execution Settings 43

4 Results and discussion 45
4.1 Simulated data . 45

4.1.1 Prediction of Motifs in Biological Networks 45
4.1.2 Artificial Ten-Node networks 52
4.1.3 General discussion . 63

4.2 Experimental data . 64
4.2.1 ERBB G1/S dataset . 64
4.2.2 ERBB signalling cascade - HCC1954 dataset 67

5 Final Remarks 72

Appendices 76

A Supplemental information 77
A.1 Artificial ten-node networks . 77

A.1.1 Positive edges only . 77
A.1.2 Positive and negative edges 80
A.1.3 Test network . 82

A.2 Networks assembled with Ingenuity IPA 83
A.2.1 ERBB G1/S . 83
A.2.2 HCC1954 . 84

A.3 Other information . 84
A.3.1 List of time points . 84
A.3.2 List of silenced nodes . 85
A.3.3 List of latent nodes . 85

B Supplemental Results 86
B.1 Prediction of Motifs in Biological Networks - extra results 86
B.2 Influence of number of inferred networks on final result 92
B.3 Results for data with T = 2 . 96
B.4 Results for an increasing number of latent nodes 96
B.5 Results for the HCC1954 with a different δ value 98
B.6 Results for the HCC1954 with prior knowledge 98

v

CONTENTS

References 100

vi

Nomenclature

ACC Accuracy

BNs Bayesian Networks

CV Cross Validation

DBNs Dynamic Bayesian Networks

DDEPN Dynamic Deterministic Effects Propagation Networks

DEPN Deterministic Effects Propagation Networks

FN False Negatives

FP False Positives

GA Genetic Algorithm

K-fold CV K-fold Cross-Validation

LP Linear Programming

MAD Median Absolute Deviation

MSE Mean Squared Error

NEMs Nested Effects Models

PR Precision

RNAi RNA interference

SN Sensitivity

SP Specificity

vii

CONTENTS

TFs Transcription Factors

TN True Negatives

TP True Positives

GRNs Genetic Regulatory Networks

RPPAs Reverse-Phase Protein Arrays

STNs Signal Transduction Networks

viii

List of Figures

1.1 RNA interference description . 5
1.2 Common motifs in biological networks 6

2.1 Information flow example . 24
2.2 Signal propagation through a network along time 28

3.1 Signal propagation through a 3-node network 37
3.2 Underlying network with inhibiting edge 37
3.3 Three-node network with silenced node 37
3.4 Seven-node network with a silenced node 38

4.1 Inference of network motifs . 46
4.2 Sensitivity, Specificity, and Precision values for an increasing number

of time points, K = 1 . 54
4.3 Sensitivity Specificity, and Precision values for an increasing number

of time points, K=11 . 55
4.4 Sensitivity, Specificity, and Precision values for an increasing number

of knockdown experiments . 56
4.5 Sensitivity, Specificity, and Precision values for increasing noise values,

K = 1. 58
4.6 Sensitivity, Specificity, and Precision values for increasing noise values,

K = 11. 59
4.7 SN, SP, and PR values when using DDEPN data for K = 1 61
4.8 SN, SP, and PR values when using DDEPN data for K = 11 62
4.9 Inferred connections for ERBB G1/s dataset 65
4.10 Inferred connections for HCC1954 dataset 69

A.1 Positive edge network 1 . 77
A.2 Positive edge network 2 . 77

ix

LIST OF FIGURES

A.3 Positive edge network 3 . 78
A.4 Positive edge network 4 . 78
A.5 Positive edge network 5 . 78
A.6 Positive edge network 6 . 78
A.7 Positive edge network 7 . 79
A.8 Positive edge network 8 . 79
A.9 Positive edge network 9 . 79
A.10 Positive edge network 10 . 79
A.11 Positive + negative edges network 1 80
A.12 Positive + negative edges network 2 80
A.13 Positive + negative edges network 3 80
A.14 Positive + negative edges network 4 80
A.15 Positive + negative edges network 5 81
A.16 Positive + negative edges network 6 81
A.17 Positive + negative edges network 7 81
A.18 Positive + negative edges network 8 81
A.19 Positive + negative edges network 9 82
A.20 Positive + negative edges network 10 82
A.21 Test network with positive and negative edges 82
A.22 Network assembled with Ingenuity for ERBB G1/S dataset 83
A.23 Network assembled with Ingenuity for HCC1954 dataset 84

B.1 Impact of the number of executions on SN/SP values for K = 1 . . . 92
B.2 Impact of the number of executions on PR values for K = 1 93
B.3 Impact of the number of executions on SN/SP values for K = 11 . . . 94
B.4 Impact of the number of executions on PR values for K = 11 95
B.5 Results with increasing number of time points for T = 5, 6, K = 11 . 96
B.6 Sensitivity, Specificity, and Precision values for increasing number of

latent nodes when K = 11 . 97
B.7 HCC1954 inferred edges using a different criterion to define δ 98
B.8 HCC1954 inferred edges with inclusion of prior knowledge 99

x

List of Tables

2.1 Simplex tableau . 18
2.2 Simplex tableau including the artificial objective function 21

3.1 List of proteins in ERBB signaling cascade dataset 41
3.2 Confusion matrix for a three class classification problem 42
3.3 List of R packages used . 44

4.1 Inference results of network with cascade motif 47
4.2 Inference results of network with fan-in motif 48
4.3 Inference results of network with fan-out motif 48
4.4 Inference results of network with fan-in and fan-out motif 49
4.5 Inference results of network with feedback loop motif 50
4.6 Inference results of network with feedforward loop motif 50
4.7 Quantitative resuts for ERBB G1/s dataset 66
4.8 Quantitative results for HCC1954 experimental dataset 70

A.1 Time points used for each number of time points 84
A.2 Silenced nodes for each number of knockdown experiments 85
A.3 List of nodes set as latent . 85

B.1 Inference results of network with cascade motif, using MAD criterion 86
B.2 Inference results of network with cascade motif, using threshold criterion 87
B.3 Inference results of network with cascade motif plus indirect signaling,

using MAD criterion . 87
B.4 Inference results of network with cascade motif plus indirect signaling,

using threshold criterion . 87
B.5 Inference results of network with cascade motif plus indirect signaling,

using MAD criterion . 88

xi

LIST OF TABLES

B.6 Inference results of network with cascade motif plus indirect signaling,
using threshold criterion . 88

B.7 Inference results of network with cascade motif plus indirect signaling,
using MAD criterion . 89

B.8 Inference results of network with cascade motif plus indirect signaling,
using threshold criterion . 89

B.9 Inference results of network with cascade motif plus indirect signaling,
using MAD criterion . 90

B.10 Inference results of network with cascade motif plus indirect signaling,
using threshold criterion . 90

B.11 Inference results of network with cascade motif plus indirect signaling,
using MAD criterion . 91

B.12 Inference results of network with cascade motif plus indirect signaling,
using threshold criterion . 91

xii

Chapter 1

Introduction

By modeling biological networks in general it is possible to understand how their
different components - genes, proteins, metabolites, etc. - interact with each other.
Three of the most important types of biological networks are gene regulatory networks
(GRNs), signal transduction networks (STNs), and metabolic networks. GRNs are
constituted by genes and proteins, and the objective is to understand how these
genes and proteins regulate each other. STNs are a set of pathways in which proteins
interact with each other, allowing the cell to respond to external stimuli. Finally,
metabolic networks are basically a series of biochemical reactions through which initial
molecules are transformed in different products.

Understanding the inner workings of these biological networks is important, not
only for the sake of knowledge itself, but also because of its potential applications,
for instance, by understanding a disease mechanisms of action, it may be possible to
prevent or cure it. The ERBB signaling network is an example of a network whose role
on disease onset needs to be better understood. Because the ERBB receptors affect
the cell cycle, when overexpressed, these can lead to high levels of cell proliferation [86]
and, by allowing defective cells to survive, may result in tumor formation. Therefore,
by understanding how this network functions, it may be possible to counteract its
negative effects in the cell cycle. Another application of this kind of knowledge is
to model metabolic networks and find how to modify the network so that the cells
can transform substrates into products at an higher rate, this is important for the
production of beer, wine, bread, among other products.

In this thesis we will focus on signal transduction networks.

Signal Transduction Networks
Signaling networks work roughly in the following way: molecules outside of the cell

1

CHAPTER 1. INTRODUCTION

(ligands) bind to receptors located in the cell membrane and activate them, which
in turn activate other molecules inside the cell (messengers), initiating the signal
transduction process. This process stops when the signal achieves a transcription
factor that will affect gene transcription, and thus influence gene expression and
even the cell cycle progression. However, this signaling process does not necessarily
evolve in a linear way, one ligand can activate different receptors, the same messenger
can pass on the signal to different transcription factors, and so on. Hence, there
is signal cross-talk [42], and studying each receptor/messenger/transcription factor
individually is not the best approach, there is a need to take a more global approach
and study the whole network.

In this thesis we are particularly interested in the ERBB signaling network, as the
two experimental datasets used to test our model refer to this network.

ERBB signaling network
The ERBB signaling network “starts” in the ERBB molecules, receptor tyrosine

kinases located in the cell’s membrane, which trigger different signaling pathways
upon stimulation by ligands such as Epidermal Growth Factor (EGF) or neuroregulin
(NRG). The ERBB molecules family is composed by ERBB1 (also known as EGFR
and HER1), ERBB2 (Neu, HER2), ERBB3 (HER3), and ERBB4 (HER4), and is
present in several types of cells and different organs. Both ERBB1 and ERBB4 are
activated by extracellular ligands, such as EGF or NRG1-4, and directly transduce
the signal into the cell, whereas ERBB2 and ERBB3 need to form heterodimers with
other ERBB receptors in order to be activated and transduce the signal into the cell.
This is due to the lack of an extracellular ligand domain in the case of ERBB2 and
the lack of an intracellular kinase domain in the case of ERBB3. By responding to
external stimuli, the ERBB molecules initiate a signaling cascade, and influence a
number of cellular functions, namely: cell survival, proliferation, division, migration,
cell apoptosis, among others. This signal transduction network is one of the most
extensively studied.

When the behavior of the ERBB receptors deviates from the normal, either by
overexpression or underexpression of one of the receptors, a number of conditions may
occur. In particular, the overexpression of ERBB1 and ERBB2 have been linked to
the occurrence of cancer: breast cancer, gastric cancer, among others [38]. However,
disruptions in the normal functioning of ERBB receptors are not only related to tumor
development, but also to diseases such as Parkinson’s disease and schizophrenia. In
postmortem studies, protein levels of EGF and ERBB1 were shown to be diminished

2

in the brains of people suffering from Parkinson’s disease [39], while ERBB1 is over-
expressed in the forebrain regions of people suffering from schizophrenia [30]. Plus,
the correct functioning of ERBB receptors is also critical for the adult heart mainte-
nance under stress conditions [69], and for the development of the heart trabeculae,
a structure that assures the correct functioning of the embryonic heart [32, 49, 58].

ERBB signaling network influence on the cell cycle
One process influenced by ERBB signaling is the cell cycle. The cell cycle [59] is

constituted by four phases, briefly: i) G1 phase, in which the cell size increases and
the G1 checkpoint ensures that it is ready for DNA replication. During this phase
several signals intervene to influence decisions such as whether the cell will self-renew,
differentiate, or die; ii) Synthesis, in which DNA replication takes place, by the end of
it all of the chromosomes have been replicated; iii) G2 phase, this checkpoint ensures
that the cell is ready for the next phase and mends replication errors that might have
occurred, while the cell continues to grow; iv) Mitosis, in which the cell divides into
two daughter cells containing the same genetic material.

Focusing now in the G1 phase, it starts with the association of Cyclin Dependent
Kinases (CDK) 4 and 6 with D-type Cyclins which phosporylate the retinoblastoma
protein, pRb. Once pRb is phosporylated it stimulates CDK2 and E-type Cyclins
which, in turn, further phosphorylate pRb. At this point the cell cycle becomes in-
dependent of CKD4/6 and Cyclin D complexes, and it can proceed into the S phase.
One way to stop cell cycle progression to the S phase is by activating proteins of the
p16 (p16, p15, p18, p19) and p21 family (p21 , p27, p57), since when activated the
p16 family members are able to inactivate CDK4/6, while p21 family members can
inactivate Cyclins. Both resulting in the prevention of pRb phosporylation during the
G1 phase, and stopping the cell cycle. A shorter G1 phase and early transition to the
S phase has been linked to ERBB2 overexpression, leading to cell hyperproliferation
[86], which is key to tumor development. This effect is thought to be mediated by
the up-regulation of CDK6 and Cyclins D1 and E, as well as enhanced degradation
and relocalization of p27 [86].

The study of the ERBB signaling network as a whole, and biological networks in
general, would not be possible without the advent of high-throughput technologies,
such as gene microarrays, Reverse-Phase Protein Arrays (RPPA), or RNA interference
(RNAi) experiments.

3

CHAPTER 1. INTRODUCTION

RNAi
RNA interference is a technique that uses double-stranded RNA (dsRNA) to inter-

fere with specific sequences of complementary mRNA and inhibit the expression of
corresponding genes.

RNAi was first discovered by Fire and Mello [18], who noted that double-stranded
RNA (dsRNA) served as mediator in post-transcriptional silencing in Caenorhabditis
elegans, and has since then been widely used to inhibit the expression of targeted genes
in an high-throughput fashion. RNAi has also a potential application in therapy, by
silencing the expression of specific genes responsible for the disease [68].

An overview of the RNAi mechanism is shown in figure 1.1. The process can start
either with long double-stranded RNA (dsRNA) or pre-microRNA segments, however
we will focus on the dsRNA mediated process, since RNAi experiments are usually
based on this process. After entering the cell cytoplasm, the dsRNA is spliced into
smaller dsRNA segments by the Dicer enzyme. The resulting dsRNA segments are
termed small-interfering RNA (siRNA), and are then incorporated into a multi pro-
tein complex that includes the cleaving enzyme Argonaute 2 (Ago2) and the protein
complex RNA-induced silencing complex (RISC). In this RISC/Ago2 multi protein
complex, the siRNAs double strand is separated into guide and passenger strands, the
latter being discarded, while the first will target a complementary mRNA sequence
to be cleaved by the RISC/Ago2 and degraded, leading to post-transcriptional gene
silencing. However, the use of long dsRNA segments for post-transcriptional gene si-
lencing in mammals triggers an interferon anti-viral response. Therefore, chemically
synthesized siRNAs are directly introduced in the cell cytoplasm to be incorporated
into the RISC/Ago2 complex.

RNAi, by silencing gene expression in between transcription and translation is
advantageous in relation to DNA gene knockout, since the chance that compensatory
mechanisms are activated is considerably lower. Furthermore, it is faster, less expen-
sive, and the time frame of the knockdown can be controlled by the experimenter
[44], hence allowing the systematic study of gene function and respective role in given
biological processes. Still, an RNAi experiment must be carefully designed in order
to reduce possible off-target effects, i.e., silencing genes other than the targeted ones.

Reverse-Phase Protein Arrays
Reverse-Phase Protein Arrays (RPPAs) [65] is the technique used to produce the ex-

perimental data analyzed in this work. By using RPPAs it is possible to study a cell’s
response to external stimulus, as this usually reflects on protein post-translational

4

1.1. APPROACHES TO NETWORK INFERENCE IN BIOLOGY

dsRNA

Dicer

dsRNA cleavage

siRNA

RISC formation

RISC

mRNA cleavage

mRNA

Figure 1.1: The RNA interference process described in this figure starts with a dsRNA
segment, which is cleaved by the enzyme Dicer, resulting in several siRNA segments.
The siRNA segments are then included into the RISC complex and degrade comple-
mentary mRNA sequences, resulting in post-transcriptional gene silencing.

modifications, such as phosphorylation or change in protein activity. To measure
protein abundance by using RPPAs, the cells of interest are first lysed, and the pro-
tein lysates are spotted in the array, which are then probed with an antibody specific
for the target protein, the primary antibody. Next, the array is incubated with a
secondary antibody which is labeled with a near-infrared dye, the purpose of which
is to detect the primary antibody and quantify the amount of protein present in the
spot.

Applications of RPPAs include quantitative analysis of protein expression in can-
cer cells, cell signaling analysis, or clinical prognosis/diagnosis/therapeutic prediction,
among many others. However, we are particularly interested in the use of RPPAs to
study signaling pathways, by monitoring protein dynamics in response to perturba-
tions.

1.1 Approaches to Network Inference in Biology

There are several approaches to infer biological networks, all of them modeling the
network as a graph, in which the nodes represent the network components – e.g.,
genes, proteins, transcription factors, metabolites –, and the edges represent the

5

CHAPTER 1. INTRODUCTION

(a) (b) (c)

(d) (e)

Figure 1.2: Several motifs present in most biological networks are: (a) cascade: one
node influences the next in a sequential way; (b) fan-in: two nodes influence a third
node; (c) fan-out: one node influences two other nodes; (d) feedback loop: one node
influences a second node, which influences a third node, and the third node influences
the first one; and (e) feedforward loop: one node influences two other nodes, and one
of these influences the remaining node.

interactions among these components. These edges might have a direction or not,
in the former case an edge from node A to node B means that A influences B, in
the latter it simply means that A and B are correlated. In addition, directed edges
can have a sign or not, specifying whether the influence of one node over another is
activating or inhibiting.

Although a given method is usually developed with the intent of inferring either
STNs or GRNs, often the same approach can be used to infer both types of networks.
For instance, Bayesian networks can be used either to infer GRNs [37] or STNs [67].
This is possible because STNs and GRNs have a similar topology that results in
similar inference challenges. For instance, both types of networks possess the same
kind of motifs, small substructures present in the network topology, such as feedback
loops, in which one activates a second node, which activates a third node, that in
turn activates the first node again. For more motif examples and description, please
see figure 1.2 and respective caption. Therefore, the choice of which approach to use
when modeling a GRN or a STN depends mostly on the data one has available, for
instance, if it is time-series data or was measured at a single time point, if it contains
perturbations or not.

Classical approaches
Some classical approaches to infer biological networks include Boolean networks

6

1.1. APPROACHES TO NETWORK INFERENCE IN BIOLOGY

[41], Bayesian networks (BNs) [21, 73], and the use of differential equations [4, 10,
31, 43, 75]. Boolean networks assume each node is either active or inactive and
infer the network by using logical rules. Yet, the data used to infer networks is
usually continuous and thus needs to be discretized, leading to loss of information
and possibly having a negative impact in the network inference results, since finding
the right threshold to discretize the data is usually not a straightforward process.
Several methods based on this approach exist, and can be applied to time-series
data [57, 36] or perturbation data measured at a single time point [92]. On the
other hand, Bayesian networks do not necessarily require data discretization and
can be used with continuous data. This formalism infers the connections among
biological components from a component’s state given the parents state, using data
from measurements at a single time-point. Some advantages of Bayesian networks
are their ability to accommodate noisy data and represent complicated stochastic
nonlinear connections between several nodes. However, Bayesian networks have a few
drawbacks: due to its probabilistic nature they need several repeated measurements
to infer the network topology [73], besides, BNs are limited to be acyclic and cannot
infer feedback loops in the network structure [73]. The latter can be circumvented
by using Dynamic Bayesian Networks (DBNs) [22] instead, which use time-series
data to unfold the network behavior in time, thus capturing loop structures when
present. Network inference based on differential equations also requires time-series
data, using it to model the genes/proteins behavior along time and from that infer
the respective network; a particular method is the S-System formalism within the
Biochemical Systems Analysis [76, 77]. This approach is usually computationally
very expensive.

One common trait among the methods described above, whether they use single
time-point measurements or time-series data, is that these assume the underlying
network to be in a stationary state, i.e. the connections among biological components
do not change along time. Even though the connections that are active at a given
time point t may not be the same than the ones active at t+ 1, this is only due to the
fact that not every node has the same state in both time points, and not because the
underlying network topology has changed. Usually, the underlying network topology
only changes when there are more drastic changes in the organism, for instance due
to development [71].

Time-dependent networks
In case there is a need to consider changes in the underlying network, i.e. the

7

CHAPTER 1. INTRODUCTION

network is not in a stationary state, the methods described previously are no longer
enough to infer these changes.

In this situation, the conditional probability of a gene to be in state X [t+ 1] at
time t+ 1 given that it was in state X [t] at time t (P (X [t+ 1] |X [t])), is not inde-
pendent of t because the distribution generating the time-series changes with time,
i.e. the underlying process is non-stationary. Some methods developed to address
this problem are non-stationary or non-homogeneous DBNs [33, 34, 35, 47, 72, 71],
which are a type of piece-wise stationary model that determines the time points at
which the probability P (X [t+ 1] |X [t]) changes.

In short, there are two types of methods suited to infer networks from time-series
data, one assumes that changes in the underlying network can occur, while the other
type assumes that the underlying network is the same throughout all measurements,
and the changes in the measurements results are only due to change of genes/proteins
states. The latter one is the type of networks we aim to infer with our method,
assuming a static underlying network.

Comparing to data measured at a single time point, the use of time-series data
has several advantages. One example is that, if we assume the expression of a given
protein to change before it can influence its target proteins later in time, then time-
series data helps to resolve causal relationships [12]. Yet, the measurements need to
be performed at appropriate times, i.e. after the activation of one protein and before
the activation of its targets.

Another type of data that has been shown to lead to better inference results
is perturbation data [56], where perturbation of the network can occur either by
performing RNA interference experiments, gene knockouts, or by the use of drugs.
Considering two genes with similar expression values at a given time point, it may not
be possible to infer a causal relation, i.e. which gene influences the other. However,
if each gene is perturbed in a different experiment, and the effect on the expression
of the other gene is measured, one can infer the causal relation between them.

Briefly, by using time-series and/or perturbation data causal relations between
genes/proteins can be resolved. This also helps to distinguish direct from indirect
connections, and to infer network structures such as feedback loops, that are usually
hard to infer.

Approaches using perturbation data
Different approaches exist that can take advantage of perturbation data, includ-

8

1.1. APPROACHES TO NETWORK INFERENCE IN BIOLOGY

ing approaches based on BNs [73, 66], DBNs [14], Boolean networks [92], Bayesian
networks with probabilistic Boolean threshold functions [40], or differential equations
[62]. However, a major recent approach is the Nested Effects Models (NEMs) formal-
ism [54, 55] to infer STNs.

Nested Effects Models
It is a probabilistic approach that aims at inferring a signaling network by perturb-

ing a set of genes and measure its influence on downstream genes. Thus, this method
infers networks from indirect steady-state observations rather than direct ones, as
most methods do. The formalism divides the nodes into S-genes and E-genes; S-
genes are the set of candidate pathway genes that are silenced, while E-genes are the
genes downstream of the S-genes which show the effects of silencing S-genes. The data
for this method is collected by stimulating the pathway while perturbing the S-genes
(using RNAi, gene knockdowns, or protein inhibiting drugs), and only the expression
of E-genes is measured, which must be significantly different when the pathway is
stimulated from when it is not. In this way, the relationships among the S-genes are
inferred from the observations of E-genes, which are used solely as reporters of the
pathway’s signal flow.

However, this approach can infer only small-scale networks (up to 6 genes). Hence,
it was later extended to infer networks on a pathway-wide scale by clustering the
E-genes based on their phenotypic profiles and using a divide and conquer approach
[55]. Yet, this approach has some disadvantages: it cannot distinguish inhibiting from
activating edges; requires data discretization leading to informations loss; cannot dis-
tinguish direct from indirect connections; and requires a large number of observations
of downstream effects for a small number of perturbations.

NEMs extensions
The NEM formalism has since then been extended by other authors [87, 23, 26, 93,

90, 25, 3, 28, 27]. In particular Froehlich et al [23] developed a new approach that
does not require data discretization, instead it represents the likelihood that a set
of E-genes is influenced by an S-gene using p-values. Two other extensions include
the ability of using time-series data, the first of these extensions is D-NEMs and was
developed by Anchang et al [3]. It aims at modeling the temporal evolution of multiple
rounds of signaling, gene regulation, and gene expression, by inferring the time delays
between an S-gene perturbation and its downstream effects on the E-genes. However,
to determine the time delays Anchang et al use Gibbs sampling, which makes the

9

CHAPTER 1. INTRODUCTION

whole process of network inference very time consuming. On the other hand, Froehlich
et al developed a second extension of NEMs to use time-series data, DynoNEMs [27].
DynoNEMs unrolls the signal flow over time in a way similar to DBNs, and simply
calculates the time lag between a perturbation and a downstream effect, therefore
avoiding the use of Gibbs sampling and rendering the approach less computationally
expensive. This approach also allows the use of combinatorial perturbations, which
the original model did not allow. Furthermore, both of the approaches to use time-
series data enable, in principle, the inference of feedback loops in the network topology
and the distinction between direct and indirect connections.

Deterministic Effects Propagations Networks
An approach developed to take advantage of RNAi experiments which uses direct

observations instead of indirect ones is the Deterministic Effects Propagations Net-
works (DEPNs) model published by Froehlich et al [29]. DEPNs is a special case
of Bayesian networks which uses both deterministic and Gaussian variables to infer
STNs. Briefly, the approach works as follows: i) for each perturbation experiment
its expected downstream effects are calculated, ii) knowing the downstream effects
of all perturbations, each protein is considered either as perturbed or unperturbed,
iii) each protein is then set as part of one out of two distributions (one for perturbed
proteins, another for unperturbed proteins), which are assumed to be Gaussian and
whose parameters are calculated either in a maximum likelihood or a Bayesian way.

This formalism was designed to be used in the opposite context of NEMs, in-
stead of requiring little perturbations and high-dimensional downstream measure-
ments, DEPNs benefit from as many perturbations as possible (which can also be
combinatorial) and do not need high-dimensional measurements. Another advantage
in relation to NEMs is that DEPNs do not require data discretization. Furthermore,
when comparing to Bayesian networks, DEPNs allow for the inference of loops in
the network topology, which is possible because the model relies on deterministic
effects propagation, rendering all measurements statistically independent. Yet, this
formalism cannot take advantage of time-series data, this would be the motivation for
the Dynamic Deterministic Propagations Networks (DDEPNs) model. Moreover, the
network topologies inferred by DEPN are always transitively closed, and the model
is computationally expensive, i.e. it is not suitable for inference of large networks.

A Linear Programming approach to STN inference
Knapp and Kaderali [45] developed a model based on linear programming (LP)

10

1.1. APPROACHES TO NETWORK INFERENCE IN BIOLOGY

that, like DEPN, uses perturbation steady-state data from direct observations to
infer signal transduction networks. In particular, it supports RNAi data in which
multiple genes are silenced in a single knockdown experiment. This model assumes
the network to be modeled as an information flow, in which the signaling starts at
one or more source nodes and propagates downstream in a deterministic way until it
reaches the sink nodes. The network is then inferred by formulating a linear problem,
in which the sum of all edges, baseline node activities, and slack variables must be
minimized under certain constraints.

One key advantage of this model is its reduced running time. In particular, when
comparing to DEPN, it achieves better sensitivity and specificity in a significantly
shorter amount of time.

Since the subject of this dissertation is the extension of this model to take advan-
tage of time-series data, it will be further described in section 2.2.

Dynamic Deterministic Effects Propagations Networks
DDEPN [6] uses perturbation time-series data from direct observations to infer

signaling networks. The perturbations can be both stimuli or inhibitions. Since we
are comparing the model developed in this thesis to DDEPN, it will now be described
in more detail than the previous approaches. The reason to choose DDEPN for results
comparison is that, like the model developed in this thesis, it is able to take advantage
of perturbation time-series data obtained from direct observations.

The first step in the model is, given a possible network topology, to generate a
matrix containing all the system’s reachable states. Consider V = {vi : i ∈ 1, ..., N}
as the set of nodes, where N is the number of nodes, and Φ = V × V → {0, 1, 2}
as the adjacency matrix that defines the network,Φij = 0 means no edge, Φij = 1
means an activation edge, and Φij = 2 an inhibition edge between two nodes. The
signal flow through the given network is then encoded in a matrix containing a series
of possible system states: Γ = {γik ∈ {0, 1} : i ∈ 1, ..., N, k ∈ 1, ...,M}, where γk =
{γi : i ∈ 1, ..., N, γi ∈ {0, 1}} and 0 ≤ M ≤ 2N is the number of reachable system
states. Assuming the stimuli nodes (which can be either activating or inhibiting) to
be always active, and all other nodes to be inactive at the first time point, the signal
propagates downstream in the network as follows: let pa (vi) be the set of parents of
node vi and φwvi an edge from node w to node vi, then

E+
k−1 (vi) = {γwk−1 : φwvi = 1,∀w ∈ pa (vi)}

11

CHAPTER 1. INTRODUCTION

E−k−1 (vi) = {γwk−1 : φwvi = 2,∀w ∈ pa (vi)}

is the set of parent nodes of vi at step k − 1 connected either by an activating or
inhibiting edge, respectively. In this way, an entry γvik in Γ is set as:

γvik =

 ∨
e+∈E+

k−1(vi)

e+

 ∧ ¬
 ∨
e−∈E−

k−1(vi)

e−

 (1.1)

i.e., a node is active if, in the previous time point, at least one parent node connected
by an activation edge is active, and all parent nodes connected by inhibiting edges
are inactive, otherwise the node will be inactive.

Having the matrix of reachable system states, an optimal state sequence is cal-
culated using Hidden Markov Models (HMMs). Thus, consider t ∈ 1, ..., T as the
time point index, r ∈ 1, ..., R as the replicate measurements index, X = {xitr : i ∈
1, ..., N, t ∈ 1, ..., T, r ∈ 1, ..., R} as the data matrix, and Γ∗ = {γ∗itr : i ∈ 1, ..., N, t ∈
1, ..., T, r ∈ 1, ..., R} as the unknown true sequence of reachable system states. Each
entry in Γ∗ represents the state of a node i (active or inactive) at time point t, where
replicate measurements are assumed to have the same state. Each entry corresponds
also to a measurement xitr. To infer an estimate Γ̂ for Γ∗ an HMM H = (W,Γ, A, e)
is used, where W is the range of all possible values for the observations, Γ is the set
of states as derived in 1.1, A is the matrix of states transition probabilities, and e is
the emission probability e (xt) = p

(
xt|γ̂t, Θ̂

)
, in here xt is a column in the observa-

tion matrix containing all entry states at time point t, Θ̂ is the matrix of estimated
model parameters, and e is the probability of observing xt given the node state γ̂t.
To find the optimal state sequence of system states and optimize both A and Θ̂, the
Viterbi algorithm is used. The matrix Γ̂ is initialized by sampling random states
from Γ while preserving the states order, and the transition matrix A is initialized
to uniform probabilities for all state transitions. Then the model parameters Θ̂ are
calculated based on Γ̂, which is updated using the HMM, and everything is repeated
until convergence is achieved.

To calculate the total network likelihood and, consequently, the emission proba-
bilities e (xt), the following score was set up:

12

1.1. APPROACHES TO NETWORK INFERENCE IN BIOLOGY

p (X|Φ) = p
(
X|Γ̂, Θ̂

)
=

T∏
t=1

p
(
xt|γ̂t, Θ̂

)

=
T∏
t=1

N∏
i=1

R∏
r=1

p
(
xitr|θ̂i ˆγitr

)
(1.2)

where Θ̂ =
{
θ̂i0, θ̂i1

}
= {(µ̂i0, σ̂i0) , (µ̂i1, σ̂i1)} ∀i ∈ 1, ..., N , and µ̂i0, σ̂i0 are the mean

and standard deviation of the observations xi calculated for each node i (at all time
points and replicates) that is inactive according to matrix Γ̂, while µ̂i1, σ̂i1 are the
mean and standard deviation of xi calculated for each node i that is active according
to Γ̂ .

Finally, a Genetic Algorithm (GA) is used to search for the network topology that
maximizes the above network likelihood (eq. 1.2). The GA optimizes a population
of networks by selecting and mutating individuals. To avoid overfitting the Bayesian
Information Criterion is used, which is calculated as follows:

BIC = −2log (p (X|Φ)) +K log (n)

where K is the number of connections in the network Φ, and n the number of data
points. At each evolution step of the GA, only networks whose BIC is less than the
median of all networks BIC are selected to be part of the next generation population.

An alternative to using the BIC score to select the networks that will be part of the
next generation population, is to use a prior probability for the network structure [7].
This will lead to the selection of networks whose structure is similar to the network
structure defined by the given prior probability.

Consider now a matrix B = V × V → [−1, 1] that contains prior confidences for
each edge in the network, then the weighted difference between an edge in the inferred
network Φ and in the prior network B is defined as:

∆ij = |φij − bij|γ

where γ ∈ R+ is introduced so that the difference between edges is weighted.
Assuming that all edge probabilities are independent, the prior belief for a given

network structure Φ is defined as:

P (Φ|B, λp, γ) =
∏
i,j

P (φij|bij, λp, γ) , i, j ∈ {1, ..., N} (1.3)

13

CHAPTER 1. INTRODUCTION

where the prior belief for a given edge in the network is defined in a way that penalizes
large differences from the inferred network Φ to the prior belief B:

P (φij|bij, λp, γ) = 1
2λp

e
−∆ij
λp

where λp ∈ R+.
Because φij ∈ {0, 1,−1} and bij ∈ [−1, 1], all differences ∆ij lie in the interval

[0, 2γ]. Assuming γ = 1, we will now derive the upper and lower bonds for the
prior influence, when both positive and negative edges are considered. Consider the
following limits:

λp →∞⇒

e
−∆ij
λp → 1 if ∆ij = 0

e
−∆ij
λp → 1 if ∆ij > 0

λp → 0⇒

e
−∆ij
λp → 1 if ∆ij = 0

e
−∆ij
λp → 0 if ∆ij > 0

which lead to

0 ≤ P (φij|bij, λp, γ) ≤ 1
2λp
∀λp ∈ R+, γ = 1

and because ∆ij ≥ 0, ∀γ ∈ R+, these bounds are valid for γ ∈ R+ in general.
To use prior information on the edge types, the value of λp needs to be chosen so

that the prior belief is higher than the network likelihood, if we wish for a strong prior
influence. In general, one should track the absolute differences between the network
likelihood and the prior for each individual to a population quantile. The value
for λp would then be chosen such that the differences between network likelihood
and prior belief are slightly above zero, so that the final result is biased towards
the prior network. Yet, the λp value to choose might depend on the dataset in use
[7], and several possible values should be tested in advance. However, when using
experimental datasets it may not be possible to test which λp value provides the best
results.

This model, is implemented as an R package, ddepn [5].

14

1.2. THESIS OBJECTIVE AND ORGANIZATION

1.2 Thesis objective and organization

The objective of this thesis is to extend Knapp and Kaderali [45] model, so that it
can take advantage of perturbation time-series data.

This dissertation is organized as follows: in chapter 2, we introduce the linear
programming formalism and the simplex method, which is the method that we use to
solve our linear program. Additionally, we further detail the original model developed
by Knapp and Kaderali, and only then describe the model extensions developed during
this thesis. In chapter 3, we explain how the artificial networks and respective data
were generated for our tests, describe the experimental datasets used and how these
were preprocessed, and finally explain how our results were processed and evaluated,
as well as, the experimental setup and execution settings. In chapter 4, we present
the results obtained with our model for simulated data under different conditions:
1) inference of different motifs found in biological networks, 2) for an increasing
number of time points, 3) for an increasing number of knockdown experiments, 4) for
growing levels of noise; and for the experimental datasets. Furthermore, we discuss
and compare our results to the ones obtained with DDEPN and the original LP model.
Finally, in chapter 5, we present our final remarks.

15

Chapter 2

A Linear Programming Approach
to Network Inference

2.1 Linear programming

In this section a short introduction to linear programming and the simplex algorithm
will be given, as this is the formalism used to solve the network inference problem in
this thesis. This section is based mostly on the linear programming books by Eiselt
and Sandblom [16] and by Dantzig and Thapa [11].

Linear programming, or linear optimization, is a mathematical method that aims
at solving a problem by maximizing or minimizing a linear function under certain
linear constraints, and whose variables are independent and nonnegative. A linear
program with n variables and m constraints can always be stated in the canonical
form:

maximize
n∑
j=1

cjxj (2.1)

subject to
n∑
j=1

aijxj≤ bi, i ∈ [1,m] (2.2)

xj ≥ 0, j ∈ [1, n] (2.3)

where aij, cj, bi ∈ R ∀ {i, j} are known coefficients, and xj ∈ R+
0 ∀j are the variables

to be determined by maximizing the objective function, eq. 2.1, while satisfying
constraints 2.2 as well as the nonnegativity condition 2.3. The Linear Programming
formalism is very useful to model real-world situations that can be approximated by

16

2.1. LINEAR PROGRAMMING

a linear function. An example of such a situation is the following: imagine you have
a set of resources x1, x2, x3 that you need in order to produce a given amount of
three different products: b1, b2, b3, and you need a different amount of resources for
each product. Now, you want to know what is the minimum amount of resources you
need in order to produce the required quantity of products. The problem can then
be stated in the form:

Min x1 + x2 + x3

s.t. 3x1 + x2 + x3 = b1

x1 + 2x2 + 3x3= b2

x1 + 3x2 + x3 = b3

x1, x2, x3 ≥ 0

by solving it you will know the exact quantity of resources x1, x2, x3 that you need
in order to produce b1, b2, b3. In a real-world context it generally makes sense for the
problem’s variables to be nonnegative, in this particular example for instance, it is
impossible to have negative resources.

In order to solve an LP problem using the simplex method or other, it needs
to be stated in the standard form by substituting the inequalities of the type ≤ in
constraints 2.2 by equations. The way to do this is to insert slack variables Si ∈ R+

0 ∀i
and thus have:

maximize
n∑
j=1

cjxj (2.4)

s.t. aijxj + Si= bi,i ∈ [1,m] (2.5)
xj, Si ≥ 0,j ∈ [1, n] , i ∈ [1,m] (2.6)

or, in matrix form:

maximize cx (2.7)
s.t. Ax + IS= b (2.8)

x,S ≥ 0 (2.9)

17

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

x S 1
m rows A I b constraints
1 row −c 0 z0 objective function

Table 2.1: The above simplex tableau includes all constraints Ax + IS = b and the
objective function cx, where the coefficient z0 denotes the objective function value
when xj = 0, ∀j ∈ [1, n]. The nonnegativity constraints are handled implicitly.

where c, b are the vectors of coefficients cj, bi, x and S are the vectors of variables xj
and Si, respectively, A is the matrix of coefficients aij, and I is the identity matrix.

An approach to solve this problem is to use a simplex tableau, whose general
appearance is shown in table 2.1.

Before proceeding any further, some definitions need to be introduced:

• A feasible vector is a set of values for xj, j ∈ [1, n] that satisfies the LP problem
constraints;

• An optimal feasible vector is a feasible vector that maximizes the objective
function. There are only two reasons why an optimal feasible vector may not
exist:

1. The constraints are incompatible and thus there are no feasible vectors;

2. The value for the objective function is unbounded, i.e., there are variables
that can take infinitely high values while satisfying the constraints;

• A basic solution is a special solution obtained when setting the LP problem
independent (nonbasic) variables to zero and solving for the dependent (basic)
variables. In the simplex tableau presented in table 2.1 the dependent variables
would be Si, i ∈ [1,m], and the independent variables xj, j ∈ [1, n].

• A basic solution is considered to be degenerate when the value of one or more
dependent (basic) variables is zero.

• A basic feasible solution is a basic solution whose variable values are all nonneg-
ative. A basic variable xj under which appears a unit vector ei is said to be in
the basis in the ith row, and its current value is xj = bi. All nonbasic variables
values are considered to be zero.

We are now ready to introduce the simplex algorithm, one of the most used methods
to solve a linear program, partly due to its running time which was shown to be, on
average, polynomial for real-valued variables [9].

18

2.1. LINEAR PROGRAMMING

2.1.1 Simplex algorithm

The key idea of the simplex algorithm is to start with a feasible basic vector and do
a series of exchanges between basic and nonbasic variables, while increasing the value
of the objective function (or at least not decreasing it).

The simplex method can be decomposed in two phases: in phase I the goal is to
find a basic feasible vector, in case one does not exist already; in phase II the goal is
to actually solve the LP problem, by maximizing the value of the objective function.
Thus, phase I is only executed when there are no basic feasible vectors to start directly
with phase II. This usually happens when the relations in the LP problem constraints
are not only of the type ≤, for instance consider the following:

maximize 3x1 + x2

s.t. 3x1 + 2x2≤ 24
4x1 − x2 ≥ 8
x1 − 2x2 = 0
x1, x2 ≥ 0

To convert the above problem to the standard form, we start by adding a slack
variable S1 in the first constraint and substituting ≤ by =, in the second constraint
we subtract an excess variable E2, add an artificial variable A2, and substitute ≥ by
=, in the third constraint we add only an artificial variable A3, and we get:

maximize 3x1 + x2

s.t. 3x1 + 2x2 + S1 = 24
4x1 − x2 − E2 + A2 = 8
x1 − 2x2 + A3 = 0
x1, x2, S1, E2, A2, A3 ≥ 0

Note that the above LP problem has no basic feasible solutions due to the presence
of artificial variables Ai ∈ R+

0 ∀i. Therefore, to solve such a problem, we start by
phase I, which allows us to find a basic feasible vector by driving these variables
out of the problem. The need to reduce the artificial variables to zero and eliminate
them from the LP problem can be easily understood when considering the following

19

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

two situations: 1) suppose Ai > 0 is added to a constraint ai.x = bi
1, thus having

ai.x + Ai = bi. However, because Ai > 0 , this implies ai.x < bi, which violates the
original constraint ai.x = bi; 2) consider the constraint ai.x ≥ bi, which is transformed
to ai.x − Ei + Ai = bi, then the columns under the excess variable Ei ∈ R+

0 ∀i and
artificial variable Ai will be −ei and ei respectively, i.e., these are linearly dependent
and cannot be in the basis at the same time. On the other hand, if Ai > 0 then
it must be a basic variable and Ei should be nonbasic and equal to zero, implying
ai.x > bi which violates the original constraint. Hence, while at least one artificial
variable Ai > 0 exists there are no basic feasible solutions for the LP problem.

To eliminate the artificial variables by setting their value to zero, an artificial
objective function is defined: Minw = ∑

iAi. Since the value of all artificial variables
is nonnegative, the minimum value of w will be 0 when Ai = 0, ∀i ∈ [1,m]. Yet,
the artificial variables are part of the initial basic feasible vector, and thus need to
be expressed in terms of nonbasic variables. Reordering the constraints, in which ≤
relations are in the first k rows, and ≥ relations correspond to the last m − k rows,
in which artificial variables were included, and considering the variables vector x to
contain all variables except the artificial ones, we have:

ai.x + Ai = bi, ∀i ∈ [k + 1,m]⇔ Ai = bi − ai.x ∀i ∈ [k + 1,m]

and we can now write:

Min
m∑

i=k+1
Ai = Min

m∑
i=k+1

bi −
m∑

i=k+1
ai.x

and define the parameters wj = −∑m
i=k+1 aij, j ∈ [1, n] and w0 = −∑m

i=k+1 bi. The
corresponding initial simplex tableau is shown in table 2.2, which is a more general
case of the simplex tableau presented in table 2.1. These tableaus will be used as a
reference in the description of phase I and II of the simplex algorithm, respectively.

A final note on converting an LP problem to the standard form, ready to be solved
by the simplex algorithm, is that the right-hand side of the constraints, bi, ∀ i ∈ [1,m],
has to be nonnegative. Thus in case there is a negative bi, the constraint needs to be
multiplied by −1 and the relation types modified accordingly.

Before presenting the simplex method, we will define a pivot operation and describe
how to perform it, since it is a crucial step in the simplex algorithm. A pivot operation
aims at replacing a system of equations by an equivalent system, in which a given

1ai is the vector of coefficients aij for which i is constant.

20

2.1. LINEAR PROGRAMMING

x S E A 1

A
I 0 0

b
original ≤ constraints

0 −I I original ≥ constraints
0 original equalities

−c 0 z0 given objective function
w 0 e 0 w0 artificial objective function

Table 2.2: The above simplex tableau is used in Phase I of the simplex algorithm,
and includes the constraints Ax + IS = b, Ax − IE + IA = b, and Ax + IA =
b, where A and E are the vectors of artificial and excess variables, respectively.
It also includes both the objective function cx and the artificial objective function∑m
i=k+1 bi −

∑m
i=k+1 ai.x.

variable possesses a unit coefficient in one equation and a zero coefficient in all other
equations. The steps to perform such an operation are the following:

1. choose an equation r and a variable s, so that you have a pivot term arsxs, and
ars 6= 0;

2. replace the rth equation by the product of itself and 1/ars;

3. replace every i 6= r equation by the sum of itself and the product of the rth
equation and −ais.

The first phase of the simplex algorithm, can be decomposed in four steps:

Step 1 If wj ≥ 0 ∀j : go to Step 3; else: go to Step 2.

Step 2 Select some ws < 0; the sth column becomes the pivot column. After-
wards select the pivot row r that satisfies br

ars
= mini=1,...,n

{
bi

ais:ais>0

}
,

where ars > 0 is the pivot. Now do the tableau transformation by per-
forming a pivot operation and go back to Step 1.

Step 3 If all artificial variables are nonbasic, drop the artificial objective function
together with all the artificial variables and the respective columns in the
tableau and go to the second phase of the simplex algorithm; else: go to
Step 4.

Step 4 If w0 = 0, then the current solution is feasible. Select a pivot ars 6= 0 such
that br = 0 and some artificial variable Ai is basic in row r; perform a
tableau transformation by doing a pivot operation, and repeat the proce-
dure until all artificial variables are nonbasic. Finally, delete all artificial

21

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

variables and the respective columns together with the artificial objective
function, and proceed to the second phase of the simplex algorithm. If
w0 < 0, the problem has no feasible solution.

After Phase I the LP problem is either unfeasible and the algorithm stops, or has a
basic feasible vector and we proceed to Phase II, which is divided in five steps:

Step 1 If cj ≥ 0 ∀j ∈ [1, n]: the current solution is optimal and we can stop; else:
go to Step 2.

Step 2 Select a nonbasic variable xs as an entering variable, such that cs < 0 is
satisfied; the sth column is the pivot column.

Step 3 If there is an element ais > 0, i ∈ [1,m] in the pivot column go to Step 4;
else: there are unbounded “optimal” solutions, stop.

Step 4 Select the rth row as pivot row that satisfies br
ars

= min1,...,m
{
bi
ais

: ai > 0
}
.

The element ars > 0 is the pivot, and the variable which is in the basis in
the rth row leaves the basis.

Step 5 Do one tableau transformation by performing a pivot operation with ars,
and go back to Step 1.

Special cases in Linear Programming
In linear programming there are a few special cases that may occur and render the

LP problem unsolvable. As previously stated, a feasible solution may not exist, either
because the constraints are incompatible or the objective function is unbounded. The
latter situation is identified in Step 3 of phase II when there is a cj ≥ 0 and ais ≤ 0,
whereas the former situation is identified in Step 4 of phase I, when w0 < 0∧wj ≥ 0 ∀j
which means there is at least one artificial variable Ai > 0 but no pivot column in
the artificial objective function. Two other cases that may occur are primal and dual
degeneracy. Dual degeneracy occurs when a nonbasic variable has a zero coefficient
in the objective function row, this indicates that there is another solution with the
same value as the current one. Primal degeneracy occurs when one or more right-
hand side values bi are null, which may lead to stalling/cycling, i.e., several bases are
generated but the objective function value keeps constant. To circumvent this type of
degeneracy and avoid cycling, some rules can be used, such as Bland’s Rule: when the
usual choice for selecting a pivot ars will result in a zero change of the objective value
of the basic feasible solution, the choice for incoming/outgoing columns is performed
according to:

22

2.2. LINEAR PROGRAMMING APPLIED TO NETWORK INFERENCE FROM
RNAI DATA

1. Incoming Column: choose the pivot column j = s, for which cj < 0 has the
smallest index j.

2. Outgoing Column: choose the outgoing basic column jr among those eligible
for dropping that has the smallest index j.

For illustrative examples on how phases I and II work, please check the book by Eiselt
and Sandblom [16], section 3.2.

2.2 Linear programming applied to network infer-
ence from RNAi data

Using the linear programming formalism, Knapp and Kaderali [45] developed a model
to infer signal transduction networks from RNAi data measured at a single time point.

Approach to network inference
In this model it is assumed that the signaling in the network propagates as an

information flow. Taking figure 2.1 as an example, the signal starts at source node
S and propagates downstream in a deterministic way until it reaches the end node
E, and a given node a can only influence another node b if there is a path (direct
or indirect) from a to b. In a biological setting, the source nodes would be receptor
proteins, and the end nodes transcription factors for instance.

When knocking down a node, that node is considered to be silenced and the signal
cannot propagate downstream through the silenced node. For instance, in figure 2.1,
if node 1 is silenced then the signal will reach E only through the path 3→ 4→ 5, as
the signal cannot pass through 2. Therefore, nodes S, 3, 4, 5, and E are considered
to be active, while nodes 1 and 2 are considered to be inactive, node 1 because it
was silenced, and node 2 because the signal simply did not reach it. When a node is
inactive because a node upstream was knocked down and the signal cannot reach it,
we will say it is inactive due to the knockdown’s effects. In general, a node is active
when it is receiving an activating signal from an upstream node, and inactive when
it is either silenced, no signal has reached it, or is inhibited by parent nodes.

Method
More formally, we have n ∈ N different nodes, which in our case would be proteins,

and K ∈ N different knockdown experiments, which may include the silencing of one

23

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

S

E

1

2

3

4

5

Figure 2.1: The signal propagation in a network is modeled as the depicted infor-
mation flow. The flow starts at the source node S, and ends at node E, the end
node.

or several nodes in the same experiment. In addition, consider the observation matrix
X, which contains the steady-state measurements of each node after a knockdown
experiment, xik ∈ R+

0 ∀ {i, k}, where i ∈ [1, n], k ∈ [1, K], and xik (t) = xik (t+ 1),
i.e. the measurements are obtained from a network in steady-state. A node is then
classified as active or inactive according to:

xi,k

≥ δi node i is assumed to be active

< δi node i is assumed to be inactive
(2.10)

where δi is a threshold whose value is set by the user, and distinguishes an active state
from an inactive one. In order to specify which nodes were silenced, an activation
matrix B is also defined, in which an entry bik = 0 means node i under knockdown
experiment k was silenced, while bik = 1 means that node i under knockdown exper-
iment k was not silenced.

A signaling network can then be modeled by a graph G (V,W), in which the
nodes vi ∈ V represent proteins, and the edges wij ∈ W , wij ∈ R+

0 ∀ {i, j} represent
an influence of node i over node j. If wij > 0 this influence is positive and means
that node i activates node j, if wij < 0 node i inhibits node j, and if wij = 0 there is

24

2.2. LINEAR PROGRAMMING APPLIED TO NETWORK INFERENCE FROM
RNAI DATA

no connection.
Another variable to be considered in this approach is the baseline or intrinsic

activity of a node, w0
i , which accounts for cases in which a node has no incoming

connections but is still active, as is the case for source nodes. Therefore, the expression
of a given node i in each knockdown experiment k is assumed to be the sum of its
baseline activity and its incoming connections times the parent nodes values:

w0
i +

∑
j 6=i

wjixjk

This value will be called the activity of node i. Furthermore, it is assumed that a
node i does not influence itself, i.e., there are no self-loops.

Model description
Taking the above considerations into account, a model based on linear programming

was developed [45]. In this model, the network is assumed to be sparse, i.e., the
number of edges that actually exist is much smaller than the number of possible edges,
which is a known characteristic of biological networks in general [48]. Hence, the LP
objective function aims at minimizing the edge weights wij, and the LP problem is
formulated as:

min
{w+

ji,w
−
ji,w

0
i ,ξl}

∑
i,j

(
w+
ji + w−ji

)
+
∑
i

w0
i + 1

λ

∑
l

ξl

 (2.11)

s.t. if xik ≥ δi and bik = 1 : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjk≥δi (2.12)

if xik < δi and bik = 1 : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjk≤0 + ξl (2.13)

if i ∈ V \ S :
∑

j∈V,j 6=i

(
w+
ji + w−ji

)
≥δi (2.14)

if i ∈ V \ F :
∑

j∈V,j 6=i

(
w+
ij + w−ij

)
≥δi (2.15)

w+
ji, w

−
ji, w

0
i , ξl ≥0 (2.16)

where the objective function 2.11 minimizes the sum of the edge weights wji =
w+
ji − w−ji, baseline activities w0

i and slack variables ξl. wji is decomposed in posi-
tive edges w+

ji and negative edges w−ji to satisfy the nonnegativity constraint, while
still allowing positive and negative connections. However, in the objective function

25

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

the value to minimize is the sum of the absolute values of each component, otherwise
there would be a bias towards negative connections. The minimization of this objec-
tive function is done while satisfying constraints 2.12-2.16, where constraint 2.16 is
the “intrinsic” nonnegativity constraint of the Linear Programming formalism. The
first two constraints implement the basic assumption that if a protein i is active, its
activity should be greater than the respective threshold δi, and if protein i is inactive
then its activity should be null, still, a slack variable ξl ∈ R+

0 is inserted in constraint
2.13 to account for noise in the data, which can lead to incompatible constraints that
render the LP problem unfeasible. The number of slack variables ξl introduced is
L = |{xik : xik < δi, ∀i, k}|, i.e., it is equal to the number of inactive nodes in the
network. The introduction of slack variables is penalized in the objective function
according to the value of parameter λ.

The best value for λ is determined using a Cross Validation (CV) technique: either
Leave One Out CV (LOOCV) or k-fold CV, depending on the number of nodes in the
network, as when the number of nodes increases using LOOCV becomes inefficient in
terms of execution time. The procedure to find the best value for λ is the following:

1. calculate the range of possible values for λ, which goes from 0 to Ξ = L×σ2 (xik),
where σ2 (xik) is the observations xik variance, and the upper bound for λ
is chosen based on the worst case scenario, in which all the introduced slack
variables are non-null;

2. start the cross-validation step:

(a) take out one or more entries of the observation matrix X;

(b) infer the network for the observation matrix X ′, obtained by removing at
least one entry from X;

(c) predict the values of the missing entries in X ′ according to their state
being either active or inactive. This state is determined according to the
inferred network and which nodes have been silenced plus the respective
downstream effects;

(d) calculate the squared error between the true values of the removed entries
from X and their predicted values in the previous step;

3. repeat steps 2a) - 2d) a given number of times and calculate the Mean Squared
Error (MSE) of the squared errors calculated in step 2d);

26

2.3. LINEAR PROGRAMMING APPLIED TO NETWORK INFERENCE FROM
RNAI TIME-SERIES DATA - AN EXTENSION

4. after repeating steps 2 - 3 for each possible value of λ, return the set of inferred
networks corresponding to the minimum MSE value.

When a protein i in knockdown experiment k is silenced, bik = 0, or its expression
value is missing, xik = NA, nothing is said in terms of the LP problem constraints.
The reasoning in the first case is that a silenced protein i cannot be influenced by
other proteins, so there is no need to calculate the influence of other proteins on it. In
the latter case we simply do not know anything about the node in question. In case
the observation value xjk of a parent node j in experiment k is missing, xjk = NA,
two situations may occur: if there are other observations xjk′ 6=k for node j available,
then the edge wji will exist or not depending on these, but if there are no other
observations available, then the edge wji will probably be zero in order to minimize
the value of the objective function, unless there is a need to have wji > 0 to satisfy
constraints 2.14 and 2.15.

Regarding constraints 2.14 and 2.15, these are one way to include prior knowledge
about the network to be inferred. If the source nodes of the network, corresponding to
receptor proteins in the cell membrane, are known in advance these can be included,
and constraint 2.14 will force all other nodes to have at least one incoming connection.
On the other hand, if the end nodes are known in advance - these can be, for instance,
transcription factors - constraint 2.15 will force all other nodes to have at least one
outgoing connection. Another way to include prior knowledge is, when it is known
that a certain edge is part of the network to be inferred, to include it as an extra
constraint. For instance, if we know that there is a positive edge from node 2 to node
3 we can formulate the respective constraint as follows:

w32 > 0

For the sake of clarity, from now on we will refer to this model as lpNet.

2.3 Linear programming applied to network infer-
ence from RNAi time-series data - an exten-
sion

As stated previously, the objective of this thesis is to propose an extension for the
model developed by Knapp and Kaderali [45], lpNet, in order to use time-series data
and, in principle, obtain better results by taking advantage of this type of data. In

27

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

this section, the assumptions for such an extension are detailed and the corresponding
LP problem is formulated.

Method
The key difference to lpNet is that, instead of having an observation matrix con-

taining the measurements of all nodes at a single time point for each knockdown
experiment, we assume having a series of measurements of all nodes along time, while
the signal propagates downstream, for each knockdown experiment.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

1

2

3

(d)

Figure 2.2: Red nodes represent inactive nodes, while black nodes represent active
ones. (d) Is the underlying network to be inferred; (a) represents the node states in
the network at t = 1; (b) represents the node states and active edges at t = 2; (c)
represents the node states and active edges at t = 3; (d) represents the node states
and active edges at t = 4, when the signal propagation is finished. This network also
corresponds to the underlying network.

28

2.3. LINEAR PROGRAMMING APPLIED TO NETWORK INFERENCE FROM
RNAI TIME-SERIES DATA - AN EXTENSION

Consider figure 2.2 and the underlying network in fig. 2.2d. To infer this network
using lpNet we only need to perform several knockdown experiments and measure the
state of each node when the network is in a steady state. On the other hand, when
using the model’s extension developed in this thesis to infer the underlying network in
fig. 2.2d, we can take advantage of measurements of the expression of each protein at
several time-points. Ideally, when no knockdown experiments are performed, we have
measurements for each node at each of the time points depicted in figures 2.2a-2.2d, in
the first time point t = 1 no nodes are active, at t = 2 only the source nodes are active,
at t = 3 both the source nodes and their children are active, and so on until all nodes
are active. It is assumed that, once a node j is active at time point t, its children will
be active at t + 1, i.e., it takes only one time point for the signal to propagate from
parent to children and all time steps are equally long. The observation matrix X is
now composed of entries xikt ∈ R+

0 ∀ {i, k, t}, i ∈ [1, n] , k ∈ [1, K] , t ∈ [1, T], where
T is the number of time-points at which the network nodes values were measured.

Regarding knockdown experiments, these are assumed to be permanent across all
time points, therefore the activation matrix B is the same as in section 2.3. The
criteria for considering a node as active (xikt ≥ δi) or inactive (xikt < δi) are also the
same, except that the observation matrix entries xik are now xikt. Finally, the network
to be inferred is still modeled by a graph G(V,W) with edges wij ∈ R+

0 ∀ {i, j}, since
only the observations change with time.

Model description
A straightforward way to extend Knapp’s model for time-series data is to assume

that the expression of protein i at time point t can only be influenced by its parents
j at time point t− 1, resulting in the following LP problem:

min
{w+

ji,w
−
ji,w

0
i ,ξl}

∑
i,j

(
w+
ji + w−ji

)
+
∑
i

w0
i + 1

λ

∑
l,t

ξlt

 (2.17)

s.t. if xikt ≥ δi and bik = 1 : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjkt−1≥δi (2.18)

if xikt < δi and bik = 1 : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjkt−1≤0 + ξlt (2.19)

29

CHAPTER 2. A LINEAR PROGRAMMING APPROACH TO NETWORK
INFERENCE

if i ∈ V \ S :
∑

j∈V,j 6=i

(
w+
ji + w−ji

)
≥δi (2.20)

if i ∈ V \ F :
∑

j∈V,j 6=i

(
w+
ij + w−ij

)
≥δi (2.21)

w+
ji, w

−
ji, w

0
i , ξlt ≥0 (2.22)

where the only differences from lpNet is the substitution of ξl by ξlt, xik by xikt,
and xjk by xjkt−1, reflecting that the observation xikt can only be influenced by the
expression of the parent proteins at the previous time point, xjkt−1.

In terms of calculating the best value for λ, the procedure described in section
2.3 is followed, except for steps 1 and 2a) that suffer slight changes. In step 1 the
range of possible values for λ now goes from 0 to Ξ = L × σ2 (xikt), and in step 2a)
the entries to be removed from the observation matrix X cannot be taken out from
the first time point, as the prediction of a given entry depends on entries from the
previous time point. The activity of a node is now defined as w0

i +∑
j 6=iwjixjkt−1.

This model will be referred to as lpNet-dyn from here on.

Analyzing the way constraints 2.18 and 2.19 are formulated, these allow a node
j that is inactive at t − 1 to influence its children and contribute to their activity.
Yet, if we consider a biological scenario in which the signal inside the cell propagates
downstream by means of phosphorylation: one protein phosphorylates another and
so on. Then it would make no sense for a protein that has not been phosphorylated
(and thus is inactive), to be already phosphorylating other proteins in the signaling
cascade, i.e. contributing to their activity.

Additionally, by assuming that an inactive parent node at t − 1 can contribute
to its children activity at t, the above LP problem might miss some edges. For
instance, consider having a dataset with 7 time points, an edge wji that is part of
the underlying network, and node j being the only parent of node i. Yet, node j
is active only from t = 5 onwards, thus activating node i at t = 6, which had been
inactive until t = 5. Hence, at t = 2, 3, 4, 5, constraint 2.19 regarding node 2 should
be satisfied, however, both wji and xjkt−1 are greater than zero and slack variables
ξlt need to be introduced, meaning the addition of an extra weight in the objective
function. Taking into account that the objective function value should be minimized,
it may happen that edge wji is not inferred due to the addition of four extra slack
variables (one per time point in which node i is inactive) that it would cost. One

30

2.3. LINEAR PROGRAMMING APPLIED TO NETWORK INFERENCE FROM
RNAI TIME-SERIES DATA - AN EXTENSION

way to avoid such a situation is to set the value of xjkt−1 to zero when node j is
inactive and, assuming w0

i = 0, constraint 2.19 is satisfied without the need to add
slack variables.

Therefore, a second extension was developed, in order to prevent an inactive node
from influencing other nodes: only active nodes can influence their children and
contribute to their activity. The way to achieve it, is to set the parent node value
xjkt−1 to zero when it is less than the respective threshold δj, hence resulting in the
LP problem:

min
{w+

ji,w
−
ji,w

0
i ,ξl}

∑
i,j

(
w+
ji + w−ji

)
+
∑
i

w0
i + 1

λ

∑
l,t

ξl,t

s.t. if xikt ≥ δi, bik = 1, and xjkt−1 ≥ δj : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjkt−1 ≥δi (2.23)

if xikt ≥ δi, bik = 1, and xjkt−1 < δj : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
· 0 ≥δi (2.24)

if xikt < δi, bik = 1, andxjkt−1 ≥ δj : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
xjkt−1 ≤0 + ξlt

(2.25)

if xikt < δi, bik = 1, andxjkt−1 < δj : w0
i +

∑
j 6=i

(
w+
ji − w−ji

)
· 0 ≤0 + ξlt

(2.26)

The last three constraints are omitted because they do not change, prior knowledge
can be included in the same way as for the original lpNet model.

Assuming that the perturbation data to be used comes from RNAi experiments,
in which the knocked down protein has an expression value lower than its threshold,
there is no need to check the value of bik. However, there are perturbation techniques
in which the protein itself is still active, xjkt ≥ δj, but cannot influence other proteins,
e.g. by phosphorylation, in this case there is a need to check the value of bik. In this
way, less non-null edges should be missed.

From here on, this model will be referred to as lpNet-dyn2 and, when referring to
both lpNet-dyn and lpNet-dyn2 at once, we will use lpNet-dyn/2.

31

Chapter 3

Methods

In this chapter we start by describing how to predict the value of the entries removed in
the Cross-Validation step of our model. Afterwards, we explain how the networks used
for tests with simulated data are generated, as well as how the data is simulated, and
then describe the experimental datasets used and how the necessary model parameters
are calculated. Finally, we describe how the results are processed and evaluated,
the experimental setup where the models were executed, and the models execution
settings.

3.1 Prediction of removed entries in Cross-Validation
step

In the previous chapter we described how the parameter λ in the LP problem objective
function of the lpNet and lpNet-dyn/2 models is calculated. This involves using a
cross-validation method where, in the end, the entries removed from the observation
matrix are predicted either as active or inactive. Here we describe the rules used to
predict the state of such an entry.

• A node i in knockdown experiment k and time point t is considered to be active,
when:

– it is a source node and its activity, which is only due to its baseline activity
w0
i , is greater than or equal to the threshold δi;

– all of its parent nodes observations at t− 1 are not missing and its activity
is greater than or equal to the threshold δi;

32

3.2. NETWORK GENERATION

– one or more parent nodes values at t− 1 are missing but none of them is
connected by a negative edge w−ji - or it is connected by a negative edge
but the parent is inactive due to a knockdown - and its activity is still
greater than or equal to the threshold δi.

• A node i in knockdown experiment k and time point t is considered as inactive
when:

– it was directly silenced in the respective knockdown experiment or is inac-
tive due to the experiment’s effects;

– it is a source node and its activity, which is only due to its baseline activity
w0
i , is less than its threshold δi;

– all of its parent nodes observations are not missing and its activity is less
than the threshold δi.

• A node i value in knockdown experiment k and time point t is not predicted
and thus set to NA, when:

– the connections to its parents are all positive, but at least one of the values
of its parents is missing and its activity is less than the threshold δi;

– the value of at least one parent connected by a negative edge is missing
and the parent is not inactive due to a knockdown.

The value of a node predicted either as active or inactive is generated from a normal
distribution N (µ, σ), where µ is calculated from the data and has a different value
according to whether the node is predicted as active, µact, or inactive, µinact, and the
value of σ it is usually a small percentage of µ.

3.2 Network generation

Two groups of network topologies, each one generated in a different way, were used to
evaluate the performance of lpNet-dyn/2. The first group comprises networks with
five nodes only, and each of these networks contains one or more motifs common
in biological networks. By using these networks, we aim at understanding how well
the model can infer the given motifs. The second group of networks contains ten
nodes and was generated by using the function signalnetwork from the ddepn R
package [6, 7]. Given a number of nodes and a number of source nodes, this function

33

CHAPTER 3. METHODS

randomly chooses which nodes will be the source nodes and then randomly selects
their children nodes, which will be connected by activating edges. The children nodes
become the parent nodes, and new children nodes are randomly chosen again, which
will be connected by activating edges. The procedure is repeated until the network
is fully connected, and in the end a given percentage of the edges sampled so far will
be added as inhibiting edges.

Regarding the networks generated with the ddepn R package, two sets of ten ten-
node networks were generated, one set possesses only activating edges and the other
set has 20% of inhibiting edges. These networks possess 2 to 3 source nodes, and
were chosen in such a way as to include some of the motifs mentioned in chapter 1.
Moreover, these two groups of networks were used to test the general performance
of our model and compare it to the original lpNet model and to the DDEPN model.
The networks structure is presented in section A.1.

3.3 Data Simulation

In this section, we describe how the data corresponding to the network’s nodes states
was simulated for lpNet-dyn/2, lpNet,and DDEPN.

lpNet-dyn/2
To simulate the data used to test our model with simulated networks, we consider

two types of nodes: active nodes and inactive nodes, i.e. nodes whose expression xikt
is equal or greater than its threshold value δi, and nodes whose expression xikt is less
than its threshold δi, respectively. All nodes observation values are generated from
normal distributions, active nodes from the distribution N (µact, σ) = N (0.95, σ), and
inactive nodes from N (µinact, σ) = N (0.56, σ), where σ = {0.01, 0.05, 0.2} when there
are knockdown experiments and σ = {0.01, 0.05, 0.2, 0.4, 0.7} for simulations with no
knockdown experiments. This restriction is made due to increased execution time
of simulations that include knockdown experiments. The value of each node in each
knockdown experiment and time point, xikt, is generated three times and then the
mean value is calculated and set as the value of xikt. Regarding δi value, it is also
generated from a normal distribution N (µ, σ), where σ has the same value as the one
used to generate the nodes observations, and µ is the mean value of µact and µinact.
Unless stated otherwise, the value used for σ is 0.01

To generate this data for time-series simulations, we consider all nodes to be
inactive at the first time point t = 1, the source nodes are then active at t = 2, and

34

3.3. DATA SIMULATION

then at each time step the signal will propagate downstream, from the active nodes
to their children as depicted in figure 3.1. The signal propagation stops either when
the nodes have no more children, or when all edges present in the underlying network
have been added. The last condition is imposed so that the function does not enter
in an infinite loop in case there are feedback loops present in the network. For the
network in fig. 3.1 the resulting vectors of the nodes state at each time point would
be:

t = 1 :

0
0
0

 ; t = 2 :

1
0
0

 ; t = 3 :

1
1
0

 ; t = 4 :

1
1
1

where an active node is represented by 1 in the vector of node states, and an inactive
node is represented by 0. The first entry in each vector corresponds to the state of
node one, the second entry to the state of node two, and so on. The number of time
points T for each network is equal to the number of steps it takes for the signal to
stop propagating. Therefore, the data for different networks may include different
numbers of time points T .

When negative edges are part of the network, a node will be considered as active
when the number of incoming positive edges from active parents is greater than the
number of incoming inhibiting edges from active parents; if this number is equal or
less than that, then the node will be considered as inactive. To exemplify the signal
propagation in this case consider fig. 3.2. The resulting node states at each time
point are then:

t = 1 :

0
0
0
0
0
0
0

; t = 2 :

1
0
0
1
0
0
0

; t = 3 :

1
1
0
1
1
0
0

; t = 4 :

1
0
1
1
1
1
0

; t = 5 :

1
0
0
1
1
1
1

Note that when node 5 inhibits node 2 at t = 4, at t = 5 node 3 is also inactive, since
it has no active parents connected by activating edges, i.e. it is receiving no signal.

Finally, to generate this time-series data, one also needs to take into account the
knockdown experiments and their influence on downstream nodes. To ensure that all

35

CHAPTER 3. METHODS

knockdown experiments have the same number of time points, which should also be
equal to the number of time points when no knockdown experiments are included, the
number of time points is calculated in advance by propagating the signal in a network
with no silenced nodes. Only then are the node states generated for each knockdown
experiment. In case the signal stops propagating at t < T , the state of all nodes keeps
constant for all time points t < t′ ≤ T . Similarly, if the signal propagation only stops
at t > T , it is forced to stop at T . The reasoning here is that in an experimental real
scenario the measurements are taken at fixed time points, independently of whether
the signal is still propagating or not. To illustrate this case consider figures 3.3 and
3.4. The vectors of the nodes state evolution along time are:

t = 1 :

0
0
0

 ; t = 2 :

1
0
0

 ; t = 3 :

1
0
0

 ; t = 4 :

1
0
0

and

t = 1 :

0
0
0
0
0
0
0

; t = 2 :

0
0
0
1
0
0
0

; t = 3 :

0
0
0
1
1
0
0

; t = 4 :

0
0
0
1
1
1
0

Note that in the second example, fig 3.4, when node 1 is silenced it would take 5 time
points until the signal propagation stopped. Yet, when node 1 is active it only takes
4 time points for the signal to stop propagating, because node 5 is never active and
thus the signal cannot reach node 7.

lpNet
To generate the data for Knapp’s lpNet model, the method described in the pre-

vious paragraph was also used, however, only the data from the last time point was
considered. The reasoning here is that the network is assumed to be in the closest
state to steady-state at the last time point.

DDEPN
The data used in DDEPN was exactly the same that is used for lpNet-dyn/lpNet-

36

3.3. DATA SIMULATION

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

1

2

3

(d)

Figure 3.1: Red nodes represent inactive nodes while black represents active nodes.
(a) Depicts the node states at t = 1, all nodes inactive; (b) node states at t = 2, the
source node is active; (c) node states at t = 3, nodes 1 has activated node 2; (d) node
states at t = 4, all nodes are active.

1

2

3

4

5

6

7

Figure 3.2: Network with two source nodes, in which node 5 inhibits node 2 and thus
node 3 is active only at t = 4.

1

2

3

Figure 3.3: Three-node network in which node 2 is silenced. Hence, node 3 is never
active.

37

CHAPTER 3. METHODS

1

2

3

4

5

6

7

Figure 3.4: Seven-node network in which node 1 is silenced, allowing the signal to
reach node 7.

dyn2, so that the results comparison can be done in the same conditions. However,
due to time constraints and since the DDEPN’s running time is very long, only one
value for the standard deviation of the normal distributions was used, σ = 0.01.

Unless stated otherwise, the above described methods are the ones used to gen-
erate all simulated data, and we perform tests both with and without knockdown
experiments. In the latter case K = 1 and no nodes are silenced, and in the former
case K = n + 1 knockdown experiments are performed: each node is silenced in a
different experiment and there is also one experiment in which no nodes are silenced.
n is the number of nodes in the network.

Although our model was built to take advantage of time-series data with knock-
down experiments, it is also interesting to test its behavior when no knockdown
experiments are included. In addition, we use one experimental dataset which has no
knockdown experiments, therefore it is important to understand the impact of using
time-series data with no knockdown experiments.

The motivation to use artificial network with simulated data, is to be able to
quantify and compare the models performance, since when using experimental data
no gold standard network exists, only reference networks.

38

3.4. EXPERIMENTAL DATA

3.4 Experimental Data

3.4.1 ERBB regulated G1/S cell cycle transition

In order to try to understand the influence of ERRB signaling in the human cell
cycle G1/S transition, Froehlich et al [29] have studied 16 proteins that partici-
pate in this process. Therefore, several RNAi knockdown experiments were per-
formed using chemically synthesized siRNAs: 13 single RNAi knockdowns (ERBB1,
IGF1R, ER-alpha, pAKT1, pERK1/2, MYC, Cyclin D1, p27, p21, Cyclin E1, CDK6,
CDK4, CDK2) and 3 double RNAi knockdowns (ERBB1+ERBB2, ERBB2+ERBB3,
ERBB1+ERBB3), as well as an experiment with MOCK transfected cells to be used
as a negative control. After siRNA transfection, the cells were stimulated with EGF
for 12h, and the expression of 10 proteins (ERBB1, ERBB2, pAKT1, pERK1/2, Cy-
clin D1, p27, p21, CDK4, CDK2 and pRB1) was quantified by RPPA measurements,
before and after EGF stimulation, in 4 technical and 3 biological replication.The
data was then normalized using quantile integration [8]. For further details please see
[29, 74].

To be able to use this dataset with our model and infer the respective network, we
summarized the measurements replicates by taking their average value, and calculated
a threshold δi for each gene: δi = max

k,t
{xikt : bik = 0}+ ε. The key idea here is that

we know the protein expression values when these are silenced (and thus inactive),
and assume that all values less or equal to this correspond to inactive proteins, while
values greater than this correspond to active proteins. However, since in our model
formulation we assume that an expression value greater or equal to δ corresponds to
an active state, a small ε was added to the δi calculation, so that the inequalities
are still valid and the value of δi is correct. In this case ε = 10−5, and the data was
previously rounded to 5 decimal places. Having determined δi, the values for the
means of the normal distributions N (µ, σ) used to predict the value of a node in the
CV step, µact,i and µinact,i, were set as µact,i = average

k,t
{xikt : xikt ≥ δi} and µinact,i =

average
k,t

{xikt : xikt < δi, } while the standard deviation σ was set as σ = 0.01.

For a matter of clarity we will call this dataset the ERBB G1/S dataset from now
on.

The dataset is available as part of the nem bioconductor package [24].

39

CHAPTER 3. METHODS

3.4.2 ERBB signaling cascade

Bender et al [6] have studied 16 phosphoproteins related to ERBB signaling in the
human breast cancer cell line HCC1954, which overexpresses ERBB2. The list of
studied proteins and corresponding phosphorylation sites is shown in table 3.1. Three
experiments were performed: stimulation with EGF only, stimulation with HRG
only, and stimulation with both EGF and HRG. RPPAs were used to measure the
proteins expression 0, 12, 16, 20, 30, 40, 50, and 60 min after stimulation for each
experiment in 5 biological and 3 technical replicates. Fast Green FCF dye was used
for sample normalization, so that different protein concentrations in each array spot
are accounted for. Plus, to remove systematic shifts in the signal intensities, replicate
time courses were centered around their common mean. For more details on the
experimental setup please see ref. [6].

To use this dataset with our model and infer the respective network, all the repli-
cate measurements were averaged into a single measurement per protein per time
point per stimulation experiment, xikt. In addition, the data was normalized so
that the range, and consequently the number, of λ values to use is smaller and the
model running time is reduced. Thus, the expression value of each protein is set
as xikt/max

t
{xikt}, where max

t
{xikt} is calculated after removing the outliers. Each

stimulation experiment is considered as a knockdown experiment in which no nodes
are silenced, the idea is to account for the different effects of each stimulus on the
network, which are unknown. To calculate the threshold value, δ, we consider a
different threshold per node per stimuli experiment, δik, since we assume that dif-
ferent stimuli can lead to different activation levels, i.e., a node may have different
expression values for different stimuli and still being in the same state. Thus, we
set δik = xikt=0 + ε for all nodes except the nodes corresponding to the receptors
ERBB1-4, and δik = xikt=0 for ERBB1-4. The reasoning here is that we assume the
receptor proteins to be active at the first time point, t = 0, while all other proteins
are inactive, and thus add ε = 10−5 to the value of the latter proteins at t = 0,
after rounding the data to 5 decimal places. Regarding the parameters of the nor-
mal distribution N (µ, σ) used to predict the value of a node in the CV step, we
have: µact,i,k = average

t
{xikt : xikt ≥ δi} , µinact,i,k = average

t
{xikt : xikt < δi}, and

σ = 0.01.
For the sake of clarity we will call this dataset the HCC1954 dataset from now on.
The dataset is available as part of the ddepn R package.

40

3.5. RESULTS PROCESSING AND EVALUATION

Protein Phosp. sites Protein Phosp. sites Protein Phosp. sites
ERBB1 Y1068 AKT S473 SRC Y416
ERBB2 Y1112 GSK3 Y279, Y216 MEK1/2 S217, S221
ERBB3 Y1289 p38 T180, Y182 p70S6K T389
ERBB4 Y1162 PKCα S657, Y658 PLCγ S1248
ERK1/2 T202, Y204 mTOR S2448 PDK1 S241
PRAS T246

Table 3.1: Proteins and repective phosphorylation sites measured in the study of the
ERBB signaling cascade in a human breast cancer cell line.

3.5 Results processing and evaluation

In this section, we describe how the obtained results from each model assessed in this
thesis are processed and evaluated.

3.5.1 lpNet and lpNet-dyn/2

Each time lpNet-dyn/2 is executed, a given number of networks are inferred for each
possible value of the λ parameter. After determining the best value for λ, i.e. the value
that minimizes the MSE between the predicted values for the removed entries in the
observation matrix and their true values, the set of corresponding inferred networks
is returned. These networks need to be summed up into a single network. Since
the value of each edge is continuous, this is done by calculating the median and the
Median Absolute Deviation (MAD) values of each edge inferred in all networks. Only
edges whose median value is greater than its MAD are included in the final network.
In this way, only edges that are inferred in most of the networks with similar values
wji are included in the final network, avoiding the inclusion of spuriously inferred
edges. The final network is then compared to a true network – if available – and
sensitivity (SN), specificity (SP), and precision (PR) values are calculated.

3.5.2 DDEPN

When using the DDEPN model a set of networks is produced in the end, whose val-
ues are in the set {0, 1, 2}, where 1 stands for an activating edge, 2 for an inhibiting
edge, and 0 for a null edge. These networks also need to be summed up into a final
network, however, because the value of an edge is discrete, the number of times an
edge with a given value is inferred is divided by the total number of inferred networks,

41

CHAPTER 3. METHODS

thus producing a probability of inferring the given edge. Only edges whose proba-
bility of being inferred is greater than 0.5 are included in the final network. If the
probability for an edge to be inhibiting is equal to the probability of it being activat-
ing, the edge is considered to be null. This final network is then compared to a true
network – if available – and sensitivity, specificity, and precision values are calculated.

Since both the models developed in this thesis and the models to which compar-
isons are established can infer positive, negative, and null edges, this classification
problem is a three class problem. Hence, an edge in the final network is classified,
according to table 3.2, as false positive (FP): an edge incorrectly predicted as positive
or negative, true positive (TP): a positive or negative edge predicted correctly, false
negative (FN): a null edge predicted as positive or negative, or true negative (TN): a
null edge predicted as such.

Predicted

Actual

Positive edge Negative edge Null edge
Positive edge TP FP FN
Negative edge FP TP FN
Null edge FP FP TN

Table 3.2: Confusion matrix used to map a three class classification problem onto a
two class problem.

Simulated data
We use either boxplots or median ± MAD values to represent the results from

simulated datasets in terms of SN, SP, and PR because the distribution of these values
is usually highly skewed. Therefore, a boxplot or median ± MAD values are able to
better represent these results. Furthermore, we choose to evaluate all results in terms
of sensitivity, specificity, and precision values, instead of using Receiver Operating
Characteristic and Precision to Recall curves, because the former measures provide a
more direct insight into the model’s weaknesses, e.g. whether it infers too many false
positive or too many false negative edges.

Each underlying network is inferred at least 30 times in order to obtain reliable
values, and for each time a new dataset is generated according to the same parameters,
µ and σ. Afterwards, SN, SP, and PR values are calculated for the resulting network
of each run.

42

3.6. EXPERIMENTAL SETUP AND EXECUTION SETTINGS

Our results are also compared against random prediction. Given an adjacency
matrix that represents the true network, random prediction was performed by per-
muting the entries of each column and row individually a 100 times, after which the
result is evaluated. This step is repeated the same amount of times that the network
is inferred by lpNet-dyn/2.

Experimental data
To analyze the results for each experimental dataset we use heatplots to represent

each inferred edge, and then analyze each one individually by checking whether it
is also found in the literature. Only edges whose median value is greater than its
MAD are considered to exist. Additionally, we used Ingenuity IPA [1] to assemble a
network constituted by the dataset’s proteins. This network is used as a true network
to evaluate the results obtained with our model in terms of SP, SN, PR and accuracy.
To assemble the true network with Ingenuity IPA we considered only experimentally
observed direct connections in human and in vitro samples. The assembled networks
are presented in figures A.22 and A.23.

3.6 Experimental Setup and Execution Settings

The model was implemented in R [85], and executed using R 2.15.3 on an Intel® Xeon
X5460 @ 3.16GHz with 2×6MB of L2 cache and 32GB or RAM. For simulated data,
each model was executed at least 30 times in order to obtain reliable results and,
when possible, a 100 times. In each time a new observation matrix was generated
from the same parameters. These runs were usually executed in different CPU cores,
not necessarily belonging to the same cluster node. The R packages and respective
versions used in the execution of the lpNet and lpNet-dyn/2 models are listed in table
3.3a, and the R packages used for DDEPN execution are listed in table 3.3b.

To solve the LP problems stated in sections 2.2-2.3 the R package lpSolve v5.6.6
[17] was used, whereas the ddepn R package version 2.1.2 was used to run the re-
spective model.

For the lpNet and lpNet-dyn/2 models the CV method used was the LOOCV
for the five-node networks, and k-fold CV for the ten-node networks with k = 10.
The CV step was repeated a 100 times for the LOOCV and 5 times for k-fold CV,
resulting in 50 networks inferred for each possible value of λ for k-fold CV and a
number of networks dependent on the observation matrix dimension for the LOOCV
(more precisely: equal to the number of entries for all time points except the first

43

CHAPTER 3. METHODS

Package name Version
lpSolve 5.6.6

(a)

Package name Version
gam 1.08
coda 0.16-1
gtools 2.7.1
bitops 1.0-5
caTools 1.13
gplots 2.11.0.1
igraph0 0.5.7
ddepn 2.1.2
MASS 7.3.23

(b)

Table 3.3: R packages, and respective versions, used to execute (a) lpNet and lpNet-
dyn/2] and (b) DDEPN.

one). The value for λ ranged from 0 to Ξ = L×σ2 (xik) with intervals of 0.05. For the
experimental datasets, LOOCV was used for the ERBB G1/S dataset which had few
observations, and k-fold CV for the HCC1954 dataset with k = 10. For both datasets
the CV step was repeated a 100 times, and the interval between each successive value
of λ was set to 0.01.

Regarding DDEPN’s execution, the following parameters for the genetic algorithm
were used: a population of 500 networks, p = 500, a crossover (selection) rate of
q (1− q), where q = 0.3, a mutation rate of 0.8, m = 0.8, and the maximum number
of iterations was set to a 1000. These parameters were chosen according to [6]. To
run the simulations with no knockdown experiments, only one stimuli experiment is
considered, in which one stimuli node is added to the true network. This node is
connected to all source nodes by an activating edge. For simulations with K = n+ 1
knockdown experiments, K stimuli experiments are considered, one in which the
network is stimulated by a single node connected by a positive edge to all source
nodes, and an experiment per knockdown in which the network is stimulated by: the
stimuli node again, and further perturbed by an inhibiting node, which is connected
to its target – the node to be silenced – by an inhibiting edge. Hence, when K

knockdown experiments are performed K stimuli/inhibiting nodes and respective
edges are added to the true network. However, when assessing the network inference
results, we only consider the edges inferred among the original network nodes, and
not the edges inferred from the stimuli/inhibiting nodes to their targets, as the latter
nodes and edges do not exist in our model.

44

Chapter 4

Results and discussion

In this chapter we present and discuss the results obtained with the models lpNet-dyn
and lpNet-dyn2, both when using artificial networks with simulated data, generated
as described in sections 3.2 and 3.3, and experimental datasets, in particular the
ERBB G1/S and HCC1954 datasets. Furthermore, we compare our results to the
ones obtained with lpNet and DDEPN.

4.1 Simulated data

4.1.1 Prediction of Motifs in Biological Networks

In this section, we evaluate the performance of lpNet-dyn/2 when inferring the 5-
node networks from figures 4.1a-4.1f, which contain motifs usually found in biological
networks [78, 81]. To assess this, we present, for each model, whether the network
non-null edges are correctly inferred or not, and which edges are incorrectly inferred
(false positives). Tests were performed with a single knockdown experiment (K = 1),
in which no nodes are silenced, and with six knockdown experiments (K = 6), in
which a different node is silenced in each experiment and in the last one no nodes
are silenced. When knockdown experiments are performed, we compare the results
obtained with lpNet-dyn/2 and lpNet. Each model was executed a 100 times, resulting
in a 100 inferred networks, which are summed up by considering an edge wji to exist
if its median value is greater than its MAD. In the end, we also discuss the motivation
for this criterion.

45

CHAPTER 4. RESULTS AND DISCUSSION

1

2

3

4

5

(a)

1 2

3 4

5

(b)

1

2 3

4 5

(c)

1

2 3

4

5

(d)

1

2

34

5

(e)

1

2

34

5

(f)

Figure 4.1: In this figure 7 networks containing motifs found in biological networks
are shown: (a) cascade, each node activates the next one sequentially; (b) fan-in,
both nodes 3 and 4 activate node 5; (c) fan-out, node 1 activates both nodes 2 and
3; (d) fan-in + fan-out, node 1 activates both nodes 2 and 3, which in turn activate
node 4; (e) feedback loop, node 2 activates node 3, node 3 activates node 4, and node
4 activates node 2 again; (f) feed-forward loop, node 2 activates both nodes 3 and 4,
and node 4 activates node 3 again.

Cascade
The first five-node network to be inferred is a linear signaling cascade, fig. 4.1a,

where each node activates the next one sequentially. The results are presented in table
4.1. lpNet-dyn2 always infers all edges correctly and no false positives, while lpNet-
dyn needs 6 knockdown experiments to infer all edges correctly, otherwise it misses
one edge and infers a false edge. The original lpNet with 6 knockdown experiments

46

4.1. SIMULATED DATA

misses one edge, 3→ 4.
The network inferred by lpNet-dyn for K = 1 explains the data as well as the

true network. The reason it is inferred is that, by adding edge 1 a 5, the sum of the
slack variables ξlt to be added to the objective function is smaller, and the constraints
w0

5 +∑
j 6=5 wj5xjkt−1 ≤ 0 + ξlt are still satisfied. These constraints need to be satisfied

4 out of 5 time points, when the sum ∑
j 6=5 wj5xjkt−1 is smaller than at the last time

point, when all nodes j 6= 5 are active. Hence, it is less expensive to infer an extra edge
1 a 5 than to add the necessary slack variables to the objective function, even if edge
w45 needs to have an higher value to satisfy w0

5 +∑
j 6=5 wj5xjkt=4 ≥ δ5. This situation

should be avoided by setting λ value high enough, however, for this simulation its
maximum value is 0.7, turning the addition of slack variables more expensive than
inferring extra edges.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 NO YES YES YES NO
4→ 5 YES YES YES YES YES
FP 1 a 5 - - - -

Table 4.1: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for a linear signaling
cascade, fig. 4.1a. Inferred false positive (FP) edges are shown in the last line, where
a refers to an inhibiting edge.

Fan-in
The network from figure 4.1b contains a fan-in motif: two nodes activate a third

node at the same time. Yet, it also contains another structure that is hard to infer:
nodes 1 and 3 activate nodes 4 and 5, respectively, at the same time point. This
structure can be explained by 4 different sets of edges: 1) 1 → 4, 1 → 5, 2) 3 → 4,
3 → 5, 3) 1 → 4, 3 → 5, 4) 1 → 5, 3 → 4; thus the difficulty in inferring such a
structure. Due to this situation no edges are inferred for K = 1, see table 4.2, the
LP problem constraints being explained by setting w0

i ≥ δi. Only for K = 6, can
lpNet-dyn/2 infer all edges correctly and no false positive edges, while the original
model lpNet fails to infer both edges ending in node 5.

47

CHAPTER 4. RESULTS AND DISCUSSION

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 3 NO NO YES YES YES
2→ 4 NO NO YES YES YES
3→ 5 NO NO YES YES NO
4→ 5 NO NO YES YES NO
FP - - - - -

Table 4.2: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1b, that contains a fan-in motif. No false positive edges were inferred.

Fan-out
The network depicted in figure 4.1c contains a fan-out motif: one node activates

two other nodes at the same time point, and again contains 2 nodes activating 2 other
nodes at the same time point. This is most probably why, for K = 1, lpNet-dyn/2
cannot infer edges 2→ 4 and 3→ 5, only for K = 6 can all models infer every edge
correctly and no false positive edges, see table 4.3.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
1→ 3 YES YES YES YES YES
2→ 4 NO NO YES YES YES
3→ 5 NO NO YES YES YES
FP - - - - -

Table 4.3: The above table shows for each model, with (K = 6) and without knock-
down experiments (K = 1), which edges are correctly inferred for the network in
figure 4.1c, that contains a fan-out motif. No false positive edges were inferred.

Fan-in plus Fan-out
The network presented in figure 4.1d, contains both a fan-in and a fan-out motif.

For this network, only lpNet-dyn2 is able to infer all edges correctly and no false
positive edges for K = 6, as can be seen in table 4.4. lpNet-dyn, in the same
situation, infers all edges correctly but also infers four false positive edges, and lpNet
infers no edges at all. When no knockdown experiments are performed, lpNet-dyn
only infers both edges starting at node 1 correctly, and fails to infer the remaining 3
edges, whereas lpNet-dyn2 only fails to infer 3→ 4.

48

4.1. SIMULATED DATA

Regarding the inferred false positive edges, the reason for this is the same presented
for the cascade motif: by inferring extra inhibiting edges, the sum of slack variables
added to the objective function is smaller, and the function is minimized.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES NO
1→ 3 YES YES YES YES NO
2→ 4 NO YES YES YES NO
3→ 4 NO NO YES YES NO
4→ 5 NO YES YES YES NO
FP - - 1 a 5, 5 a 2, 5 a 3, 5 a 4 - -

Table 4.4: The above table shows for each model, with (K = 6) and without knock-
down experiments (K = 1), which edges are correctly inferred for a network contain-
ing both a fan-in and a fan-out motif, see fig. 4.1d. Inferred false positive (FP) edges
are shown in the last line, where a refers to an inhibiting edge.

Feedback loop
The network shown in figure 4.1e contains a feedback loop: node 2 activates node 3,

node 3 activates node 4, and node 4 activates 2 again. Without the right perturbation
experiments this type of structure is very hard to infer, since there is no need to infer
the edge 4 → 2 to explain the value of node 2, and it would only lead to an higher
value of the objective function, which has to be minimized. The results shown in
table 4.5 show exactly that, all models, for both K = 1 and K = 6, infer all edges
correctly and no false edges, except for edge 4 → 2, where node 4 activates node 2,
which is already active. The only way to infer this edge would be to silence node 1,
so that node 2 is inactive when the connection from 4 to 2 occurs, however, node 1 is
the only source of signal in the network and when it is silenced all nodes are inactive.
Therefore, an extra source node would have to exist for the edge 4→ 2 to be inferred,
for instance, a second source node connected to node 4.

Feedforward loop
Figure 4.1f shows a network containing a feedforward loop: node 2 activates both

nodes 3 and 4, and node 4 activates node 3, which is already active. Note that edges
2 → 4, 4 → 3 and 2 → 3 are an example of a situation where both indirect and
direct signaling occur, and it is generally hard to infer all the edges correctly, as edge
4→ 3 does not need to be inferred to explain the data. The results in table 4.6 show

49

CHAPTER 4. RESULTS AND DISCUSSION

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 YES YES YES YES YES
3→ 5 YES YES YES YES YES
4→ 2 NO NO NO NO NO
FP - - - - -

Table 4.5: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1e, that contains a feedback loop. No false positive edges were inferred.

exactly that. This happens because nodes 3 and 4 are active immediately after node 2
is activated, thus increasing the probability that edges 2→ 4 and 2→ 3 are inferred.
But since node 4 becomes active at the same time point as node 3, and node 3 is
already active when the edge 4 → 3 occurs, it is highly unlikely for this edge to be
inferred when no knockdown experiments are done. When knockdown experiments
are performed and node 2 is silenced, it does not activate node 3, but since node 4 is
also never active, it cannot activate node 3 and thus the edge is not inferred. One way
to infer the edge 4 → 3, would be to have a second source node that would activate
node 4 when node 2 is silenced, this way node 4 would activate node 3 and the edge
could be inferred.

Summing up, apart from lpNet which infers no edges at all and lpNet-dyn which
fails to infer edge 3→ 5 for K = 1, all models fail to infer the edge from node 4 to 3.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES NO
2→ 3 YES YES YES YES NO
2→ 4 YES YES YES YES NO
3→ 5 NO YES YES YES NO
4→ 3 NO NO NO NO NO
FP - - - - -

Table 4.6: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for a network contain-
ing a feedforward loop, fig. 4.1f. No false positive edges were inferred.

50

4.1. SIMULATED DATA

Assessing different criteria to classify an edge as non-null
At last, we also used these networks to assess the impact of considering an edge

to be non-null when using two different criteria: 1) an edge is non-null if its median
value is greater than its MAD; 2) an edge is non-null when it is inferred at least in
50% of the inferred networks.

The results obtained for criterion 2 are shown in section B.1, together with the
results already presented for the first criterion. Overall, when using criterion 2, more
true positive edges are considered as existing, yet, this happens at the cost of more
existing false positive edges. On the other hand, when using criterion 1 most of the
true positive edges are still considered as existing, while few false positive edges are
considered to be non-null. Still, when a node has two incoming edges, such as in
the feedback and feedforward loops, one of the edges is always considered as null,
whatever criterion is used. Thus, we opt to use criterion 1 to classify an edge as
existing or not, and have more confidence on the non-null inferred edges.

Finally, it should be noted that the absolute value of each edge |wji| is not nec-
essarily correlated to how much evidence there is in the data for the inference of a
particular edge. On the inference of the above networks, we noticed that the edge
values |wji| depend mostly on the node state and on which incoming edges were in-
ferred. For instance, there were situations in which, for an active node with a single
incoming positive edge, the value of this edge was |wji| = 0.8. On the other hand,
when an active node had both one incoming positive edge and one incoming negative
edge, the value of the positive edge was |wji| = 1.6, in order to balance the effect of
the inhibiting edge.

General discussion
In general, our model fails to infer the following two types of edges: 1) an edge

that activates an already active node, and 2) “parallel” edges, e.g. edges that start
at nodes 1 and 2 and activate nodes 3 and 4 respectively.

Under our assumptions, that the expression of an active node does not change
with the number of incoming activating edges from active parents, the first type of
edges are difficult to infer with most models. The reason is that, given an active
node, there is no evidence in the data for further incoming activating edges from
active parents. To solve this situation, the appropriate knockdown experiments need
to be done, i.e., silencing one parent node while the child node is still activated by
another parent node.

51

CHAPTER 4. RESULTS AND DISCUSSION

Regarding the inference of “parallel” edges, the difficulty is in which nodes influ-
ence which, as in terms of protein expression, when node 1 and 2 are active at t = 1
and nodes 3 and 4 are active at t = 2, several combinations of edges can explain the
situation. It may be either node 1 or 2 that activates both nodes 3 and 4, it may
be node 1 and 2 that activate node 3 and 4, respectively, or vice-versa. All the four
alternatives are able to correctly explain the data and, to resolve the situation, the
appropriate knockdown experiments need to be performed.

The above mentioned problems can be summed up in a single well known prob-
lem in network inference: in general, for a given dataset, there are several network
topologies that can explain the data equally well.

Interestingly, there is an higher tendency for lpNet-dyn to classify null edges as
non-null than for lpNet-dyn2. This happens because, in lpNet-dyn2, when a parent
node j is inactive, the product wjixjkt−1 is set to 0 and will have no influence on the
problem’s constraints, meaning there is less incentive for the edge wji to be inferred.
Whereas, in lpNet-dyn, inferring an inhibiting edge w−ji might increase the value of
the objective function by a lower amount than adding the necessary slack variables
to satisfy constraints w0

i +∑
j 6=iwjixjkt−1 ≤ 0 + ξlt.

As a final note, please keep in mind that the inference results for the motifs
presented in figures 4.1a-4.1f may not apply to all cases, as these depend mostly
on the networks in which the motif is embedded and the time-frame of the signal
propagation.

4.1.2 Artificial Ten-Node networks

In this section we use ten-node networks with simulated data to assess the perfor-
mance of lpNet-dyn/2 in different conditions.

First, we study the performance of lpNet-dyn/2 with an increasing number of
time points and knockdown experiments. To do this, we use the network shown in
fig. A.3, and execute the model 100 times using always the same parameters for data
generation, µact = 0.95, µinact = 0.56, σ = 0.01.

Second, we assess our models performance for data with different levels of noise,
since a common problem when inferring biological networks from experimental data
is the amount of noise in the measurements. To do this, we use the set of ten ten-
node networks with positive edges plus 20% of negative edges, figures A.11-A.20.
Furthermore, we compare our results to the results obtained with the original lpNet
and with DDEPN. For this study the models were executed 30 times due to time

52

4.1. SIMULATED DATA

constraints, however, the overall results for 100 runs and 30 runs are similar, as
shown in figures B.1-B.4 .

Finally, we use ddepn R package makedata function to generate data for both
lpNet-dyn/2 and DDEPN, and assess the impact of using different assumptions to
generate data on the comparison between these models. The motivation is that the
method used to generate data in all other tests follows our assumptions, while the
makedata function follows DDEPN assumptions, which are not the same and may
introduce some bias in the results obtained. For this test the models were executed
50 times, and a single noise level was used (σ = 0.01).

Increasing number of time points
In figures 4.2 and 4.3, we present the results from lpNet-dyn/2, for K = 1 and

K = 11, in terms of SP, SN, and PR for an increasing number of time points, more
specifically from 2 time points (the minimum required by the model) to 12. The
results represent median and respective MAD values calculated over 100 inferred
networks.

The signal propagation in the network (fig. A.3) used for this test takes 6 time
points to reach the end nodes, i.e., there are 6 node state vectors, one per time point.
Hence, for a number of time points less than 6, the required number of time points
and corresponding node state vectors was deliberately removed, typically for every
other time point. For a number of time points greater than 6, the required number
of time points and respective node state vectors were repeated. To choose the time
points to be repeated, these were sampled with replacement. The specific time points
and respective node state vectors used for each number of time points are shown in
table A.1.

Before proceeding into the results analysis, one should note that the node state
vectors at t = 5 and t = 6 are the same, all nodes are active, however, the signal
propagation only stops at t = 6.

Overall, from figures 4.2 and 4.3 we verify that SP, SN, and PR values attain their
maximum values between T = 5 and T = 8, with few exceptions. This happens most
likely because at t = 6 the signal only reaches nodes that are already active, thus,
it is hard to extract any more information from this last time point. Regarding the
results for T = 7, 8, the repetition of only a few node state vectors appears to have
a positive impact on overall results. Yet, if a greater number of node state vectors
are repeated, the models performance tends to decrease. One reason for this is that,
by repeating only some vectors, a bias is introduced towards the edges that become

53

CHAPTER 4. RESULTS AND DISCUSSION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12

S
N
/
S
P

T

lpNet-dyn, sensitivity
lpNet-dyn2, sensitivity
lpNet-dyn, specificity
lpNet-dyn2, specificity

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12

P
re
ci
si
o
n

T

lpNet-dyn
lpNet-dyn2

(b)

Figure 4.2: Results for an increasing number of time points when no nodes are si-
lenced, K = 1, for one ten-node network. Both in (a) and (b) red refers to results
from lpNet-dyn and blue to results from lpNet-dyn2. In (a) normal lines show the
evolution of the median sensitivity and corresponding MAD, whereas dashed lines
represent the evolution of specificity median values and respective MAD with in-
creasing number of time points. In (b) precision median and respective MAD values
with increasing number of time points are shown.

active at the respective time points. However, this impact is not the same for K = 1
and K = 11. For K = 11 the repetition of more node state vectors does not appear
to have such a negative impact. This is should be because, as each gene is silenced
once at each time point, the bias towards the inference of edges that become active
at the repeated time points is reduced. Yet, one should note that, due to this bias,
the results presented in here may change depending on the network to be inferred
and which node state vectors are repeated.

Finally, note that lpNet-dyn/2 is not able to infer the network for T = 2, the
resulting network being the empty network, i.e., wji = 0 ∀ {i, j}. For T = 2, most
nodes are inactive at the first time point and all nodes are active at the last time point,
thus, the reason for this behavior is obvious when using lpNet-dyn2: if the parent
nodes are inactive at t = 0, they do not contribute to their children’s activity at t = 1
and, in principle, no edges wji are inferred, as these do not influence the LP problem
constraints. Instead, the constraints are satisfied by setting w0

i ≈ δi. For lpNet-dyn,
what probably happens is that the xjkt−1 values are so low that, in terms of minimizing
the objective function, it compensates to set w0

i ≈ δi instead of setting wji > 0.
However, for this particular network, it can be inferred for T = 2 if knockdown
experiments are performed and the data for the first time point corresponds to t = 5,
when all nodes are active. These results are presented in section B.3.

54

4.1. SIMULATED DATA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12

S
N
/
S
P

T

lpNet-dyn, sensitivity
lpNet-dyn2, sensitivity
lpNet-dyn, specificity
lpNet-dyn2, specificity

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12

P
re
ci
si
o
n

T

lpNet-dyn
lpNet-dyn2

(b)

Figure 4.3: Results for an increasing number of time points when 11 knockdown
experiments are performed, K = 11, for one ten-node network. Red and blue refer to
results from lpNet-dyn and lpNet-dyn2, respecetively. In (a) normal lines represent
the evolution of the median sensitivity and corresponding MAD, whereas dashed lines
show the evolution of specificity median values and respective MAD with increasing
number of time points. In (b) precision median and respective MAD values with
increasing number of time points are shown.

Increasing number of knockdown experiments
To study the influence of the number of knockdowns on the performance of lpNet-

dyn/2 , we varied the number of knockdown experiments from 1, K = 1, (no silenced
nodes) to 16, K = 16, (one gene silenced in each experiment, 5 experiments with
double knockdowns, plus one experiment with no silenced nodes) while keeping the
number of time points, T , constant. For each value of K, the set of nodes silenced
for K − 1 knockdown experiments was kept, and a new node(s) was sampled from
the set of nodes that were not chosen for silencing yet. Thus, the same node is never
silenced in two different experiments of the same type (single or double knockdowns).
The list of silenced nodes for each value of K is shown in table A.2.

The results obtained are shown in figure 4.4, these represent SP, SN, and PR
median and respective MAD values calculated over 100 inferred networks. There
is a general increasing trend in SP, SN, and PR values for a growing number of
knockdowns. Yet, this trend is not steady, for some K values SP, SN, and/or PR
actually decrease in comparison to previous K values, which might be due to the
particular nodes that were silenced in the respective experiments. For instance, lpNet-
dyn SN and PR decrease forK = 4 – when nodes 1, 7, and 8 are silenced –, comparing
to K = 1. Node 8 is an end node with a single incoming edge and, since the models
say nothing about incoming connections for silenced nodes, this edge is most probably
not inferred for K = 4 while it is probably be inferred for K = 1, when no nodes

55

CHAPTER 4. RESULTS AND DISCUSSION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
N
/
S
P

K

lpNet-dyn, sensitivity
lpNet-dyn2, sensitivity
lpNet-dyn, specificity
lpNet-dyn2, specificity

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
re
ci
si
o
n

K

lpNet-dyn
lpNet-dyn2

(b)

Figure 4.4: Sensitivity, Specificity, and Precision values for an increasing number of
knockdown experiments, K = 1, 16. Red and blue lines refer to results from lpNet-
dyn and lpNet-dyn2, respectively. Normal lines in (a) represent the evolution of
median Sensitivity values and respective MAD with growing number of knockdown
experiments, dashed lines represent the evolution of Specificity median values and
respective MAD, while in (b) lines represent evolution of Precision median values
and respective MAD.

are silenced. Concerning nodes 1 and 7, these are nodes with a single incoming edge
and with outgoing edges that activate already active nodes. Hence, by silencing these
nodes, their incoming edges are probably not inferred in comparison to K = 1, while
their outgoing edges are hard to infer in any case, as they are not crucial for the
activation of their child nodes.

In short, the more knockdown experiments are performed, the better are the re-
sults. Yet, including few knockdown experiments is not always beneficial, it depends
on which nodes are silenced. In general, if the silenced nodes have a single incom-
ing edge and outgoing edges that activate already active nodes, silencing them may
actually lead to worse results.

It is also interesting to note that lpNet-dyn and lpNet-dyn2 SN, SP, and PR
values, while displaying the same tendencies, do not exhibit the same exact behavior.

Increasing level of noise in the data
We now assess the impact of noisy data on lpNet-dyn/2, by measuring its perfor-

mance in terms of SP, SN, and PR values for increasing levels of noise in the data,
from σ = 0.01 to σ = 0.7 for K = 1, and from σ = 0.01 to σ = 0.2 for K = 11. These
results are compared to lpNet results for all noise values and K = 11, and to DDEPN
results for σ = 0.01 and K = {1, 11}.

56

4.1. SIMULATED DATA

Before proceeding to the results analysis, one must note that the way to include
knockdown experiments in DDEPN is very different from ours. In DDEPN, knock-
down experiments are encoded as stimuli experiments, in which inhibiting stimuli
nodes are added to the network, as well as edges to their target nodes, which will
be inhibited. These edges are then inferred by the model, together with the edges
from the original network (the network without stimuli nodes). Additionally, one
or more stimuli nodes, which activate the network source nodes, must exist. Hence,
when knockdown experiments are included, K = 11, DDEPN needs to infer an extra
10 edges from inhibiting stimuli to target nodes and the edges from stimuli node to
source nodes, in addition to the original network edges. On the other hand, in lpNet-
dyn/2 the knockdown experiments are modeled by an activation matrix, which states
whether the node is active or not.

One way to include prior information about silenced nodes in DDEPN is to include
prior knowledge regarding the stimuli to target edges, and say nothing about the
remaining edges. Still, besides the prior knowledge itself one must also supply its
“strength”, whose value depends on the dataset used. Taking the results in Bender et
al [7] as a reference, we chose a value of 0.01. However, the obtained results indicated
that the “strength” of the prior was too large, and little non-null edges were inferred,
the results being actually worse in terms of sensitivity and precision than when using
no prior. Therefore, the results here presented refer to DDEPN with no prior.

Overall, when no nodes are silenced, K = 1, the performance of lpNet-dyn/2
is relatively robust for noise values up to 0.2, while it drops significantly for higher
values, see fig. 4.5. One reason for this is that, when σ = 0.4, active nodes can have
values as low as inactive nodes and vice-versa. In addition, the δ value also depends
on σ, thus it becomes hard to distinguish an active node from an inactive one, and
the results deteriorate. In general, lpNet-dyn performs better than lpNet-dyn2 in
terms of specificity and precision. Yet, lpNet-dyn2 is the only model able to attain
sensitivity values significantly above random, while DDEPN performs worse in terms
of sensitivity than both lpNet-dyn and lpNet-dyn2, and performs roughly as well as
both models in regard to specificity and precision values. For the highest value of
noise, σ = 0.7, lpNet-dyn/2 still performs better than random in terms of PR and
SP, performing below random in terms of sensitivity.

57

CHAPTER 4. RESULTS AND DISCUSSION
S

N
/S

P

0
0
.1

0
.3

0
.5

0
.7

0
.9

1

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

D
D

E
P

N

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
a
n

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

Sensitivity
Specificity

(a)

P
re
ci
si
on

0
0
.1

0.
3

0.
5

0.
7

0.
9

1

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

D
D
E
P
N

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
a
n
d
om

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

(b)

Figure 4.5: Sensitivity, Specificity, and Precision values for different noise values,
from 0.01 to 0.7, for K = 1. A set of ten ten-node networks was used. (a) Shows
Sensitivity (blue) and Specificity (green) values for lpNet-dyn/2, lpNet, and DDEPN.
(b) Shows Precision values for the same models. The horizontal solid black line and
the dashed black line represent the median value of SN/SP/PR obtained for random
prediction and with DDEPN, respectively.

58

4.1. SIMULATED DATA
S

N
/S

P

0
0
.1

0
.3

0
.5

0
.7

0
.9

1

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

D
D

E
P

N

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
an

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2

Sensitivity
Specificity

(a)

P
re
ci
si
on

0
0
.1

0.
3

0.
5

0.
7

0.
9

1

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

D
D
E
P
N

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
an

d
om

σ = 0.01 σ = 0.05 σ = 0.2

(b)

Figure 4.6: Sensitivity, Specificity, and Precision values for different noise values,
from 0.01 to 0.2, for K = 11. A set of ten ten-node networks was used. (a) Shows
Sensitivity (blue) and Specificity (green) values for lpNet-dyn/2, lpNet, and DDEPN.
(b) Shows Precision values for the same models. The horizontal solid black line and
the dashed black line represent the median value of SN/SP/PR obtained for random
prediction and with DDEPN, respectively.

For K = 11, 4.6 it is noteworthy the increase in lpNet-dyn2 sensitivity values

59

CHAPTER 4. RESULTS AND DISCUSSION

relative to K = 1, which is larger than the increase in lpNet-dyn SN values, showing
that the extra constraints added to lpNet-dyn2 fulfill their purpose: inferring more
TP edges and less false negatives. Overall, lpNet-dyn/2 is robust to noise values up
to σ = 0.05, showing a significant decrease for σ = 0.2, as this noise value allows for
an overlap of values for active and inactive nodes. Plus, since there are more inactive
nodes for greater values of K, the overlap probability increases and the decrease in
SN, SP, PR values is observed for lower noise levels than when K = 1. Regarding
SP values, these are constantly high for lpNet-dyn/2 when σ = 0.01, 0.05, showing
a significant drop for σ = 0.2, to which lpNet-dyn is more robust. As for Precision
median values, lpNet-dyn performs slightly better than lpNet-dyn2 for σ = 0.01 but
its performance gets worse than lpNet-dyn2 for σ = 0.2.

Regarding DDEPN performance alone, it attains very high SP and PR values
but very low SN values (below random), showing that all positive edges it infers are
actually positive edges. However, it infers little positive edges in comparison to false
negative edges. As for Knapp and Kaderali model, lpNet, except for SP, it performs
worse than lpNet-dyn/2. Yet, this model cannot take advantage of time-series data,
which provides more information on the node states than steady-state data with single
knockdown experiments. Plus, it has also been shown to perform better when double
knockdowns are used [45]. Therefore, the comparison is biased, and the results were
expected.

Using data generated with ddepn R-package
To assess the impact of generating data based on different assumptions on the

comparison between lpNet-dyn/2 and DDEPN performance, we used the ddepn R
package function makedata to generate data for both models and compare the results.
The key difference between this function and our method to generate data, is in the
assumptions for the signal propagation through the network. In particular, on the
influence of incoming inhibiting connections. Given a node, in DDEPN it is assumed
that a single incoming inhibiting edge from an active parent is enough to render the
node inactive, no matter how many incoming activating edges from active parents
there are. On the other hand, we assume that the given node is rendered inactive
only if there is a greater or equal number of incoming inhibiting edges from active
parents than incoming activating edges from active parents.

The function makedata generates a dataset with 9 replicates and 10 time points,
which are used without modifications for DDEPN, while the replicate values are
averaged into a single measurement for lpNet-dyn/2.

60

4.1. SIMULATED DATA

To do this study, we chose one network that possesses 30% of negative edges
(fig. A.21). This choice was made because, due to the different signal propagation
assumptions implicit in each model, we expect a greater impact in the results for
networks containing negative edges. Furthermore, we performed tests with a single
knockdown/stimuli experiment, K = 1, and with 11 knockdown/stimuli experiments,
K = 11. For DDEPN we also tested the use of a prior for edges from stimuli to target
nodes, with λp = 0.1, and setting the value for the remaining edges to 0.

S
N

/S
P

0
0.

2
0.

4
0.

6
0.

8
1

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

D
D

E
P

N

D
D

E
P

N
+

p
ri

or

R
an

d
o
m

Sensitivity
Specificity

(a)

P
re
ci
si
o
n

0
0.
2

0.
4

0.
6

0.
8

1

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

D
D
E
P
N

D
D
E
P
N
+
p
ri
or

R
an

d
o
m

(b)

Figure 4.7: (a) Sensitivity (blue) and Specificity (green) values for lpNet-dyn, lpNet-
dyn2, DDEPN, and DDEPN when uing a prior. (b) Precision values for the same
models. The results refer to the inference of network in fig. A.21, when no nodes
are silenced. The black line represents the SN/SP/PR median value for random
prediction.

For K = 1, fig. 4.7, lpNet-dyn2 generally performs better than the other models,
although its median SN value is worse than random, and DDEPN results with and
without prior are similar. This may be because there are only two edges from stimuli
to target nodes.

For K = 11, fig. 4.8, lpNet-dyn2 is the only model that attains median values for
SN, SP, PR above random, however, both DDEPN and lpNet-dyn achieve better SP
and PR values, at the cost of very low sensitivity values. Thus, lpNet-dyn2 shows
a more balanced performance. Regarding the introduction of a prior for DDEPN, it
leads to worse results than when using no prior. Taking into account that it achieves
very high SP values but almost null SN and PR values, this is probably because the
value chosen for λp leads to a prior that is too strong, and little positive edges on the
original network are inferred.

61

CHAPTER 4. RESULTS AND DISCUSSION
S

N
/S

P

0
0.

2
0.

4
0.

6
0.

8
1

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

D
D

E
P

N

D
D

E
P

N
+

p
ri

or

R
an

d
o
m

Sensitivity
Specificity

(a)

P
re
ci
si
o
n

0
0.
2

0.
4

0.
6

0.
8

1

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

D
D
E
P
N

D
D
E
P
N
+
p
ri
or

R
an

d
o
m

(b)

Figure 4.8: (a) Sensitivity (blue) and Specificity (green) values for lpNet-dyn, lpNet-
dyn2, DDEPN, and DDEPN when uing a prior. (b) Precision values for the same
models. The results refer to the inference of network in fig. A.21 for K = 11. The
black line represents the SN/SP/PR median value for random prediction.

Summing up, even by using data that fits DDEPN assumptions instead of our
model assumptions, in general, lpNet-dyn2 shows a more balanced performance than
the other models, and sensitivity values for K = 11 are especially noteworthy.

At last, we briefly analyzed the running times of lpNet-dyn/2 and DDEPN models.
lpNet-dyn/2 running time increases with the number of nodes n, number of time

points T , and number of knockdown experiments K, as all of these lead to the inclu-
sion of more constraints in the LP problem, which then takes more time to be solved.
Moreover, its running time also increases with the noise in the data. This happens
because the upper value for λ increases, and the defined interval for possible values
of λ is constant. Yet, this can be adapted to reduce the run time with no significant
impact in the results.

To infer each network 10 times for each value of σ = {0.01, 0.05, 0.2, 0.4, 0.7} with
K = 1 lpNet-dyn/2 took approximately 1h, while DDEPN took ∼2h to infer each
network 3 times for σ = 0.01. For K = 11, it takes ∼13h for lpNet-dyn/2 to infer
3 networks for each value of σ = {0.01, 0.05, 0.2}, and it takes ∼10h for DDEPN
to infer 3 networks for σ = 0.01. Therefore, although no precise measurements
were performed on running times, one can conclude that lpNet-dyn/2 executes much
faster and with comparable, if not better, results than DDEPN, especially when

62

4.1. SIMULATED DATA

no knockdown experiments are performed. This is mostly due to the low practical
complexity of the simplex algorithm used to solve the LP problem, which is the core
of our model.

4.1.3 General discussion

Overall, lpNet-dyn2 achieves better SN values than lpNet-dyn, and similar SP values.
One reason for the difference in SN values is that, by introducing the extra constraints
in lpNet-dyn2, the probability of classifying non-null edges as null decreases. This
happens because the product wjixjkt−1 is set to zero also when the parent node j
is inactive (xjkt−1 < δj) and not only when wji = 0. Thus, assuming w0

i = 0, it is
possible to satisfy the constraint that requires the activity of a node i to be ≤ 0 + ξlt,
when it is inactive, without the need to set wji = 0 or add slack variables ξlt .

Usually, an higher SN value reflects in lower SP values, yet, we have observed that
the SP values are mostly above 0.9 and are similar for both lpNet-dyn and lpNet-dyn2.
In addition, these values are fairly constant, which is probably due to the network
sparsity: many true negative edges are inferred, and even a moderate change in the
number of true negative or false negative inferred edges will result in little change in
the SP value.

Regarding precision values, these are highly variable and both models perform
similarly well. The PR values high variability is probably due to the low number of
edges classified as non-null. Thus, a little change in the number of TP or FP leads
to an high change in PR values.

On the comparison between lpNet-dyn/2 and DDEPN. Generally, lpNet-dyn/2
performs better than DDEPN, but we need to take into account that the information
about the nodes to be silenced is included in different ways for each model, which
results in the need to infer extra edges for DDEPN, thus making the comparison
biased. By using a prior, the comparison can be done in a less biased way, but
the strength of this prior needs to be adapted for each dataset, which would not be
possible in a real experimental scenario. Summing up, although DDEPN can take
advantage of perturbation experiments in general, the way these are included in the
model makes it difficult to obtain good results for an high number of experiments.

As for the comparison between the original lpNet and lpNet-dyn/2, the objective
was to confirm our expectations, that lpNet-dyn/2 is able to take advantage of time-
series data, producing better results. Otherwise the comparison is biased, since these
models were designed to use different types of data.

63

CHAPTER 4. RESULTS AND DISCUSSION

4.2 Experimental data

4.2.1 ERBB G1/S dataset

In this section, we present the results obtained for the ERBB G1/S dataset with lpNet-
dyn/2, and quantitatively compare its performance to lpNet and random prediction.
The models were executed 5 times, and always inferred the same network.

To infer the network relative to this dataset with lpNet, replicate measurements
were summed up by calculating their mean values, and the δ value was set as the
protein expression for the MOCK control at the first time point, according to [45].
As for µact and µinact, these were set to 0.95 and 0.56, respectively, while σ was set
to 0.01.

lpNet-dyn only inferred four non-null edges, which are not part of the network
assembled with Ingenuity, thus this results will not be further analyzed. As for
lpNet-dyn2, it classified 16 edges as non-null, which are represented in figure 4.9,
where the value of each edge wji is not necessarily correlated to how much evidence
from the data there is. We will now enumerate the edges for which we found support
from literature:

• ERK1/2 a pRB1, ERK has been shown to phosphorylate Cyclin D1 and lead
to its degradation [64], while an active form of Cyclin D1 is needed to form the
Cyclin D1-CDK4/6 complex that activates pRB [91]. Thus, ERK is able to,
indirectly, inhibit pRB1.

• ERK → p27, ERK signaling activates MYC [63], which in turn inhibits p27
activity [52].

• p21→ ERK1/2, p21 is known to increase the phosphorylation of cFos and MBP
by ERK1 and ERK2 [61].

• p21 → pRB1, p21 is known to inactivate cyclins and prevent the phosphoryla-
tion of pRB1 during the cell cycle [82].

• ERBB2 → ERBB1, these receptors are known to form heterodimers [94].

• ERBB2 → p27, evidence for an indirect inhibitory connection was found, since
ERBB2 stimulates ERK activation [94], and ERK activates MYC [63] which
inhibits p27 [52].

64

4.2. EXPERIMENTAL DATA

• ERBB1 → ERK1/2, the activation of ERBB1 homodimers leads to the stimu-
lation of ERK activation [94]

• Cyclin D1→ pRB1 and CDK4→pRB1, the active form of the CyclinD1-CDK4/6
complex is known to phosphorylate pRB1 [91].

• CDK2 → pRB1, an increase in levels of the complex Cyclin E–CDK2 is linked
to the completion of pRb phosphorylation [2, 50, 60].

Summing up, we found literature support for 11 out of 16 inferred connections. How-
ever, 3 of these connections were inferred with an opposite effect to the one found
in literature, e.g. an indirect inhibitory connection between ERBB2 and p27 was
found, while lpNet-dyn2 inferred an activating edge. Although no literature evidence
was found for an activating connection from CDK4 to CDK2, these proteins are both
involved in the cell cycle regulation. The complexes formed by Cyclin D-CDK4 and
Cyclin E-CDK2 are known to phosphorylate pRB sequentially [82].

CDK2
CDK4
CDK6

Cyclin D1
Cyclin E1
ERalpha

ERBB1
ERBB2
ERBB3
IGF1R

MYC
p21
p27

pAKT1
pERK1.2

pRB1

C
D

K
2

C
D

K
4

C
D

K
6

C
yc

lin
 D

1

C
yc

lin
 E

1

E
R

al
ph

a

E
R

B
B

1

E
R

B
B

2

E
R

B
B

3

IG
F

1R

M
Y

C

p2
1

p2
7

pA
K

T
1

pE
R

K
1.

2

pR
B

1

0.0

0.4

0.8

Figure 4.9: Heat plot of the median value of inferred edge weights wi,j with lpNet-
dyn2, for the ERBB G1/S dataset. Blue represents positive edges, red represents
negative edges, and white represents null edges. The less transparent the colors are,
the greater the value of the inferred edge wi,j.

We further evaluate our results quantitatively. By using the network assembled us-
ing Ingenuity IPA (see fig. A.22), we calculate SN, SP, PR, and accuracy (AC) values.
The results are presented in table 4.7, which shows that both lpNet and lpNet-dyn2

65

CHAPTER 4. RESULTS AND DISCUSSION

perform significantly better than random prediction for all measures (p-value < 10−4

using a one-sided Mann–Whitney–Wilcoxon test [53]) except for sensitivity, meaning
that both models have a difficulty on inferring true non-null edges. Comparing lpNet-
dyn2 and lpNet, the former performs slightly better than lpNet in terms of sensitivity
and precision values, and equally well in terms of specificity and accuracy values.

lpNet-dyn2 lpNet Random
SN 0.1 0.08 0.36
SP 0.96* 0.96* 0.64
PR 0.56* 0.50* 0.36
AC 0.64* 0.64* 0.54

Table 4.7: Results in terms of sensitivity, specificity, precision, and accuracy values,
calculated using a network assembled using Ingenuity IPA. Results are presented for
both lpNet-dyn2 and the original lpNet, as well as for random prediction. * means
the results are significantly better than random, with a p-value < 10−4 for a one-sided
Mann-Whitney-Wilcoxon test.

Note that the ERBB G1/S dataset includes 16 proteins, but there are no mea-
surements for 6 of these proteins, i.e. there are 6 latent nodes out of 16. Thus, a brief
study on the performance of lpNet-dyn2 was done in order to assess the impact of a
growing number of latent nodes, up to 50%. The results are presented in section B.4
for K = 11, and show relatively robust results in terms of specificity and precision
values, with a steady decrease in sensitivity values with growing number of latent
nodes. Therefore, one reason for the low sensitivity values may be the number of
latent nodes. Additionally, this dataset contains only 2 time points, for which lpNet-
dyn2 is not guaranteed to work well, as shown in section 4.1.2. Another reason for
the obtained results is the almost certain presence of noise in the data, which, if high
enough, leads to lower values of SN, SP, and PR, as shown in section 4.1.2.

Finally, we should note that literature support was found for a few connections
that are not part of the network assembled with Ingenuity, e.g. the activation of
MYC by ERK. Thus, this network is used as a reference, but is not considered a gold
standard. This represents one of the difficulties of assessing network inference results
from experimental datasets, even for the most well studied networks there exists no
gold standard, and not finding literature evidence for a given connection does not
necessarily mean the edge does not exist.

66

4.2. EXPERIMENTAL DATA

4.2.2 ERBB signalling cascade - HCC1954 dataset

In this section, we present the results obtained for the HCC1954 dataset with lpNet-
dyn/2, and compare its quantitative performance with DDEPN and random predic-
tion.

To infer the network using DDEPN, we formatted the data using the function
format_ddepn from the ddepn R package and defined the following settings: popula-
tion size 500, maximum number of iterations 1000, crossover rate 0.3, mutations rate
0.8, which are in agreement with the settings used in [6]. Plus, only edges that are
inferred in at least half of the networks are considered as non-null. We then executed
the model 5 times, yet, we were not able to reproduce the results presented in [6].
Since we used exactly the same parameters as in [6], one probable reason for this lies
in the use of a Genetic Algorithm to find the set of networks that explain the data
best. A genetic algorithm is a search heuristic, thus it may not always converge to the
best result and may deliver different results each time it is executed. Besides, when
evaluating the likelihood of a network, similar results can be obtained for different
networks, since in general a given dataset can be explained equally well by different
network topologies.

lpNet-dyn/2 were executed also 5 times, for which lpNet-dyn did not infer more
than 3 positive edges in each execution, thus its results are not further analyzed.
Regarding lpNet-dyn2, the inferred edges are represented in figure 4.10.

We will now enumerate the edges inferred by lpNet-dyn2 for which we found
literature evidence:

• SRC → PDK1, in vascular smooth muscle cells the phosphorylation of PDK1
was shown to depend on SRC [84].

• PDK1 → PKCα, in vitro studies have shown PDK1 to phosphorylate the acti-
vation loop of PKCα and βII [15].

• PDK1→ PRAS, PDK1 is known to phosphorylate AKT [13, 51], which in turn
has been shown to phosphorylate PRAS [46].

• mTOR → GSK3, in dendritic cells GSK3 activity has been shown to be regu-
lated by signaling linked to mTOR [88].

• ERBB4 → ERBB2 + ERBB2 → ERBB4, Tzahar et al [89], demonstrated the
existence of the ERBB2-ERBB4 heterodimer.

67

CHAPTER 4. RESULTS AND DISCUSSION

• ERBB4 → ERBB3, Riese et al [70] have shown that ERBB3 and ERBB4 in-
teract.

• ERBB1→ ERBB2, Tzahar et al [89], demonstrated the existence of the ERBB1-
ERBB2 heterodimer .

• ERBB1 → ERBB3 + ERBB3 → ERBB1, Tzahar et al [89], demonstrated the
existence of the ERBB1-ERBB3 heterodimer.

• ERBB1→ ERBB4, Tzahar et al [89], demonstrated the existence of the ERBB1-
ERBB4 heterodimer.

• ERBB2 → PRAS, activation of ERBB2 has been linked to an increase in AKT
expression [79], which in turn phosphorylates PRAS [46].

Summing up, literature support was found for 12 of the 16 inferred connections, and
7 of these connections refer to the heterodimers formed among the ERBB receptors.
Although no evidence for a connection from ERBB1 to PRAS was found, its existence
is plausible when taking into account that ERBB1 and ERBB2 are known to form
heterodimers, and there is evidence of an indirect connection from ERBB2 to PRAS.
Concerning the edges from AKT to PDK1 and from PDK1 to SRC, interestingly,
literature support was found for connections in the opposite direction [13, 51, 84].

We now evaluate the results quantitatively by using the network assembled using
Ingenuity IPA to calculate SN, SP, PR, and AC values for each model’s results.

In this assessment we also include the results obtained with lpNet-dyn2 when
using a different criterion to define δik value. Assuming the distribution of the ex-
pression values for the active and inactive nodes in each stimuli experiment can be
approximated by a normal distribution for each state, we used the R package mclust1

[19, 20] to find the parameters of these distributions, by forcing the number of distri-
butions to be 2. Then we set δik as the intersection of the two distribution’s curves.
In case the curves do not intersect, we subtract the curve corresponding to the active
state from the other curve and set δik as the root of the function. When these curves
are superposed, we consider the node to be always in the same state and set the
value for δ according to whether the node corresponds to a receptor protein or not:
if yes, δik = 0 and the node is always active, otherwise δik = max

t
{xikt} + 1 and the

node is considered to be always inactive. Regarding the parameters of the normal
1briefly describe mclust

68

4.2. EXPERIMENTAL DATA

pAKT
pERBB1
pERBB2
pERBB3
pERBB4
pERK12
pGSK3
pMEK

pmTOR
pp38

pp70S6K
pPDK1

pPKCalpha
pPLCgamma

pPRAS
pSRC

pA
K

T

pE
R

B
B

1

pE
R

B
B

2

pE
R

B
B

3

pE
R

B
B

4

pE
R

K
12

pG
S

K
3

pM
E

K

pm
TO

R

pp
38

pp
70

S
6K

pP
D

K
1

pP
K

C
al

ph
a

pP
LC

ga
m

m
a

pP
R

A
S

pS
R

C

−0.5

0.0

0.5

1.0

Figure 4.10: Heat plot of the median value of inferred edge weights wi,j with lpNet-
dyn2 for the HCC1954 dataset. Blue represents positive edges, red represents negative
edges, and white represents null edges. The less transparent the colors are, the greater
the value of the inferred edge wi,j.

distribution N (µ, σ) used to predict the value of a node in the CV step, µact,i,k and
µinact,i,k are the means of the respective normal distributions and σ = 0.01. We will
refer to δik defined according to this criterion as δ2 and to δik defined in section 3.4.2
as δ1.

The obtained results are shown in table 4.8, these values represent the average
value over the results obtained for each of the 5 runs of each model. For random
prediction the values are averaged over the 1000 networks generated by permuting
each row and column of the true network 1000 times.

Both criteria used to set δ’s value lead to similar values of SN, SP, PR, and AC,
which are higher than the same values for DDEPN. Quantitatively, the main difference
between using δ1 and δ2 is the number of true positive edges inferred. No model is
able to achieve a sensitivity value better than random, while lpNet-dyn2 achieves
better values for all other measures, and DDEPN achieves values better than random
only for specificity and accuracy. After using a Shapiro-Wilk test [80] to verify the
normality of the values obtained for each measure and model, and obtaining p-values
above 0.2, a one sided Student’s t-test [83] was performed to check whether the
results obtained with lpNet-dyn2 and DDEPN are statistically significantly better
than random prediction. For lpNet-dyn2, a p-value of less than 10−6 and 10−3 was

69

CHAPTER 4. RESULTS AND DISCUSSION

obtained for SP + AC, and PR values, respectively, whereas for DDEPN a p-value of
less than 0.005 was obtained for SP and AC values.

Note that the results obtained with lpNet-dyn2 are more stable than the ones
obtained with DDEPN, as can be seen from the higher standard deviations. The
same conclusion is achieved after analyzing the set of inferred edges for each run in
both models (results not shown here).

lpNet-dyn2, δ1 lpNet-dyn2, δ2 DDEPN Random
SN 0.13 ± 0.01 0.113 ± 0.007 0.07 ± 0.04 0.24
SP 0.973**± 0.004 0.973** ± 0.006 0.88*** ± 0.04 0.76
PR 0.61*± 0.04 0.52* ± 0.05 0.15 ± 0.09 0.24
AC 0.773**± 0.003 0.767** ± 0.005 0.70*** ± 0.03 0.64

Table 4.8: Results in terms of Sensitivity, Specificity, Precision, and Accuracy are
shown for the network inference on the experimental dataset regarding the ERBB
signalling cascade in HCC1954 breast cancer cell lines. These results are presented
for the lpNet-dyn2 and DDEPN models, as well as for random prediction. For lpNet-
dyn2, results are shown for δ values calculated according to 2 different criteria, δ1

and δ2. Values statistically significantly higher than the random prediction values are
marked as follows: * p-value < 10−3, ** p-value < 10−6, *** p-value < 0.005.

On the execution time of lpNet-dyn2 and DDEPN for this dataset, lpNet-dyn2
execution time for each run of the model is of ≈ 6h30min, while DDEPN run time is
of ≈ 32h for each run.

Overall, lpNet-dyn2 is not able to infer all non-null edges, however, from the
set of non-null edges it infers, more than half are true positives. Thus, this model
provides reliable results, and which are highly reproducible. Quantitatively, lpNet-
dyn2 performs better than DDEPN and better than random prediction, except in
terms of sensitivity, as the model tends to infer a small number of true positive edges.
One major reason for this, is that lpNet-dyn2 is not able to achieve sensitivity values
significantly higher than random when no knockdown experiments are performed,
which is the case here. Another reason, may be the existence of edges that activate
nodes which are already active, and which are difficult to infer in general, as shown
for the inference of a feedforward loop in section 4.1.1.

Interestingly, when using different criteria to define δik value, δ1 and δ2, although
the quantitative results were similar, the set of edges inferred when using each criteria
were very different (the set of edges inferred for δ2 is shown in fig. B.7). This behavior

70

4.2. EXPERIMENTAL DATA

highlights the importance of the δ value, as the obtained results depend mostly on
the ability to correctly distinguish an active state from an inactive one.

With this dataset, we also executed lpNet-dyn2 with prior knowledge included,
by defining the source nodes to be ERBB1/2/3/4. Qualitatively, more edges were
inferred (see fig. B.8), and quantitatively, the precision values were slightly worse
(results not shown here). A reason for this is that, by including this type of knowledge
we are forcing all nodes that are not source nodes to have incoming edges, which leads
to the inference of edges that are not part of the network assembled with Ingenuity
IPA.

Note that, as with the G1/S dataset, literature evidence was found for edges that
are not included in the network assembled with Ingenuity IPA, while no conclusive
support was found for a few edges included in this network. Thus, such a network
cannot be considered as a gold standard but only as a reference.

71

Chapter 5

Final Remarks

In this thesis, two extensions to Knapp and Kaderali [45] model lpNet were developed
and tested, lpNet-dyn and lpNet-dyn2. The key difference between these extensions
is that in lpNet-dyn2 we assume that inactive nodes cannot influence other nodes.

Both simulated data and experimental data were used to test the performance of
lpNet-dyn/2 in terms of sensitivity, specificity, and precision values.

For simulated data, the models were tested in four different situations:

• inference of motifs found in biological networks, where both models are shown
to fail to infer edges that activate already active nodes. Additionally, lpNet-dyn
is shown to infer more FP edges than lpNet-dyn2, because the λ value is not
high enough, while lpNet-dyn2 infers less FN edges due to the assumption that
inactive nodes cannot influence other nodes;

• inference results for an increasing number of time points, where it is shown
that better results are achieved for a number of time points similar to the
number of different node state vectors. Yet, when knockdown experiments are
performed, more time points can be repeated without introducing a bias towards
the inference of edges that become active at the repeated time points;

• inference results for a growing number of knockdown experiments, where it
is shown that more knockdown experiments are generally beneficial, although
when few experiments are performed the obtained results depend on the specific
nodes that are silenced;

• inference results for increasing levels of noise, where it is shown that the results
are stable until the noise in the data causes active and inactive node values to

72

overlap. Yet, even for high noise levels, lpNet-dyn2 is able to perform generally
better than random prediction;

For the last test, the performance of lpNet-dyn/2 was also compared to DDEPN and
the original lpNet. Moreover, simulated data was generated under DDEPN assump-
tions and the two models were compared once more. In both situations, lpNet-dyn/2
had a better overall performance. However, this comparison is biased, since the way
to include knockdown experiments in DDEPN leads to the inclusion of extra edges
that need to be inferred by the model, and the use of prior knowledge for these edges
is not straightforward. In short, lpNet-dyn/2 and DDEPN are suited for different
scenarios. lpNet-dyn/2 is more appropriate for scenarios in which known nodes are
inhibited, while DDEPN is better suited for scenarios in which the perturbations ap-
plied to the network are unknown and should be inferred by the model. Furthermore,
the choice of one model over the other also depends on the assumptions about the
network to be inferred, e.g., if we assume that a single incoming inhibiting connection
from an active parent is enough to inhibit a node, then DDEPN should be chosen.
If we assume that for a node to be inhibited by its parents, it needs to have more
incoming inhibiting connections from active parents than activating connections, then
lpNet-dyn/2 is the model to use. At last, DDEPN allows for the explicit inclusion
of replicate measurements and stimuli experiments, which can be included in lpNet-
dyn/2 only by encoding them as different knockdown experiments in which no nodes
are silenced, e.g. if 3 stimuli experiments are performed, these can be encoded as 3
knockdown experiments, in which no nodes are silenced in any of them. Yet, lpNet-
dyn/2 performance does not usually benefit from replicate experiments, which also
increase the model’s execution time.

A common problem to both lpNet-dyn and lpNet-dyn2 is the general difficulty in
inferring edges that activate already active nodes. Yet, under our assumptions: that
the expression of a protein does not depend on the number of incoming activating
edges, this problem is a common problem in network inference and, in principle, can
be solved by performing the appropriate knockdown experiments, e.g., given a node,
silence all of its parent nodes except one, and repeat the procedure for all parent
nodes.

In general, lpNet-dyn2 presents a more balanced performance, with noteworthy
values of sensitivity in comparison to other models, especially when knockdown exper-
iments are performed. Relative to lpNet-dyn in particular, the high sensitivity levels
are due to a lower number of false negative edges, resulting from the assumption that

73

CHAPTER 5. FINAL REMARKS

an inactive node cannot influence other nodes.

On the experimental datasets ERBB G1/S and HCC1954. lpNet-dyn performance
was very poor, with no more than 4 non-null edges inferred for each dataset. On the
other hand, lpNet-dyn2 inferred 16 non-null edges for each dataset, and literature
support was found for most of these edges. Interestingly, some of the edges for which
no literature support was found are still plausible, for instance, the inference of the
edge CDK4→ CDK2. Since both of these proteins are involved in the phosphorylation
of pRB during the cell cycle, it might be worth to investigate such connection.

Quantitatively, lpNet-dyn2 performed slightly better than lpNet on ERBB G1/S,
and better than DDEPN on HCC1954. Comparing to random prediction, it per-
formed significantly better in terms of specificity, precision, and accuracy measure-
ments (maximum p-value of 10−3), but worse in terms of sensitivity values.

A major difficulty of using lpNet-dyn2 to infer a network from experimental data
is the definition of the threshold δ, that distinguishes an active node from an inactive
one. This value is inferred from the data and, as shown in this dissertation, different
criteria can be used to define it. Yet, different criteria can lead to similar quantitative
results but different sets of inferred edges. Additionally, due to noisy data it might
not be possible to determine the “optimal” value for δ.

Finally, note that only edges whose median value is greater than its MAD were
considered as non-null, therefore only edges with more evidence from the data are
considered, which leads to higher precision values. However, if the goal of inferring a
network from an experimental dataset is to explore the existence of edges not yet con-
firmed experimentally, one can relax the median > MAD criterion, or even remove it,
and more non-null edges are considered to exist, which can be experimentally tested.

lpNet-dyn2 possesses two key advantages relatively to other network inference
methods, and in particular to DDEPN, its execution time is short and the results are
highly reproducible. The short running time is due to the efficiency of the simplex
method, the core of our model. As for the results reproducibility, the only source of
randomness in our model is the k-fold cross validation step. Since for each run of the
model different sets of entries are removed from the observation matrix, this can lead
to the inference of different networks. Yet, if the value of k is small enough compared
to the dimension of the observation matrix, the results are highly reproducible, as
the solution of the LP problem is always the same if the problem does not change.

74

In conclusion, from all the analyzed models, lpNet-dyn2 is the one that shows a
more balanced performance – with especially higher sensitivity values when knock-
down experiments are performed – , and produces reproducible results in a relatively
short amount of time.

75

Appendices

76

Appendix A

Supplemental information

A.1 Artificial ten-node networks

A.1.1 Positive edges only

1

2

3

4

5

6

7

8

9

10

Figure A.1: Network 1 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5 6

7

8

9

10

Figure A.2: Network 2 from the
set of networks with positive edges
only. Arrows represent activating
edges.

77

APPENDIX A. SUPPLEMENTAL INFORMATION

1

2

3

4

5

67

8

9 10

Figure A.3: Network 3 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5 6

7 8

9

10

Figure A.4: Network 4 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5

6

78

9

10

Figure A.5: Network 5 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5

6

7

8

9

10

Figure A.6: Network 6 from the
set of networks with positive edges
only. Arrows represent activating
edges.

78

A.1. ARTIFICIAL TEN-NODE NETWORKS

1

2

3

4

5

6

7

8

9

10

Figure A.7: Network 7 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5

6

7

8

9

10

Figure A.8: Network 8 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5

6

7

8

9

10

Figure A.9: Network 9 from the
set of networks with positive edges
only. Arrows represent activating
edges.

1

2

3

4

5

6

7

8

9

10

Figure A.10: Network 10 from the
set of networks with positive edges
only. Arrows represent activating
edges.

79

APPENDIX A. SUPPLEMENTAL INFORMATION

A.1.2 Positive and negative edges

1

2

3

4

5 6

7

8

9

10

Figure A.11: Network 1 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

8

9

10

Figure A.12: Network 2 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

89

10

Figure A.13: Network 3 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4 5

6

7 8

9

10

Figure A.14: Network 4 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

80

A.1. ARTIFICIAL TEN-NODE NETWORKS

1

2

3

45

6 78

9

10

Figure A.15: Network 5 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

8

9

10

Figure A.16: Network 6 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

8

9

10

Figure A.17: Network 7 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

8

9

10

Figure A.18: Network 8 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

81

APPENDIX A. SUPPLEMENTAL INFORMATION

1

2

3

4

5

6

7

8

9

10

Figure A.19: Network 9 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

1

2

3

4

5

6

7

8

9

10

Figure A.20: Network 10 from the
set of networks with positive and
negative edges only. Arrows repre-
sent activating edges, while a rep-
resents inhibiting edges.

A.1.3 Test network

1

2

3

4 5

6

7

8

9

10

Figure A.21: Test network with positive and 30% negative edges.

82

A.2. NETWORKS ASSEMBLED WITH INGENUITY IPA

A.2 Networks assembled with Ingenuity IPA

A.2.1 ERBB G1/S

CDK2
CDK4
CDK6

Cyclin D1
Cyclin E1
ERalpha

ERBB1
ERBB2
ERBB3
IGF1R

MYC
p21
p27

pAKT1
pERK1.2

pRB1
C

D
K

2

C
D

K
4

C
D

K
6

C
yc

lin
 D

1

C
yc

lin
 E

1

E
R

al
ph

a

E
R

B
B

1

E
R

B
B

2

E
R

B
B

3

IG
F

1R

M
Y

C

p2
1

p2
7

pA
K

T
1

pE
R

K
1.

2

pR
B

1

0.00

0.25

0.50

0.75

1.00

Figure A.22: Network assembled with Ingenuity IPA for ERBB G1/S dataset. Only
direct edges for which experimental evidence exists in humans or in vitro were con-
sidered. Blue stands for existing edges, and white for non-existing edges

83

APPENDIX A. SUPPLEMENTAL INFORMATION

A.2.2 HCC1954

pAKT
pERBB1
pERBB2
pERBB3
pERBB4
pERK12
pGSK3
pMEK

pmTOR
pp38

pp70S6K
pPDK1

pPKCalpha
pPLCgamma

pPRAS
pSRC

pA
K

T

pE
R

B
B

1

pE
R

B
B

2

pE
R

B
B

3

pE
R

B
B

4

pE
R

K
12

pG
S

K
3

pM
E

K

pm
TO

R

pp
38

pp
70

S
6K

pP
D

K
1

pP
K

C
al

ph
a

pP
LC

ga
m

m
a

pP
R

A
S

pS
R

C

0.00

0.25

0.50

0.75

1.00

Figure A.23: Network assembled with Ingenuity IPA for HCC1954 dataset. Only
direct edges for which experimental evidence exists in humans or in vitro were con-
sidered. Blue stands for existing edges, and white for non-existing edges

A.3 Other information

A.3.1 List of time points

T Time points
2 (0, 6) / (1, 6)
3 1, 3, 6
4 1, 2, 4, 6
5 2, 3, 4, 5, 6
6 1, 2, 3, 4, 5, 6
7 1, 2, 3, 4, 5, 6, 6
8 1, 2, 3, 4, 4, 5, 5, 6
10 1, 2, 2, 3, 3, 3, 4, 5, 6, 6
12 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6

Table A.1: Time points t used for each number of time points T for which the
performance of lpNet-dyn/2 was studied.

84

A.3. OTHER INFORMATION

A.3.2 List of silenced nodes

K Silenced nodes in single knockdowns Silenced nodes in double knockdowns
1 - -
2 8 -
3 7, 8 -
4 1, 7, 8 -
5 1, 2, 7, 8 -
6 1, 2, 7, 8, 10 -
7 1, 2, 4, 7, 8, 10 -
8 1, 2, 4, 5, 7, 8, 10 -
9 1, 2, 4, 5, 6, 7, 8, 10 -
10 1, 2, 3, 4, 5, 6, 7, 8, 10 -
11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 -
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1, 4)
13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1, 4), (7, 10)
14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1, 4), (7, 10), (2, 3)
15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1, 4), (7, 10), (2, 3), (6,8)
16 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (1, 4), (7, 10), (2, 3), (6,8)

Table A.2: Silenced nodes for each number of knockdown experiments K. Pairs of
nodes in between parenthesis refer to the nodes silenced in each double knockdown
experiment, e.g., for K=15, the pair (7,10) means these two nodes were both silenced
in the 13th knockdown experiment. For all values of K, no nodes are silenced in the
1st knockdown experiment.

A.3.3 List of latent nodes

nL Latent nodes
1 8
2 1, 7
3 1, 9, 10
5 2, 3, 6, 7, 8

Table A.3: Nodes set as latent for each number of latent nodes nL for which the
performance of lpNet-dyn2 is tested.

85

Appendix B

Supplemental Results

B.1 Prediction of Motifs in Biological Networks -
extra results

In this section, we show the results obtained for the inference of the networks depicted
in figures 4.1a-4.1f, both when considering an edge wji to exist if it is inferred at least
50% of the total times a network is inferred (100 in this case), no matter what its
value is, and when wji is considered to exist if its median value is greater than its
MAD. Although the results for the latter situation have already been presented in
section 4.1.1, we present them again so that it is easier for the reader to see the
differences.

Cascade

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 NO YES YES YES NO
4→ 5 YES YES YES YES YES
FP 1 a 5 - - - -

Table B.1: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1a, a cascade motif. Inferred false positive (FP) edges are shown in the last
line, where a refers to an inhibiting edge. A non-null edge is considered as such when
its median value is less than its MAD.

86

B.1. PREDICTION OF MOTIFS IN BIOLOGICAL NETWORKS - EXTRA
RESULTS

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 YES YES YES YES YES
4→ 5 YES YES YES YES YES
FP 1 a 5, 5 a 4 - - - 1 a 5

Table B.2: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1a, a cascade motif. Inferred false positive (FP) edges are shown in the last
line, where a refers to an inhibiting edge. A non-null edge is considered as such if it
is inferred at least in 50% of all inferred networks.

Fan-in

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 3 NO NO YES YES YES
2→ 4 NO NO YES YES YES
3→ 5 NO NO YES YES NO
4→ 5 NO NO YES YES NO
FP - - - - -

Table B.3: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1b, which contains a fan-in motif. No false positive edges were inferred. A
non-null edge is considered as such when its median value is less than its MAD.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 3 NO YES YES YES YES
2→ 4 YES YES YES YES YES
3→ 5 NO NO YES YES NO
4→ 5 NO NO YES YES NO
FP 2→ 3 1→ 4, 2→ 3 - - 3 a 4, 4 a 3

Table B.4: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1b, which contains a fan-in motif. No false positive edges were inferred. A
non-null edge is considered as such if it is inferred at least in 50% of all inferred
networks.

87

APPENDIX B. SUPPLEMENTAL RESULTS

Fan-out

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
1→ 3 YES YES YES YES YES
2→ 4 NO NO YES YES YES
3→ 5 NO NO YES YES YES
FP - - - - -

Table B.5: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1c, which contains a fan-out motif. No false positive edges were inferred. A
non-null edge is considered as such when its median value is less than its MAD.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
1→ 3 YES YES YES YES YES
2→ 4 NO NO YES YES YES
3→ 5 NO NO YES YES YES
FP - - - - 4 a 5, 5 a 4

Table B.6: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1c, which contains a fan-out motif. No false positive edges were inferred.
A non-null edge is considered as such if it is inferred at least in 50% of all inferred
networks.

88

B.1. PREDICTION OF MOTIFS IN BIOLOGICAL NETWORKS - EXTRA
RESULTS

Fan-in plus Fan-out

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES NO
1→ 3 YES YES YES YES NO
2→ 4 NO YES YES YES NO
3→ 4 NO NO YES YES NO
4→ 5 NO YES YES YES NO
FP - - 1 a 5, 5 a 2, 5 a 3, 5 a 4 - -

Table B.7: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1d, which contains both a fan-in and a fan-out motif. Inferred false positive
(FP) edges are shown in the last line, where a refers to an inhibiting edge. A non-null
edge is considered as such when its median value is less than its MAD.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
1→ 3 YES YES YES YES YES
2→ 4 YES YES YES YES NO
3→ 4 YES YES YES YES NO
4→ 5 YES YES YES YES YES
FP - - 1→ 4, 1 a 5, 3 a 5, 5 a 2, 5 a 3, 5 a 4 3→ 2 1→ 4

Table B.8: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1d, which contains both a fan-in and a fan-out motif. Inferred false positive
(FP) edges are shown in the last line, where a refers to an inhibiting edge. A non-null
edge is considered as such if it is inferred at least in 50% of all inferred networks.

89

APPENDIX B. SUPPLEMENTAL RESULTS

Feedback loop

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 YES YES YES YES YES
3→ 5 YES YES YES YES YES
4→ 2 NO NO NO NO NO
FP - - - - -

Table B.9: The above table shows for each model, without (K = 1) and with knock-
down experiments (K = 6), which edges are correctly inferred for the network in
figure 4.1e, which contains a feedback loop. No false positive edges were inferred. A
non-null edge is considered as such when its median value is less than its MAD.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
3→ 4 YES YES YES YES YES
3→ 5 YES YES YES YES YES
4→ 2 NO NO NO NO NO
FP - - - - -

Table B.10: The above table shows for each model, without (K = 1) and with
knockdown experiments (K = 6), which edges are correctly inferred for the network
in figure 4.1e, which contains a feedback loop. No false positive edges were inferred.
A non-null edge is considered as such if it is inferred at least in 50% of all inferred
networks.

90

B.1. PREDICTION OF MOTIFS IN BIOLOGICAL NETWORKS - EXTRA
RESULTS

Feedforward loop

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES NO
2→ 3 YES YES YES YES NO
2→ 4 YES YES YES YES NO
3→ 5 NO YES YES YES NO
4→ 3 NO NO NO NO NO
FP - - - - -

Table B.11: The above table shows for each model, without (K = 1) and with
knockdown experiments (K = 6), which edges are correctly inferred for the network
in figure 4.1f, which contains a feedforward loop. No false positive edges were inferred.
A non-null edge is considered as such when its median value is less than its MAD.

K = 1 K = 6
Edges lpNet-dyn lpNet-dyn2 lpNet-dyn lpNet-dyn2 lpNet
1→ 2 YES YES YES YES YES
2→ 3 YES YES YES YES YES
2→ 4 YES YES YES YES YES
3→ 5 NO YES YES YES YES
4→ 3 NO NO NO NO NO
FP - - - - -

Table B.12: The above table shows for each model, without (K = 1) and with
knockdown experiments (K = 6), which edges are correctly inferred for the network
in figure 4.1f, which contains a feedback loop. No false positive edges were inferred.
A non-null edge is considered as such if it is inferred at least in 50% of all inferred
networks.

91

APPENDIX B. SUPPLEMENTAL RESULTS

B.2 Influence of number of inferred networks on
final result

S
N

/S
P

0
0.

1
0.

3
0
.5

0
.7

0
.9

1

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
a
n

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

Sensitivity
Specificity

(a)

S
N

/S
P

0
0
.1

0
.3

0.
5

0.
7

0.
9

1

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
a
n

d
om

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

Sensitivity
Specificity

(b)

Figure B.1: Impact of the number of executions on SN/SP values for K = 1. SN/SP
values for (a) 30 and (b) 100 executions of lpNet-dyn/2. The black horizontal line
represents the median SP and SN value for random prediction.

92

B.2. INFLUENCE OF NUMBER OF INFERRED NETWORKS ON FINAL
RESULT

P
re
ci
si
on

0
0
.1

0
.3

0
.5

0
.7

0
.9

1

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
an

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

(a)

P
re
ci
si
on

0
0
.1

0.
3

0.
5

0.
7

0.
9

1

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
an

d
om

σ = 0.01 σ = 0.05 σ = 0.2 σ = 0.4 σ = 0.7

(b)

Figure B.2: Impact of the number of executions on PR values for K = 1. PR values
for (a) 30 and (b) 100 executions of lpNet-dyn/2. The black horizontal line represents
the median PR value for random prediction.

93

APPENDIX B. SUPPLEMENTAL RESULTS
S

N
/S

P

0
0
.1

0
.3

0
.5

0
.7

0
.9

1

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
an

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2

Sensitivity
Specificity

(a)

S
N

/S
P

0
0
.1

0.
3

0.
5

0.
7

0.
9

1

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

lp
N

et

lp
N

et
-d

y
n

lp
N

et
-d

y
n

2

R
an

d
om

σ = 0.01 σ = 0.05 σ = 0.2

Sensitivity
Specificity

(b)

Figure B.3: Impact of the number of executions on SN/SP values for K = 11. SN/SP
values for (a) 30 and (b) 100 executions of lpNet and lpNet-dyn/2. The black hori-
zontal line represents the median SP and SN value for random prediction.

94

B.2. INFLUENCE OF NUMBER OF INFERRED NETWORKS ON FINAL
RESULT

P
re
ci
si
on

0
0
.1

0
.3

0
.5

0
.7

0
.9

1

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
an

d
o
m

σ = 0.01 σ = 0.05 σ = 0.2

(a)

P
re
ci
si
on

0
0
.1

0.
3

0.
5

0.
7

0.
9

1

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

lp
N
et

lp
N
et
-d
y
n

lp
N
et
-d
y
n
2

R
an

d
om

σ = 0.01 σ = 0.05 σ = 0.2

(b)

Figure B.4: Impact of the number of executions on PR values for K = 11. PR values
for (a) 30 and (b) 100 executions of lpNet and lpNet-dyn/2. The black horizontal
line represents the median PR value for random prediction.

95

APPENDIX B. SUPPLEMENTAL RESULTS

B.3 Results for data with T = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12

S
N
/
S
P

T

lpNet-dyn, sensitivity
lpNet-dyn2, sensitivity
lpNet-dyn, specificity
lpNet-dyn2, specificity

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12
P
re
ci
si
o
n

T

lpNet-dyn
lpNet-dyn2

(b)

Figure B.5: Results with increasing number of time points for K = 11, when the time
points used for T = 2 are t = 5, 6.

B.4 Results for an increasing number of latent nodes

In this section, we present the change in lpNet-dyn2 performance for a growing number
of latent nodes, when K = 11: from no latent nodes up to 5 latent nodes, which
corresponds to 50% of network’s nodes. For each number of latent nodes (nL), the
nodes to set as latent were sampled with no replacement. The list of latent nodes
for each nL value is shown in table A.3. The results displayed in figure B.6 were
obtained from executing each model for each network 30 times. The set of ten ten-
node networks used is depicted in figures A.1-A.10. These networks contain only
positive edges.

96

B.4. RESULTS FOR AN INCREASING NUMBER OF LATENT NODES
S

N
/S

P

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

0 10 20 30 50 Random

% of latent nodes

Sensitivity
Specificity

(a)

P
re
ci
si
on

0
0
.1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

0 10 20 30 50 Random

% of latent nodes

(b)

Figure B.6: (a) Shows the change in sensitivity (blue) and specificity (green) values
with increasing number of latent nodes in 10 ten-node networks for each model, lpNet-
dyn and lpNet-dyn2, when K = 11, while (b) shows the evolution of the precision
values. The black horizontal line represents the median SN, SP, and PR values for
random prediction.

97

APPENDIX B. SUPPLEMENTAL RESULTS

pAKT
pERBB1
pERBB2
pERBB3
pERBB4
pERK12
pGSK3
pMEK

pmTOR
pp38

pp70S6K
pPDK1

pPKCalpha
pPLCgamma

pPRAS
pSRC

pA
K

T

pE
R

B
B

1

pE
R

B
B

2

pE
R

B
B

3

pE
R

B
B

4

pE
R

K
12

pG
S

K
3

pM
E

K

pm
TO

R

pp
38

pp
70

S
6K

pP
D

K
1

pP
K

C
al

ph
a

pP
LC

ga
m

m
a

pP
R

A
S

pS
R

C

−0.5

0.0

0.5

Figure B.7: Heat plot of the median value of inferred edge weights wi,j with lpNet-
dyn2 for the HCC1954 dataset, when using mclust to define the δ value. Blue repre-
sents positive edges, red represents negative edges, and white represents null edges.

B.5 Results for the HCC1954 with a different δ

value

B.6 Results for the HCC1954 with prior knowl-
edge

98

B.6. RESULTS FOR THE HCC1954 WITH PRIOR KNOWLEDGE

pAKT
pEGFR

pERBB2
pERBB3
pERBB4
pERK12
pGSK3
pMEK

pmTOR
pp38

pp70S6K
pPDK1

pPKCalpha
pPLCgamma

pPRAS
pSRC

pA
K

T

pE
G

F
R

pE
R

B
B

2

pE
R

B
B

3

pE
R

B
B

4

pE
R

K
12

pG
S

K
3

pM
E

K

pm
TO

R

pp
38

pp
70

S
6K

pP
D

K
1

pP
K

C
al

ph
a

pP
LC

ga
m

m
a

pP
R

A
S

pS
R

C

−0.5

0.0

0.5

1.0

(a)

pAKT
pEGFR

pERBB2
pERBB3
pERBB4
pERK12
pGSK3
pMEK

pmTOR
pp38

pp70S6K
pPDK1

pPKCalpha
pPLCgamma

pPRAS
pSRC

pA
K

T

pE
G

F
R

pE
R

B
B

2

pE
R

B
B

3

pE
R

B
B

4

pE
R

K
12

pG
S

K
3

pM
E

K

pm
TO

R

pp
38

pp
70

S
6K

pP
D

K
1

pP
K

C
al

ph
a

pP
LC

ga
m

m
a

pP
R

A
S

pS
R

C

−0.5

0.0

0.5

(b)

Figure B.8: Heat plot of the median value of inferred edge weights wi,j with lpNet-
dyn2 for the HCC1954 dataset, when using prior knowledge. Blue represents positive
edges, red represents negative edges, and white represents null edges. (a) Shows the
inferred edges for δ1, and (b) shows the inferred edges for δ2

99

References

[1] http://www.ingenuity.com/products/ipa, June 2013.

[2] Edward E Allen, Jacquelyn S Fetrow, Larry W Daniel, Stan J Thomas, and
David J John. Algebraic dependency models of protein signal transduction net-
works from time-series data. Journal of theoretical biology, 238(2):317–30, Jan-
uary 2006.

[3] Benedict Anchang, Mohammad J Sadeh, Juby Jacob, Achim Tresch, Marcel O
Vlad, Peter J Oefner, and Rainer Spang. Modeling the temporal interplay of
molecular signaling and gene expression by using dynamic nested effects models.
Proceedings of the National Academy of Sciences of the United States of America,
106(16):6447–52, April 2009.

[4] Mukesh Bansal, Giusy Della Gatta, and Diego di Bernardo. Inference of gene
regulatory networks and compound mode of action from time course gene ex-
pression profiles. Bioinformatics (Oxford, England), 22(7):815–22, April 2006.

[5] Christian Bender. ddepn: Dynamic Deterministic Effects Propagation Networks:
Infer signalling networks for timecourse RPPA data., 2012. R package version
2.1.2.

[6] Christian Bender, Frauke Henjes, Holger Fröhlich, Stefan Wiemann, Ulrike Korf,
and Tim Beissbarth. Dynamic deterministic effects propagation networks: learn-
ing signalling pathways from longitudinal protein array data. Bioinformatics
(Oxford, England), 26(18):i596–602, September 2010.

[7] Christian Bender, Silvia Vd Heyde, Frauke Henjes, Stefan Wiemann, Ulrike Korf,
and Tim Beissbarth. Inferring signalling networks from longitudinal data us-
ing sampling based approaches in the R-package ’ddepn’. BMC bioinformatics,
12(1):291, January 2011.

100

REFERENCES

[8] B.M. Bolstad, R.A Irizarry, M. Astrand, and T.P. Speed. A comparison of nor-
malization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics, 19(2):185–193, 2003.

[9] K.-H. Borgwardt. The average number of pivot steps required by the simplex-
method is polynomial. Zeitschrift fÃŒr Operations Research, 26(1):157–177,
1982.

[10] Jiguo Cao and Hongyu Zhao. Estimating dynamic models for gene regulation
networks. Bioinformatics (Oxford, England), 24(14):1619–24, July 2008.

[11] G.B. Dantzig and M.N. Thapa. Linear Programming: 1: Introduction. Linear
Programming. Springer, 1997.

[12] Riet De Smet and Kathleen Marchal. Advantages and limitations of current
network inference methods. Nature reviews. Microbiology, 8(10):717–29, October
2010.

[13] Zhiyong Ding, Jiyong Liang, Jin Li, Yiling Lu, Vathsala Ariyaratna, Zhimin Lu,
Michael A. Davies, John K. Westwick, and Gordon B. Mills. Physical association
of pdk1 with akt1 is sufficient for pathway activation independent of membrane
localization and phosphatidylinositol 3 kinase. PLoS ONE, 5(3):e9910, 03 2010.

[14] Norbert Dojer, Anna Gambin, Andrzej Mizera, Bartek Wilczynski, and Jerzy
Tiuryn. Applying dynamic bayesian networks to perturbed gene expression data.
BMC Bioinformatics, 7(1):249, 2006.

[15] Erica M. Dutil, Alex Toker, and Alexandra C. Newton. Regulation of conven-
tional protein kinase c isozymes by phosphoinositide-dependent kinase 1 (pdk-1).
Current Biology, 8(25):1366 – 1375, 1998.

[16] H.A. Eiselt and C.L. Sandblom. Linear programming and its Applications.
Springer-Verlag Berlin Heidelberg, 2007.

[17] Michel Berkelaar et al. lpSolve: Interface to Lp_solve v. 5.5 to solve lin-
ear/integer programs, 2011. R package version 5.6.6.

[18] Andrew Fire, SiQun Xu, Mary K. Montgomery, Steven A. Kostas, Samuel E.
Driver, and Craig C. Mello. Potent and specific genetic interference by double-
stranded rna in caenorhabditis elegans. Nature, 391:806–811, 1998.

101

REFERENCES

[19] C Fraley, A E Raftery, T B Murphy, and Scrucca L. mclust version 4 for r:
Normal mixture modeling for model-based clustering, classification, and den-
sity estimation. Technical Report 597, Department of Statistics, University of
Washington, 2012.

[20] Chris Fraley and Adrian E. Raftery. Model-based clustering, discriminant anal-
ysis, and density estimation. JOURNAL OF THE AMERICAN STATISTICAL
ASSOCIATION, 97:611–631, 2000.

[21] N Friedman, M Linial, I Nachman, and D Pe’er. Using Bayesian networks to
analyze expression data. Journal of computational biology : a journal of compu-
tational molecular cell biology, 7(3-4):601–20, January 2000.

[22] Nir Friedman, Kevin Murphy, and S Russell. Learning the structure of dynamic
probabilistic networks. Proceedings of the Fourteenth . . . , 1998.

[23] Holger Froehlich, Mark Fellmann, Holger Sueltmann, Annemarie Poustka, and
Tim Beissbarth. Large scale statistical inference of signaling pathways from
RNAi and microarray data. BMC bioinformatics, 8:386, January 2007.

[24] Holger Froehlich, Florian Markowetz, Achim Tresch, Theresa Niederberger,
Christian Bender, Matthias Maneck, Claudio Lottaz, and Tim Beissbarth. nem:
Nested Effects Models to reconstruct phenotypic hierarchies. R package version
2.32.1.

[25] H Frohlich, M Fellmann, H Sultmann, A Poustka, and T BeiSZbarth. Large
scale statistical inference of signaling pathways from rnai and microarray data.
BMC Bioinformatics, 8:386, 2007.

[26] H Frohlich, M Fellmann, H Sultmann, A Poustka, and T BeiSZbarth. Estimating
large scale signaling networks through nested effect models with intervention
effects from microarray data. Bioinformatics, 24:2650–2656, 2008.

[27] Holger Fröhlich, Paurush Praveen, and Achim Tresch. Fast and efficient dynamic
nested effects models. Bioinformatics (Oxford, England), 27(2):238–44, January
2011.

[28] Holger Fröhlich, Ozgür Sahin, Dorit Arlt, Christian Bender, and Tim Beissbarth.
Deterministic Effects Propagation Networks for reconstructing protein signaling
networks from multiple interventions. BMC bioinformatics, 10(1):322, January
2009.

102

REFERENCES

[29] Holger Frohlich, Ozgur Sahin, Dorit Arlt, Christian Bender, and Tim
BeiSZbarth. Deterministic effects propagation networks for reconstructing pro-
tein signaling networks from multiple interventions. BMC Bioinformatics,
10(1):322, 2009.

[30] T Futamura, K Toyooka, S Iritani, K Niizato, R Nakamura, K Tsuchiya,
T Someya, a Kakita, H Takahashi, and H Nawa. Abnormal expression of epider-
mal growth factor and its receptor in the forebrain and serum of schizophrenic
patients. Molecular psychiatry, 7(7):673–82, January 2002.

[31] Timothy S Gardner, Diego di Bernardo, David Lorenz, and James J Collins. In-
ferring genetic networks and identifying compound mode of action via expression
profiling. Science (New York, N.Y.), 301(5629):102–5, July 2003.

[32] M Gassmann, F Casagranda, D Orioli, H Simon, C Lai, R Klein, and G Lemke.
Aberrant neural and cardiac development in mice lacking the erbb4 neuregulin
receptor. Nature, 378:390–394, 1995.

[33] Marco Grzegorczyk. A Non-Homogeneous Dynamic Bayesian Network with Se-
quentially Coupled Interaction Parameters for Applications in Systems and Syn-
thetic Biology A Non-Homogeneous Dynamic Bayesian Network with Sequen-
tially Coupled Interaction Parameters for Applications in S. 11(4), 2012.

[34] Marco Grzegorczyk and Dirk Husmeier. Non-stationary continuous dynamic
bayesian networks. In Advances in Neural Information Processing Systems
(NIPS), 2009.

[35] Marco Grzegorczyk and Dirk Husmeier. Non-homogeneous dynamic bayesian
networks forÂ continuous data. Machine Learning, 83(3):355–419, February
2011.

[36] Saad Haider and Ranadip Pal. Boolean network inference from time series data
incorporating prior biological knowledge. BMC Genomics, 13(Suppl 6):S9, 2012.

[37] Seiya Imoto, Tomoyuki Higuchi, Takao Goto, Kousuke Tashiro, Satoru Kuhara,
and Satoru Miyano. Combining microarrays and biological knowledge for es-
timating gene networks via bayesian networks. Journal of Bioinformatics and
Computational Biology, 02(01):77–98, 2004.

103

REFERENCES

[38] Yuriko Iwakura and Hiroyuki Nawa. Erbb1-4-dependent egf/neuregulin signals
and their cross talk in the central nervous system: pathological implications
in schizophrenia and parkinson’s disease. Frontiers in cellular neuroscience,
7(February):4, January 2013.

[39] Yuriko Iwakura, Ying-shan Piao, Makoto Mizuno, Nobuyuki Takei, Akiyoshi
Kakita, Hitoshi Takahashi, and Hiroyuki Nawa. Influences of dopaminergic lesion
on epidermal growth factor-erbb signals in parkinson’s disease and its model:
neurotrophic implication in nigrostriatal neurons. Journal of Neurochemistry,
93(4):974–983, 2005.

[40] Lars Kaderali, Eva Dazert, Ulf Zeuge, Michael Frese, and Ralf Bartenschlager.
Reconstructing signaling pathways from rnai data using probabilistic boolean
threshold networks. Bioinformatics, 25(17):2229–2235, 2009.

[41] S a Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology, 22(3):437–67, March 1969.

[42] Hans a Kestler, Christian Wawra, Barbara Kracher, and Michael Kühl. Network
modeling of signal transduction: establishing the global view. BioEssays : news
and reviews in molecular, cellular and developmental biology, 30(11-12):1110–25,
November 2008.

[43] Shuhei Kimura, Kaori Ide, Aiko Kashihara, Makoto Kano, Mariko Hatakeyama,
Ryoji Masui, Noriko Nakagawa, Shigeyuki Yokoyama, Seiki Kuramitsu, and Ak-
ihiko Konagaya. Inference of s-system models of genetic networks using a coop-
erative coevolutionary algorithm. Bioinformatics, 21(7):1154–1163, 2005.

[44] Bettina Knapp. RNA Interference Data: from a Statistical Analysis to Network
Inference. PhD thesis, Ruprecht Karl University of Heidelberg, 2012.

[45] Bettina Knapp and Lars Kaderali. Reconstruction of cellular signal transduc-
tion networks using perturbation assays and linear programming. PLoS ONE,
8(7):e69220, 07 2013.

[46] Kristina S. Kovacina, Grace Y. Park, Sun Sik Bae, Andrew W. Guzzetta, Erik
Schaefer, Morris J. Birnbaum, and Richard A. Roth. Identification of a proline-
rich akt substrate as a 14-3-3 binding partner. Journal of Biological Chemistry,
278(12):10189–10194, 2003.

104

REFERENCES

[47] Sophie Lèbre, Jennifer Becq, Frédéric Devaux, Michael P H Stumpf, and Gaëlle
Lelandais. Statistical inference of the time-varying structure of gene-regulation
networks. BMC systems biology, 4:130, January 2010.

[48] Robert D Leclerc. Survival of the sparsest: robust gene networks are parsimo-
nious. Molecular systems biology, 4:213, January 2008.

[49] Kuo-Fen Lee, H Simon, H Chen, B Bates, Mien-Chie Hung, and C Hauser.
Requirement for neuregulin receptor erbb2 in neural and cardiac development.
Nature, 378:394–398, 1995.

[50] Jüri Lember and Alexey Koloydenko. The adjusted Viterbi training for hidden
Markov models. Bernoulli, 14(1):180–206, February 2008.

[51] L. Liu, Y. Xie, and L. Lou. Cyclic amp inhibition of proliferation of hepatocellular
carcinoma cells is mediated by akt. Cancer Biol Ther, 4(11):1240–7, 2005.

[52] Subbareddy Maddika, Sudharsana Rao Ande, Soumya Panigrahi, Ted Paran-
jothy, Kazimierz Weglarczyk, Anne Zuse, Mehdi Eshraghi, Kamala D. Manda,
Emilia Wiechec, and Marek Los. Cell survival, cell death and cell cycle pathways
are interconnected: Implications for cancer therapy. Drug Resistance Updates,
10:13–29, 2007.

[53] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. Annals of Mathematical Statistics, 18:50–
60, 1947.

[54] Florian Markowetz, Jacques Bloch, and Rainer Spang. Non-transcriptional path-
way features reconstructed from secondary effects of rna interference. Bioinfor-
matics (Oxford, England), 21(21):4026–32, November 2005.

[55] Florian Markowetz, Dennis Kostka, Olga G Troyanskaya, and Rainer Spang.
Nested effects models for high-dimensional phenotyping screens. Bioinformatics
(Oxford, England), 23(13):i305–12, July 2007.

[56] Florian Markowetz and Rainer Spang. Inferring cellular networks–a review. BMC
bioinformatics, 8 Suppl 6:S5, January 2007.

[57] Shawn Martin, Zhaoduo Zhang, Anthony Martino, and Jean-Loup Faulon.
Boolean dynamics of genetic regulatory networks inferred from microarray time
series data. Bioinformatics, 23(7):866–874, 2007.

105

REFERENCES

[58] D Meyer and C Birchmeier. Multiple essential functions of neuregulin in devel-
opment. Nature, 378:386–390, 1995.

[59] D.O. Morgan. The Cell Cycle: Principles of Control. Primers in biology. New
Science Press, 2007.

[60] L Morris, K E Allen, and N B La Thangue. Regulation of e2f transcription
by cyclin e-cdk2 kinase mediated through p300/cbp co-activators. Nature cell
biology, 2(4):232–9, April 2000.

[61] D Neise, D Sohn, W Budach, and RU Janicke. Evidence for a differential mod-
ulation of p53-phosphorylating kinases by the cyclin-dependent kinase inhibitor
p21waf1/cip1. Cell Cycle, 9:3575–3583, 2010.

[62] Sven Nelander, Weiqing Wang, Björn Nilsson, Qing-Bai She, Christine Pratilas,
Neal Rosen, Peter Gennemark, and Chris Sander. Models from experiments:
combinatorial drug perturbations of cancer cells. Molecular systems biology,
4(216):216, January 2008.

[63] Manuel Nieto-Sampedro, Beatriz Valle-Argos, Diego Gomez-Nicola, Alfonso
Fernandez-Mayoralas, and Manuel Nieto-DÃaz. Inhibitors of glioma growth that
reveal the tumour to the immune system. Clinical Medicine Insights: Oncology,
5:265–314, 09 2011.

[64] Hiroshi Okabe, Sang-Hyun Lee, Janyaporn Phuchareon, Donna G. Albertson,
Frank McCormick, and Osamu Tetsu. A critical role for fbxw8 and mapk in
cyclin d1 degradation and cancer cell proliferation. PLoS ONE, 1(1):e128, 12
2006.

[65] C P Paweletz, L Charboneau, V E Bichsel, N L Simone, T Chen, J W Gillespie,
M R Emmert-Buck, M J Roth, E F Petricoin III, and L a Liotta. Reverse phase
protein microarrays which capture disease progression show activation of pro-
survival pathways at the cancer invasion front. Oncogene, 20(16):1981–9, April
2001.

[66] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from per-
turbed expression profiles. Bioinformatics, 17(Suppl 1):S215–S224, June 2001.

[67] Dana Pe’er. Bayesian network analysis of signaling networks: A primer. Sci.
STKE, 2005(281):pl4, 2005.

106

REFERENCES

[68] R S Pellish, a Nasir, B Ramratnam, and S F Moss. Review article: Rna
interference–potential therapeutic applications for the gastroenterologist. Ali-
mentary pharmacology & therapeutics, 27(9):715–23, May 2008.

[69] Laura Pentassuglia and Douglas B. Sawyer. Erbb/integrin signaling interac-
tions in regulation of myocardial cell-cell and cell-matrix interactions. Biochim-
ica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(4):909 – 916,
2013. <ce:title>Cardiomyocyte Biology: Cardiac Pathways of Differentiation,
Metabolism and Contraction</ce:title>.

[70] D J Riese, T M Van Raaij, G D Plowman, G C Andrews, F Stern, David
J Riese Ii, and M Tom. The cellular response to neuregulins is governed by
complex interactions of the erbB receptor family . The Cellular Response to
Neuregulins Is Governed by Complex Interactions of the erbB Receptor Family
Downloaded from http://mcb.asm.org/ on August 31 ,. Molecular and Cellular
Biology, 15(10):5570–5776, 1995.

[71] Joshua W Robinson and Alexander J Hartemink. Learning Non-Stationary Dy-
namic Bayesian Networks. Journal of Machine Learning Research, 11:3647–3680,
2010.

[72] Joshua W. Robinson and Er J. Hartemink. Non-stationary dynamic bayesian
networks. In Advances in Neural Information Processing Systems 21, pages 1369–
1376. Morgan Kaufmann Publishers, 2009.

[73] Karen Sachs, Omar Perez, Dana Pe’er, Douglas a Lauffenburger, and Garry P
Nolan. Causal protein-signaling networks derived from multiparameter single-cell
data. Science (New York, N.Y.), 308(5721):523–9, April 2005.

[74] Ozgür Sahin, Holger Fröhlich, Christian Löbke, Ulrike Korf, Sara Burmester,
Meher Majety, Jens Mattern, Ingo Schupp, Claudine Chaouiya, Denis Thieffry,
Annemarie Poustka, Stefan Wiemann, Tim Beissbarth, and Dorit Arlt. Model-
ing ERBB receptor-regulated G1/S transition to find novel targets for de novo
trastuzumab resistance. BMC systems biology, 3(1):1, January 2009.

[75] Francesco Sambo, Marco a Montes de Oca, Barbara Di Camillo, Gianna Toffolo,
and Thomas Stützle. MORE: mixed optimization for reverse engineering–an
application to modeling biological networks response via sparse systems of non-
linear differential equations. IEEE/ACM transactions on computational biology
and bioinformatics / IEEE, ACM, 9(5):1459–71, 2012.

107

REFERENCES

[76] Michael A. Savageau. Biochemical systems analysis: I. some mathematical prop-
erties of the rate law for the component enzymatic reactions. Journal of Theo-
retical Biology, 25(3):365 – 369, 1969.

[77] Michael A. Savageau. Biochemical systems analysis: Ii. the steady-state solutions
for an n-pool system using a power-law approximation. Journal of Theoretical
Biology, 25(3):370 – 379, 1969.

[78] Thomas Schaffter, Daniel Marbach, and Dario Floreano. GeneNetWeaver: in sil-
ico benchmark generation and performance profiling of network inference meth-
ods. Bioinformatics (Oxford, England), 27(16):2263–70, August 2011.

[79] Lawrence A. Scheving, Mary C. Stevenson, Xiuqi Zhang, and William E. Russell.
Cultured rat hepatocytes upregulate akt and erk in an erbb-2-dependent man-
ner. American Journal of Physiology - Gastrointestinal and Liver Physiology,
295(2):G322–G331, 2008.

[80] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3-4):591–611, 1965.

[81] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs
in the transcriptional regulation network of escherichia coli. Nature genetics,
31(1):64–8, May 2002.

[82] Charles J. Sherr and James M. Roberts. Cdk inhibitors: positive and negative
regulators of g1-phase progression. Genes & Development, 13(12):1501–1512,
1999.

[83] Student. The probable error of a mean. Biometrika, VI:1–25, 1908.

[84] Yoshihiro Taniyama, David S Weber, Petra Rocic, Lula Hilenski, Marjorie L
Akers, Jongsun Park, Brian A Hemmings, R Wayne Alexander, and Kathy K
Griendling. Pyk2- and src-dependent tyrosine phosphorylation of pdk1 regulates
focal adhesions. Molecular and Cellular Biology, 23(22):8019–8029, 2003.

[85] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.
ISBN 3-900051-07-0.

108

REFERENCES

[86] John F Timms, Sarah L White, Michael J O Hare, and Michael D Waterfield.
Effects of erbb-2 overexpression on mitogenic signalling and cell cycle progression
in human breast luminal epithelial cells. pages 6573–6586, 2002.

[87] A Tresch and F Markowetz. Structure learning in nested effects models. Statis-
tical Applications in Genetics and Molecular Biology, 7:Article 9, 2008.

[88] Heth R Turnquist, Jon Cardinal, Camila Macedo, Brian R Rosborough, Tina L
Sumpter, A David, Diana Metes, Angus W Thomson, Washington Dc, Diana
Metes, and Angus W Thomson. mtor and gsk-3 shape the cd4+ t-cell stimulatory
and differentiation capacity of myeloid dcs after exposure to lps. Blood, 115:4758–
4769, 2010.

[89] E Tzahar, H Waterman, X Chen, G Levkowitz, D Karunagaran, B J Ratzkin,
Y Yarden, Eldad Tzahar, Hadassa Waterman, Xiomei Chen, G I L Levkowitz,
Devarajan Karunagaran, Sara Lavi, and Barry J Ratzkin. A hierarchical network
of interreceptor interactions determines signal transduction by neu differentiation
factor / neuregulin and epidermal growth factor . a hierarchical network of in-
terreceptor interactions determines signal transduction by neu differe. Molecular
and Cellular Biology, 16:5276–5287, 1996.

[90] CJ Vaske, C House, T Luu, B Frank, CH Yeang, NH Lee, and JM Stuart. A
factor graph nested effects model to identify networks from genetic perturbations.
PLoS Comput Biol, 5:el000274, 2009.

[91] Bo Yu, Maureen E. Lane, Richard G. Pestell, Chris Albanese, and Scott Wadler.
Downregulation of cyclin d1 alters cdk 4- and cdk 2-specific phosphorylation
of retinoblastoma protein. Molecular Cell Biology Research Communications,
3(6):352 – 359, 2000.

[92] Le Yu, Steven Watterson, Stephen Marshall, and Peter Ghazal. Inferring boolean
networks with perturbation from sparse gene expression data: a general model
applied to the interferon regulatory network. Mol. BioSyst., 4:1024–1030, 2008.

[93] C Zeller, H Frohlich, and A Tresch. A bayesian network view on nested effects
models. EURASIP Journal on Bioinformatics and Systems Biology, 195272:8,
2009.

109

REFERENCES

[94] Lixing Zhan, Bin Xiang, and Senthil K. Muthuswamy. Controlled activation
of erbb1/erbb2 heterodimers promote invasion of three-dimensional organized
epithelia in an erbb1-dependent manner: Implications for progression of erbb2-
overexpressing tumors. Cancer Research, 66(10):5201–5208, 2006.

110

