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Abstract

Recent evolution of high performance computing moved towards heterogeneous platforms:
multiple devices with different architectures, characteristics and programming models, share
application workloads. To aid the programmer to efficiently explore these heterogeneous
platforms several frameworks have been under development. These dynamically manage the
available computing resources through workload scheduling and data distribution, dealing
with the inherent difficulties of different programming models and memory accesses. Among
other frameworks, these include GAMA and StarPU.

The GAMA framework aims to unify the multiple execution and memory models of
each different device in a computer system, into a single, hardware agnostic model. It was
designed to efficiently manage resources with both regular and irregular applications, and
currently only supports conventional CPU devices and CUDA-enabled accelerators. StarPU
has similar goals and features with a wider user based community, but it lacks a single
programming model.

The main goal of this dissertation was an in-depth evaluation of a heterogeneous frame-
work using a complex application as a case study. GAMA provided the starting vehicle
for training, while StarPU was the selected framework for a thorough evaluation. The pro-
gressive photon mapping irregular algorithm was the selected case study. The evaluation
goal was to assert the StarPU effectiveness with a robust irregular application, and make a
high-level comparison with the still under development GAMA, to provide some guidelines
for GAMA improvement.

Results show that two main factors contribute to the performance of applications written
with StarPU: the consideration of data transfers in the performance model, and chosen
scheduler. The study also allowed some caveats to be found within the StarPU API. Although
this have no effect on performance, they present a challenge for new coming developers.
Both these analysis resulted in a better understanding of the framework, and a comparative
analysis with GAMA could be made, pointing out the aspects where GAMA could be further
improved upon.
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Resumo

Uma avaliação das frameworks GAMA/StarPU para Pla-

taformas Heterogéneas: O algoritmo de Progressive Pho-

ton Mapping

A recente evolução da computação de alto desempenho é em direção ao uso de plataformas
heterogéneas: múltiplos dispositivos com diferentes arquiteturas, características e modelos
de programação, partilhando a carga computacional das aplicações. De modo a ajudar o
programador a explorar eficientemente estas plataformas, várias frameworks têm sido de-
senvolvidas. Estas frameworks gerem os recursos computacionais disponíveis, tratando das
dificuldades inerentes dos diferentes modelos de programação e acessos à memória. Entre
outras frameworks, estas incluem o GAMA e o StarPU.

O GAMA tem o objetivo de unificar os múltiplos modelos de execução e memória de
cada dispositivo diferente num sistema computacional, transformando-os num único modelo,
independente do hardware utilizado. A framework foi desenhada de forma a gerir eficiente-
mente os recursos, tanto para aplicações regulares como irregulares, e atualmente suporta
apenas CPUs convencionais e aceleradores CUDA. O StarPU tem objetivos e funcionali-
dades idênticos, e também uma comunidade mais alargada, mas não possui um modelo de
programação único

O objetivo principal desta dissertação foi uma avaliação profunda de uma framework
heterogénea, usando uma aplicação complexa como caso de estudo. O GAMA serviu como
ponto de partida para treino e ambientação, enquanto que o StarPU foi a framework se-
lecionada para uma avaliação mais profunda. O algoritmo irregular de progressive photon
mapping foi o caso de estudo escolhido. O objetivo da avaliação foi determinar a eficácia
do StarPU com uma aplicação robusta, e fazer uma análise de alto nível com o GAMA,
que ainda está em desenvolvimento, para forma a providenciar algumas sugestões para o seu
melhoramento.

Os resultados mostram que são dois os principais factores que contribuem para a perfor-
mance de aplicação escritas com auxílio do StarPU: a avaliação dos tempos de transferência
de dados no modelo de performance, e a escolha do escalonador. O estudo permitiu também
avaliar algumas lacunas na API do StarPU. Embora estas não tenham efeitos visíveis na efici-
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encia da framework, eles tornam-se um desafio para recém-chegados ao StarPU. Ambas estas
análisos resultaram numa melhor compreensão da framework, e numa análise comparativa
com o GAMA, onde são apontados os possíveis aspectos que o este tem a melhorar.
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Chapter 1

Introduction

1.1 Context

Heterogeneous platforms are increasingly popular for high performance computing, with
an increasing number of supercomputers taking advantage of accelerating devices in addition
to the already powerful traditional CPUs, to provide higher performance at lower costs.
These accelerators are not as general-purpose as a conventional CPU, but have features that
make them more suitable to specific, usually highly parallel tasks, and as such are useful as
coprocessors that complement the work of conventional systems.

Moore’s law [1, 2] predicted in 1975 that the performance of microprocessors would double
every two years. That expectation has since driven the development of microprocessors. The
number of transistors, and high clock frequencies of today’s microprocessors is near the limit
of power density, introducing problems such as heat dissipation and power consumption.
Facing this limitations, research focus was driven towards multi-core solutions.

This marked the beginning of the multi-core era. While multi-core systems were already
a reality, it was not until this point that they reached mainstream production, and parallel
paradigms began to emerge as more general-purpose solutions.

In addition to regular CPUs, other types of devices also emerged as good computational
alternatives. In particular, the first GPUs supporting general purpose computing were in-
troduced by NVidia early this century.

These devices gradually evolved from specific hardware dedicated to graphics rendering,
to fully featured general programming devices, capable of massive data parallelism and per-
formance, and sometimes provide lower power consumptions. They enable the acceleration
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CHAPTER 1. INTRODUCTION

of highly parallel tasks, being more efficient than CPUs on specific tasks, but also more
specialized. The usage of GPUs for general computing has been named General Purpose
GPU (GPGPU), and has since become an industry standard. As of 2013, over 30 of the
TOP500’s1 list were powered by GPUs. This increased usage is motivated by the effectiveness
of these devices for general-purpose computing.

Other types of accelerators recently emerged, like the recent Intel Many Integrated Core
(MIC) architecture, and while all of them differ from the traditional CPU architecture,
they also differ between themselves, providing different hardware specifications, along with
different memory and programming models.

Development of applications targeting these coprocessor devices tends to be harder, or at
least different from conventional programming. One has to take into account the differences
of the underlying architecture, as well as the programming model being used, in order to
produce code that is not only correct, but also efficient. And efficiency for one coprocessor
might have a different set of requirements or rules that are inadequate to a different one. As
a result, developers need to take into account the characteristics of each different device they
are using within their applications, if they aim to fully take advantage of them. Usually,
the task of producing the most efficient code for a single platform is very time consuming,
and requires thorough understanding of the architecture details, In addition, the inherent
parallel nature of these accelerators introduces yet another difficulty layer.

Each device can also be programmed in various ways, ranging from programming models
such as CUDA, OpenCL or pthreads2 to higher level libraries like OpenMP or OpenACC.
Each of these provides a different method of writing parallel programs, and has a different
level of abstraction about the underlying architecture.

The complexity increases even further when it is considered that multiple accelerators
might be simultaneously used. This aggravates the already existing problems concerning
workload distribution, scheduling, and communication / data transfers.

Recent studies [3, 4] also show that overall speedups when using accelerators should
not be expected to be as high as initially suggested. These studies show that, while the
measured speedups of multiple applications ported to GPUs were real, the actual reason was
not the better overall performance of the device, but actually the poorly optimized original
CPU code. Actually, when code is better designed, similar speedups can be obtained in
traditional CPUs. This indicates that accelerators should not be regarded as the only source
of high computational power, but rather as an additional resource, and the whole system
should be appropriately used for better efficiency.

1A list of the most powerful supercomputers in the world, updated twice a year (http://www.top500.org/)
2POSIX Threads: The standard thread management library for most UNIX systems
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1.1. CONTEXT

Current coprocessor devices are most commonly used as accelerators (in the context
of general-computing), in a system where at least one CPU manages the main execution
flow, and delegates specific tasks to the remaining computing resources. A system that
uses different computing units is commonly referred to as an heterogeneous platform, here
referred to as a HetPlat. These systems become particularly noticeable in the TOP500
ranking, where an increasing number of top-rated systems are heterogeneous.

Much like the phenomenon seen at the start of the multi-core era, a new paradigm shift
must happen to efficiently use a HetPlat. An even greater level of complexity is introduced,
since one has to consider not only the multiple different architectures and programming
models being used, but also the distribution of both work and data. Current Heterogenous
Platforms (HetPlats) are distributed systems, since each computing accelerator device usu-
ally has its own memory hierarchy. As much as a given task may be fast on a given device, the
required data transfers to offload such task may add an undesirable latency to the process,
and is currently one of the highest performance bottlenecks of this approach.

Even within a single device, memory hierarchy usage can have a large impact on per-
formance. In a NUMA system, although each device can transparently access all memory
nodes, access times will be dependent on where the requested data is pinned. Performance
problems arise from this if one considers the multiple CPU devices as one single multi-core
CPU. Instead, the topology of the system can be considered when assigning tasks to each
individual processing unit, and data transferred accordingly, to avoid expensive memory
transactions.

Code efficiency is also becoming extremely volatile, as each new system that emerges
usually requires architecture-specific optimizations, making previous code obsolete in terms
of performance. There is an increasing need for a unified solution that allows developers to
keep focuses on the algorithmic issues, and automate these platform-specific issues, which
present a barrier to the development of code targeting HetPlats.

Several frameworks have been developed in recent years to address these issues and to
allow developers to abstract themselves from the underlying system. These frameworks
usually manage the multiple resources of the system, treating both CPUs and coprocessors
as generic computing devices that can execute tasks, and employ a scheduler to efficiently
distribute data and workload. Memory management is also a key factor, with memory
transfers playing a significant role in today’s coprocessor efficiently.

Among these frameworks it is worth to mention MDR [5], Qilin [6], StarPU [7] and
GAMA [8]. This dissertation focuses mostly on StarPU, with an overview and a comparative
assessment with GAMA.

3



CHAPTER 1. INTRODUCTION

These frameworks tend to encapsulate work by explicitly use the terms of task and data
dependencies, and employ a task scheduler to assign data and workloads to the available
resources. The scheduler is considered one of the key features of these frameworks. It may
take into account multiple different factors to decide when and where to run the submitted
tasks. These factors can range from the architectural details of the detected resources, to
the measured performance of each task on each device, which can be supported by a history-
based performance model.

1.2 Motivation & Goals

HetPlats and associated development frameworks, can still be seen as a recent computing
environment, especially when considering the volatility and constant evolution of computing
systems. As such, there is still much to develop when it comes to the efficient usage of a
HetPlat.

GAMA is a recent framework under development at University of Minho and University of
Texas at Austin, which aims to provide tools for developers to deploy dynamic applications,
that efficiently run on these high performance computing platforms [8]. This framework
is still under development, and currently supports only x86-64 CPUs and CUDA-enabled
GPUs. It is somewhat inspired in a similar framework, StarPU, but with an emphasis on the
scheduling of irregular algorithms, a class which presents extra problems when dealing with
workload scheduling. Although GAMA has been deeply tested for a wide variety of kernels
to validate the correctness and efficiency of its memory and execution model, it currently
lacks a more intensive assessment, with a more robust and realistic application. Small kernels
have a wide range of applications, are deeply studied and optimized, and are a good source
for an initial analysis on the performance results of the execution model. However, when
considering a real and more resource intensive application, where possibly multiple tasks
must share the available resources, other problems may arise. Therefore, a more realistic
evaluation of the framework requires a richer set of robust test cases, to complement the
performance evaluations made so far.

The initial goal of this dissertation was to perform a quantitative and qualitative analysis
of the GAMA framework, applied to a large scale algorithm, to validate its effectiveness, and
identify possible soft-spots, especially when compared to other similar frameworks. This
would be done through the implementation of a real case study, namely the progressive
photon mapping algorithm, used in computer graphics. However, a stable and reliable version
of the GAMA framework was not available during the time slot for this dissertation work and
the qualitative evaluation of the framework was shifted to a competitor framework, StarPU.
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1.3. DOCUMENT ORGANIZATION

StarPU is an older project, presenting a more polished product, with the same overall goal
of efficiently managing heterogeneous systems, but with a different philosophy and approach
to the problem.

StarPU is analysed here through the implementation of a computationally intensive al-
gorithm, providing the same analysis on the performance and usage of the framework, while
serving as groundwork for future work to assert the effectiveness of GAMA. Additionally, a
comparative analysis is also made, in order to establish where each framework excels, and
what features a future release of GAMA might require to be competitive against similar
approaches with similar goals.

Overall, the work presented here consists on an analysis and a quantitative evaluation
of GAMA and StarPU, with the later being used for the implementation of a case study
algorithm. Framework-less implementations were also developed to establish the baseline
for profiling analysis. The analysis of StarPU through the case study helps in performing
a comparison with GAMA, both from the usability point of view, but also in terms of
performance. Final conclusions indicate the downsides of each framework, as well as their
strengths, and can serve as suggestions for future improvements of the GAMA framework.

1.3 Document Organization

Chapter 2 provides background information relevant to fully contextualize the reader
about the technologies and issues being studied. Chapter 3 introduces the two analysed
frameworks, and explains their purpose, features and the methodologies behind them.

Chapter 4 presents the progressive photon mapping algorithm, the selected case study,
to evaluate the frameworks. An initial background on ray tracing and its evolution is given,
followed by the presentation of the algorithm, and its evolutions in the context of this work.

Chapters 5 and 6 focus on the actual work developing the case study, particularly the
implementation using StarPU, and its subsequent profiling. Initial scalability results and
their analysis are presented along with some considerations regarding the performance of
StarPU, as well as the issues found along the way.

Finally, Chapter 7 presents the final conclusions of this work, and Section 7.1 leaves
suggestions of future work on relevant topics that could not be fully covered during this
dissertation.
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Chapter 2

Computing Background

2.1 Parallel Computing

Traditional computer programs are written in a sequential manner. It is natural to think
of an algorithm as a sequence of steps that can be serially performed to achieve a final
result. This has actually been the most common programming paradigm since the early
days of computing, and it synergizes well with single processor machines. Optimizations
related to instruction-level parallelism, such as out-of-order execution, pipelining, branch
prediction or superscalarity, were mostly handled by the compiler or the hardware itself,
and transparent to the programmer. Vector processing was also a key performance factor,
allowing the same instruction to be simultaneously applied to a data vector, rather than one
at a time (commonly referred to as Single Instruction, Multiple Data (SIMD)).

But in the beginning of the XXI century, the development of computational chips shifted
from a single faster core perspective, to a multi-core one. The evolution of single-core pro-
cessors was already reaching its peak, and was slowing down due to the increasing difficulty
in reducing transistor size or increasing clock frequencies, while introducing or aggravating
other problems, such as heat dissipation, which becomes harder with the increased complex-
ity of a chip. The solution was to move to a multi-core perspective, coupling more cores in
the same chip, to share the workload and allow overall computational capabilities to keep
evolving.

This has allowed hardware development to keep in conformance with Moore’s Law. And
while it was a necessary step from a hardware’s perspective, this has important implications
in software development. In order for an application to take advantage of multi-core tech-
nology, it needs to be broken into smaller tasks, that can be independently executed, usually
with some form of synchronization and communication between them. Writing parallel al-
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gorithms requires an adaptation to this new paradigm, as a sequential line of execution does
not provide efficient results in platforms that support parallel execution of several threads
or processes.

Writing parallel algorithms is generally not a trivial task compared their sequential coun-
terpart. Several classes of problems are introduced to the programmer such as deadlocks,
data races and memory consistency. Some of these problems may cause applications to
behave unexpectedly under certain conditions. That, along with the fact that multiple ex-
ecution lines are being processed in a sometimes very loose order, is also what makes the
debugging of these applications much harder.

This is not helped by the fact that current development environments are still mostly
unequipped to aid the programmer in such tasks. Support for debugging and profiling is
still somewhat outdated in various cases, as should be expected from a paradigm that has
not become mainstream until recent years.

2.2 The GPU as a Computing Accelerator

With the increasing demand for highly data-parallel algorithms, and the growing amount
of data to process, hardware development started shifting towards the goal of solving that
problem. Initially, that started with the increased support for vector instructions in common
CPUs, and the SIMD model. This allowed a single instruction to operate on a set of elements
at once, effectively achieving a kind of parallelism which is extremely useful in data-parallel
applications.

This data-parallel model is also behind the architecture of GPUs, but at a much higher
degree. While the concept is the same (applying the same instruction to a set of values,
instead of a single value at a time), the architecture of a GPU, particularly a CUDA-
enabled device, relies on the usage of several simple cores, grouped in multiple Streaming
Multiprocessors, to achieve higher degrees of parallelism, and process massive amounts of
data. These features makes GPUs more suitable for tasks with a high degree of data-
parallelism, and not the ideal candidate for more irregular problems, where its more difficult
to find parallelization points in order to take advantage of the SIMD model.

Although the hardware of a GPU is still tightly coupled with graphics processing and
rendering, there have also been several advances in its usage as a general computing device
(GPGPU).
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2.2. THE GPU AS A COMPUTING ACCELERATOR

2.2.1 Fermi Architecture

The Fermi architecture was an important milestone of GPUs technology, as it was one
of the first generations targeted directly towards GPGPU and high performance computing,
rather than purely graphics rendering. The first Fermi devices were released in 2010, and
include more efficient support for double precision floating point number when compared to
earlier generations. Fermi devices also included a GDDR5 memory controller with support for
Direct Memory Access (DMA) through the PCIe bus, and up to 16 Streaming Multiprocessor
(SM), for a total of up to 512 CUDA cores.

Figure 2.1: Overview of the Fermi Architecture (from NVidia documentation)

This architecture is backed by a hardware-based thread scheduler, within each SM, that
attempts to feed the execution unit with threads grouped in blocks of 32, or warps. Since
the scheduling is made directly via hardware, the switch between threads is nearly free, at
least when compared with software scheduling on a CPU. As a result, this strategy works
better when the total amount of threads competing for resources is much higher than the
amount of execution units, allowing for the latency of memory accesses to be hidden away by
instantly scheduling a different warp, effectively hiding memory latency while still keeping
execution units busy. This is very different from CPU scheduling policies, where switching
between threads requires a context switch, which takes considerably longer, making that
approach not as feasible as for a GPU.
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2.2.2 Kepler Architecture

Kepler, the follow-up generation to Fermi, is in many ways similar to its predecessor. One
of the most notorious change is the increase in the total amount of available CUDA cores,
going up to 2880 in high-end devices due to the redesign of the Streaming Multiprocessor, now
called SMX, each one with 192 CUDA cores. Kepler works at lower frequencies than Fermi,
due to the removal of shader frequency, a compromise to make room for the extra CUDA
cores. The entire chip now works based on the same core frequency. Overall, individual core
efficiency is lowered, but the global system becomes more efficient.

Figure 2.2: Overview of the Kepler Architecture (from NVidia documentation)

The programming model has been extended with the addition of dynamic parallelism,
allowing a CUDA thread to spawn new threads, a feature not possible with previous NVidia
devices. This is a relevant feature for irregular algorithms. With Kepler we can also invoke
multiple kernels for a single GPU, transparently dividing them between the available SMXs.

This shows a clear evolution over the previous generation, and a response to the increasing
demand for highly parallel computational power provided by GPUs.
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2.3 MIC Architecture

Many Integrated Core (MIC) [9] is an architecture proposed by Intel as a competitor
to GPUs for general purpose high performance computing. This alterative device employs
61 cores with a micro-architecture similar to x86, with a 1GHz frequency, and up to 16GB
of GDDR5 memory, as well as two levels of cache. The last level is interconnected via a
bidirectional ring among all cores, effectively sharing memory creating a last level cache
with over 30MB. The MIC is based on the x86 architecture that is used in common CPUs.
Extensions to the micro architecture provide support for 64-bit addressing, and SIMD in-
structions are possible using 512-bit registers. However, instruction sets such as Streaming
SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) are not compatible.

Figure 2.3: Overview of the MIC Architecture (from www.theregister.co.uk)

A MIC device internally uses a Linux-based micro operating system, thus being able to
run independently from the rest of the system, as opposed to other accelerating devices.
This allows the device to operate in one of three possible modes:

Native the device is used as an independent system, with applications running entirely on
it;

Offload the host system uses the device as a coprocessor, by offloading specific tasks to it.
This is the usual mode accelerators such as CUDA devices work;

Message Passing By using MPI, the device can be used simply as another node in the
network.

Initial claims suggest that this architecture has the ability of providing performance im-
provements to existing applications, with little to no effort from the programmer. The com-
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patibility (to some degree) with x86 makes this somewhat possible, although some reports
have questioned this claim, particularly when attempting to running native x86 application
originally target at Xeon CPUs [10].

2.4 Heterogeneous Platforms

By combining multiple devices such as CPUs and GPUs, the obtained platform can
obtain a much higher theoretical peak performance. But in practical terms, it becomes
much harder, if not impossible at all, to achieve performance levels near this peak value.

On a homogeneous machine, the actual peak performance is limited by additional factors
such as pipeline bubbles1, or memory access times, which is aggravated in memory bound
algorithms [11].

When dealing with multiple devices with disjoint memory address spaces, an additional
layer of complexity is introduced, as these different devices need a mean of communication
between each other. Usually, a HetPlat, such as the one represented in Figure 2.4 can
be seen as a distributed memory system, since each device has its own memory hierarchy.
Communication is thus needed for synchronization between tasks, and for all required data
transfers.

In the case of GPUs, communication is done via a PCIe bus. Although this technology
has greatly evolved over the last recent years, this still proves to be a potential bottleneck
for accelerating applications with a GPU.

Even disregarding PCIe devices, a single computational node can also be composed of
multiple CPU sockets, connected to each other via a bus such as Quick Path Interconnect
(QPI). This bus connects not only the multiple sockets but also the memory banks possibly
associated with each one, as these types of machines are generally associated with a NUMA
memory hierarchy, where each CPU is directly connected to a different memory bank. While
access to all banks is shared between all CPUs, access costs are not uniform. They depend
on the bus bandwidth used, and also on the actual path a request has to make from the
socket it originated from until it reaches the desired memory bank.

While this is a completely transparent process to the programmer, it can be another
source of performance degradation, if most or all data might ends up pinned to a single
memory bank, requiring all other sockets to share access to it. This is commonly disregarded
by programmers, who end up treating these systems as if their main memory is unified. It is

1A delay in the instruction pipeline, required to solve data, structure or control hazards, and limiting Instruction Level
Parallelism (ILP)
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Figure 2.4: Example diagram of a HetPlat

possible to control the affinity of both data and task in a NUMA system. For instance, the
hwloc[12] library provides access to the topology of the system, as well as an API to control
their bindings, effectively allowing control over each individual CPU and data bank.

However, libraries such as hwloc are very low-level ones, thus difficult to learn and use
properly. For complex problems, worrying about low-level optimizations such as memory
and core affinity can lead to over-optimization, making the application much more complex,
less portable and harder to debug or modify. Instead, these libraries should be used as
a control layer for other libraries or frameworks to work on top of, and allowing a more
developer-friendly access to the desired features.

2.5 Heterogeneity and the Future

As stated before, current HetPlats are usually composed with CPUs and GPUs com-
municating through a PCIe slot. Newer technologies such as the Intel MIC also use this
interconnect technique. Both these accelerators have their own memory hierarchy, different
from the host CPU, and the latter one is actually x86 -based, making it architecturally more
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similar to ordinary CPUs. However, as history has shown, this cannot be assumed as the
global model for heterogeneous computation.

As an example, power efficiency has recently become a more prominent factor in techno-
logical evolution. Judging from that, it should be expected that short term evolution would
yield more power efficient devices, rather that just providing a higher peak performance or
increasing the number of cores. Power efficiency can also be regarded as a relevant factor
by a scheduling framework, by making decisions not only based on overall execution time of
the application, but also based on its costs in terms of energy consumption. Other metrics
can be though of, and their importance increased or decreased, depending on technological
trends at each time.

In fact, in early 2013 AMD has already announced a new approach to heterogeneous
computing, called hUMA, which effectively implements a shared memory system between the
host CPU and a GPU [13]. This eliminates the communication required between both devices
through the PCIe bus, which can lead to significant advances in performance. However,
such as system will also be incompatible (or at least, not adequate) to any framework, or
programming methodology, that assumes a distributed memory system, and the need of
PCIe communication.

All these factors emphasize the fact that optimizations based solely on architectural de-
tails (for example, software pre-fetching, core affinity and memory affinity) are not desirable
to be coupled with an application if is desirable for it to perform well in future platforms,
instead of becoming less performant. Such optimizations create tight dependencies between
a program’s performance, and the actual architecture(s) being used during development. So,
it becomes desirable that such issues be handled by a more generic tool, built in a modular
way, so that components can be plugged, unplugged or updated, and applications easily
portable, while maintaining its efficiency.
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Chapter 3

Frameworks for Heterogeneous Platforms

The challenge of efficiently scheduling the workload of an application and its associated
data across an entire heterogeneous system is an ambitious one. Usually scheduling involves
history based sampling, and memory management. Some degree of complexity is added
when trying to have the framework manage data and workload, which makes it sometimes
difficult to use with existing code, and keep compatibility with external libraries

Among the several frameworks that have been proposed to target this goal are GAMA
and StarPU, which are here presented in more detail. While both of them have common
points in their design goals (GAMA is to some degree inspired by StarPU), they followed
slightly different approaches to manage HetPlats. In the case of GAMA, a case study is
also presented in this chapter. For StarPU, which was the chosen framework fore a more
deep analysis, the case study used was the progressive photon mapping algorithm, which is
presented later in Chapters 4 and 5

3.1 GAMA

The GPU And Multi-core Aware (GAMA) is a framework to aid computational scien-
tists in the development or porting of data-parallel applications to heterogeneous computing
platforms. Currently HetPlat support includes only systems composed of x86-64 CPU cores
and one or more CUDA-enabled GPU devices.

GAMA provides an abstraction of the hardware platform, attempting to free the program-
mer from the workload scheduling and data movement issues across the different resources.
In GAMA, an application is composed of a collection of jobs, each defined as a set of tasks
applied to a different input data set. Every job shares the same global address space, instead
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of directly using the private memory of each device.

One of the main focuses of GAMA is to efficiently execute irregular applications, which
are particularly harder to make estimations on. In an irregular application, input data sets
and their sizes cannot be used to make assumptions about how the task will perform under
a similar, but not equal set of input. This does not hold true for regular applications, which
is what makes their scheduling easier. As such, irregular applications can be more difficult
to extract parallelism from, especially when workload is distributed, as is the case with
HetPlats and their frameworks.

3.1.1 Memory Model

GAMA uses an unified programming model that assumes a hierarchy composed of mul-
tiple devices (both CPUs and GPUs), where each device has access to a private address
space (shared by all computing units, or cores, within that device), and a distributed mem-
ory system between devices. The framework assumes that multiple computing units of an
individual device can cooperate and communicate through a shared memory space, and that
the underlying programming and execution model of that device provides synchronization
mechanisms (barriers, atomics and memory fences). To abstract the distributed memory
model that is used between devices, GAMA introduces a global address space. Figure 3.1
illustrates how GAMA understands the memory hierarchy of a HetPlat.

Memory Consistency

Communication between memory spaces of different devices is expensive due to the need
of synchronization and data transfers between the host CPU and the devices. Due to this,
a relaxed consistency model is used, which enables the system to optimize data movements
between devices, offering the developer a single synchronization primitive to enforce memory
consistency.

Software Cache

Some applications require safe exclusive access to specific partitions of a data set. To
address this issue, a software cache shared between devices was implemented. This ensures
that the required data is as close to the device as possible, taking advantage of the local
memory of each device. It also provides a safeguard mechanism in combination with the
global memory system, to ensure that each device has a copy of a specific partition, when
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requested by the application. Additionally, the cache local copies on the device shared
memory space use semantically correct synchronization primitives within the device.

Figure 3.1: GAMA memory model, an extension to the one shown in Figure 2.4

3.1.2 Programming and Execution Model

To better understand the programming and execution model employed in GAMA, some
key concepts must be introduced:

Computing Unit (CU)
In GAMA, a Computing Unit is an individual execution unit, capable of executing a
general-purpose application. In the context of a CPU, a Computing Unit represents a
single core, while on a GPU, in the current implementation represents a single Stream-
ing Multiprocessor (SM). Thus the terms CU and CPU-core may be used with the
same meaning.

Device or Worker
Represents a collection of Computing Units that share some level of memory (e.g. the
CPU cores on the same machine, or the SMs of a single GPU).

Host
The group of all devices within a single computational node. Currently GAMA sup-
ports only a single-host, taking advantage of multiple computational nodes. As such,
the host represents the top-most hierarchy layer in GAMA’s execution model
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Domain
A global view of a particular data structure that enables developers to access any mem-
ory location using the global address space, and hiding the complexity of the underlying
memory system. At the application level, the user is able to define filters of partial
views of a single domain, allowing the system to identify the required communication
primitives and enforce the global address space, the memory consistency model, and
cache and synchronization mechanisms.

Job
A tuple associating data domains with the corresponding computations related to it
(the computational kernel), and a specialized dicing function that defines the best
strategy for job granularity, recursively splitting the job into smaller tasks across the
data domains. This dicing function is somewhat analogous to the ability of defining
task granularity with tools such as OpenMP, but it can employ more flexible solutions,
to account for the irregularity of the algorithms.

Kernel
The computation associated with a job. In a best-case scenario, a computational kernel
can be mapped directly to a given device simply with the help of the toolkit supporting
that device. In most cases, however, the kernel needs to be tailored to a specific
device’s programming model. This is achievable by extending the job description with
the addition of the specialized kernel for a specific device. This feature also enhances
the programming model by enabling developers to tailor specific computational kernels
for each platform, taking advantage of architecture-specific features.

The organization of the execution model between computing units, Devices and Hosts
ensures that a consistent model can be implicitly assumed, where CUs within the same
device share a common address space, allowing the usage of device-specific synchronization
mechanisms to manage the coordination of concurrent executions within that device.

An application in GAMA is a collection of jobs submitted to a run-time system for
scheduling among the available computational resources. Dependencies among jobs can be
specified with explicit synchronization barriers. The main goal of the runtime scheduler is
to reduce the overall execution time of any given application.

Scheduling

The scheduler uses information provided by each job in order to determine the best
scheduling policy, based on current runtime states, as well as execution history. If the gran-
ularity of a job is too coarse to enable a balanced scheduling policy, GAMA will recursively
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employ the dicing function of a job to adjust the task granularity to the capabilities of the
devices.

Internally, GAMA uses a variant of the Heterogeneous Earliest Finish Time (HEFT)
scheduling algorithm [14], which uses the computation and communication costs of each
task, in order to assign every task to a device in such a way that minimizes the estimated
finish time of the overall task pool. This variant of HEFT instead attempts to make a
decision every time it is applied to the task pool, so that tasks on the multiple devices take
the shortest possible time to execute [15].

3.1.3 The Polu Case-Study

Preliminary tests of the GAMA capabilities were performed in the early training stages,
which included well studied cases, such as the SAXPY and the Barnes-Hut algorithms.

Later, an implementation of a small, first order finite volume method was implemented
using GAMA, using the previously implemented versions of that same algorithm for compar-
ison references. These versions included a sequential implementation, and two parallel ones,
one with OpenMP, and another with CUDA. The details of the algorithm are described in
more detail below.

The polu application, computes the spread of a material (e.g. a pollutant) in a bi-
dimensional surface through the course of time. This surface is discretely represented as a
mesh, composed mainly of edges and cells. The input data set contains data on the mesh
description, the velocity vector for each cell and an initial pollution distribution.

Polu has already been the subject of a parallelization study in [16], which described the
incremental work where the application was improved from a sequential implementation, first
through a process of analysis and sequential optimization, and then subject to parallelization
using two techniques, a shared memory CPU implementation with OpenMP, and a GPU
implementation with CUDA.

The Algorithm

The polu algorithm is a first order finite volume method, where each mesh element only
communicates directly with its first level neighbours in the mesh, a typical case of a stencil
computation. The algorithm is very irregular in terms of memory access patterns, since
the mesh input generator, gmsh, suffers from deep locality issues, turning memory accesses
ordered by cells or edges close to random.

19



CHAPTER 3. FRAMEWORKS FOR HETEROGENEOUS PLATFORMS

The execution of the algorithm consists of looping through two main kernels, advancing
in time until an input-defined limit is reached. These two kernels are:

compute_flux

In this step, a flux is calculated for each edge, based on the current pollution con-
centration of each of the adjacent cells. A constant value, the Dirichlet condition, is
used for the boundary edges of the mesh, replacing the value of the missing cell. This
flux value represents the amount of pollution that travels across that edge in that time
step.

update

With the previously calculated fluxes, all cell values are updated, with each cell receiv-
ing contributions from all the adjacent edges. After this, one time step has passed.

Implementation

To run the algorithm using the framework, both kernels had to be re-written, following
the GAMA model of jobs. Data structures were also re-written to make use of the facilities
provided by GAMA to allow memory to be automatically handled by the global address
space. This presents an obviously large amount of development work, since almost everything
had to be re-written according to the GAMA rules. However, it has to be taken into account
the fact that this additional work also had to be performed in the previous implementations
studied in [16], since most of the original code was not suitable for efficient parallelization.

From this, one initial consideration can already be made about the framework, in the
sense that the effort required to parallelize an application following the GAMA rules might be
too high, if a given application was already written for a parallel environment. Since specific
data structures and job definitions need to be used, this may hamper the adoption of GAMA
by already implemented solutions, unless the performance advantages are significant enough
to justify the additional effort.

Study limitations

Several restrictions apply to the input generation for this algorithm. In particular, the
utility required to generate a mesh with arbitrary resolution has an estimated complexity
of O(N3), which prevented large enough test cases to be generated. The largest available
input contained only around 400, 000 cells, and represented a total memory footprint of
just over 40MB, which is extremely small, and does not allow a good enough analysis
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on resource usage. With such a low resource occupancy, the scheduling policy employed
by GAMA will most likely assign all the workload to a single device, as the cost of data
transfers, and the low execution time for each kernel for such a small data set would not
justify otherwise. Additionally, this being a typical stencil, each iteration requires a barrier,
allowing no execution of two simultaneous iterations, which would be an additional way of
improving parallelism.

Knowing this, any result obtained by profiling the polu application under these conditions
would not provide a correct insight about the algorithm, or about the framework, and as
such, these results are not presented here. The polu test case still served as an initial basis to
gain some insight into GAMA, and to better prepare the implementation of a more complex
case study, the progressive photon mapping algorithm.

3.2 StarPU

StarPU [7] is a unified runtime system consisting on both software and a runtime API that
aims to allow programmers of computational intensive applications to more easily exploit
the power of available devices, supporting CPUs and GPUs.

Much like GAMA, this framework frees the programmer of the workload scheduling and
data consistency inherent from a HetPlat. Task submissions are handled by the StarPU task
scheduler, and data consistency is ensured via a data management library.

However, one of the main differences comes from the fact that StarPU attempts to
increase performance by carefully considering and attempting to reduce memory transfer
costs. This is done using history information for each task and, accordingly to the scheduler’s
decision of where a task shall be executed, asynchronously prepare data dependencies, while
the system is busy computing other tasks. The task scheduler itself can take this into
account, and determine where a task should be executed by taking into account not only the
execution history, but also the estimation of data transfers latency.

3.2.1 Terminology

StarPU uses a well defined terminology to describe its libraries and API:

Data Handle
References a memory block. The allocation of the required space, and the possibly
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required memory transfers to deliver information to each device can be completely
handled by StarPU;

Codelet
Describes a computational kernel that can be implemented in one or more architectures,
such as CPUs, CUDA or OpenCL. It also stores information about the amount and
type of data buffers it should receive;

Task
Is defined as the association between a codelet and a set of data handles;

Partition
The subdivision of a data handle in smaller chunks, according to a partitioning function,
which can be user defined;

Worker
A processing element, such as a CPU core, managed by StarPU to execute tasks;

Scheduler
The library in charge of assigning tasks to workers, based on a well defined scheduling
policy.

3.2.2 Task Scheduling

The framework employs a task based programming model. Computational kernels must
be encapsulated within a task. StarPU will handle the decision of where and when the task
should be executed, based on a task scheduling policy, and the available implementations for
each task. A task can be implemented in multiple ways, such as CPU or CUDA. Multiple
implementations for the same device type can also be used. This allows StarPU to automat-
ically select the appropriate implementation even between different CPU micro architectures
(i.e. some CPUs might perform better with an implementation that uses SIMD extensions).
When submitting a task, StarPU will use the selected scheduler to select which of the avail-
able implementations will be used. The decision varies from scheduler to scheduler, but can
take into account information such as the current availability of each resource, the perfor-
mance model already obtained for that task, and estimations regarding the required data
transfers to solve dependencies.

Data handled by a task is automatically transferred as needed between the various pro-
cessing devices, ensuring memory consistency and freeing the programmer from dealing di-
rectly with scheduling issues, data transfers and other requirements associated with it.
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Previous work by the StarPU development team indicates that one of the most important
issues with scheduling is about obtaining an accurate performance model for the execution
time of a task [17, 18]. This is increasingly difficult when data transfers, which the team
regards as a key issue, are taken into account, as shown in the latter paper. In it, a data-
prefetching implementation for GPUs is present, and asynchronous data request capability
is introduced as part of the StarPU library, with the goal of preventing computing units
from being stalled waiting for data.

3.2.3 Dependencies

StarPU automatically builds a dependency graph of all submitted tasks, and keeps them
in a pool of frozen tasks, passing them onto the scheduler once all dependencies are met.

Dependencies can be implicitly given by the data handled by the task. Each task re-
ceives a set of buffers, each one corresponding to a piece of data managed by StarPU data
management library, and will wait until all the buffers from which it must read are ready.

This includes the possible data transfers that are required to meet dependencies, in case
different tasks that depend on the same data are scheduled to run on different computational
nodes. StarPU will automatically make sure the required data transfers are made between
each task execution to ensure data consistency.

In addition to implicit data dependencies, other dependencies can be explicitly given in
order to explicitly force the execution order of a given set of tasks.

Data Access Modes

Each data dependency that is explicitly defined in a task can have a different access
mode. Data can be used in read-only, write-only or read-write mode. This access mode does
not serve the purpose of ensuring memory correctness. It is used to soften task dependencies
by using a Multiple Readers / Single Writer model in dependency calculation.

This model describes a type of mutual exclusion pattern where a data block can be
concurrently accessed by any number of reader, but must be exclusively accessed by a writer.
StarPU uses this concept to further optimize data dependency calculations. If multiple
scheduled tasks depend on the same data handle, but only with reading access, then that
dependency should not block the multiple tasks from running concurrently (see Figure 3.2).
Temporary copies of the data can be created, possibly on different computing units, and
later discarded, since a read-only buffer is assumed to remain unchanged at the end of a
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task.

(a) A writes to x. B must wait for it to finish to
solve the dependency

(b) Neither B nor C write to x, so they can be
ran concurrently

Figure 3.2: Access mode illustration; Task A requires read/write access to x, while tasks
B and C require read-only access

3.2.4 Virtual Shared Memory

The approach used by StarPU when it comes to memory management is simpler than
the model employed by GAMA. The purpose is the same: to automatically manage memory
allocations and transfers on all devices. This not only frees the programmer from the work
of manually managing memory between tasks, but it also has the potential to lower the cost
of such operations. StarPU manages memory by forcing the user to declare data handles
to their data. These handles are used as arguments for tasks, allowing the scheduler to
allocate and transfer all required data buffers to the correct computing unit prior to the task
execution.

3.2.5 Multi-threading

In order to have an accurate view of the topology of the system, the framework can
optionally use the hwloc library1 [12] to detect the structure of the architecture, including
all CPU sockets, NUMA nodes and cache hierarchy.

A tree is created representing the complete hierarchy of the system. The latest version
of the framework also introduce support for parallel tasks, with the concept of combined
workers. These workers exist in cases where the system has multiple computing units in the

1hwloc, or Portable Hardware Locality, is a package that provides access to an abstract topology of modern computating
architectures.
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same node (such as CPU sockets where multiple cores share a cache hierarchy). In these
situations, and if StarPU is using a parallel-task-aware scheduler (currently only pheft and
peager exist), it is possible to specify the maximum degree of parallelism for a function. A
combined worker can then be assigned to such tasks using, for example, OpenMP to take
advantage of the multiple available cores.

3.2.6 API

Two API versions are available: the high-level, pragma-based2 API, and a low-level ver-
sion. The pragma-based API exposes StarPU’s main functionality with a set of directives
that can be added to the code, to embed StarPU within it. It is particularly suited for less ex-
perienced developers, or developers who simply need to focus completely on the algorithmic
issues with less or no knowledge on the underlying parallel hardware being used.

The directives can be easily disabled, restoring the application to its original, StarPU-free
nature, which also makes it ideal to add StarPU into already existing code, or applications
that require a large degree of portability.

The low-level version is a more verbose one, which is actually internally used by the
high-level one, and provides a greater degree of control over what StarPU does.

This trade-off is not uncommon, with many existing libraries besides StarPU supporting
both API levels. High level versions are designed to remove complexity and accelerate
development time. They are often a subset of an underlying low level version, delivering
only the more common features. More experienced developers should be able to achieve
better results with a lower level API, with the cost of additional development time.

3.2.7 Performance Model

Most schedulers available with StarPU are history based. This relies on the programmer
to configure a performance model for each defined codelet, in order to allow the framework to
identify it, and use on-line calibration. Calibration works automatically for every task that
is not yet calibrated for a given device. StarPU will ensure that a minimum of 10 executions
of that task will be processed before using the performance model. Calibration results will
be stored in a centralized directory, and inform StarPU about how each codelet behaves on
each different device, with a certain input size.

2Directives inserted within the code, to instruct the compiler about how to process input. Can be used to extend the compiler
and provide additional features, functionality or optimizations
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Once a good calibration has been obtained, StarPU can schedule tasks more efficiently,
depending also on the chosen scheduling policy. The list of the available policies is the
following:

eager The default scheduler, using a single task queue, from which workers draw tasks.
This method does not allow to take advantage of asynchronous data prefetching, since
the assignment of a task is only done when a given worker requires so;

prio Similar to eager, but tasks can be sorted by a priority number;

random Tasks are distributed randomly, according to the estimated performance of each
worker; Although extremely naive, this has the advantage of allowing data prefetching,
and minimizing scheduler decision times;

ws (Work Stealing) Once a worker becomes idle, it steals a task from the most loaded
worker;

dm (Deque Model) Performs a HEFT-like strategy, similarly to GAMA (see Section 3.1.2).
Each task is assigned to where the scheduler thinks its termination time will be mini-
mized;

dmda (Deque Model Data Aware) Similar to dm, but also taking into account data
transfer times;

dmdar (Deque Model Data Aware Ready) Similar to dmda, but tasks are sorted per-
worker, based on the amount of already available data buffers for that worker;

pheft (parallel HEFT) similar to heft (which is deprecated in StarPU, with dmda work-
ing in a very similar way), with support for parallel tasks;

peager similar to eager, with support for parallel tasks.

Additionally, schedulers are built as a pluggable system, allowing developers to write
their own scheduling policies if desired, and easily use them within StarPU.

3.2.8 Task Granularity

The granularity of a task in GAMA can be automatically defined and dynamically read-
justed with the use of a dicing function, which recursively adjusts it to find the best case
scenario for each particular device. This feature is not available in StarPU, where granularity
has to be defined manually by the programmer.
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The API gives the ability to subdivide a data handle into smaller children, based on a
partitioning function. This partitioning can be defined as a simple vector or matrix block
partitioning, but more complex and custom methods can be defined.

After partitioning, each children can be used as a different data handle. This means that
in order to operate in chunks of data at a time, one has to first partition data according
to a user defined policy, and later submit multiple individual tasks, using each children
individually.

3.3 Comparison

Given that HetPlats can suffer major changes in the future, due to the constant technolog-
ical evolution, a highly important feature of an application or framework is its modularity, so
that individual features can be updated to meet the requirements of the constantly evolving
computing platforms. StarPU seems to use this philosophy to some extent, with modules
such as the scheduler itself being completely unpluggable and rewritable by a developer.
It also provides the ability to assign user defined functions to make decisions within the
framework, such as how to partition data.

3.3.1 Usability

From a developer’s point of view, StarPU, being written in C provides an a clear but
somewhat outdated API, in some aspects resembling UNIX-like libraries. More modern lan-
guages such as C + +, in which GAMA is written provide less verbose and more structured
code. The choice for the C language is possibly related to better compatibility and portabil-
ity, but seems to somehow limit the language, and even expose some unexpected behaviours
of the framework (see Sections 3.3.3 and 3.3.3).

Even though GAMA does not yet provide a solid API to work from, but a less clear
architecture model, it can still be considered harder to work on, although there is plenty of
room for improvement, and once development advances and reaches a more stable position, it
can have the conditions to be a much more usable framework than the low-level one provided
by StarPU.

An important aspect to consider is that GAMA makes the usage of external libraries
much more difficult, due to the encapsulation of every data within the wrappers for its
global memory system. As a result, libraries that implement their own data structures
may have incompatibilities. Kernel calls can also be a problem, since an external library
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that attempts to invoke a CUDA kernel will not do so through GAMA’s facilities, thus not
taking advantage of its scheduling, and possibly also creating incompatibilities, since GAMA
expects to manage all data and workload. StarPU is not as restrict as GAMA in this subject,
at least for the low-level API. Since it consists of a more low-level usage of the framework,
the developer gains more control, and can more freely operate with the underlying data,
and manually invoke kernels (leaving to StarPU only the job of deciding in which device to
execute them), making the usage of external code a more viable possibility, although not
without its limitations.

3.3.2 Scheduling

Both StarPU and GAMA employ a variant of the HEFT algorithm for scheduling on
heterogeneous systems, although StarPU gives much more emphasis to the latency caused
by memory transactions, and can also support additional scheduling policies to be used.

GAMA has the ability to recursively change the granularity of a task to adapt it to the
characteristics of a device. This is presented as an important step by GAMA to automate
decisions by the scheduler. Without this, granularity has to be manually defined, by sub-
dividing the domain in arbitrarily sized chunks and process each one as an individual task.
This is not only a cumbersome task for the developer, but also a possible weakness, as the
ideal task granularity is not equal from system to system, or algorithm to algorithm, and
may not be easy to determine without intensive testing and manual tuning.

This seems an extremely important feature in GAMA, at least from the development
point of view, as the task of finding the ideal granularity is thus automated by the framework.
The fact that StarPU does not provides a similar feature can be a limitation for the developer,
which has to manually divide the data set (i.e. using partition functions) and invoke each
sub task as an individual one.

3.3.3 Memory Management

Type Safety

Perhaps one of the most important limitations of StarPU’s API is the fact that its task
submission methods are not type-safe3. By definition, the C language (in which StarPU is
implemented and exposed to the programmer) is only type safe to a certain extent, since

3The extent to which a language discourages or prevents type errors
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workarounds are often used in the language to achieve results similar to polymorphism or
runtime casting.

This is the case with StarPU, resulting in an API that can be mistakenly used by the
programmer. Each codelet defined in a program specifies how many data buffers its tasks
will depend on, and their access modes. However, since data buffers are used only through
their data handles, which are completely generic, no explicit type checking is made to ensure
that the correct types of data handles is passed, and that they are properly received within
the task. For example, a task may be expecting to receive buffers X and Y of completely
different sizes and types. But on task submission, their order might be reversed, resulting
in runtime errors which might be extremely difficult to trace.

The main result of this is a weak task submission API, since it can easily lead to runtime
errors. More experienced developers might have enough understanding to easily identify
these problems. But technical issues such as type safety should not have to be addressed by
the developer, as they can pose serious problems to development time, but could be easily
identified by a compiler.

Consistency

StarPU ensures consistency of all data assigned to it via data handles, but only within
tasks managed by its scheduler. The issue here is that, while the API allows the creation of
a data handle associated with an already allocated data structure (usually pinned to main
system memory), it is not ensured that tasks will write to that actual memory, and not a
StarPU-managed copy. This has the side effect of consistency not being ensured outside
the context of a task. Writing to a buffer via conventional methods can thus be considered
dangerous.

It is also impossible to change the size of a data buffer once it has been assigned to
StarPU. When this is a requirement, it is necessary to destroy and redefine the data handle,
which is not a particularly efficient method, and may introduce additional bottlenecks when
used between task submissions.

On these subjects, GAMA seems to provide more powerful capabilities. All data that is
to be managed by GAMA’s unified memory system must be encapsulated in a wrapper that
processes all accesses to it. While it is not documented how GAMA actually behaves when
data is accessed outside of a job, this model should provide a more transparent solution for
consistent memory access.
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Data Access Modes

Another caveat of the usage of data handles is that it can lead to incoherent results, again
due to possible and easily made developer mistakes. StarPU relies on the estimation of data
transfer times to decide where to schedule a task to. An important factor of this comes from
the access modes required for each data buffer in a task, as explained in Section 3.2.3.

If a data buffer is declared as read-only within a task, it is assumed to be unchanged by
that same task, thus other tasks depending on it will already have that dependency met. The
caveat here is that a read-only buffer is only so for the framework, but not actually read-only
for the programmer, or for the C compiler itself, and data can actually be overwritten for a
read-only buffer. Although that is probably related to a development mistake, it can easily
happen nonetheless.

Adding to this is the fact that StarPU might create additional copies of data buffers to
solve dependencies faster across multiple devices. Figure 3.3 exemplifies this problem. Tasks
A and B have read-only access to the data buffer x, although as explained, both of them can
write to it at will. If both tasks are scheduled to the same device (Figure 3.3a), they will be
executed in order, and StarPU will reuse the initially existing memory, without the need to
create temporary copies of the buffer. In this case, if task A writes to x, task B will later
see these changes, since memory is shared.

(a) A and B are executed in order, and the same
buffer for x is re-used

(b) A and B are scheduled to different devices,
creating a temporary copy of x

Figure 3.3: Illustration of a possible mistake due to dependency management. Both A and
B have read-only access to x

In Figure 3.3b, the two tasks are scheduled to different devices. Since StarPU assumes x
to be read-only, a copy of it, x′ can immediately be created in the additional device. In this
case, both tasks will run concurrently, with their own local copy of x. Task A will still write
changes to this buffer, but task B will not see them.
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Chapter 4

Case Study: the Progressive Photon
Mapping Algorithm

The selected case study is one of many algorithms from the ray tracing family, which
are typically used in computer graphics for the purpose of realistic image rendering, by
computing scene illumination with as much accuracy as possible, attempting to approximate
the rendering equation, which is the basis for these algorithms. This chapter presents an
overview of ray tracing algorithms, as well as the rendering equation, and follows with
the description of the photon mapping algorithm, and its various evolutions until reaching
the case study for this dissertation, which corresponds to the combination of all evolutions
presented here.

4.1 Ray Tracing

Ray tracing is the designation of a family of algorithms that simulate ray interactions
with an environment to determine the visibility of two points in space. Generally, this
technique is used to compute light interactions within a three-dimensional scene, and obtain
a two-dimensional image with a rendering of that scene. A high degree of visual realism can
be achieved by these techniques, but also with greater computational costs.

Ray tracing algorithms are capable of simulating most optical effects, such as reflections,
refractions, and scattering, although the actual set of simulated effects, and their overall
quality differ between the multiple ray tracing algorithms that have already been developed.

Large efforts have been made recently to improve ray tracing techniques, with several of
them being performance-related, by using parallel architectures such as GPUs, which have
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always been associated with computer graphics. Some efforts are already showing advances
in the area of real time ray tracing, which was unfeasible until very recently [19, 20].

4.1.1 Overview

The first use of ray tracing algorithms was with the introduction of the later called ray
casting technique by Arthur Appel in [21]. The idea consisted of casting one ray from an
origin point (usually called the eye, or camera) through each pixel of the image, and find
the closest object in the scene that blocks the path of the ray. The material properties and
light effects in the scene would then determine the final colour of the pixel.

Later advances (e.g. [22]), introduced the recursive ray tracing algorithm. In traditional
ray casting, each ray would end after the first hit. This was a limiting factor that prevented
the rendering to deal with reflections. Recursive ray tracing solves that, by recursively
tracing more rays after each hit. When a ray hits a surface, it can generate new reflection
or refraction, depending on the properties of the material hit. Shadow rays can also be cast
in the direction of the light sources. If a shadow ray is blocked by an opaque object before
reaching the light source, it means that surface is not illuminated by that light source, and
thus is shadowed. This technique is illustrated in Figure 4.1

Figure 4.1: Ray Tracing (from Wikipedia)

It is also not uncommon to approximate the rendering equation by using combinations of
more than one method, such a Ray Tracing, Radiosity or Metropolis Light Transport [23, 24].
Each method attempts to simulate the travel of light particles across the scene, and model
the various interactions with the environment, but with different approaches, advantages
and limitations, so the combination of multiple method can combine the advantages of each
one.

Traditional ray tracing methods work by simulating light particles traveling from the eye
into the scene, being reflected and refracted until they reach a light source. Nowadays, most
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ray tracing rendering algorithms are in fact bidirectional, having photons shot from the light
sources and their interactions computed in addition to regular eye paths.

Radiosity follows an opposite approach, and simulates the path light takes from the light
source, until it reaches the eye. It only deals with diffuse interactions, however, and is
commonly used in combination with other techniques.

4.1.2 The Rendering Equation

The realistic simulation of illumination of an environment is a complex problem. In
theory, a simulation is truly realistic when it completely simulates, or closely approximates,
the rendering equation.

This equation, first proposed in 1986 [25], is based on the laws of conservation of energy,
and describes the total amount of emitted light from any given point, based on incoming
light and reflection distribution. The equation is presented in Equation (4.1)

Ls(x, ~ωr) = Le(x, ~ωr) +

∫
Ω

fr(x, ~ωi, ~ωr)Li(x, ~ωi)(~ωi · ~n)dωi (4.1)

In short, the equation defines the surface radiance Ls(x, ~ωr), leaving the point x in the
direction ~ωr. This is given by Le(x, ~ωr), which represents light self-emitted by a surface,
and Li(x, ~ωi), which is the radiance along a given incidence direction. fr is the Bidirectional
Reflectance Distribution Function (BRDF) and Ω represents the semi-sphere of incoming
directions centered in x.

4.2 Photon Mapping

Photon mapping is a ray tracing method that intends to approximate the rendering
equation, first proposed as a global illumination technique in 1996 [26], and works as a two-
pass algorithm, working as an extension to ray tracing that allows the efficient computation
of caustics1 and indirect illumination of surfaces.

Unlike other algorithms such as Path Tracing or Metropolis Light Transport, this is a
biased rendering method, meaning that a finite for a finite number of traced photons, the
resulting estimation will always be different from the correct solution. However this can be

1The light effects caused by light reaching a diffuse surface after being reflected or transmitted by a specular one
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worked around by increasing the size of the photon map structure used in the process, or by
using variations of this technique, such as Stochastic Photon Mapping.

4.2.1 Algorithm

The original approach to photon mapping consists simply on a two step algorithm. One
step to generate a structure with the illumination information for the scene, called the photon
map, and a second step to trace rays from the camera to interact with the scene and the
photon map, contributing to the final pixels of the generated image.

Figure 4.2: High Level Flowchart of Photon Mapping

First Step: Photon Map Construction

In this step, a large number of photons must be traced, starting from the existing light
sources in the scene (see Figure 4.3). The tracing of a photon is just like the tracing of
a regular ray, interacting with the scene according to BRDF function, in a process similar
to path tracing. Every hit by a photon is stored in a structure called a photon map. The
original proposal [26] uses two different photon maps, the extra one being a higher density
one used for the rendering of caustics. This is done by emitting paths towards specular
objects in the scene, and storing them in the photon map as diffuse surfaces. The usage of
this extra photon map is not, however, required for the implementation of the algorithm,
and serves only as a way of providing additional quality in the rendering of caustics. As
such, it was not considered during the implementation in this work.

The photon map structure generated serves as an approximation of the light within the
entire scene. As another optional extension, shadow photons can also be cast during this
step, which will reduce the amount of shadow rays necessary in the second step to correctly
reproduce shadows.

Second Step: Rendering

For the final image render, Monte Carlo ray tracing [27] can be used to traced rays
from the camera position into the scene, as illustrated in Figure 4.4. During this step, the
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Figure 4.3: Overview of the first step of Photon Mapping

information in the photon map structure can be used to estimate the radiance of a surface,
by using the N nearest photons to the hit point, that are within a sphere of radius r centered
in the hit point x. The radius r is then used to estimate the surface area covered by the
sphere, which is approximated to πr2.

The photon map proves useful during this step, not only to increase performance, but
also to allow the modeling of some light effects that are not present or are inefficient to
process without such a structure.

Figure 4.4: Overview of the second step of Photon Mapping

4.2.2 Applications

One particular case where photon mapping provides advantages over other methods is
when light is being transported from a light source travels along a specular-to-diffuse path
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before reaching the eye (LSDE path), such as the one illustrated in Figure 4.5, before reaching
the eye. This is what is commonly known as a caustic, such as, for example, the shimmering
light seen of the bottom of a pool, or any light source enclosed in glass. This scenario is very
common since most artificial light sources are enclosed in glass, but is particularly hard to
simulate, particularly when the light source is small, making the sampling probability very
low when using Monte Carlo methods.

Figure 4.5: Specular to Diffuse to Specular path (SDS)

Another example of a typically hard to simulate effect is Subsurface Scattering, which is
observed when light enters the surface of a translucent object, is scattered when interacting
with the material, and finally exits the surface at a different point. Generally, light will be
reflected several times within the surface before backing out an angle different from the one
it would have take had it been reflected by the surface. This is visible in materials such as
marble, or skin, and can be seen in Figure 4.6.

Figure 4.6: Subsurface Scattering (from [28])

Both of these can be simulated well by Photon Mapping algorithms, although a high
amount of caustics will hinder performance considerably.

4.3 Progressive Photon Mapping

The main problem with the original proposal for photon mapping is that the quality of
the final result is limited by the size of the photon map, which in turn has its size limited
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by the amount of memory available.

Since effects such as caustics are simulated by directly using the information from the
photon map, it is necessary to use a very large number of photons in order to avoid noise
in the rendering. Thus, the overall accuracy is limited by the available memory. In other
words, the accuracy of photon mapping is not only computationally bounded, but also
memory bounded, while usual unbiased methods are only computationally bounded.

[29] proposes a progressive approach to photon mapping, which makes it possible to
simulate global illumination, including the effects provided by traditional photon mapping,
with arbitrary accuracy, and without being limited by memory. This is done by using a multi
step algorithm instead of a two step one, where the first pass consists of a ray tracing step
to capture a collection of hit points in the scene, and later multiple photon tracing steps
are processed iteratively, with each new iteration improving the accuracy of the result in
order to converge to an accurate solution, but without storing photon maps from previous
iterations.

Figure 4.7: High Level Fluxogram of Progressive Photon Mapping

4.3.1 First Step: Ray Tracing

The first step is a standard ray tracing step, used to find all surfaces visible in the scene.
Rays are traced through each pixel of the image plane, in order to find all visible surfaces
in the scene. For each ray, all hits with a non-specular component in the BRDF function
are stored. This includes storing the hit location (x), the ray direction(~ω) and the pixel it
originated from. Additionally, data for the progressive estimation is also included, such as a
radius, intercepted flux, and number of photons within the defined radius.

4.3.2 Next Steps: Photon Tracing

After the initial ray tracing step, an iterative process begins. Each iteration, a given
number of photons is traced into the scene, building a photon map. At the end, all hit
points stored from the initial step are processed, to find all the photons in the map that are
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(a) First step: Ray tracing (b) Next steps: Photon Tracing

Figure 4.8: Overview of Progressive Photon Mapping

within the radius of that hit point. These photons are used to refine the estimate of the
illumination of the hit point.

Once this contribution is computed, the photon map is no longer needed, and can be
discarded, before the next iteration repeats the process.

This provides two key advantages over the original, two-step approach. The total amount
of photons traced is not limited by memory, but only by the amount of iterations that are
computed. An arbitrary number of iterations can be used, without requiring any additional
memory at all, and resulting in a better quality result. Also, after each photon pass an image
can be rendered, and the progressive result can be shown while the image is progressively
improved, instead of having to wait for the entire algorithm to finish.

4.3.3 Radiance Estimation

Traditional photon mapping estimates radiance by using the density of photons, given by
Equation (4.2). This is based on locating the nearest N photons within a sphere of radius
R(x). The surface are is assumed to be flat, and the surface area is approximated to πR(x)2.
In progressive photon mapping, using this estimation may result in different iterations having
different estimations for the same hit point.

d(x) =
N

πR(x)2
(4.2)

To solve this, the estimations from each iteration can be averaged to obtain a more
accurate estimate. However, the final result will not be more detailed than the result of
each individual photon map, which is not desirable. Also, as the radius R(x) is constant
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throughout the iterations, small details within that radius cannot be correctly solved, making
the overall accuracy limited by the size of each individual photon map.

The solution to this, also proposed in [29] consists of combining the estimate from each
photon map in such a way that the final estimation will converge to a correct solution.
The key technique is to reduce the radius r at each hit point, for every new photon map
computed.

Radius Reduction

Assuming each hit point has a radius R(x), and that N(x) photons have already been
accumulated in it, after a new photon tracing step, resulting in M(x) new photons within
the radius R(x), the new photon density d̂(x) can be given by Equation (4.3)

d̂(x) =
N(x) +M(x)

πR(x)2
(4.3)

The radius reduction step is about computing a new, smaller radius R̂(x) for each hit
point, such that the amount of photons within the new radius N̂(x) is greater that the
amount of photons that was present in the previous radius. This ensures that the final result
is increasingly more accurate, and converges to a correct solution. The radius reduction is
illustrated in Figure 4.9.

The proposed approach in [29] simplifies this by using a parameter α to control the frac-
tion of photons to keep after an iteration. Therefore, N̂(x) can be given by Equation (4.4).

N̂(x) = N(x) + αM(x) (4.4)

Figure 4.9: Radius Reduction after a Photon Tracing step

The final radius R̂(x) can be computed by combining Equations (4.2) to (4.4), and
as shown by the original work on the subject, can be given, for each single hit point, by
Equation (4.5).
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R̂(x) = R(x) − dR(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
(4.5)

4.4 Stochastic Progressive Photon Mapping

Progressive photon mapping still does not address the problem of computing the average
radiance of an unknown region. While progressive photon mapping allows the computation
of the estimated radiance on a given point x stored as a hit point, it does not allow the esti-
mation of a different unknown point. This is a problem when trying to simulate distributed
ray tracing effects, such as motion blur or depth-of-field.

The solution proposed in [30] presents a new formulation for the progressive radiance
estimation, allowing the computation of the correct average radiance over a region.

In practice, the implementation of that formulation consists only in generate a new set
of hit points after each photon pass (see Figure 4.10). The local statistics for each new hit
point is taken directly from the previous hit point for that same pixel. Original progressive
photon mapping generates a set of hit points, and then iteratively uses new photon maps
to converge to a correct solution, based on those same hit point. This stochastic approach
does not reuse the hit points, but only their local statistics. The results in the proposed
work show that this solution provides better results for scenes with complex illumination,
and including distributed ray tracing effects, such as motion blur, depth-of-field and glossy
interactions.

Figure 4.10: Fluxogram of SPPM

4.5 A Probabilistic Approach for Radius Estimation

Another evolution of photon mapping and progressive photon mapping comes from a
probabilistic approach for the estimation of photon radius for each iteration, first presented
in [31]. The proposed solution, much like original progressive photon mapping, is capable of
of computing global illumination without bias, and with no theoretical limit in the amount
of photons, allowing an arbitrary number of iterations to be computed.
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The new formulation, called PPMPA, includes a probabilistic approach that does not
require local photon statistics to be stored. It is shown in the original work that each
different photon mapping step of the progressive photon mapping approach can be performed
with complete independence from other steps, by using a probabilistic model to compute an
estimation of the photon radius for each iteration, instead of gradually reducing it after each
photon tracing step (see Figure 4.11.

Figure 4.11: Fluxogram of PPMPA

In summary, the probabilistic analysis in the original work shows that for a photon map-
ping step i, the radius for for a hit point for that step, ri, can be estimated by Equation (4.6)

r2
i = r2

1(
i−1∏
k=1

k + α

k
)
1

i
(4.6)

The biggest benefit of this is that the radius computation kernel is not dependent on
previous iterations, allowing for multiple photon mapping steps to be concurrently computed,
as shown in Figure 4.12.

Figure 4.12: Fluxogram of PPMPA with concurrent iterations

The result is a memoryless algorithm that does not require the maintenance of intermedi-
ate statistics and allows the possibility of computing multiple iterations, or photon mapping
steps, in parallel.
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4.6 Summary

Several techniques were presented, from the basic Photon Mapping algorithm, following a
progressive approach that enables arbitrary accuracy without being memory limited. Further
improvements include a stochastic version that enables additional accuracy in the final result,
and a new formulation of the radius estimation that removes dependencies between iterations,
effectively allowing their concurrency.

The final result of this is the algorithm Stochastic Progressive Photon Mapping with
a Probabilistic Approach, here shortly called SPPMPA, which is the case study employed
during the rest of this work.
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Chapter 5

Implementation Approaches of the
Algorithm

The case study was built based on an already existing implementation, available at
the beginning of the project. This implementation provides the initial Progressive Photon
Mapping method, described in Section 4.3, the stochastic extension presented in Section 4.4,
and the probabilistic approach for radius reduction in Section 4.5. Support for both CPU and
CUDA rendering is also included, although CUDA support was actually not fully completed
until a later version. It was implemented on top of the LuxRender project, an open source,
physically based and unbiased rendering engine. The source code of LuxRender provides an
ideal basis of data structures to implement a rendering algorithm such as photon mapping,
and this was exploited by the author of this implementation.

The implementation used here was also based on those same data structures, and other
code from LuxRender. The algorithms themselves for the ray tracing and photon mapping
steps, radiance estimation, and radius reduction were based not only on the theoretical re-
search work already presented in Chapter 4, but also on the already available implementation

This was helpful to speed up development time, by working with already existing code
for the same algorithm, but also to serve as a validation tool, to assert whether the final
solution, and the individual algorithms within it, produced a correct result.

The final implementation developed for this work was an adaptation and an improved
version of the original one provided at the start of the project. Several approaches were made
available. The first two use CPUs with OpenMP and GPUs with CUDA, respectively, and
are used mostly for the sake of comparison of results and profiling. Later approaches consist
of using the StarPU framework to handle task management. A native MIC implementation
was also attempted, although it proved unsuccessfully due to limitations of the platform
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regarding existing code.

It should be noted that only two of the presented algorithms were taken in consideration
during this work, namely:

PPM (Progressive Photon Mapping)
Corresponds to the original proposition for progressive photon mapping, described in
Section 4.3.

SPPMPA (Stochastic Progressive Photon Mapping with Probabilistic Approach)

Extends the initial PPM solution to include both the stochastic version and the prob-
abilistic approach for radius reduction.

There was no attempt to implement any of the intermediate versions (SPPM or PPMPA).

There were also attempts to port the original implementation to run on the MIC platform,
whose details are also described in this chapter.

5.1 Data Structures

Most of the structures used throughout all the implementations were based on the ones
used in the original implementation, which in turn was heavily supported on the source code
of LuxRender, namely:

Basic Geometry
The basic geometric structures, such as vector, normals, 3D points and triangles;

Meshes
A collection of vertices, edges and faces that define the shape of a 3D object in a scene;

Scene
The full description of the 3D scene to render, including all meshes, materials and light
descriptions associated with it; This scene is read initially by the LuxRender library,
which handles the parsing of all data files associated with the scene (mesh descriptions,
materials, light sources, textures, etc.);

Bounding Volume Hierarchy
A tree structure used to index spatial objects, in this case the objects within the scene,
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in order to reduce the number of required ray intersection operations; The actual
implementation used, a Quad Bounding Volume Hierarchy (QBVH), is an extension
of a regular BVH, optimized for a low memory footprint, and SIMD computations [32,
33]; This structure is created at startup by LuxRender, and is used to spatially index
all elements in the scene, allowing for faster computations of ray intersections.

In addition to these structures that LuxRender already provided, additional data struc-
tures were also required for the implementations described later in this chapter:

Pointer-free Scene
The original scene structures available with LuxRender relied heavily on pointer based
structures, which was not adequate for GPU computations. So a custom solution was
required in order to store scene information in a compact manner, easily transferable
and usable by a GPU

Hit Points
A data structure was required to store information about hit points position, direction
vector, the pixel that it originated from, and about accumulated photon radiance; In
practice this was actually split into two different data structures, the first one storing
only static information about the hit point, such as position and origin point, and the
last one to store incident radiance; This separation allowed a more efficient memory
usage, since the two different components are read and written to at different points
during the algorithm;

Lookup Table
An acceleration structure used to index the hit points in order to quickly find all
relevant hit points to update after a photon trace; This corresponds to all hit points
within a given radius of the hit point of each photon, or in other words, all the hit
points that photon will contribute to; The structure is implemented with an hash table
that spatially indexes the hit points by dividing the 3D space into a grid, where each
cell references all hit points that intersect it, based on the current radius;

Ray Buffer
In the original implementation, the total number of photons traced every photon pass
was not directly processed at once; Instead, a ray buffer was used to process a specific,
pre-configured number of photons at a time, independently from the total number of
photons to process during that step; This was mostly to increase coherence on the
CPU by processing a smaller batch of consecutive rays at a time;
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5.2 Computational Tasks

Throughout all implementations, computations were divided across several tasks with
more or less the same duties. This was a concern from the beginning to ensure that all
versions remained similar to each other, facilitating the comparison between them.

The approach used during development was mostly inspired by the original implementa-
tion. This section presents a list of all the computational tasks that were already present in
the original implementation, and that were reimplemented and reworked during the devel-
opment of the case study:

1. Initialize Seeds
This was not part of the algorithm itself, but was necessary to initialize a seed buffer
used for the random number generation process required by the following tasks. The
random generation is done using a Tausworthe Generator [34]. Throughout the algo-
rithm, it was required to keep a buffer were each seed was stored. When a random
number generation with a given index was required, the respective seed was rewritten
to provide the next number in the random sequence. For this process, an initialization
of this buffer was necessary, using each index in the buffer as the initial seed.

2. Generate Eye Paths
In this step, eye paths were initialized, based on camera position.

3. Advance Eye Paths
Following the initialization of the eye paths, this task would compute their interactions
with the scene, while building the set of hit points required by photon mapping. This
is analogous to the Ray Tracing step in the photon mapping algorithms presented in
Chapter 4.

4. Update Radius
This is a small but necessary task that computes the hit point radius for the subsequent
photon mapping step. When using the probabilistic approach, this is equivalent to the
computation of Equation (4.6), presented in Section 4.5.

5. Rebuild Lookup Table
As explained in Section 5.1, a lookup table is used to index all hit points. This task
would build that structure after all hit points were generated by the Advance Eye
Paths task.

6. Generate Photon Paths
Similarly to Generate Eye Paths, this was used to generate a set of photon paths,
leaving the light sources into the scene.
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7. Advance Photon Paths
During this step, the initialized photon paths were traced within the scene, updating
the local accumulated flux of each hit point they interact with along the way.

8. Accumulate Flux
To finish the photon mapping stage, this additional step was separated from the pre-
vious one, to compute the final radiance of each hit point.

9. Update Frame Buffer
This maps all hit points, and their final radiance values to the corresponding pixels
on the screen, creating a temporary buffer of the image generating during the current
photon mapping step.

10. Update Film
The temporary frame buffer was merged into a film structure, that represents the
final image computed so far by all photon mapping steps. This directly represents the
rendered 2D image, and was used to directly display the image if a live preview window
was enabled, and to optionally save the current state of the render in an image file.

These tasks map almost directly into the theoretical SPPMPA algorithm. Tasks 2 and
3 represent a ray tracing step, where the hit points are computed. This is the first step in
the multi pass progressive photon mapping algorithm presented in Section 4.3, and also the
first step of each iteration in the stochastic approach Section 4.4. Tasks 4, 6, 7 and 8 are
the equivalent of a photon tracing step, which corresponds to a full iteration in the original
progressive approach. Figure 5.1 gives an overview of the entire algorithm (except input and
output tasks), along with the dependencies between tasks that prevent them from running
concurrently.

The remaining tasks are not specified by the photon mapping techniques, but are required
for computational purposes. Task 5 represents an important step to make sure that access
to each hit point is done efficiently when tracing the photons. By using a lookup table to
index hit points, the average complexity in accessing a single hit point is lowered to O(1).

5.3 Implementation

This section presents an overview of the differences and challenges between the multiple
versions used.

While StarPU is the actual object of study in this project, initial development was focused
on building a CPU-only, implementation, similarly to the original version. Following that,
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Figure 5.1: Diagram of the SPPMPA computational tasks and execution order. Tasks 2,
3, 6, 7, 8 can be parallelized. All other are sequential. The SPPMPA algorithm actually
allows independent iterations, which is not represented in this diagram.
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an similar approach was followed to build a CUDA version, while still avoiding to use StarPU
or any HetPlat management system.

The goal of this approach was to have a functional reference for comparison that shared
as much of the functionality as possible with a future implementation that takes advantage
of HetPlats by using StarPU as the task manager.

All computational code was kept encapsulated to be reusable by future implementa-
tions.This helps to speed up the development time of future versions, and contributes to
fairer comparisons between versions.

5.3.1 Original

The original implementation provides a few different versions of the algorithm, based on
the multiple extensions on photon mapping described in Chapter 4. However, only PPM
and SPPMPA are considered.

In this approach, tasks are encapsulated within a CPUWorker class and a CUDAWorker
class, which implements the ray tracing and photon mapping steps using OpenMP and
CUDA, respectively. While the initial PPM version, due to implicit dependency limitations
(without the probabilistic approach for radius estimation, each photon mapping iteration is
dependent on the previous one), can only run a single worker at a time, the later version
(SPPMPA) allows the instantiation of multiple workers. In that case, each worker will share
access to a centralized structure that keeps track of how many iterations have been finished
in total.

In practice, the SPPMPA version provided support for running one CPUWorker and
two CUDAWorkers1. Since the CPUWorker uses OpenMP internally to take advantage of
multi-threading, this approach effectively takes advantage of the full power of a multi-core
machine with at most two CUDA devices.

When this implementation was first available, however, the CUDA implementation was
not yet fully finished, with only the implementation of the photon tracing steps being run on
a GPU. This means that the performance when using CUDA is limited by the necessary data
transfers required during each iteration. Particularly, when using SPPMPA version, where
new hit points are generated after each step, following the stochastic progressive photon
mapping extension, an even greater amount of communication is required, since the GPU
has to wait for the new hit points before starting the computation of a new photon pass.

1This was not a limitation of the implementation. Actually, extending it to support more than two CUDA devices would
be completely straightforward. However, there was no interesting in doing so, as all test machines used throughout the project
had available at most two CUDA devices.
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This versions was used only for validation of later implementations, and an in-depth study
of its performance was not considered interesting, as similar versions were to be produced,
but with the advantage of being further structured and optimized, and not relying on a
third-party code base.

5.3.2 CPU

The first implementation to be developed was one consisting only on the implementation
of each task, using OpenMP for parallelism within each individual task. Of all tasks shown
in Section 5.2, it should be noted that the following tasks cannot be parallelized, and so are
only implemented in sequential code:

• Update Radius (kernel 4)

• Rebuild Lookup Table (kernel 5)

• Update Frame Buffer (kernel 9)

• Update Film (kernel 10)

All other tasks (which in practice represent all the actual code for both the ray tracing and
photon tracing steps) were fully parallelized, as each ray can be independently intersected.
The only exception to this is with the Advance Photon Paths task. Since a hit point
might be simultaneously hit by multiple photons, a small critical section was required for
every hit point update. That critical section, however, represents a very small portion of the
entire task.

In this implementation, some of the original code from LuxRender was also employed.
Particularly, the intersection code for a ray, which traverses the accelerating structure index-
ing the scene, a Quad Bounding Volume Hierarchy (QBVH), searching for the next ray hit.
This intersection code is implemented using SSE intrinsic functions, meaning that SSE code
was hard coded, instead of being compiler generated. This makes sure that the accelerating
structure takes advantage of the optimizations for the original BVH structures presented in
[32].

Initially only the PPM version of the algorithm was developed later, whose code was
lather adapted to implement SPPMPA since evolving from basic PPM to one of its extensions
is relatively straightforward. The tasks themselves remain almost identical, and most of the
changes are related to when and how those tasks are actually called. The PPM version was
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used just for the initial stages of development and a first step towards the final SPPMPA
version.

Even though the later algorithm theoretically allows multiple iterations to be run in
parallel, this is not supported in the CPU-only implementation. This mimics the behaviour
of the original implementation from Section 5.3.1, which was the intended result. The main
goal was to have an application as much similar as possible to the original CPU version,
while still sharing task implementations with the future StarPU version.

5.3.3 GPU

Following the CPU implementation, it was also desirable to produce a CUDA based
implementation. Like the previous one, this served the purpose of producing an implemen-
tation similar to the original, but having task code shared with the future StarPU version,
and minimize any details that would be different about the implementation.

The goal of this version is to port as much as possible of the CPU task code to CUDA.
so most of the tasks described in Section 5.2 were implemented in CUDA. However, as
explained before (in Sections 5.2 and 5.3.2), some of the tasks are not parallelizable, and
consequently, not adequate to massively parallel devices. This means that these tasks were
kept running on the CPU. It can be argued that the cost of offloading these tasks back to
the CPU can be slower than executing them sequentially on the GPU, since the required
data transfers can be the dominating factor. However, this was also the decision made in the
original approach of the algorithm, which this dissertation attempts to approximate as much
as possible. Due to that, implementing these tasks sequentially on GPU was considered,
but left for possible future work as it was not a priority. The obvious consequence of this is
that a full iteration of the algorithm is not capable of running entirely on a GPU, requiring
memory transfers in between to solve data dependencies.

The most problematic drawback of this decision is about the Rebuild Lookup Table
task. Running this task on CPU will likely have a very noticeable impact on performance,
since it requires to transfer the generated hit points from the GPU to the CPU, and later
copy the generated hash table back to the GPU.

5.3.4 MIC

The initial message transmitted by Intel regarding the new MIC Architecture explains
that the device is intended to provide performance to applications much like any other
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accelerator, without the need to learn a new programming model. It is also explained that
existing code bases should have little problem compiling and running natively on it, providing
additional performance for already existing CPU code. If proved right, this would be a huge
step forward in coprocessor technologies, as the usage of different programming models (such
as CUDA) is currently one of the blocking factors of their usage, due to learning difficulties,
and incompatibilities with existing code.

Thus, some efforts were put into attempting to port the original implementation to
compile and run natively on a MIC device. Other execution modes (offload or message
passing) would require a rewrite of the program, and as such, would not provide the ease of
usage claimed by Intel.

However, this was later abandoned as the code for the original implementation (as well as
the later CPU implementation produced for this work) proved to actually be incompatible
with the device. This is mostly due to the implementation of the QBVH accelerating struc-
ture (discussed in Section 5.1). This structure is coded using compiler SSE intrinsics2 for the
intersection functions of rays with the scene. These intrinsics render the intersection code
completely incompatible, requiring a complete rewrite to remove coupling with SSE func-
tions, and use other vectorization methods. Such would require a larger refactoring effort to
port the implementation, which was not towards the original goals of this dissertation. As
a result, this implementation was abandoned. Other factors, such as difficulties regarding
compatibility with external libraries, which usually also have to be compiled natively for the
MIC were also encountered, which would have increased the difficulty if a port was to be
done.

5.3.5 StarPU

For the final implementation, using the StarPU framework, most of the remaining work
consisted on reusing the existing code for each computational tasks, and submit them as
tasks to be scheduled by StarPU. The development process of the previous implementations
(CPU and CUDA) resulted in a very modular solution, with very little coupling3 between
tasks implementation and the algorithm and scheduling code being used.

2intrinsics: functions available in a programming language that are actually implemented by the compiler. More specifically,
SSE intrinsics expose the SSE instruction set directly in the language

3The degree of dependency between the multiple modules of a system. Tight coupling tends to difficult refactoring of one
module without requiring subsequent changes to dependant modules, difficulting code
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Early Decisions

An early decision for this implementation was to consider only the low-level API, and
not the pragma-based one (see Section 3.2.6). The reason for this is due to the high-level
version being an early product, still being in earlier development stages, and not being fully
capable of providing the full set of features of StarPU.

Additionally, the actual documentation for the framework is almost entirely focused on
the low-level functions, making it easier getting up to speed and understand its usage.

An additional decision that was enforced by the existing implementations is related to
the used task scheduling policy. Since the CPU implementation of all parallelizable tasks
was based on OpenMP, it was intuitive to approach the problem by using the capabilities
of parallel tasks and combined workers of StarPU (see Section 3.2.5). The only drawback
that comes from this is that only the parallel-aware task schedulers (pheft and peager)
are capable of parallelizing CPU tasks. This means that when using a non-parallel-aware
scheduler, CPU tasks such as Advance Photon Paths will increase in cost.

Data Management

The first step for this implementation was to refactor data management, letting StarPU
handle all necessary data for the algorithm. One exception was made to this, regarding the
input information for the 3D scene. This information is stored in a somewhat complex struc-
ture, as opposed to all other dynamic data used throughout the photon mapping algorithm,
which consists only on vectors whose size can be static and predetermined.

A small change was necessary in the lookup table build process. This task previously
generated a dynamically sized structure, since it is dependent on the number of photons that
intersect the scene within the current radius of each hit point, which cannot be predeter-
mined.

One solution for this would be to only register the lookup table in a StarPU data handle
only after its generation is complete, and the size can be determined. This is not a desirable
solution, as it would introduce a barrier on that point of the iteration, and forcing all future
tasks to be submitted only once the lookup table build process is complete. This would pre-
vent StarPU from having knowledge on future tasks, and preventing it from asynchronously
prepare data buffers to solve dependencies, increasing the latency caused by the imposed
barrier.

This seems to be a rather harsh limitation of StarPU, as irregular sized structures are
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commonly used. However, an alternative solution is possible for this specific problem. The
cell size used for the hash grid is based on the photon radius for the current iteration, in
such a way that a cell will never have a width, height or depth greater than the current
radius. With that any given hit point will always intersect at most 8 cells. Thus, it can
be determined that the maximum hash table size can be set as 8 ∗ #hit_points, for any
iteration.

Following this constraint, the hash table structure was refactored to be a fixed-size one,
allowing StarPU to handle it without the need for barrier, and allowing future tasks to be
submitted at will, using the lookup table data handle as a regular data buffer and dependency.

Task Submission

The other main change required is to wrap tasks around StarPU API calls. All data
for each iteration is assigned to an individual data handle. No allocations are ever done
manually during the main loop, making all memory managed by StarPU. While in the CPU
and CUDA version, only a single iteration is considered at a time, so task invocation is made
synchronously, here all tasks are submitted asynchronously, and dependencies are implicitly
given by the data handles required by each task. These dependencies are represented in
Figure 5.2.

Figure 5.2: Dependency graph of an iteration of SPPMPA. Red arrows represent depen-
dencies related to the seed buffer, which are not imposed on the algorithm itself, but only a
limitation of the implementation

It can be seen from the graph that some task concurrency is possible, although limited.
It is expected that the most time consuming tasks are Advance Eye Paths and Advance
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Photon Paths, as they compute scene intersections. Rebuild Lookup Table can also
be considered, especially when other tasks of the same iteration are run on a GPU. This
will require synchronization memory transactions to solve the dependencies of this task.
Prefetching cannot be employed here by StarPU, as these dependencies are not available
until the immediately previous tasks are computed. This could provide a large bottleneck
for the performance of each individual iteration.

One of the limiting factors of these dependencies is related to the number generation
method employed, which relies on a read-write seed buffer, with each new value requested
updating the corresponding seed. As can be seen in the graph, only one relevant dependency
is actually created by this, between Advance Eye Paths and Generate Photon Paths.
These tasks should be considered independent, but share a dependency on the seed buffer,
and thus cannot execute concurrently as it would be expected. Other dependencies are
created from this limitation (shown in red in the graph), but they do not represent a problem,
since their elimination would not introduce any new concurrency possibilities.

A solution for this would be to change the random number generation method, to one that
would not require intermediate seed memory to be passed between each task. However, that
was not attempted, as it would require additional effort in changing the algorithm, as well
as the previous implementations (if coherence between them was to be kept), and choosing
an adequate and efficient new method. The final solution actually came as a consequence of
enabling concurrency between iterations, explained in the next section.

Enabling Concurrent Iterations

Since the high amount of dependencies between tasks does not allow a good degree
of concurrency within a single iteration, efforts were focused in allowing the execution of
multiple iterations concurrently. This is one of the main reasons SPPMPA was the only one
focused on, as other versions without the probabilistic radius estimation would introduce
dependencies between each iteration, preventing their parallelization.

The initial approach to port the implementation to StarPU relied on data handles being
declared at the start of the rendering process, and released at the end.

As shown in Listing 1, data handles are created and kept during the whole rendering
process. In practice, this means that each iteration will depend on the same data buffers
as the previous one, even though they are to be completely re-written, and their previous
values ignored. This is not desirable, as it prevents concurrency between iterations, just like
it happens due to the seed buffer dependency previously explained.
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1 void render() {
2 starpu_data_register(seeds, ...)
3 starpu_data_register(eye_paths, ...)
4 starpu_data_register(hit_points, ...)
5

6 starpu_insert_task(codelets::init_seeds, seeds);
7

8 int iteration = 0;
9 while(iteration < config.max_iters) {

10 starpu_insert_task(codelets::generate_eye_paths, eye_paths, seeds);
11 starpu_insert_task(codelets::advance_eye_paths, eye_paths, seeds, hit_points);
12

13 ... // all other tasks for this iteration
14

15 iteration++;
16 }
17

18 starpu_data_unregister(seeds);
19 starpu_data_unregister(eye_paths);
20 starpu_data_unregister(hit_points);
21 }

Listing 1: The beginning of the main rendering loop, with global data handles

An alternative solution is to declare the handles in-loop, as shown in Listing 2.

With this method, each iteration declares its own copy of the required data. StarPU
provides the starpu_data_unregister_submit API call, which instructs the library that
the given data buffer can be discarded as soon as existing tasks depending on it are finished.
Since data is local to each iteration, this can actually be considered a more intuitive way to
approach the problem.

However, an additional problem arose from this approach. Due to the asynchronous
nature of the tasks, the program actually submits every single iteration to the scheduler,
meaning that multiple copies of the eye_paths and hit_points buffers will be immediately
requested. For a large enough number of iterations, this resulted in memory problems, and
eventually program failures. Since StarPU does not provide any method to control this, the
limitation had to be imposed manually, by inserting a barrier every few iterations (with the
actual number being a configurable value).
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1 void render() {
2 starpu_data_register(seeds, ...)
3

4 starpu_insert_task(codelets::init_seeds, seeds);
5

6 int iteration = 0;
7 while(iteration < config.max_iters) {
8 starpu_data_register(eye_paths, ...)
9 starpu_insert_task(codelets::generate_eye_paths, eye_paths, seeds);

10 starpu_data_register(hit_points, ...)
11 starpu_insert_task(codelets::advance_eye_paths, eye_paths, seeds, hit_points);
12 starpu_data_unregister_submit(eye_paths);
13

14 ... // all other tasks for this iteration
15

16 starpu_data_unregister_submit(hit_points);
17

18 iteration++;
19 }
20

21 starpu_data_unregister(seeds);
22 }

Listing 2: The beginning of the main rendering loop, now with in-loop data handles
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Chapter 6

Profiling Results

Initial analysis was focused on studying the scalability of both CPU and CUDA versions
without the help of any framework. This provided a reference to evaluate the overhead of
using the framework. When using the StarPU framework, different schedulers were tested,
particularly peager and pheft due to their awareness of combined workers, which allows
OpenMP parallelization within CPU tasks. dm and dmda were also tested, to analyse the
impact of memory transfers in the performance model of a scheduler.

6.1 Testing Environment

All tests were performed within the SeARCH1 cluster, particularly using the most recent
generation of hardware, in the node 711 (fully described in Table 6.1).

All tests were compiled with GCC 4.6.2 (latest major version with full CUDA support),
the boost library 1.49.0, and version 5.0 of the official CUDA compiler. The latest available
version of StarPU was used, 1.1.0rc2, as well as the hwloc 1.7 library for hardware topology,
which StarPU internally uses.

6.2 Testing Methodology

Measurements were done only in the algorithmic section of the program, disregarding
any input and output operations as well as initial setup of StarPU and other libraries. All
implemented approaches (CPU, GPU and the multiple StarPU options) were analysed, with

1http://search.di.uminho.pt
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CPU device: Intel Xeon E5-2670
# CPUs: 2
# Cores p/CPU: 8
# Threads p/Core: 2
Clock frequency: 2.66 GHz
L1 cache: 32 KB + 32 KB
L2 cache: 256 KB
L3 cache(shared): 20 MB
RAM: 64 GB
CUDA Device 0: Kepler K20m
# SMX: 13
# CUDA-cores p/ SMX 192 (2496 total)
Clock frequency: 706 MHz
L1 cache (p/SMX): 64 KB
L2 cache shared: 1.25 MB
Global memory: 5GB
CUDA Device 1: Tesla M2090
# SM: 16
# CUDA-cores p/ SMX 32 (512 total)
Clock frequency: 1301 MHz
L1 cache (p/SM): 64 KB
L2 cache (shared): 0.75 MB
Global memory: 5GB

Table 6.1: Hardware description of the SeARCH computational node 711

the first two serving mostly for comparison with the framework.

In the main rendering loop, the time for each full iteration of the SPPMPA algorithm
was measured (see Figure 5.1, which explains how iterations are organized). This was done
by obtaining the time-stamp at the beginning of each iteration, and at the end of the last
task of the same iteration, which also works well when using concurrent iterations. The
full iteration time includes the required data transfer times, but more granular values were
obtained, by measuring the time for each invoked task of each iteration, which does not
account for data transfers. Presented results show only the average time of each iteration
for the execution (with at least 100 iterations each). Full calibration was done prior to any
StarPU test (except the calibration test shown in Section 6.4.3). Since support for concurrent
iterations was not fully implemented until later in the development stages, most results focus
only on the approach of using only a single iteration at a time.

Since the entire main loop consists solely on task invocations, it was assumed that the
difference between total iteration time and the sum of each task within the iteration cor-
responds to idle periods when the framework is waiting for resources or dependencies, or
performing data transfers.
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For each measurement, only the time spent in the main rendering function was considered,
discarding any input and output time spent by the program. A minimum of 10 executions
were made for each measurement, for which the 3 best executions within at most 5% of
each other were considered. When comparing results, the average time for each iteration of
the main loop of SPPMPA was the base value to use (with each test running at least 20
iterations).

Whenever CUDA was employed, the CUDA Occupancy Calculator2, as well as manual
tuning, were used to find the correct block size used for each computational kernel.

6.2.1 Input Scene

For simplicity, input reading was left to the LuxRender library, relying on the existing
structures and parser to read all the data to render a scene. This limits all testing to the
available scenes shipped with LuxRender as samples. From these scenes, only three were
selected, namely, kitchen, cornell and luxball, shown in Figure 6.1.

(a) cornell (b) kitchen (c) luxball

Figure 6.1: Input scenes

6.3 Performance Results Without a Framework

6.3.1 CPU

For the CPU implementation, earlier analysis of the original implementation showed
relatively poor scalability. The measured results are not presented here due to different
algorithms being employed (since only the PPM version was available at the time for that
implementation), and no assumptions could be made about code quality, as explained in

2A spreadsheet by NVidia that helps estimating the ideal block size for a given kernel
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Section 5.3.1. Instead, a scalability analysis was made on the actually implemented CPU
version, shown in Figure 6.2.

(a) Avg iteration time (b) Speedup vs sequential version

Figure 6.2: CPU implementation measurements

It can be seen that the code scales fairly up to 6 threads, which is close to the point
at which a single CPU socket is filled, at which point performance starts to degrade. For
luxball and cornell scenes, performance with 16 threads (same amount as physical CPU
cores in the test machine) actually barely differs from the sequential approach.

Scalability is only fair when a single socket is used. The algorithm is clearly memory
bounded, especially considering the fact that the test machine uses a NUMA architecture.
This pins all memory allocated by the master thread (such as the input scene, which is
heavily used throughout the algorithm) to one of the sockets, leaving the other with slower
access times to such memory.

Memory affinity tools such as hwloc could prove useful here, for example, by creating
multiple copies of the input scene, and pinning each one to each NUMA node. Each socket
would then benefit from faster accesses to its own memory bank.

6.3.2 GPU

When analysing the GPU implementation, tests were made on both available GPUs, and
compared against the base sequential CPU implementation. The best execution time on
CPU was also included for comparison.

It should be taken into account that, as explained in Section 5.3.3, this is an almost GPU-
only implementation, and still requires a certain amount of in-loop memory transfers, and
some CPU computation to generate the lookup table. Since this was not implemented on
GPU, it should add an overhead to the execution. Still, Figure 6.3 shows the implementation
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is able to outperform the CPU in two of the three cases, achieving a speedup of around 3
when compared to the sequential approach.

(a) Avg iteration time (b) Speedup vs sequential version

Figure 6.3: GPU implementation measurements

6.4 Performance Results With StarPU

In order to accurately profile the performance obtained by using the framework, measure-
ments included not only the relevant tests to compare overall execution times with previous
approaches, but also tests to analyse the impact of using the framework, and its behaviour
in different conditions.

6.4.1 Scheduler Impact

Figure 6.4 shows the overhead of using the framework to schedule tasks instead of directly
invoking them. Execution times were measured with different schedulers, with only CPU
tasks, and compared against the best CPU times obtained without the framework. No
major speedups are expected here, since the framework should itself create a significantly
high overhead, but it should be interesting to see if delegating the task of choosing OpenMP
thread pool size to StarPU, rather than manually tuning it, directly impacts performance.

This was mostly a concern due to the scalability problems observed in Section 6.3. If
StarPU, using one of the less smart schedulers, would opt to eagerly use all available CPUs,
performance would degrade as seen in Figure 6.2. This was indeed the observed result with
the peager scheduler. dm and dmda also degrade performance down to around 4x (which
roughly corresponds to worst-case scenarios observed on CPU implementation), but that is
to be expected since these schedulers do not support parallel tasks. Since no accelerators
are being used here, this results in all tasks being ran sequentially.
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Figure 6.4: StarPU implementation, CPU-only

Figure 6.5: StarPU implementation, CPU sequential vs sequential schedulers
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Additionally, Figure 6.5 shows a comparison of the three sequential versions, namely the
framework-less CPU version with 1 thread, and the StarPU version with the dm and dmda
schedulers using only CPU devices. dm performs slightly worse than dmda in all cases.
Since this is a CPU-only test, it is executed using only the main system memory, so no
memory transfers are actually required. The small performance gain from dmda can thus
be attributed to the ability of asynchronously allocating requested memory needed in future
tasks.

6.4.2 Performance with Accelerators

To test how GPU devices influenced the algorithm, measurements were made for both
individual GPU, and with both available GPUs for StarPU to use. When using accelerators,
all schedulers are able to speedup the implementation when compared to the best CPU
times (which were achieved with around 6 threads). However, as seen in Figure 6.6, the gain
difference between each scheduler is noticeable: dmda, which performs poorly on CPU due
to sequentializing tasks sees the largest improvement. This is expected since it is essentially
a comparison between sequential CPU tasks with massively parallel GPU tasks. The fact
to note here is that dm has much worse evolution under the same conditions. It should be
noted here that only a single iteration is being processed at a time. This limits the amount
of parallelism available, which results in small performance gains when going from one to
two GPUs. The only gain that can be extracted from that is by concurrently executing
multiple tasks of the same iteration, one on each device. As seen in Figure 5.2, the number
of dependencies is a limiting factor for this.

This enforces the fact that memory transfers are extremely important to take into account
by the scheduler, as this is the only difference between the two.

As for peager and pheft, their gains are not as large, since the CPU code was already
parallelized, but it is relevant to note that the smarter pheft seems to be outperformed
once the whole set of devices is used. This is a consequence of the low iteration level-
parallelism available. Since each task is fully scheduled to a given device, and multiple task
dependencies exist within an iteration, it is difficult to efficiently take advantage of multiple
devices simultaneously, in which case eagerly selecting the best device can be considered a
faster and more efficient choice.

Unfortunately, when using pheft with the Fermi device, memory errors would constantly
be raised, so it was not possible to finish those tests successfully. This is most likely due
to problems with this particular scheduler, which is still under development by the StarPU
team, and thus cannot be assumed to be fully functional.
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(a) peager (b) pheft

(c) dm (d) dmda

Figure 6.6: Avg. iteration time of the different schedulers with GPU devices

6.4.3 Calibration

StarPU builds a performance model for each task by calibrating them on the first exe-
cutions. Once 10 executions are profiled, calibration is finished for that task and the perfor-
mance model can start to be used. Figure 6.7 shows how calibration affects each scheduler.
Each case consists of running 100 iterations of the algorithm with no performance model
to start with (deleted prior to the execution). This performance model is then build in
the initial stages of the algorithm, until a good amount of sampling is obtained (at least
10 executions for each different task on each different device). Results show very different
behaviours between schedulers.

peager, being a more naive algorithm, does not actually perform calibration, and does
not seem to evolve very efficiently. A drop in execution time can be seen across time, but
since all devices are eagerly used whenever possible, this results in more workload being
assigned to the CPUs, which have worse performance when compared to gpus, as explained
in previous sections. It should also be noted that peager was found to always employ 14
OpenMP threads for each task, assigning it all available cores. This is not the best choice, as
it was noted in Section 6.3 that tasks do not scale beyond 6 threads. The apparent drop in
CPU time that can be observed in Figure 6.7a is not due to better thread pool size selection,

66



6.4. PERFORMANCE RESULTS WITH STARPU

but rather the result of more tasks being offloaded to GPUs.

(a) peager (b) pheft

(c) dm (d) dmda

Figure 6.7: Calibration process starting with an empty performance model

For the remaining schedulers, calibration can be clearly noticed in the first 30 iterations
of each one. Each calibration starts by running 10 iterations almost entirely on the Kepler
device (an entire iteration would not be possible, since some tasks are CPU-only), following
the Fermi device, and finally the CPU devices.

After the initial calibration, pheft continues to calibrate the CPU implementation, by
successfully choosing different thread pool sizes, until the best one is found. After this
process, the initial calibration is finished, and the scheduler progresses normally.

Dm and dmda do not support combined workers, so CPU calibration is restricted to
using only 1 CPU thread at a time. Since dmda is a data-aware version of the original dm,
it deals more efficiently with data transfers. This being the only difference, dmda seems
to perform much better, offloading most computations to the Kepler device, while dm still
runs some iterations on the CPU. This is a result of dm not being able to asynchronously
perform required data transfers, thus GPU task execution costs (including the required
communication) are much higher, ending up with a significant part of it being kept on the
CPU.
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6.4.4 Overall Performance Comparison

The best case scenario for each approach is shown in Figure 6.8. This serves to show the
impact of StarPU with each different scheduler against framework-less solutions.

(a) Avg. iteration time (b) Speedup

Figure 6.8: Best cases for each different implementation and scheduler

Sequential CPU GPU peager pheft dm dmda
cornell 3.03 1.65 1.11 1.51 1.33 2.42 1.12
kitchen 3.46 1.02 1.15 1.46 0.96 2.75 1.12
luxball 5.91 2.35 1.76 2.15 2.06 4.55 1.71

Table 6.2: Avg Iteration time for all versions

CPU GPU peager pheft dm dmda
cornell 1.83 2.73 2.01 2.27 1.25 2.71
kitchen 3.39 2.30 2.36 3.60 1.26 3.09
luxball 2.52 3.36 2.75 2.87 1.30 3.45

Table 6.3: Avg speedup for all versions

6.4.5 Concurrent Iterations

With the employed approach, task-level parallelism is limited. The dmda does not
support combined workers, greatly lowering efficiency of CPU tasks. pheft does support
this, but its not a data aware scheduler, meaning that data transfers are not considered when
assigning tasks. As a result, performance with StarPU is limited when using processing a
single iteration. The attempted solution was to allow the execution of a variable number of
concurrent iterations, in order to take advantage of multiple devices without the limitation
of dependencies. Results shown in

Results show in Figure 6.9 indicate this was not a successful approach, as the best speedup
achieved was slightly above 2, when using between 16 to 32 concurrent iterations. Further
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Figure 6.9: Speedup with concurrent iterations

analysis of the results indicated that when using this approach, large contention points
appeared at the end of each iteration, which consists of 2 computational tasks that have
to be ran sequentially on CPU (see Figure 5.1). These tasks essentially perform memory
operations, to aggregate the result of the individual iteration into the final aggregated image.
This works as a barrier, since two iterations cannot be merged concurrently to the final image,
slowing all iterations in that stage.

One possible alternative that could be attempted to seek better results was an approach
based on data partitioning rather than concurrent iterations. Since multiple iterations seem
to create excessive memory contention, partitioning data using the StarPU API, and manu-
ally defining task granularity might be an alternative way to extract more parallelism from
a single iteration, since each sub task can be assigned to different devices.
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Chapter 7

Conclusions

This dissertation presents an analysis of two emerging frameworks that aim to ease the
process of implementing or porting parallel applications to heterogeneous platforms. GAMA
was tested with a small case study, using a finite volume method based on an already existing
application to compute the spread of a material in a surface. A more in-depth analysis was
made of the StarPU framework, using a more robust algorithm as a case-study. The selected
algorithm was the progressive photon mapping, a ray tracing technique, along with two
extensions proposed for it: a stochastic approach that better estimates radiance accross
unknown regions, and a probabilistic approach for radius estimation that makes it possible
to run independent and concurrent photon mapping iterations. Framework-less versions were
implemented (particularly in CPU and GPU devices) for comparison purposes, and StarPU
approaches were tested against various of the available schedulers.

GAMA is a relatively new product, still under development at University of Minho and
University of Texas at Austin, that presents some promising features not present in com-
petitor frameworks. StarPU, being a more developed product, provides a more solid API,
backed by a relatively large user-base, but still with some problems to be solved.

Design issues in the StarPU API allow simple developer errors to cause unexpected and
hard-to-debug behaviour. This is a problem not directly related to the performance of the
framework, but to its usage. With a user base composed not only of experienced developers,
but also of scientists with less low-level knowledge about parallel programming practices or
heterogeneous platforms, error-prone products may be a blocking factor. Additionally, using
StarPU still requires some amount of knowledge regarding parallel computing. Questions
such as “Is it worth the effort to implement a given task using an accelerator?” or “What
scheduling policy best suits a given algorithm?” must be answered during implementation.
From that comes that developers or scientists without a great understanding of such issues
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won’t be able to take the best of the framework. The high-level StarPU API can be useful
to solve these difficulties, but it does not seem to provide a large enough subset of the full
range of StarPU features (although no actual hands-on test was done to assert this).

GAMA’s API is still not as solid, but it seems to present a more consistent solution, in
terms of API and programming model. This can be partially related to the use of C + +

instead of plain C.

For a practical analysis, GAMA was tested with a small test case, to gain some knowledge
about the framework and understand its usage. For the implementation of a more robust case
study, the StarPU framework was the choice. The presented progressive photon mapping
algorithm was implemented, using two extensions to it, namely the stochastic progressive
photon mapping, and the probabilistic approach for radius estimation. This provided an
algorithm with several possibilities to explore parallelism.

Several versions were produced, starting with two simple, framework-less targeting CPUs
and GPUs, respectively. An already available implementation was used as the basis for
validating the correctness of the algorithm in those cases. Later, the same code of the two
previous versions was re-used in a new implementation using the StarPU framework.

Profiling results of these versions showed confirmed the assertion made by the StarPU
team about data transfers being a key factor for the scheduler to make a decision. The
dmda showed the best results in most cases, except when using no accelerators, due to the
restriction of not supporting parallel workers.

Results also indicate that performance with StarPU is greatly dependent on the selected
scheduling policy, of which there are several available. While GAMA currently only provides
a single, HEFT-like policy, profiling shows that this is not a one-fits-all solution, since less
smart policies such as eager loading can provide better results under certain conditions. Thus,
the fact that StarPU allows pluggable schedulers to be selected, and even programmed, can
come as both a blessing and a drawback, depending on the degree of control one requires of
the performance of an application. The requirement of manually choosing the best scheduler
can sometimes be a tedious task, but it can also lead to better performance results. This
trade-off between control and simplicity is not uncommon, and must be considered carefully
when developing a product such as StarPU or GAMA.

Another factor that greatly differs between the two frameworks is the ability to control
task granularity. StarPU requires the developer to manually divide tasks and data, and
submit each one individually. GAMA follows a more robust approach, attempting to auto-
matically adjust task granularity to each device. This still requires some intervention from
the developer, as the function required by GAMA to divide the data must be manually
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defined. But it prevents the developer from having to manually calibrate task granularity,
which can be a difficult task, given the heterogeneity of the system.

Even though GAMA shows promising features, some extensions could be considered
when comparing it to StarPU. The most promiment factors are the dmda scheduler, the
modularity of the framework, that can allow different components such as the scheduler to be
replaced or changed, and the more consistent API. The definition of a unified programming
and execution model can make it easier for developers to not have to worry about different
architectural details (unless desired), but it can also present a new barrier for new developers,
who will have to deal with yet another programming model in order to use the framework.
Additionally, this model is one of the factors that makes it difficult for GAMA to maintain
compatibility with existing libraries and applications, making it a product targeted only at
newly written parallel programs.

7.1 Future Work

While this dissertation focused mostly on the implementation of a case study in StarPU,
a similar effort should be made to produce a similar implementation with GAMA, to actually
compare the two in terms of performance. Without such implementation, only a more shallow
comparison could be made, regarding mostly the features, usability, and a few problems with
each solution. It would also be interesting to test the usability of the pragma-based API of
StarPU

Other possible points of improvement on top of this work are more related to the produced
implementation. The first point is related to the random number generation, which could
be further improved by using a different random number generator, that would not require
an intermediate buffer, thus eliminating one dependency between tasks.

In addition, a new approach to task parallelization could be attempted, which did not
depend on OpenMP, and as such would allow an efficient usage of other StarPU schedulers
without support for combined workers, which are still under development by the framework’s
team.

Finally, due to the observed results when attempting to use concurrent iterations to ex-
ploit more parallelism, a different approach might prove more viable, by using data partitions
to split the domain, and submit multiple child tasks instead of a larger one, with granularity
having to be manually controlled and tuned. This method might be a more efficient solution
to extract parallelism from the application.
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