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Abstract

The Unified Modeling Language (UML) is nowadays the industry standard nota-

tion for modelling software systems using an object-oriented approach. The Object

Management Group (OMG) manages this standardization. UML combines several

modelling techniques and its models have visual representations through UML di-

agrams. Despite being widely accepted, used and also recommended by software

development processes like Rational Unified Process (RUP) and Agile, two major

UML weaknesses are recognized by the overall software community: it is a notation

with no underlying method; it is only semi-formal.

Trying to narrow this gap, this work presents a method for the systematic

transformation of UML models. Furthermore, and tackling another vulnerability

of UML, its informality, we also propose a verification mechanism for checking the

correctness of said transformations using the Alloy formal modelling notation.

The proposed diagram transformation method follows the RUP use case orien-

tation and encompasses three UML diagrams: use case, sequence, and interaction

overview diagrams.

We have developed the action step and action block constructs, which will be

the basis for a more precise and standardized structure for the textual specification

of use cases. Using these constructs, and without loss of expressive power, a

canonical form for use cases was devised which will be the source and the anchor

for the other steps of the systematic transformation method. Starting from the use

cases already in the canonical form, we have created a set of steps and rules that

will conduct the transformation of these use cases into sequence and interaction

overview diagrams in a systematic way. With Alloy, we are able to assess the

diagrams’ well-formedness and verify the correction of the transformations.
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Resumo

A Unified Modeling Language (UML) é hoje em dia a notação standard da indús-

tria para a modelação de sistemas de software usando uma abordagem orientada

aos objectos. O Object Management Group (OMG) gere esta standardização. A

UML combina várias técnicas de modelação e os seus modelos têm representações

visuais através de diagramas. Apesar de ser amplamente aceite, usada e também

recomendada por processos de software como o Rational Unified Process (RUP) e

Agile, duas fragilidades são reconhecidas à UML pela comunidade de software em

geral: é uma notação sem método subjacente; é apenas semi-formal.

Tentando estreitar esta lacuna, este trabalho apresenta um método para a

transformação sistemática de modelos UML. Para além disso, e abordando outra

vulnerabilidade da UML, a informalidade, propomos também um mecanismo de

verificação da correcção das referidas transformações usando a notação de mode-

lação formal Alloy.

O método de transformação de diagramas proposto segue a orientação aos

casos de uso do RUP e abarca três diagramas UML: diagramas de casos de uso,

de sequência, e de supervisão de interação.

Desenvolvemos as construções passos de ação e blocos de ações, as quais serão a

base para uma estrutura mais precisa e standardizada das especificações dos casos

de uso. Usando estas construções, e sem perda de poder expressivo, foi concebida

uma forma canónica para os casos de uso que será a origem e a âncora para os

outros passos do método sistemático de transfomação. Partindo dos casos de uso

já na forma canónica, criamos um conjunto de passos e regras que conduzirão a

transformação destes casos de uso para diagramas de sequência e de supervisão de

interação de um modo sistemático. Através do Alloy, somos capazes de aferir a

boa-formação dos diagramas e verificar a correção das transformações.
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Chapter 1

Introduction

Throughout the history of software engineering, the development of computer sys-

tems has steadily been moving towards increased abstraction. From program-

ming in assembly to more tractable languages like C, and then to object-oriented

languages such as Smalltalk. Today, models form yet another abstraction layer,

resulting in the so-called Model Driven Software Engineering (MDSE).

MDSE brings several advantages to software development. Since it focuses

on models rather than lower level algorithms, communication between members

of a team and between teams is made easier. Also, the visual nature of some

models makes the design process simpler and more intuitive. The communication

with stakeholders improves as well, and once there is a solid understanding of the

domain, models create a reliable foundation from which to build the real system.

The Unified Modeling Language (UML) emerged in 1997 as an attempt to unify

various existing object-oriented modelling languages and to provide a method to

use it. Over the years UML has been augmented and detailed, but the method was

left behind [Hru97]. The non-methodical use of UML naturally leads to inaccurate

models and specifications that are, consequently, of little value. UML offers several

different models to model different aspects of software systems. Some models
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address structure while others address behaviour or architecture.

The Rational Unified Process (RUP) [Kru03] is a software development pro-

cess that divides the development of a software project in four phases: inception,

elaboration, construction, and transition. The work intended for each phase is per-

formed in iterations, where the various disciplines such as requirements elicitation,

implementation and testing, among others, work together to construct the deliver-

able intended for that iteration (Fig. 1.1). Furthermore, the RUP advocates that

this process should be use case driven, i.e., that requirements should be captured

in use cases and the rest of the development process should build upon them.

Figure 1.1: The RUP “hump chart”.

1.1 Motivation

If UML models or diagrams are transformed in a non-systematic way, the situ-

ation becomes even more critical since the successive refinements will propagate
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inaccuracies contained in the models, inevitably leading to wrong implementations.

Furthermore, UML documentation [OMG11] about the textual representation

of use cases, the UML artefact most often used in real practice, is scarce at best.

Since it is not standardized, it is possible that different modellers in the same

development team have different use case writing styles, which forces subsequent

development tasks to be able to interpret and adapt to each style. This is nat-

urally error prone and makes the methodical use of UML more difficult. Even if

a development team agrees to an internal standard, it is still possible that they

benefit from the structuring mechanisms introduced later in this dissertation.

Another common criticism of UML is its lack of formalism. The UML specifica-

tion does provide some well-formedness rules for its diagrams in Object Constraint

Language (OCL) but many others are mentioned only in natural language. Be-

sides, inter-model consistency rules are not mentioned at all. While this level of

informality makes the language more flexible and allows some level of customiza-

tion for different projects, it also introduces undesired ambiguity which, again, is

counterproductive to the systematic and methodical use of the language.

1.2 Contributions

The method envisioned in this dissertation is also based on the RUP´s use case

driven ideology but proposes a way to systematically transform use cases into other

models. This allows the easy determination of the location and impact of any

changes to requirements during the project and, consequently, assures traceability

between use case models and other diagrams. Hence, the work developed in this

dissertation fits mainly in both the inception and elaboration phases of a software

project. First capturing the requirements in use cases and then using them as a

solid basis to analyze and design the rest of the system.
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To address the dilemma of uniformity in the use case textual representations

we propose a way of identifying the individual action steps with their intention

(whether they are input or outputs, etc.) and grouping them within action blocks

[HA09, Hel05]. This results in a well structured and defined use case and makes it

both easier to think through when writing and clearer to the reader. Furthermore,

this lays down the foundation for the model transformation process.

The systematic model transformation process is made possible since some UML

models, while each providing a different view of the system, have overlapping ele-

ments; i.e., elements that represent the same thing. It is based on these overlapping

elements that transformation rules can be derived. In this dissertation, we propose

a set of well-defined transformation rules between use cases and system sequence

diagrams and interaction overview diagrams. We chose these diagrams because,

while each possesses their own strengths and weaknesses, both are natural next

steps after the use cases have been constructed.

While systematic, the transformation process is manual. However, in this dis-

sertation we also propose using a formalization of the models to support the pro-

cess. This allows verifying the intrinsic correctness of the models as well as ver-

ifying if a system sequence diagram or interaction overview diagram is a correct

derivation of some use case model.

We use Alloy to formalize the models. Alloy is a lightweight formal modeling

notation that retains the precision and expressiveness of “classical” formal lan-

guages like Z. One of the main strengths of Alloy resides in the Alloy Analyzer,

which lets us visualize the model we are building while we are building it, thus

promoting an iterative development. This allows modelers to easily detect and

rectify defects in the model which otherwise could go unnoticed.

Fig. 1.2 synthesizes our work and contributions.
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Legend:

: verifiable in Alloy

: transformation rules

Figure 1.2: Graphical synthesis of our contributions.

1.3 Outline

The UML’s problems delineated before are not new. In fact, they have been

around since its genesis around fifteen years ago. Hence, there is considerable

research concerning them. In Chapter 2 we give an overview of the work done in

this field and clarify on how the work presented in this dissertation is different.

Next, we introduce Alloy in Chapter 3. We start by explaining its logic and

then the language’s syntax through examples. We conclude that chapter with

an introduction of the Alloy Analyzer. Afterwards, in Chapter 4, we show how

we used Alloy to formalize the aforementioned diagrams and canonical textual

use case representations. Chapter 5 discloses the transformation rules we created

and in Chapter 6 we employ the methodology in the practical scenario of an

Automatic Teller Machine (ATM) system. There, a step by step walk-through

on how to correctly apply the transformations rules is given. We then conclude

this dissertation with Chapter 7, where we summarize the work performed and

identify some its limitations at the present stage, though suggesting possible lines

of research for future work.



Chapter 2

Related Work

In this chapter, we will discuss the key concepts and previous work that are associ-

ated with our study. We begin by introducing UML and its problem of informality

in Section 2.1. In Sections 2.2 and 2.3, different works that seek to address this

predicament are analyzed. In Section 2.2 we discuss works that focus on the models

addressed by this dissertation and in Section 2.3 we analyze various formal meth-

ods often used in the formalization of the UML, albeit applied to different models:

the OCL, the Z notation, graph grammars, the Simple Promela Interpreter (SPIN)

tool and Alloy.

2.1 Unified Modeling Language

The UML is a graphical modeling language that allows specifying, visualizing,

constructing, and documenting software systems. It has emerged in 1997 with

the aim of unifying different modeling languages existing at the time, such as the

Object Modeling Technique (OMT) [RBP+91], Objectory [JCJÖ92] and the Booch

Method [Boo95]. Since then, the UML has become the industry standard by, for

example, facilitating communication within development teams, helping to deal
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with complex systems, and allowing the development and abstraction of design

patterns.

Despite numerous qualities, the UML has been criticized over the years due to

some of its shortcomings [SG99, FSKdR05]. Among these shortcomings, stands

out the lack of formality of its models. The specification of UML [OMG11] develops

some well-formedness rules intrinsic to each model, but is mute on how to check

whether different models are consistent with each other.

The UML diagrams are divided into two groups: structural diagrams and be-

havioral diagrams. Diagrams in each of these groups represent structural or behav-

ioral information, respectively, in different ways and emphasizing different aspects.

Although in some instances they are obvious (e.g. the methods referenced in a se-

quence diagram must be present in the class diagram), the UML specification is

silent when it comes to clarifying this type of relationships.

In this work, we address three distinct behavioral diagrams: use case diagrams,

sequence diagrams, and interaction overview diagrams. We seek to establish pre-

cise transformation rules between them and verify the rules automatically. Assum-

ing the reader is familiar with the UML, this section provides a succinct exposition

of these three diagrams placing emphasis only on the strange aspects to the UML

specification.

2.1.1 Use Cases

Use cases are a technique for capturing functional requirements of a system without

revealing their internal structure. Each use case represents a desired feature for

a system through a sequence of messages exchanged between the system and the

external entity interested in the functionality, known as actor, whether it is a

person or a computer system [RJB04].

Use cases facilitate the communication among members of a development team
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and with the stakeholders of the project. They are a core part of use case-driven

methodologies, such as the RUP [Kru03], since it is from these that the rest of

the development process unfolds. Additionally, use cases promote the discovery

of alternative flows or exceptions to the main flow of the features required for

the system, they document the development process, can be used to prioritize

work, to quickly discover the gaps between the work completed and the work to be

done, and if a properly systematized use case-driven methodology regarding the

transformation of models is adopted, when requirements change, it is also possible

to know exactly all the artifacts that need to be changed.

While the UML specification [OMG11] only alludes to the use case diagrams

and does not state any way to represent the contents of use cases, these are con-

structed by describing the interactions that take place between the actors and the

system, typically using a natural language narrative; although state diagrams, ac-

tivity diagrams or interaction diagrams can be used for the same purpose [RJB04].

Use Case Diagrams

A use case is a set of sequences of actions that a system performs to provide a

result of value to an actor [BRJ05]. Use case diagrams assemble use cases and show

the relationship between them and the actors who perform them, indicating which

actors perform which use cases. They also illustrate relations exclusive to actors,

such as generalization, and relations exclusive to use cases, such as generalization,

inclusion, and extension. When we say that generalization is exclusive to both

actors and use cases we mean that an actor cannot specialize a use case and vice-

versa. Fig. 2.1 presents an example of a use case diagram.

Include Relation Sometimes, distinct tasks of a system require running a piece

of behavior that is common to them. Without a proper mechanism, this behavior
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Figure 2.1: Example of a use case model [Fow03].

would have to be modeled in all use cases that wanted to run it, which could

conduct to problems in consistency and maintenance.

The purpose of the include relation is, precisely, to allow the reuse of bits of

behavior common to several use cases. This prevents describing the same flow

multiple times. The common parts are encapsulated in a new use case that can be

included in all the use cases that require the behavior. Another motivation to use

include relations emerges when we intend to modularize a design, which happens

when, for example, a use case proves to be too large and subdividing it provides

reading and management benefits. Here, the use cases are included by just one

use case.

Therefore, the include relation is a dependency between two use cases in which

one incorporates the behavior defined in the other, in a point specified by the first.

As such, the first, called base use case or including use case, is dependent on the

second, called included use case, and does not make sense without it. On the other

hand, an included use case does not make sense by itself, only in the context of

another use case that includes it.

Thus, the include relation functions analogously to the call of a subroutine:
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while running the base use case, it will reach the point of inclusion. The included

use case is executed at this stage. When it completes, the base use case is resumed

after the inclusion point. Note that the execution of the included use case is not

optional and is necessary for the proper functioning of the base use case [OMG11].

Extends Relation Typically, a use case is not composed only by the description

of the interaction in which everything runs smoothly. There are situations where,

for some reason, the system cannot provide the result of value to the actor or needs

to go through alternative paths to reach the end of the use case successfully. The

alternative paths that a use case can take must be described in its specification

as well. However, it is often necessary to provide many alternatives which are

sometimes complex. When this happens, there is the risk of the use case becoming

difficult to read and maintain. Therefore, the objective of the extends relation is

to allow the separation of conditional behavior from the base use case [BRJ05].

Specifically, extends is a relation between an extending use case and a base use

case, or extended use case, in which the extending use case may append, under

certain conditions, its behavior to the base use case. Thus, the extended use

case is independent of the extension use case and has meaning by itself, while the

extension use case typically only makes sense within the context of the use case

that extends [OMG11].

Although the extended use case makes sense by itself, under certain conditions

its behavior can be augmented by another use case. The points at which the base

use case can be extended are called extension points [BRJ05]. Associated with

each point extension is at least one condition.

Whenever an instance of a use case reaches an extension point, the condition is

evaluated. If the condition is found to be true, the associated extension is executed

and upon its termination the base use case is resumed; otherwise, the main flow
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continues normally [RJB04].

Because one can describe conditional behavior within a use case, whether to

use the extends relation is at the discretion of the modeler [SP06]. In practice, the

use of the extends relation proves useful when the alternative flows are complex

and/or have their own alternative flows, to prevent the base use case from becoming

bloated. Analogous to included use cases, extending use cases can extend different

base use cases, promoting thereby the reuse of behavior.

Generalization Generalization is the most controversial relationship between

use cases. The basic idea is that a child use case inherits the behavior and meaning

from the parent use case, being the child able to append to or rewrite the inherited

behavior while also being able to replace the parent anywhere where it appears

[BRJ05]. The problem is that it has not yet been reached a consensus on how to

take advantage of this concept, nor is it clear what is meant to specialize behavior

[Coc00, WKKP05, Lar04]. Consequently, many authors argue that one should

not use the generalization of use cases to avoid any confusion due to different

interpretations of this relationship.

Anyhow, the purpose of generalization relationship is to model situations where

a given task can be accomplished in different ways. Fig. 2.2 provides an example

of generalization.

Pay by credit cardPay by cash

Pay

Customer

Figure 2.2: Example of generalization between use cases.

Some authors advocate that parent use cases define a base behavior which
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the children may append new actions to (contiguous or not) or replace inherited

actions [RJB04]. However, in the context of this dissertation, we will follow the

indications given by Cockburn [Coc00], who suggests leaving the parent use case

empty and specifying all the behavior in children use cases, keeping in mind that

both should have the same goal.

Textual Use Cases

Textual use cases consist of the specification of a set of actions performed between

actors of a system and the system itself, with the aim of providing a result of value

to the actors [OMG11, Fow03]. It is these specifications that detail the actor-

system dialogue of the use cases presented in the use case diagram. Common

representations of these specifications include mono-column (Fig. 2.3) and dual-

column narratives, where the actions performed by the actor and the system are

segregated and represented in their own column.

Figure 2.3: Example of a textual specification of a use case [Fow03].

The UML specification [OMG11] indicates the constituent elements of use case
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diagrams. However, it does not state how to organize their content, the textual

specifications, or the way it relates to the diagrams. In practice, though, use cases

have been specified using sequence diagrams, Petri nets or programming languages,

but the most usual is the use of natural language [Coc00].

Considering that use cases serve as a means of communication between peo-

ple, often without technical training, a textual format is possibly the best choice

[Coc00]. Nevertheless, natural language can lead to ambiguities, making multiple

interpretations possible as well as hampering their writing and understanding.

In an approach to this dilemma, Heldal [Hel05] introduced the notion of ac-

tion block. Action blocks group action steps, the steps constituting the textual

specifications of use cases. This grouping is based on the interpretation given in

Cockburn [Coc00] of the concept of transaction created by Jacobson [JCJÖ92].

Specifically, action blocks are composed of: (1) an input made by the actor, (2)

validation of the input, by the system, (3) a change in the state of the system and,

finally, (4) the response given by the system to the actor with the result of the

operation (Fig. 2.4). The input step marks the beginning of any action block, but

the remaining steps can form any subset of the other steps adverted to, provided

they maintain the order described.

Actor

System
1. Request with data

4. Respond

2. Validate

3. Change

Figure 2.4: General structure of action blocks.

Further research concluded that the validation step was not flexible enough

[HA09]. So, the validation step was replaced by a new step: the assume step.
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Assume steps are not restricted to the second position in the flow of action blocks

and can arise after a change of the system’s state. Thus, they act not only as

a validation step of the user’s input but can also check the result of internal

operations. Moreover, in Helldahl and Ashraf [HA09], the authors restricted the

origin of alternative flows to assume action steps. In Chapter 4.1.1 we argue that

the concept of assume steps can still be ameliorated and present our contributions

to the development of this concept.

Another possibility for structuring use cases is to classify them according to

their goal. Cockburn [Coc00] contemplates three levels for the classification of

goals of use cases: summary, user-goal, and sub-function. Summary level use cases

represent high-level business processes and involve the execution multiple instances

of user-goal level use cases. These, in turn, represent tasks that provide a result of

value to the actor and may depend on the execution of sub-function level use cases,

which represent support operations to upper level use cases and do not constitute,

by themselves, an action of value for the actor. In this work, we will only consider

the user-goal and sub-function levels.

Besides classifying use cases it is also possible to classify the flows from which

they are built. Each use case is composed of a main flow and, potentially, al-

ternative flows. The main flow corresponds to the most common route that the

actor-system dialogue takes to provide a result of value to the actor [SCK09].

Alternative flows may represent exceptions [MOW03, KG03, AM01], alternative

stories [MOW03], conditional insertions [JCJÖ92, AM01, Coc00, KG03, Sim99],

cycles [MOW03] or alternative fragments [MOW03].

Some authors use the term extensions to encompass all these types of flows.

However, this term can cause confusion resulting from the extends relation pro-

vided by the UML specification. Hence, we use the term alternatives with the

same intention.
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2.1.2 System Sequence Diagrams

System sequence diagrams represent use cases graphically. They denote the actor

and the system, messages exchanged between them and in which order, and the

origin and destination of each message. The system, in this type of diagrams, is

treated as a black box, which puts the emphasis on the actor-system interaction

[Lar04].

To see the system as a black box forces us to think about the interface of the

system, i.e., the things that it will be able to do. Instead of fretting, at an early

stage of the software development, on how it will do them; in the same way that

when we design a class, we do not think, initially, about how to implement the

methods of its Application Programming Interface (API), but only to define the

API. It is in this context that the usefulness of the system sequence diagram can be

appreciated. To clarify the concept of system sequence diagram, one is illustrated

in Fig. 2.5.

Figure 2.5: Example of a system sequence diagram [Lar04].

A system sequence diagram is contained within a rectangular frame with its

name on the top left corner and is divided into two columns, designated as lifelines ;

one to represent the actor, denoted by a stick figure, and the other to represent
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the system, denoted by a box with the name of the system in it. The interaction

specified in use cases is, in system sequence diagrams, transformed into messages

exchanged between the actor and the system. These are represented by horizontal

arrows departing from the lifeline that sends the message and end in the lifeline

that receives it.

System sequence diagrams support various constructs for control flow. Con-

ditional behavior of the types if-then or if-then-else, loops and exceptions can

be modeled via combined fragments. These fragments correspond to rectangular

frames with a label indicating what type of control flow structures they represent

in the upper left corner. Some fragments can be subdivided. Conditionals of the

type if-then-else, for example, are represented in a fragment with several segments,

called operands, divided by a dashed line.

The UML specification offers several types of combined fragments. However,

in this work, we will work with only four:

alt: The purpose of this combined fragment is to model if-then-else structures.

It may contain multiple operands, each having a guard condition. Only the

one whose guard evaluates to true and executed.

break: The break fragment has only one operand and one guard condition. If the

guard is false, the operand is ignored and execution continues normally; oth-

erwise, the operand is executed but the rest of the diagram is not. Typically,

this fragment is used for exceptional situations in which the task is aborted

when some condition is met.

loop: The loop frame models cycles and has one operand and one guard condition.

The operand is executed as long as the guard evaluates to true. Its semantics

is similar to the while loop of programming languages like Java or C.

opt: This type of fragment represents if-then type structures. Therefore, it con-
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tains one guard condition and one operand. Its semantics is analogous to the

fragment break with the distinction that, if the condition is true, execution

of the rest of the sequence diagram is resumed and after the execution of the

operand.

2.1.3 Interaction Overview Diagrams

Albeit sequence diagrams have control flow structures, its primary purpose is to

visualize how the various entities of a system cooperate to perform some task. In

fact, if the flow of a task is comparatively complex, i.e., with several alternative

paths, the corresponding system sequence diagram will be difficult to read due to

the large number of frames that will be necessary.

A more suitable way to visualize complex flows involves the construction of

interaction overview diagrams. Interaction overview diagrams mix the notation of

activity diagrams with bits of sequence diagrams. The sequence diagrams illus-

trate linear interactions between actor and system, while the notation of activity

diagrams that handles control flow deals with alternative paths and cycles.

Concretely, interaction overview diagrams are a specialization of activity dia-

grams in which the nodes correspond to sequence diagrams or embedded references

to external sequence diagrams [GCP+05]. The execution of the diagram begins

with the initial node, then follows the arrows and executes each node until it

reaches the final node. The alternative paths, which in sequence diagrams are

represented by the combined fragments, in the interaction overview diagram are

modeled through decision-nodes. These contain guard conditions corresponding to

each of the flows and according to the evaluation of the guard, the corresponding

flow is executed. An interaction overview diagram delineating the process of online

shopping is shown in Fig. 2.6 as an example.
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Figure 2.6: Example of an interaction overview diagram1.

2.2 Transformation and Consistency of UML

Models

One of the strengths of UML is its wide range of models that allow us to approach

a software system from different perspectives. However, this is also the cause of

one of its most studied problems: inconsistency.

Inconsistency problems arise when, as a software system is being developed

resorting to a methodology based on model transformation, successive transfor-

mations and refinements dilute the significance of the initial models, eventually

contradicting each other.

Inconsistent models may cause problems in the implementation [MBC05], in

their management [KHR+03] and make it impossible to generate code through the

models [SB05], a privileged process in MDSE.

1http://www.uml-diagrams.org/interaction-overview-diagrams-examples.html

http://www.uml-diagrams.org/interaction-overview-diagrams-examples.html
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To overcome these issues it is necessary to employ techniques to ensure the

consistency of UML models. This need becomes apparent if we analyze the

amount of published work in this area in recent years, whether in journals, work-

shops [KHRS02, KHR+03, KHR+04] , or conferences. Thus, model transformation

and consistency are two closely related topics [EB04]. If, on one hand, without

a notion of consistency, the models can be freely transformed, the lack of trans-

formation rules between two models (for lack common concepts), means that it

makes no sense to speak of consistency between them.

2.2.1 General Terms

To better understand the area under study, it is important to clarify some of its key

concepts such as model, model transformation, transformation rules, intra-model

consistency and inter-model consistency.

Model A model is an abstraction of something, in which important aspects of

the object being modeled are captured and aspects seen as less relevant are omitted

or simplified. Software systems are modeled through modeling languages such as

UML, where they are represented by diagrams and text. The model should be able

to answer questions instead of the real system and be easier to use [BG01, RJB04].

Model Transformation Model transformation involves the construction of a

target model from a source model according to a set of transformation rules. This

definition is akin to that given in Kleppe et al. , e[KWB03]xcept the transfor-

mation in that work is considered an automatic process, whereas in this work the

transformation will be performed manually.

Transformation Rule A transformation rule is a description of how the source

model’s constructs are mapped to the constructs of the target model [KWB03].
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Intra-Model Consistency Property of a model when it conforms to its meta-

model and respects all the rules imposed on it [EB04].

Inter-Model Consistency Property observed between a source model and a

target model when, by applying the transformation rules corresponding to the two

models, from the source model it is possible to derive the target model [EB04].

2.2.2 Consistency Approaches

Because the literature about the UML consistency is quite extensive, it is possible

to find many different approaches to this problem, formal and informal. Within the

group of approaches that use formal techniques there are authors who make use of,

for example, graphs, petri nets, Z, B, Communicating Sequential Process (CSP)

or description logics.

In this work, we will consider transformations of use cases to sequence diagrams

and use cases to interaction overview diagrams. So, in this section, we will pay

special attention to literature that focuses on these specific diagrams, leaving to

Section 2.3 a discussion of different approaches concerning the formalization of

UML which work with other diagrams.

One possible way to accomplish the transformation between use cases and

sequence diagrams is based on natural language processing [YBL10, SHH07, Li00].

Yue et al. [YBL10] presents an approach and a tool that perform the automatic

generation of sequence diagrams from use cases. However, the transformation is

also based on class diagrams and the operations depicted therein. In addition,

generated sequence diagrams are not system sequence diagrams and the writing

of textual use cases is constrained with the use of keywords (e.g. if, then, else,

meanwhile) to define the flow of the use case. The tool presented in Segundo

et al. [SHH07] also imposes rules on how the use case should be specified to
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be able to do the language processing. It accepts only specifications in Spanish

and its grammar rules, not referring under which circumstances the characteristic

sequence diagrams’ frames are used or even if the tool supports them. Li [Li00]

resorts to the use of keywords to write the flow of use cases as well. The presented

approach is semiautomatic, requiring user input to translate certain parts of the

use cases. Like Second et al., it makes no mention of the use of frames.

Furthermore, the application of approaches making use of natural language

processing is inherently limited to environments in which the language for which

they were developed is used, thus hampering widespread adoption.

Apart from approaches based on natural language processing, other solutions

were sought by different authors. In Almendros-Jimenez and Iribarne [AJI07] an

approach based on several steps was carried out: first, a use case diagram repre-

senting the basic tasks of the system is developed; then, the behavior of use cases

is detailed resorting to sequence diagrams and encapsulating some bits of behavior

in sequence sub-diagrams; and finally, these sequence sub-diagrams are mirrored

in the use case diagram where they represent the inclusion and extension of use

cases. However, this approach does not use textual specification of use cases, im-

portant artifacts to communicate with stakeholders. In Mason and Supsrisupachai

[MS09], it is presented a tool where one can write the textual specifications of

use cases and label certain words as being the sender, receiver, or the message,

including parameters. This approach bypasses the linguistic limitation and allows

the unrestrained description of use cases but the cost of an intrusive technique

that impairs the readability of use cases. In addition, this paper does not mention

any of the characteristic sequence diagrams’ frames as well.

As far as the transformation from use cases to interaction overview diagrams

goes, literature is rather scarcer. The interaction overview diagram is a new type

of diagram that emerged only with the UML 2.0 and its optimal use is still to be
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understood. Nevertheless, Garcia et al. [GCP+05] presents a use case diagram

and the corresponding interaction overview diagram in different phases; i.e., first

considering simple diagrams without inclusion or extension relationships and then

elaborating on that by incorporating them. However, no kind of systematic rules

to perform this transformation is indicated.

Regardless, before one can talk about inter-model consistency, it is necessary

that the individual models are in accordance with their well-formedness rules. The

starting point for the definition of well-formedness rules is the UML specification

[OMG11]. Therein some rules are provided by using OCL [OMG10] or natural

language for each diagram. The use of natural language to define the semantics of

the diagrams provides greater flexibility for modelers because they can be inter-

preted in different ways and allow the application of the diagrams in completely

different contexts. However, when attempting to formalize the rules, this form of

presenting them is counterproductive.

Consequently, some authors addressed this question by using more rigorous

methods to formalize the rules. In Ibrahim et al. [IIS+10] the authors defined and

formalized well-formedness rules for use case diagrams using set theory, but did not

indicate or use any mechanism for the automatic verification of their correctness.

In contrast, in Ballur and Vallieswaran [BV06], it is presented a tool for checking

the consistency between design and code where some well-formedness rules are

presented for use case diagrams and for system sequence diagrams, among others.

However, it does not address the extends, include or generalization relations.

2.3 Formal Methods

“The nice thing about graphical description techniques is that every one under-

stands them, the bad thing, however is that every one understands them in a dif-



2.3. Formal Methods 23

ferent way.” This is the problem of notations such as UML and where the appli-

cation of formal methods can bring significant advantages, by making explicit and

unequivocal the semantics of the notation.

Formal methods is a set of mathematical languages, tools and techniques for

the specification and verification of software and hardware systems. It is particu-

larly useful in critical and/or large scale systems in which a small error can cause

great losses of money, time, or even human lives. Albeit formal methods cannot

guarantee 100% correction of the system, its aid in the discovery of inconsistencies,

ambiguities and incompleteness, allows for the elaboration of models with greater

reliability and robustness [CW96].

In this section, we will review the formal methods that are most often applied

in the formalization of UML. We will highlight some of the characteristics of

each approach and conclude with the justification for choosing Alloy as our model

checking language in this work.

2.3.1 OCL

OCL [OMG10] emerged along with UML as the formal language to describe ex-

pressions on its models. Typically, these expressions represent invariants of the

model or queries that can be performed on it, bearing in mind that the evaluation

of those does not produce any side effects, i.e., it is not possible to change the

state of a system through OCL.

Chiorean et al.[CPC+04] uses the XML Metadata Interchange (XMI) standard

for transferring consistent models from the Object Constraint Language Envi-

ronment2 checking tool to another UML tool, and vice versa. Besides detecting

inconsistencies, the tool is also able to correct them. As in this dissertation, the

consistency rules are defined at the meta-model level, making them independent

2http://lci.cs.ubbcluj.ro/ocle/index.htm

http://lci.cs.ubbcluj.ro/ocle/index.htm
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from the user’s models. However, the authors expound only the well-formedness

rules and do not allude to issues of inter-model consistency.

On the other hand, in Bodeveix et al. [BMP+02], consistency rules between

models are established. The authors discuss the consistency between class dia-

grams and sequence diagrams, class diagrams and object diagrams, class diagrams

and state diagrams, and between sequence diagrams and state diagrams; but ignore

interaction overview diagrams and use cases, the core diagram in this dissertation.

2.3.2 SPIN model checker

Simple Promela Interpreter (SPIN) [Hol04] is an open-source model checking tool

and is particularly suited for concurrent systems. As the acronym suggests, the

models are specified using the Promela language and are also executable. The

model checker allows the simulation and exhaustive analysis of the behaviors spec-

ified.

The SPIN model checker is used in Zhao et al. [ZLQ06] to check the consistency

between sequence diagrams and state diagrams. The state diagrams are mapped to

the formalism of split automata to deal with the hierarchical states characteristic

of these diagrams, which contributes to the efficient passage of these diagrams

to SPIN since their semantics are analogous to that of processes in Promela. In

addition, they can prove that the translation of UML models to the model checker

is correct and that the model translated truly represents the UML model.

2.3.3 Z

Z notation [WD96] is a language based on mathematical set theory and mathe-

matical logic. The combination of the Z notation with natural language allows

the creation of formal specifications, which can be reasoned with by using proof
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techniques of mathematical logic. These specifications can be refined successively,

getting closer to final code at each iteration.

Amalio et al. [ASP04] outlines an approach to formal analysis of UML models

through a formal representation in Z. The authors advocate the use of modeling

frameworks for the construction and analysis of domain-specific models. Each

framework consists of several UML diagrams whose semantics is made explicit in

any formal specification language and where the analysis is performed using the

methods available for the chosen language. Thus, the authors intend to make

development in UML more precise, avoiding the need for modelers to have a thor-

ough cognition of formal languages and thereby making the development of sound

systems more practical. As an example of their methodology, the authors use Z as

the formal specification language for describing the semantics of class diagrams,

objects and states.

2.3.4 Graph Transformation

Graphs are a widely used structure in software engineering by allowing to explain

complex problems in a natural way. At the heart of graph transformation is the

rule-based modification of graphs. Each rule consists of a pair of graphs, 𝐿 and

𝑅. Applying this rule to a graph consists of finding on this graph a sub-graph

corresponding to 𝐿 and replacing it with 𝑅 [EEPT10]. The nature of the graph

naturally lends itself to class and object diagrams and to the representation of

system states, important artifacts when modeling in UML. Consequently, with

the advent of model transformation in model driven development processes, graph

transformation appears as a natural choice for its formalization.

Wagner et al. [WGN03] presents a flexible and incremental consistency man-

agement framework for the open-source Computer-Aided Software Engineering

(CASE) tool Fujaba. The framework allows the user to specify consistency rules
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through a formalism based on graph grammars, which allows customization of rules

for different projects or domains. However, only model well-formedness issues are

mentioned and not their inter-model consistency.

On the other hand, an attempt to integrate different UML models was con-

ducted in Kuske et al. [GKZ09]. The authors used the formalism of graph transfor-

mation to provide an integrated semantic base for these. Specifically, the authors

considered class diagrams, sequence diagrams, object diagrams, state diagrams,

and collaboration diagrams. Despite making an effort to integrate more diagrams

than other works of the same genre, similarly to those, use case diagrams and

interaction overview diagrams are left out.

2.3.5 Alloy

Alloy is a formal language based on OCL and Z, combining OCL’s emphasis on bi-

nary relations and the navigational way of expressing constraints with Z’s simpler

semantics [Jac00]. It retains the characteristics of formal notations such as preci-

sion and expressiveness, but adopts an automatic mechanism for the verification

of specifications instead of theorem proving, typical of other formal approaches.

Alloy is discussed in more detail in Section 3.

Using Alloy, in Nimiya et al. [NYM+10], the authors address the consistency

between state diagrams and communication diagrams. They use a methodology

analogous to the one used in this dissertation, starting by defining the models’

entities and then building an instance, using assertions and predicates to validate

it. Given the similarities, this article is a probable reference for potential extensions

to the work of this dissertation if state and communication diagrams were to be

addressed.

Class diagrams enriched with OCL constraints and corresponding transforma-

tion to Alloy are discussed in Anastasakis et al. (2010) [ABGR10]. The transfor-



2.3. Formal Methods 27

mation is based on Model Driven Architecture (MDA) techniques and is intended

to allow the analysis of class diagrams. The paper also addresses the challenges

inherent to this transformation which arise due to fundamental discrepancies from

Alloy’s and UML’s design, such as the lack of support for multiple inheritance in

Alloy.

Shah et al. [SAB09] performed a study involving the UML2Alloy3 tool. This

tool performs the transformation of class diagrams enriched with OCL constraints

to Alloy, to be able to analyze such models. In this work the authors present a

new transformation that translates instances generated by Alloy into UML object

diagrams, implementing the technique through the Query/View/Transformation

(QVT) standard.

Barajas [Bar06] develops a formal specification for a tool that models system

requirements through use cases. Specifically, a possible use case modeling in Alloy

is presented, akin to that sought in this dissertation. Some of the definitions

presented in the study were reused here, while others were discarded because of

different interpretations regarding the semantics of relations between actors and

use cases.

In Kelsen and Ma [KM08], the authors argue that Alloy is a good approach

to formalizing modeling languages. The study compares several alternatives and

concludes that the greatest advantages of Alloy are a uniform notation and au-

tomated analysis. These are the reasons that guided us to electing Alloy for the

development of the consistency mechanism presented in this dissertation.

3http://www.cs.bham.ac.uk/~bxb/UML2Alloy/

http://www.cs.bham.ac.uk/~bxb/UML2Alloy/
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2.4 Conclusion

In this chapter, we explained the value of the application of formal methods as

complement to less formal modeling languages like UML. They consist of a set

of languages, tools and mathematical techniques which are particularly suitable

for critical or large scale systems’ design. We discussed several formal methods,

such as OCL, the Z notation, the SPIN tool, graph grammars and Alloy, which

are often used in UML formalization and how studies using these methods were

related to the work proposed in this dissertation. We found that albeit the liter-

ature is extensive, relatively few works address the formalization of use cases and

interaction overview diagrams. This justifies the need for a research as the one

developed in this dissertation. Finally, we selected Alloy as our modeling language

because of its simple notation and powerful automatic analyzer.
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Alloy

Despite the advantages of formal methods, its application in the industry has

been limited [Kne97]. This has conducted to the emergence of formal methods

whose emphasis is on the partial and focused application of the formalization, the

so-called lightweight formal methods [JW96].

Alloy [Jac12] fits into this new type of formal methods but retains some of the

qualities recognized to traditional formal methods such as precision and expres-

siveness. The main distinction between these two kinds of formal methods consists

in the use of a mechanism for automatic analysis instead of analysis based on theo-

rem proving. The disadvantage of this mechanism is its limited space of examined

cases, while the theorem proving provides a valid response to any element within

the spectrum of possible cases (which may be infinite). Nevertheless, the number

of cases analyzed is in the order of billions and thus considerably higher than the

degree of coverage achieved with testing [Jac06].

The models specified in Alloy are typically small (micromodels), analyzable,

declarative, and structural [Jac02].

They are typically small because it is possible to study properties of a complex

system with few lines of code, the language itself is simple and small, and the focus
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is on formalizing only the parts of a system that really should be formalized, either

because they present substantial complexity or because they support processes

whose failure could cause considerable losses.

Alloy allows its models to be analyzed in two ways: simulation and verification.

Simulation is based solely on the model and generates possible instances, allowing

us to conclude whether the model is consistent or not. Verification requires as

input some property that the modeler wants to check. If the model does not

possess that property, Alloy produces a counter-example; i.e., an instance of the

model where the property does not hold.

The Alloy language is also declarative. Models constructed using this paradigm

allow the modeler to focus on communicating what happens when some operation

is performed instead of worrying about how it happens. In state-based languages

like Java or C, the programmer explicits the way to reach some state from another,

while in declarative languages (like Prolog or Haskell) the focus is on stating how

the initial and final states are connected.

Software systems are composed of two fundamental elements: structure and

behaviour. There are several analysis tools for the behavioural part; however,

Alloy is one of the first to approach the structural component. Alloy allows the

definition of complex structural relations between the various entities belonging to

the problem’s domain so that one may then reason about their properties.

Unlike UML, which is a visual modelling language, Alloy is mainly text-based.

Alloy models are composed of signatures, facts, predicates, assertions, functions

and commands. Domain entities are introduced in Alloy models via the signature

construct. Each signature is allowed to have a set of properties, effectively relat-

ing them with other signatures. Constraints can be applied to these relations to

restrain the way signatures may associate with each other. In Alloy, these con-

straints are introduced via facts, which represent properties that the model must
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possess; or via predicates, for when we want to analyze a model with and without

a certain property. Predicates also allow, like functions, to package expressions for

reuse in different contexts. The difference is that predicates evaluate to either true

or false while functions return a value of a type defined by the modeler. Assertions

allow us to verify if some property follows from the facts of the model and the

commands are used to analyze the model.

In the remainder of this chapter, the core aspects of Alloy will be explained in

greater detail. Specifically, its underlying logic and the relational perspective with

which one can read Alloy models (Section 3.1), the other two perspectives, i.e.,

object-oriented and set theoretic (Section 3.2), the Alloy language (Section 3.3)

and its analysis mechanism (Section 3.4).

3.1 Atoms and Relations

The structural component of a software system consists of the entities belonging

to the problem’s domain and the way they relate to each other. In Alloy, these

correspond to atoms and relations, respectively.

Atoms are characterized for being indivisible, immutable, and uninterpreted.

The fact that atoms are indivisible means that they cannot represent, for example,

tuples, as they are divisible. The immutability property signifies that it is not

possible to alter the properties of an atom, and being uninterpreted means that

atoms do not possess any properties by default, contrary to numbers, for example.

To model divisible, mutable, or interpreted concepts, relations are used. Rela-

tions associate atoms with one another, creating tuples which may be of any arity

equal to or greater than one. The arrangement of atoms in each tuple is relevant

and unary relations (i.e., with arity equal to one) simply represent sets of atoms.

A unary relation composed of a single atom is a scalar.
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Relations can be manipulated via set operators and relational operators. The

former are utilized when it is intended to work with the relations as if they were

just sets of tuples. On these occasions, the structure of the relations’ tuples is

irrelevant and may be seen as sets of atoms. On the other hand, the structure

of the tuples is essential to the latter operators, which take full advantage of the

power of relations.

Set operators are based on those of set theory, namely: union (+), intersection

(&), difference (-), subset (in) and equality (=). Though the structure of the tuples

in this type of operations is irrelevant, these operators can only be used between

relations with the same arity.

Relational operators are based on relational logic and they are responsible for

making relations such a powerful mechanism. Alloy possesses the following rela-

tional operators: product (->), dot join (.), box join ([]), transpose (~), transitive

closure (^), reflexive-transitive closure (*), domain restriction (<:), range restric-

tion (:>) and override (++).

There is still a third group of operators: logical operators. These operators are

used to combine expressions to form more complex restrictions. They are identical

to those of boolean logic and each one has two possible representations: negation

(not, !), conjunction (and, &&), disjunction (or, ||), implication (implies, =>),

alternative (else, ,) and bi-implication (iff, <=>).

Besides operators, Alloy also introduces some constants. The constant univ

represents the set containing every atom of the model, none is the constant which

does not contain any atom and the iden denotes the binary relation where each

atom is related to itself.
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3.2 Object-Oriented and Set Theoretic Views

Although atoms and relations reflect the true semantics of the Alloy language,

when reading Alloy models one tends to think in a more abstract manner. Namely,

Alloy code can be read as if it were object-oriented, which is the highest level of

abstraction at which one can read Alloy code, or one can think in set theoretic

terms. Actually thinking of Alloy models as atoms and relations is not usually

done even by advanced users.

Entities defined in Alloy models can be seen as being classes, and the relations

defined in such entities may be seen as being the classes’ fields. Also, the dot join

operator allows producing code similar to that of object-oriented languages, which

further contributes to reading models in this manner. Interpreting Alloy models

in this object-oriented fashion aids in rapidly understanding a model, but may be

dangerous without a deeper understanding of Alloy, as its level of abstraction may

fail to explain some of the intricacies of the Alloy language.

Thus, it is usual to think of Alloy models in set theoretic terms. Here, the

entity definitions in Alloy models are regarded as sets, and individual entities (or

instances, in object-oriented terms) are their elements. The relations defined in

the entities are now read as mapping the corresponding entity to other entities

of the type defined in the relation, which constitutes a lower abstraction level of

thinking about Alloy models but which is more in line with its true semantics.

3.3 Language

In this section, we present the main characteristics of the Alloy modeling language.

The syntactical constructions considered most relevant will be presented through

small examples. Concretely, we will see how to introduce signatures, facts, func-

tions, predicates and assertions in Alloy models, as well as how to analyze them
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via the invocation of predicates and assertions.

3.3.1 Signatures

The aim of signatures is to model the entities that exist in the problem’s domain,

and they represent sets of atoms (or classes, in an object-oriented view). For

example, the declaration

sig A {}

introduces the set A in the model.

Similarly to object-oriented programming languages, Alloy also supports in-

heritance mechanisms

sig A1 extends A {}

sig A2 extends A {}

The signatures A1 and A2 are both subsets of A in which the elements of one

subset are not present in the other; i.e., the signatures A1 and A2 are mutually

exclusive.

It is also possible to create abstract signatures by using the keyword abstract :

abstract sig B {}

Abstract signatures contain no elements by themselves. Thus, they are of value

to a system only when they are extended, at which point they encompass all the

elements belonging to their subsignatures.

Alloy further allows the restriction of the number of elements a signature may

have, sufficing to precede the keyword sig by a multiplicity keyword. For example,

the declaration

one sig C {}
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indicates that signature C shall contain exactly one element. Besides one, the

possible multiplicities are lone, set and some. These constrain the number of ele-

ments of a given signature to one at most, any number, or at least one, respectively.

In case of omission, the default multiplicity is used, i.e., set.

Entity properties are declared as fields in the signatures as follows:

sig D { p : e }

Property p represents a relation with domain D and codomain given by the ex-

pression e. Preceding e with some multiplicity constraint it is possible to limit the

number of elements that may be part of p’s range. Here, the default multiplicity

is one.

Now that we have introduced signatures we are in position to give a small

Alloy example to illustrate the multiple ways to read Alloy models. Consider the

following snippet:

sig S extends E { F: one T }

fact { all s:S | s.F in X }

Facts will be explained later but right now its meaning is not important nor

necessary to understand the distinct ways one can read Alloy models. Thinking

in an object-oriented perspective, this Alloy fragment can be read as:

• S and E are classes

• S is a subclass of E

• S has a field or attribute of type T

• s is an instance of S

• . accesses a field
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• s.F returns something of type T

Interpreting the model in a set theoretic perspective, i.e., thinking about sets,

elements, and relations among them, is a relatively safer approach since it does

not lead to errors that the object-oriented approach might:

• S and E are sets

• S is a subset of E

• F is a relation which maps each S to exactly on T

• s is an element of S

• . composes relations

• s.F composes the unary relation s with the binary relation F, resulting in a

unary relation of type T

The lowest level of abstraction, atoms and relations, is rarely used to reason

about Alloy models, even though it corresponds to Alloy true semantics:

• S and E are atoms

• the containment relation maps E to S

• F is a relation from S to T

• the containment relation maps S to s

• . composes relations

• s.F composes the unary relation s with the binary relations F, resulting in a

unary relation t, such that the containment relation maps T to t
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3.3.2 Constraints

There are two ways to introduce constraints on a model: using facts or predicates.

The difference between them lies in the fact that constraints introduced through

facts are always applied to the model, while constraints introduced through pred-

icates are applied only when they are invoked. Assertions allow us to verify if

the model contains, implicitly, a property as a result of the constraints applied

explicitly. Analogously to predicates, it is necessary to invoke an assertion to ob-

serve its effect. Functions represent reusable expressions that can be useful, like

predicates, in various contexts. To see how to invoke predicates and assertions see

Section 3.3.3.

Facts

Facts are introduced in Alloy models via the fact keyword. For example:

fact { all a: A | C }

introduces a constraint C for all elements of signature A. These type of facts,

where a constraint is applied to all elements of a signature, can be written more

succinctly through signature facts. Using these, the previous example would now

be:

sig A {} { C }

Constraints written this way are implicitly quantified over the elements of the

signature. Concretely, the previous example is the same as having:

sig A {}

fact { all this: A | C }
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Besides this implicit quantification, the expansion of references to the associated

signature’s fields is also done implicitly. For example, consider a graph with nodes

and connections between them where the nodes cannot be connected to themselves:

sig Node {}

sig Connection { predecessor, successor: Node } {

predecessor != successor

}

implicitly, this is equivalent to

sig Node {}

sig Connection { predecessor, successor: Node }

fact { all this: Connection |

this.predecessor != this.successor

}

However, this expansion is sometimes undesirable. To stop a field from being

implicitly expanded we can use the symbol @. Considering now that we want to

establish that for each connection between two nodes there is some connection in

the opposite direction we could write:

sig Node {}

sig Connection { predecessor, successor: Node } {

some c: Connection |

c.@predecessor = successor and

c.@successor = predecessor

}

This way, only the right side of the equalities would be expanded, which would

result in the following equivalent code:
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sig Node {}

sig Connection { predecessor, successor: Node }

fact { all this: Connection |

some c: Connection |

c.predecessor = this.successor and

c.successor = this.predecessor

}

Predicates

Predicates encapsulate constraints which shall be applied only when invoked. This

behaviour is useful, for example, when one wants to verify a model with and

without a certain property. The fact that the constraint is encapsulated also allows

it to be applied in different contexts or at different places in the same model,

thereby promoting reuse. Although the properties described in predicates are

applied only when the predicate is invoked, predicates may be invoked implicitly

if they are included in the body of a fact.

Predicates are introduced using the pred keyword. They are parameterizable

and return a boolean value. For instance:

pred pred_name [ p1: Param1, p2: Param2, ... ] { ... }

Assertions

Assertions represent constraints or properties, with the goal of verifying if these are

a logical consequence of the facts of the model. If when an assertion, representing

a property that we believe to be implicit in the model due to its facts, is executed

and proves to be invalid, then that means that the model contains a flaw (assuming

the assertion is well coded). After correcting of the flaw, it may make sense to

keep the assertion in the model to make sure that future changes do not break the
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property. Thus, assertions are useful for detecting errors in the models and may

function as regression testing. In Section 3.4 it is possible to see how the analysis

of an assertion is performed.

To declare assertions, the keyword assert is used:

assert assertion_name { ... }

Naming the assertion is optional, however, the command which checks assertions

needs it. Thus, anonymous assertions are seldom used.

Functions

Functions are similar to predicates. However, instead of returning a boolean value,

their return value conforms to the codomain defined in the function’s signature.

The keyword fun introduces functions:

fun fun_name [ p1: Param1, p2: Param2, ... ] : e { ... }

p1 e p2 represent arguments that a function may have and e represents the

codomain expression.

Alloy Model Example

Having presented the syntax required to specify Alloy models, we now show a small

sample model (Fig. 3.1). The model’s domain consists of an address book where

each entry maps a person’s name to another name or her address. Reasons for

mapping a name to another name include being able to store a person’s nickname

alongside its name or to indicate that some person has the same address as another

one. Whatever the case, the goal is to be able to find any person’s address. For

this purpose, we introduce, in line 5, the fact invariant which characterizes the

address book’s well-formedness properties.
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1 sig Addr, Name { }
2 sig Book {
3 addr: Name →(Name + Addr)
4 }
5 fact invariant {
6 all b: Book, n: Name | some (b·addr)·n ⇒ some n·(b·addr)
7 all b:Book, n: Name | n not in n·̂︀(b·addr)
8 }
9 assert fromInvariant {

10 all b: Book, n: Name | some (b·addr)·n ⇒ some n·̂︀(b·addr) & Addr
11 }
12 pred singleMapping {
13 all b: Book, n: Name | one b·addr[n]
14 }
15 fun lookup [b: Book, n: Name] : set Addr {
16 n·̂︀(b·addr) & Addr
17 }

Figure 3.1: Alloy model of an address book.

First, we need ensure that for every name that appears on the right side of the

addr relation, there is an entry in the book where that name is on the left side.

This is assured by the constraint depicted in line 6.

Then, we have to eliminate the possibility of a name A referring to a name B

and B referring back to A. This kind of cyclic referral is tackled by the constraint

on line 7, where we state that a name n cannot be an element of the set that

aggregates the names and addresses obtained by recursively following the addr

relation starting from n.

Having defined these two constraints, we introduce an assertion into the model

to help ascertain that they are indeed enough to enforce the initial goal of being

able to find any person’s address. In the assertion, named fromInvariant, we intend

to verify that if a name n appears on the right side of the addr relation, then

there is some address in the set consisting of the names and addresses obtained
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by recursively following the addr relation starting from n, the same set that we

previously impeded of containing the name n.

The current model allows a name to be mapped to multiple addresses and other

names. However, we might want to analyze the subset of address books where each

name can be mapped only to one address or one other name. This can be done

by using predicates, and the predicate singleMapping, on line 12, introduces a

constraint that states exactly that.

Finally, on line 15, we introduce the lookup function which, given an address

book and a person’s name, returns the set of addresses associated with that person.

3.3.3 Commands and Scope

To analyze a model it is necessary to code a command and tell Alloy to execute it.

Associated to the command, we can indicate the scope for each signature, i.e., the

number of instances we want each signature to have. By default, each top-level

signature, i.e., that is not an extension of another signature, will contain at most

three elements.

There are two distinct commands one can use, run and check, each correspond-

ing to a different philosophy. The former executes predicates and the latter checks

assertions. When a run command is executed, the tool searches for instances of

the model that, besides all of its constraints, also respects the property enclosed

in the predicate. If one wants just to verify if the model is consistent, it is possible

to apply the run command to an empty predicate. The check command, unlike

run, searches for instances that respect all constraints defined in the model plus

the negation of the expression described in the body of the assertion; this is useful,

for instance, when one wants to check if some property follows implicitly from the

constraints applied in the model.
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3.4 Alloy Analyzer

The Alloy Analyzer is Alloy’s component responsible for analyzing the models.

It translates the specifications to boolean formulas which are then interpreted by

a SAT (boolean satisfiability) solver embedded in the tool. If the SAT solver

does not find any solution, the Alloy Analyzer simply lets the user know that no

instance or counter-example was found. Otherwise, the resulting boolean formula

is translated back to a relational formula, representative of an instance.

The resulting instance may afterwards be visualized in the tool. Through

the visualization of the instances derived from the model subtle errors become

apparent, errors that would hardly be detected otherwise. This makes the analyzer

a tool of great practical value.

Alloy’s logic is undecidable; i.e., it is not possible to be certain that an assertion

is valid for all instances of a given model. To solve this dilemma a compromise

had to be made: instead of trying to build a proof that the assertion is correct

(similarly to theorem provers), the analyzer tries to find an instance that refutes the

assertion. The search for the counter-example is carried out in the set of possible

instances for the model. If a counter-example is found, then the assertion is invalid.

However, if no counter-example is found, that does not mean the assertion is valid.

It is possible that an instance that violates the assertion exists in a set bigger than

the one considered.

What is, then, the factor that limits the size of the analyzer’s search space?

The scope, which was mentioned in the previous section (3.3.3). By limiting the

scope of every signature, i.e., the number of elements that each signature may

have, one limits the solution space of a model. Inside the space, search for the

counter-example is exhaustive; i.e., all hypotheses are contemplated.

Although the search space is limited, Daniel Jackson [Jac06] believes in the

“small scope hypothesis” which states that most bugs have small counter-examples.
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In other words, if a counter-example to some assertion exists, most probably it is

revealed in small scopes.

To give an example of the output of the Alloy Analyzer let us consider the

address book model introduced earlier (Fig. 3.1). To analyze the model applying

the constraint defined in the singleMapping predicate one could use the following

command:

run singleMapping for 3 but exactly 1 Book

Note that we specify we want the analyzer to consider only instances where

there are at most three atoms for each signature, except for the Book entity, for

which we want exactly one atom; this is our scope. A possible instance respecting

all the constraints stated in the model plus the scope we just defined is depicted

in Fig. 3.2.

Figure 3.2: Address book instance generated by the Alloy Analyzer.

At a first glance, it may appear that atoms Name0 and Name1 are not con-

tained in the address book. A closer look, however, reveals that the Book atom

is related to Addr1 via Name1, and related to Name2 via Name0. Nonetheless,

this view does not show clearly the organization of the address book. This is due

to there not being an intuitive way to represent n-ary relations such as addr. To

improve readability it is possible to project the instances on chosen signatures. In

this case, projecting out Book results in a much clearer instance where the contents

of the address book are easily understood (Fig. 3.3).
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Figure 3.3: Address book instance projected on the Book entity, generated by the
Alloy Analyzer.

3.5 Conclusion

In this chapter we have seen where Alloy fits in the area of formal methods and

we introduced the defining characteristics of its models, which are micromodels,

analyzable, declarative, and structural. We saw that structures in Alloy are repre-

sented by relations and presented the operators that let us express properties for

those structures. Besides examples of the syntax used to construct Alloy models,

we tackled the way these are analyzed via the Alloy Analyzer and the relevance of

the concept of scope.
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Alloy Models of UML Diagrams

For the development of our approach to software modelling we explored three dis-

tinct UML diagrams: use case, sequence, and interaction overview diagrams. Use

cases are used to capture the system’s requirements and, therefore, are constructed

at an early stage of the software development, especially when the development

methodology is use case driven, like ours is. Sequence diagrams, and particularly

system sequence diagrams, are well suited to provide a visual focus of the pro-

cesses detailed in textual use cases, while keeping the same abstraction level and

laying down the basis for posterior refinement. In contrast, the focus of interaction

overview diagrams is on supplying a higher level view of textual use cases, where

internal atomic processes are abstracted and encapsulated; thus granting a better

understanding of the overall process by concealing nonessential details.

Modelling these diagrams in Alloy enables us to verify their well-formedness.

We based our modelling efforts on the meta-models provided by the UML spec-

ification, but adapted them to better suit our needs. Particularly, we expunged

some details and incorporated others where we deemed reasonable. This approach,

however, is not applicable only to these two diagrams and may be put to good use

should future extensions of this work aim to use different models.
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However, the UML documents do not yield any meta-model for textual use

cases; so, there is no standard way to specify them. To address this void, we

refined and combined previous research, contributed by separate authors, on use

case structuring mechanisms. The concepts of action steps and action blocks,

in particular, are pivotal to our canonical textual specifications, which allows us

to normalize the way use cases are written. With these concepts and structures

consolidated and well defined, it was possible to integrate them with the already

existent Alloy meta-model for use case diagrams. This is also what makes it possi-

ble to create rules for systematically transforming use cases into system sequence

and interaction overview diagrams (Section 5).

Fig. 4.1 summarizes what we have discussed so far:

Use Case 
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Metamodel
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Textual Use 
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Figure 4.1: Graphical overview of our approach.

In conclusion, this chapter will show how the use case, system sequence, and

interaction overview diagrams were modelled in Alloy. We take on one constructing

element of each diagram at a time, first explaining how its structure was abstracted
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in Alloy and then presenting the well-formedness rules of that element. This

translation to Alloy is an essential step towards the final aim of being able to test

the coherence of different UML models by taking advantage of the Alloy Analyzer.

4.1 Canonical Form Use Cases

After combining the structuring mechanisms introduced into the textual specifica-

tion of use cases with the common knowledge about use case diagrams, we reached

the meta-model depicted in Fig.4.2, where we highlight our contributions towards

reaching a canonical form for use cases. It is important to note, however, that

despite conferring regular textual use cases an additional structural layer, their

semantic expressive power is retained by the resulting canonical use cases.

In our model, a use case diagram is basically composed of the system and the

actors, whether they correspond to people or other software systems, that inter-

act with it through use cases. Use cases invariably have a name, a main success

scenario and a goal level, which may be user goal or sub-function. Furthermore, a

use case may also have alternatives. If any of those alternatives are external that

means they are contained in another use case which, in turn, means that the use

case must also have extension points to account for those use cases that extend

it. Flows are composed of action blocks and/or single steps like the Goto or In-

clude steps. On the other hand, action blocks are composed only of atomic steps,

which can be any action step, like an Input, Output, SystemResponsibility, Sys-

temCheck, InputValidation or UserDecision. Based on which action steps actions

blocks actually have, they can be of different types such as Service, Validation,

Query, Internal or SystemDependency.

In the remainder of this section we shall elucidate what exactly is and how we

reached what we designate as the canonical form of textual use cases; a prerequisite
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to the transformation process proposed in this dissertation. Followed by looking

in detail into each of these entities by referring to their Alloy code and eventual

well-formedness rules.

4.1.1 Towards a Canonical Form for Use Cases

We now explain how to construct use cases so that they can be used in the trans-

formation process proposed in this work. We start by defining the various kinds

of steps a use case may be composed of. Some of these are action steps, which are

identified afterwards, where we also explain how we refined the concept of assume

action steps introduced in Helldahl and Ashraf [HA09]. Subsequently, we clarify

the concept of action blocks and introduce and define generic kinds of action blocks

that arise in practice. Finally, the user-goal and sub-function levels of abstraction

for use cases are explained.

Flow Steps

Textual use cases are composed of steps of various kinds. They can describe an

action by the system or user, mark the termination of an use case or denote the

inclusion of another use case. In this section, we will give an overview of the

different types a step may be of.

There are four kinds of steps that mark the end of a flow: Goto, Resume,

Success and Failure. Goto steps are used only in alternative flows and denote the

step of the flow which originated the alternative to execute next. Resume steps

are similar to gotos. The difference is that the step pointed to by resume steps is

always the one immediately after the step that originated the alternative. They

are intended to be used in the main flows of inclusion and extension use cases.

Success steps denote, as the name implies, the successful termination of a use

case. Failure steps, on the other hand, denote the unsuccessful termination of use
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cases and are used to model exceptions.

To signal that a use case includes or is extended by another at some point,

include and extend steps are used, respectively. To specify that a use case, among

a number of use cases with the same goal, will be executed, we use the specialize

step.

Action Steps

We can distinguish between various kinds of atomic steps, the type of steps that

describe the interaction itself. They can describe information or requests made

by the user or results provided by the system, among others. Depending on the

nature of atom steps, they are classified by associating them with action steps,

which were introduced earlier.

As we also stated before, we did not find the existent kinds of action steps

sufficient. After using the action steps defined in Helldahl and Ashraf [HA09]

(i.e., input, assume, system responsibility and output) to classify the interaction

steps in sample use cases, we concluded that assume steps did not fit well within

the action block structuring mechanism when the ‘assumption’ was made based

on a user decision. Steps 3 and 7 of the use case illustrated in Table 4.1 show

the limitations of the assume step under these circumstances. They do not fit

into existing action blocks, which are identified by the shaded lines. Also, they

describe thoughts or decisions made by the user that are internal to him and have

no impact on the system, thus not really being an action step.

However, as it can be seen in the same table, assume steps which are based on

the state of the system fit nicely into action blocks (steps 5 and 9). Therefore, one

can distinguish two kinds of assume steps, one for decisions made by the user and

another for decisions made by the system. Additionally, we can further distinguish

two different kinds of decisions made by the system, whether they are based on the
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Table 4.1: Textual representation of the Order Product use case with Assume
action steps.

AS Narrative

M
ai

n
Su

cc
es

s
Sc

en
ar

io

INP 1. Customer specifies desired product category.
OUT 2. System displays search results.
ASS 3. Customer is satisfied with search results.
INP 4. Customer selects a product.
ASS 5. System validates availability of desired product.
OUT 6. System displays purchase summary.
ASS 7. Customer decides to purchase product.
INP 8. Customer submits payment info.
ASS 9. The payment was authorized.
SR 10. System carries out payment.
OUT 11. System provides a confirmation number.

12. Success.

A
lt

er
na

ti
ve 3a. Customer is not satisfied with search results:

INP 3a1. Customer repeats product search.
3a2. Goto 1.

E
xc

ep
ti

on 5a. The desired product is unavailable:

OUT 5a1. System informs Customer the product is unavailable.
5a2. Failure.

E
xc

ep
ti

on 7a. Customer decides to cancel the use case:

INP 7a1. Customer cancels the operation.
7a2. Failure.

A
lt

er
na

ti
ve 9a. The payment was not authorized:

OUT 9a1. System informs Customer the payment was declined.
9a2. Goto 8.



4.1. Canonical Form Use Cases 53

validation of an input made by the user or a check of the system’s internal state.

Thus, we have a total of three different kinds of steps which originate alternative

flows, the original idea behind assume steps.

We maintain the idea of having a special kind of step to clarify, in the main

flow, where alternatives arise. However, since we find assume steps, as originally

defined, somewhat limited, we have created a new kind of step to replace them,

the Choice abstract action step. It is abstract in the sense that action steps

are not directly of type Choice but rather of one of its specializations. These

specializations are, thus, Input Validation action steps, used, as the name implies,

to validate user inputs; System Check action steps, used to verify some property

on the system’s internal state; and User Decision action steps, used in situations

where the user may chose one among multiple options, each of them resulting in

a different user-system interaction.

The remaining action steps are straightforward. These are the Input, Output

and System Responsibility action steps. Action steps where the user enters some

values or requests some functionality from the system are classified as inputs and

mark the beginning of a new action block. Output action steps are those where

the system replies to the user, either by requesting some input or presenting some

information. Often, though, the system has to perform some calculations or change

the internal state before replying to the user, these kind of steps correspond to

system responsibilities. To address the limitation of assume steps shown previously

in Table 4.1, user decision action steps may also initiate action blocks.
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So, in summary, there is now a total of six concrete action steps. Two distinct

types that can be performed by actors, and four to be performed by the system:

• Action steps - Actor

– Input (INP)

– User Decision (UD)

• Action Steps - System

– Input Validation (IVAL)

– System Responsibility (SR)

– System Check (SC)

– Output (OUT)

Action Blocks

As mentioned before, action blocks group action steps. However, there are many

different ways of composing action blocks. They may be started by input or user

decision action steps and the remaining action steps may form any non-empty

sequence of the other action steps, with the restriction that if an action block

contains an input validation action step, it is the second one. In general, and as

has already been stated, all action blocks have the form depicted in Fig. 4.3.

Actor

System
1. Request with data

4. Respond

2. Validate

3. Change

Figure 4.3: General structure of action blocks.

Nonetheless, considering the possible arrangements of action steps in action

blocks, it is possible to differentiate five generic kinds of action blocks (Table 4.2).

These are: Validation, State Dependency, Query, Internal and Service action
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blocks. The only thing they all have in common is the first step which, as men-

tioned before, is always either an input or user decision.

Besides this first step, validation action blocks contain only one more step, an

input validation. Due to the nature of its steps, action blocks of this type reflect

situations where the system validates some input made by the user.

State dependency action blocks, on the other hand, may contain more than

two steps. Specifically, this kind of action block contains some number of system

checks and, possibly, input validations as well. The name state dependency reflects

the necessity of performing some operation which relies on the state of the system,

as indicated by the obligatory system check action steps.

Query action blocks express the intention of the user to get some information

from the system or, alternatively, after the user has performed some input, the

intention of the system to get some information from the user. Therefore, this

kind of action blocks contains, mandatorily, at least one output action step and

may or may not validate the user’s input or verify the system’s state for some

condition.

Internal action blocks are characterized by the presence of system responsibility

action steps and absence of any output. They typically model update, insertion or

deletion operations, i.e., operations that change the internal state of the system.

Naturally, the system may need to validate the user’s input or check the current

state before any change can be done. Therefore, internal action blocks may contain

an input validation action step and an arbitrary number of system check action

steps.

Finally, service action blocks potentially contain every kind of action step.

Besides the action step that initiates the action block, system responsibilities and

output are also mandatory. They are similar to internal action blocks in the sense

that they also involve changes in the system’s state. However, the intention is to
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model an order given by the user to which an output is to be provided. Again,

input validation and system check action step are optional.

Table 4.2: Structure of the different kinds of action blocks.

Validation SD Query Internal Service

Input (or UD) X X X X X
Input Validation X (X)a (X) (X) (X)
System Check X (X) (X) (X)
SR X X
Output X X

a The parenthesis mean that the corresponding action step is optional
in that action block.

Action blocks provide an easy and structured way to identify blocks of behavior

that may be needed in the different use cases that compose an use case diagram. A

critical analysis of the action blocks present in the textual description of a use case

concerning their applicability in the other use cases of the domain provides a well

structured method to discover possible bits of behavior that can be abstracted

away in extending or included use cases, making the design more modular and

robust.

Allowing user decision steps to initiate action blocks lets us rewrite the aforesaid

use case in a more compact manner (Table 4.3). The assume action steps 3 and

7 are now removed and the following input steps (4 and 8) are changed to user

decisions. This is because user decision action steps serve the double purpose of

providing user input to the system and being a choice step at the same time, thus

expressing that some alternative arises from it. The other two assume steps (5 and

9) are now input validations, which clarifies the intended semantics of the steps

and is another advantage of the new action steps over the assume ones.

Furthermore, the use of action steps and action blocks is not limited or better
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suited to single-column use cases, as the previous example might suggest. Any

format to specify the textual representations of use cases works as long as we are

able to identify the corresponding action steps and action blocks. In Fig. 4.3 we

normalize the previous use case to conform to our canonical structure and present

it in double-column format, a format commonly used in practice.

Goal Level

The structure of canonical use cases includes the definition of their level of abstrac-

tion. The UML specification [OMG11] states that use cases yield an observable

result that is, typically, of value for the actor. Included and extending use cases

are only a part of base use cases and, therefore, do not yield results of value to

the user. Thus, base cases are on a higher level of abstraction than extending or

included use cases.

Base use cases are considered to be on the user-goal abstraction level, while

extending and included use cases are considered on the sub-function abstraction

level. The abstraction level of base use cases is user-goal because they ultimately

yield the result of value expected from successfully performing the use case. Ad-

ditionally, user-goal use cases are always started by an action by the user, which

means that an Input or UserDecision action step is always the first of this type of

use cases.

On the other hand, sub-function level use cases do not necessarily start with

a user action. Also, they do not yield a result of value to the user because they

are a part of other use cases and not a whole in themselves. Hence, the name

sub-function.
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Table 4.3: New textual representation of the Order Product use case without
Assume action steps and in double-column format.

AB AS Actor System

M
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Q
ue

ry

INP 1. Customer specifies desired
product category.

OUT 2. System displays search re-
sults.

Q
ue

ry

UD 3. Customer selects a product.
IVAL 4. System validates availability

of desired product.
OUT 5. System displays purchase

summary.

Se
rv

ic
e

UD 6. Customer submits payment
info.

IVAL 7. The payment was authorized.
SR 8. System carries out payment.
OUT 9. System provides a confirma-

tion number.
10. Success.

A
lt

er
na

ti
ve 3a. Customer is not satisfied with search results:

INP 3a1. Customer repeats product
search.

3a2. Goto 1.

E
xc

ep
ti

on 4a. The desired product is unavailable:
OUT 4a1. System informs Customer

the product is unavailable.
4a2. Failure.

E
xc

ep
ti

on 6a. Customer decides to cancel the use case:
INP 6a1. Customer cancels the op-

eration.
6a2. Failure.

A
lt

er
na

ti
ve 7a. The payment was not authorized:

OUT 7a1. System informs Customer
the payment was declined.
7a2. Goto 8.
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4.1.2 Use Case Diagram

Actor

The Actor signature models the entities which interact with the system, whether

they are human users or other computer systems. The single field it contains

denotes the actors it specializes, if any (Table 4.4). The set multiplicity keyword

in the field declaration conveys that an actor can specialize any number of other

actors.

Table 4.4: Entity Actor.

Description Alloy

· inheritsFrom: identifies the actors
this actor specializes, if any.

sig Actor {
inheritsFrom: set Actor }

However, circular generalization between actors is prohibited since there is no

point in two actors being the general and specialized versions of each other at the

same time (Table 4.5). Besides, since each actor would be able to perform every

use case the other actor could perform, we might as well just use one actor with

access to all use cases. Still concerning the generalization between actors, we do

not let the two types of actor specialize each other, i.e., human actors may not

specialize machine actors and vice-versa:

fact { all u: User, s: ComputerSystem |

u not in s.inheritsFrom and s not in u.inheritsFrom }

Use Cases

Use cases identify and describe each task a system is to able to perform. They are

identified by their name and possess a main scenario (see Section 4.1.3 for details
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Table 4.5: Well-formedness rule #1: Generalization relation between
actors is acyclic.

Alloy Counter-example

fact acyclic[Actor<:inheritsFrom,
Actor]

Actor BActor A

on the Flow entity). They are also characterized by their goal level (presented in

Section 4.1.1) which has implications on the way the use case may be used, as we

will see later on. Naturally, a use case may also contain alternative flows (further

analyzed in Section 4.1.3) to describe some processes that may happen but are less

frequent than the main scenario. Besides these intrinsic properties, use cases may

also be related to other use cases through inclusion, extension and generalization.

As it can be seen on the Alloy code (Table 4.6), as far as generalization properties

is concerned, each use case can at most have one parent, which assured by using

the keyword v|lone|.

This means that each use case can specialize at most one other use case, thus

preventing multiple inheritance between use cases. This decision was made consid-

ering that the specialization of use cases involves inheriting the goal of the parent

use case and since a use case provides only one result of value to a user, inheriting

from two or more use cases would mean having to provide multiple results.

Considering the includes and extends relations, however, it is accepted that a

use case may include or extend multiple use cases.

Nevertheless, combining these relations may have ill effects. For instance, a

use case including its parent use case would result in cyclic inclusions. Similarly, if

a use case could extend its parent use case then, according to the substitutability

principle, it would mean that it could extend itself which, while not resulting

in an infinite cycle, would be better modeled using an internal alternative flow.
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Table 4.6: Entity UseCase.

Description Alloy

· name: use case’s name.
· goalLevel: use case’s goal level.
· mainScenario: use case’s main
flow.
· alternatives: use case’s alternative
flows.
· extensionPoints: use case’s exten-
sion points.
· inheritsFrom: the use case this use
case specializes, if any.
· include: the set of use cases this use
case includes.
· extend: the set of use cases this use
case extends.

sig UseCase {
name: one UCName,
goalLevel: one GoalLevel,
mainScenario: one Flow,
alternatives: set Alternative,
extensionPoints:

ExtensionPoint,
inheritsFrom: lone UseCase,
include: set UseCase,
extend: set UseCase

}

Consequently, we introduced a well-formedness rule which states that the when a

use case specializes another, then it cannot include or extend it (Table 4.7).

Table 4.7: Well-formedness rule #2: A use case cannot include nor ex-
tend its parent use case.

Alloy Counter-example

some uc: UseCase |
uc in inheritsFrom =>
uc not in include and uc not in extend

UseCase 2

UseCase 1

<<Inc lude>>

However, abstract use cases can be extended. What this means semantically is

that each of the specializing use cases is extended by the use case extending their

parent (Table 4.8).

Comparably, if a concrete use case is extended by another, then it must define

at least one extension point (see the Alloy modeling of extension points in Section



62 Chapter 4. Alloy Models of UML Diagrams

Table 4.8: Well-formedness rule #3: Specializing use cases are extended
by all use cases that extend their parent.

Alloy Counter-example

all uc: extend & abstractUseCases |
some a: Alternative |
a in uc.˜@inheritsFrom.@alternatives
and a.type in EXTERNAL and
a.alternativeScenario in
uc.˜@inheritsFrom.@mainScenario

UseCase 4
extension points

UseCase 4

UseCase 3
UseCase 2

UseCase 1
<<Extend>>

4.1.3). In fact, a use case must define at least as many extension points as there

are use cases extending it, since an extension use case may extend another use case

at different places:

#extensionPoints >= #{ a: alternatives | a.type in EXTERNAL }

We have also identified some well-formedness rules concerning the consistency

between use case diagrams and their textual specification. For every kind of rela-

tion represented in the diagram, there has to exist its counterpart in the textual

specification. For instance, if a textual specification mentions the inclusion of an

use case, that relation must be mirrored in the diagram1:

this.concreteIncludes in include

The opposite is also true, i.e., if a use case diagram relates two use cases with

an inclusion relationship there has to be an inclusion step somewhere in the textual

specification of the base use case referencing the included use case, as long as this

one is concrete:
1concreteIncludes refers to the textual representation of inclusions while include refers to their

diagrammatic counterpart
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all uc: include - abstractUseCases | some i:Include |

i in Int.(mainScenario.flow+alternatives.alternativeScenario.flow)

and i.ucName in uc.@name

In case the included use case is abstract, then instead of an inclusion step there

must be a specialization step:

all uc: include & abstractUseCases | some s:Specialize |

s in Int.(mainScenario.flow+alternatives.alternativeScenario.flow)

and s.ucName in uc.@name

Still concerning abstract use cases, we also imposed a restriction on the number

of child use cases a use case may have. Since abstract use cases are not instantiable,

as they do not even define a flow, it does not make sense for an abstract use case

to have only one child use case. If this were the case, the specializing use case

would replace its parent every time it was mentioned and one might just well work

only with the former (Table 4.9).

Table 4.9: Well-formedness rule #4: Abstract use cases are specialized
by at least two use cases.

Alloy Counter-example

this in abstractUseCases =>
#this.˜@inheritsFrom >= 2

UseCase 2

UseCase 1

Similarly to actors, circular generalization between use cases is disallowed (Ta-

ble 4.10). Note that this restriction was not modeled as a signature fact, hence

the use the fact syntax.

Likewise, use case diagrams with circular inclusions are not well-formed since

they create infinite cycles (Table 4.11).
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Table 4.10: Well-formedness rule #5: Generalization relation between
use cases is acyclic.

Alloy Counter-example

fact acyclic[UseCase <:
inheritsFrom, UseCase]

UseCase 4UseCase 3

UseCase 2UseCase 1

Table 4.11: Well-formedness rule #6: Inclusion relation is acyclic.

Alloy Counter-example

fact acyclic[include,
UseCase]

UseCase 2

UseCase 1

<<Inc lude>><<Inc lude>>

And naturally, it is also not allowed to create inclusion cycles via use case

textual steps as well:

fact { acyclic[concreteIncludes, UseCase] }

Well-formedness rules constraining the type of flow a use case may describe

have been identified as well. Abstract use cases, for instance, do note have a

textual representation of their flow (while concrete ones must have). In Alloy, this

means that they implement the EmptyFlow :

this in abstractUseCases => mainScenario in EmptyFlow

else mainScenario not in EmptyFlow

The goal level of a use case also influences the type of flow it may describe.

User-goal level use cases, when successfully completed, always provide a result of

value to the user. This means that the type of flow contained in user-goal level use
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cases should be MainFlow, which is the same as saying the last step of a user-goal

level use case should be the Success step:

goalLevel in USERGOAL => mainScenario in MainFlow + EmptyFlow

The reason the mainScenario of a user-goal level use case may also be an

EmptyFlow is because we need to consider that actors may be associated with

abstract use cases as well. In this situation, however, we also need to make sure

the specializing use cases’ goal level is likewise user-goal. In fact, a specializing

use case should always inherit its parent’s goal level:

some inheritsFrom => goalLevel in inheritsFrom.@goalLevel

Another restriction based on the type of flows a use case can have is imposed

on included use cases. Included use cases are an integral part of the use case

which includes them and do not represent any kind of alternative flow, they are a

stepping stone in the path to the use case’s success. Therefore, included use cases

cannot describe scenarios leading to the failure of the including use case.

this in UseCase.concreteIncludes =>

mainScenario not in UCException and all a: alternatives |

a.alternativeScenario not in UCException

Furthermore, included use cases cannot be directly associated to actors since

they do not provide any result of value, abstracting only a piece of behavior from

another use case (Table 4.12). Hence, the goal level of included use cases is sub-

function.

Use Case Model

The UseCaseModel entity identifies all use cases and actors used in the diagram

and which actors perform which use cases (Table 4.13).
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Table 4.12: Well-formedness rule #7: Actors cannot be associated with
included use cases.

Alloy Counter-example

this in UseCase.@include =>
this not in UseCaseModel.use[Actor]

UseCase 2

UseCase 1

System

Actor

<<Inc lude>>

Table 4.13: Entity UseCaseModel.

Description Alloy

· useCases: maps use case names to
use cases.
· actors: identifies the model’s actors
· use: maps actors to the use cases
they use

one sig UseCaseModel {
useCases: UCName -> UseCase,
actors: some Actor,
use: Actor set -> some UseCase

}

Using the keyword some we are already stating that a use case model invariably

contains at least one actor and that each actor is directly related to a use case.

This means that even if an actor could perform a use case by specializing another

actor, and therefore being able to perform any use case the parent actor could,

that actor also has be to able to perform some tasks that the parent actor could

not, otherwise the child actor could be reduced to its parent.

Besides this rule, we identified other rules which were recorded as signature

facts. The first of them prohibits a use case from being associated with two actors

related with inheritance (Table 4.14). If an actor specializes another actor, then it

automatically can perform any task the parent actor is able to perform, therefore,

there is no need to associate an actor with a use case twice.

Likewise, it does not make sense to associate an actor with two use cases related

with inheritance (Table 4.15). The generalization semantics of use cases state that
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Table 4.14: Well-formedness rule #8: A use case cannot be associated
with two actors related with inheritance.

Alloy Counter-example

all u: UCName.useCases,
disj a, a’: use.u |
a not in a’.ˆ(Actor<:inheritsFrom)

UseCase

System

Actor B

Actor A

a child use case can substitute the parent use case anywhere the latter appears.

Therefore, when an actor is able to perform a parent use case, it is automatically

able to perform any of the child use cases as well.

Table 4.15: Well-formedness rule #9: An actor cannot be associated with
two use cases related with inheritance.

Alloy Counter-example

all a: actors, disj u, u’: use[a] |
u not in u’.ˆinheritsFrom

UseCase 2

UseCase 1

System

Actor

A third rule between use cases and actors states that an actor can only perform

use cases whose goal level is user-goal :

all uc: use[Actor] | uc.goalLevel in USERGOAL

This is in accordance to the semantics of goal levels discussed in Cockburn [Coc00].
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4.1.3 Textual Specification of Use Cases

Steps

As presented before, there are various kinds of steps. Steps can be Include steps,

Success steps and Failure steps, among others. The nature of these steps is very

different and the only property they all have in common, the stepID, is encapsu-

lated in the Step abstract signature which they all specialize (Table 4.16).

Table 4.16: Entity Step.

Description Alloy

· stepID: identifies the step. abstract sig Step {
stepID: one StepID }

Atoms represent the atomic interaction steps used in the actor-system dialogue.

These can be any of the action steps (Table 4.17), but not Success or Failure steps,

for example.

Table 4.17: Entity Atom.

Description Alloy

· stepType: declares what kind of
action step the Atom instance corre-
sponds to.

sig Atom extends Step {
stepType: one ActionStep

}

Another kind of step is the Goto. Goto steps are used in alternative flows to

determine the step of the base flow to execute after the alternative flow finishes.

Therefore, they must identify that step (Table 4.18).

Many years ago, programming languages were unstructured, they had no repet-

itive control structures like while or repeat, and the programmer had to use if and

goto statements to implement iteration. Experience using those languages showed
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Table 4.18: Entity Goto.

Description Alloy

· otherStepID: identifies the step to
execute next.

sig Goto extends Step {
otherStepID: one StepID }

that unstructured use of those constructs quickly led to code that was hard to read

and harder to maintain, what became known as spaghetti code. Likewise, the use

of the Goto modeling construct must be well defined and restricted. Specifically,

we formulated a well-formedness rule stating that Goto steps may only point to

steps of the base flow, i.e, the flow which originated the the alternative containing

the Goto:

let baseFlow =

this.~(select13[flow]).~alternativeScenario.~alternatives.

mainScenario.flow[Int] {

otherStepID in (baseFlow.@stepID +

(baseFlow.actionSteps[Int]).@stepID)

}

In textual specifications, use cases may include other use cases via the In-

clude step. Consequently, the Include entity identifies the use case to be included

(Table 5.11).

Table 4.19: Entity Include.

Description Alloy

· ucName: identifies the included use
case.

sig Include extends Step {
ucName: one UCName }

However, there are restrictions on the type of use cases Include steps may
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reference. Particularly, they cannot reference abstract use cases:

ucName not in abstractUseCases.name

To reference abstract use cases, we use the Specialize step (4.20). Its signature

is similar to that of Include steps:

Table 4.20: Entity Specialize.

Description Alloy

· ucName: identifies the specialized
use case.

sig Specialize extends Step {
ucName: one UCName }

Its signature fact, however, states the opposite of its Include equivalent, i.e.,

Specialize steps may only reference abstract use cases.

ucName in abstractUseCases.name

The last three types of steps do not possess any internal structure, acting mostly

as labels. These are the Success step, which marks the successful termination of a

use case; its opposite, the Failure step, which marks the unsuccessful termination

of a use case; and the Resume step, which returns the execution to next step of

the base flow:

lone sig Success extends Step {}

lone sig Failure extends Step {}

lone sig Resume extends Step {}

Action Steps

As was also stated before, there are multiple kinds of action steps, such as Input,

Output and SystemResponsibility. These, however, do not have any kind of intrinsic
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structure and are mainly used as labels. Choice action steps, on the other hand,

encapsulate a property that identifies the alternatives which originate from Choice

steps (Table 4.21).

Table 4.21: Entity Choice.

Description Alloy

· alternatives: identifies the alterna-
tives originating from a Choice step.

abstract sig Choice
extends ActionStep {
alternatives: some
AlternativeID }

The action steps which specialize Choice, such as SystemCheck, UserDecision

and InputValidation, however, do not define any more properties of their own and

their signature is much like the three action steps mentioned before:

one sig Input extends ActionStep {}

one sig Output extends ActionStep {}

one sig SystemR extends ActionStep {}

sig UserDecision extends Choice {}

sig InputValidation extends Choice {}

sig SystemCheck extends Choice {}

The only thing to notice is that, while there is no need for the existence of

more than a single instance of Input, Output and SystemR action steps, there are

possibly multiple UserDecision, InputValidation and SystemCheck action steps in

a model. This is due to the property that they inherit from Choice which possibly

has different values for each instance. This also explains why the Choice steps are

not defined as one, like their non-Choice counterparts.
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Action Blocks

Comparable to Choice action steps, there are likewise different kinds of action

blocks having a single property in common. That property consists precisely of

the action steps that make up action blocks, which is defined as a sequence Atoms

(Table 4.22).

Table 4.22: Entity ActionBlock.

Description Alloy

· actionSteps: sequence of the
atomic steps that compose an action
block.

abstract sig ActionBlock {
actionSteps: seq Atom

}

Nevertheless, the ActionBlock signature also defines some constraints common

to all action blocks. Particularly, it states that: (1) the first step of action blocks

must be either an Input step or a UserDecision step, (2) that they cannot appear

in the remainder of the action blocks’ body, and that (3) action blocks contain at

least two steps.

first[actionSteps].stepType in Input + UserDecision (1)

Input not in Int.(rest[actionSteps]).stepType (2)

#actionSteps > 1 (3)

The different kinds of action blocks that exist are: Query, Internal, Service,

Validation and SystemDependency. The differences between them consist in the

types of action steps each contains. The composition of the action blocks as defined

in their signatures is as follows.

The last step of Query action blocks is an output and intermediate steps can

only be Choices:
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sig Query extends ActionBlock {

} {

last[actionSteps].stepType in Output

SystemR not in Int.actionSteps.stepType

}

Internal action blocks are defined by not containing any output action step and

having at least one system responsibility step:

sig Internal extends ActionBlock {

} {

Output not in Int.actionSteps.stepType

some s: SystemR | s in Int.actionSteps.stepType

}

Similar to Internal action blocks, Service action blocks also contain at least

one system responsibility step. However, they allow outputs:

sig Service extends ActionBlock {

} {

some s: SystemR | s in Int.actionSteps.stepType

some o: Output | o in Int.actionSteps.stepType

}

Validation action blocks are characterized by having a minimum of one input

validation step, no system responsibility steps and no Output steps:

sig Validation extends ActionBlock {

} {

some v: InputValidation | v in Int.actionSteps.stepType
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SystemR not in Int.actionSteps.stepType

Output not in Int.actionSteps.stepType

}

Finally, system check steps are always present in SystemDependency action

blocks. Output and system responsibility action steps, however, are not:

sig SystemDependency extends ActionBlock {} {

some sc: SystemCheck | sc in Int.actionSteps.stepType

SystemR not in Int.actionSteps.stepType

Output not in Int.actionSteps.stepType

}

Extension Points

Extension points consist of places in a flow where a use case can extend that

flow. Therefore, extension points, which are identified by their name, just need to

indicate the place at which a use case may be extended (Table 4.23).

Table 4.23: Entity ExtensionPoint.

Description Alloy

· epname: extension point’s name.
· step: identifies a step where a use
can be extended.

sig ExtensionPoint {
epname: one EPName,
step: one StepID }

Flows

There are many types of flows depending on their purpose, MainFlows for de-

scribing main success scenarios, for example, and ExceptionFlows for describing
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exceptions are two of those. The entity Flow is an abstract entity that encap-

sulates the single property that is common to all kinds of flows, the flow itself

(Table 4.24), which consists of a sequence of steps and action blocks.

Table 4.24: Entity Flow.

Description Alloy

· flow: a sequence of steps and/or ac-
tion blocks that make up the flow.

abstract sig Flow {
flow: seq Step + ActionBlock }

The well-formedness rules related to flows constrain the kinds of steps that may

go into each flow. The only restriction common to all is described as a signature

fact in the Flow entity and states that steps Goto, Success, Failure and Resume

cannot belong to the body of a textual specification, except for the last step:

all s: Goto + Success + Failure + Resume |

s not in Int.(butlast[flow])

However, to know which step actually terminates which flow, we now look at

the individual types of flow. MainFlow is the entity used in scenarios of user-goal

level use cases, the use cases that provide a result of value to the user. Therefore,

its last step is the Success step. Besides, MainFlows cannot be composed of just

the Success step and must contain at least one step more:

sig MainFlow extends Flow {} {

last[flow] in Success

#flow > 1

}

In contrast to the MainFlow there is the UCException, which marks a flow as

unsuccessful. Consequently, the last step of exception flows is the Failure step:
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sig UCException extends AltFlow {} { last[flow] in Failure }

Note that UCException extends AltFlow. This abstract entity simply states

that its specializations have one or more steps in their flow:

abstract sig AltFlow extends Flow {} { #flow > 0 }

The other specialization of AltFlow is the AltPart entity. This entity is used

describe alternative flows that eventually return to the base flow, which is done

via the Goto step:

sig AltPart extends AltFlow {} { last[flow] in Goto }

The flow of abstract use cases, as previously mentioned, is defined by the

EmtpyFlow entity. This entity simply states that its flow contains no steps:

one sig EmptyFlow extends Flow{} { #flow = 0 }

Inclusion use cases’ flow always returns to the base use case at a specific po-

sition, the step immediately after the corresponding inclusion step. Put another

way, after the execution of an inclusion use case, the base use case resumes its

course. Thus, the last step of InsertionFlows is the Resume step. This type of

flow may also be used to describe the flow of extension use cases if they share the

same semantics:

sig InsertionFlow extends Flow {} {

last[flow] in Resume

this in extendeConcreto.UseCase.mainScenario +

UseCase.includesConcretos.mainScenario

#flow > 1

}
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Alternatives

Most use cases have alternative flows. These flows only execute in case some

condition is true and their scenario can be of different types of flow depending on

the nature of the alternative. Additionally, alternatives may be classified according

to their type, Internal if they are contained in the use case, or External if another

use case contains the flow (Table 4.25).

Table 4.25: Entity Alternative.

Description Alloy

· id: identifies the alternative.
· condition: alternative’s condition.
· alternativeScenario: alternative’s
scenario, which can be an AltFlow or
an InsertionFlow.
· type: alternative’s type.

sig Alternative {
id: one AlternativeID,
condition: one Condition,
alternativeScenario: one

AltFlow + InsertionFlow,
type: one AlternativeType }

Regarding this entity we identified the following well-formedness rule:

(some c : id.~alternatives | c in InputValidation) =>

first[alternativeScenario.flow].stepType in

SystemR + Output + SystemCheck

Which states that the first step of alternatives derived from input validation

steps must be an output, system responsibility or system check step. An input step

is not acceptable because, after an the validation of an input, the flow control is

on the side of the system.

4.2 System Sequence Diagrams

Since we did not introduce any new concepts to sequence diagrams, its meta-

model (Fig. 4.4) is smaller than its use case counterpart. In essence, every system



78 Chapter 4. Alloy Models of UML Diagrams

sequence diagram has an actor and a system, represented by two different lifelines,

and messages exchanged between them. The messages contained in a system

sequence diagram have a well defined order and may correspond, besides actual

messages, to frames and references. In turn, Frame is an abstract entity which

may correspond to the Opt, Break, Loop or Alt combined fragments. Each of

these frames have at least one operand (the Alt frame has at least two) and one

condition for each operand. An operand may have messages in the same way

a system sequence diagram can, i.e., they can be actual messages, references or

other frames. We now detail each of a system sequence diagram’s entities and

well-formedness rules.

Actor

Lifel ine

-condition : Condition
Break

Message

Operand

Frame

-conditions : seq Condition
A l t

-condition : Condition
Loop

-condition : Condition
O p t

-reference : SeqDid
Ref

-seqDid : SeqDid
SystemSequenceDiagram

System

0..* {ordered}
messages

1 lifeline

2..*

operands

1 operand

1
target

1
source

messages

0..* {ordered}

1
actor

1

system

Figure 4.4: System sequence diagram meta-model.
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4.2.1 Actor and System

Actor and System are the only two structures that may send and receive messages

in system sequence diagrams. They are simply represented by a lifeline and there

can be only one actor or system for each system sequence diagram, hence the use

of the keyword one in their signatures (Table 4.26)

Table 4.26: Entities Actor and System.

Description Alloy

· lifeline: the lifeline associated to the
system.

one sig System {
lifeline: one Lifeline }

· lifeline: the lifeline associated to the
actor.

one sig Actor {
lifeline: one Lifeline }

The Lifeline entity is a purely semantical one and has no internal structure:

sig Lifeline {}

4.2.2 Message

In system sequence diagrams, while the main dialogue consists of messages that

are exchanged between the actor and system lifelines, the system is also able to

send messages to itself. Either way, there is always a source and a target to each

message (Table 4.27).

Table 4.27: Entity Message.

Description Alloy

· source: the lifeline that sends the
message.
· target: the lifeline that receives the
message.

sig Message {
source: one Lifeline,
target: one Lifeline

}
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4.2.3 Ref

Ref is UML’s way of stating that a sequence diagram will now pass the execution

control to another sequence diagram and the continue after the referenced sequence

diagram is finished. Thus, the Ref entity only needs to record the identification

of the diagram that is to be executed (Table 4.28).

Table 4.28: Entity Ref.

Description Alloy

· reference: identifies the diagram
which this frame references.

sig Ref {
reference: one SeqDid }

4.2.4 Frames

In this dissertation we consider four different kinds of frames: Alt, Opt, Loop and

Break. All of which specialize the abstract Frame entity:

abstract sig Frame {}

Alt

The Alt combined fragment is intended to be used in situations where multiple

flows may be executed, one of which must be selected. This selection is based on

the evaluation of the guard condition of each operand, which is the structure that

encloses the alternative flows. As may be observed in the Alloy code (Table 4.29),

both the operands and the conditions fields are implemented using a sequence. The

intention is to have them work similarly to parallel arrays, i.e., the condition at

index 𝑛 of the conditions sequence guards the operand at index 𝑛 of the operands

sequence, the condition at position 𝑚 guards the operand at position 𝑚, etc.
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Table 4.29: Entity Alt.

Description Alloy

· operands: the sequence of operands
contained in this combined fragment.
· conditions: the sequence of condi-
tions corresponding to each operand.

sig Alt extends Frame {
operands: seq Operand,
conditions: seq Condition

}

Opt

The fields on the Opt signature are very similar to those of the Alt entity. The dif-

ference is that Opt frames only have one operand and, therefore, only one condition

(Table 4.30).

Table 4.30: Entity Opt.

Description Alloy

· operand: the operand contained in
this fragment.
· condition: the condition corre-
sponding to the operand.

sig Opt extends Frame {
operand: one Operand,
condition: one Condition

}

Even though their semantics differ substantially, Break and Loop combined

fragments’ definition is identical to Opt’s, only the name of the signature changes.

Operand

Operands are the UML structures which capture the messages that go inside com-

bined fragments. Therefore, the Operand entity contains only one property: mes-

sages. This property is defined as a sequence of actual messages, references to

other system sequence diagrams and other frames (Table 4.31).
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Table 4.31: Entity Operand.

Description Alloy

· messages: the messages contained
in the operand, which can actual mes-
sages, frames or references to other
system sequence diagram.

sig Operand {
messages: seq Message + Frame

+ Ref }

4.2.5 System Sequence Diagram

The SystemSequenceDiagram entity aggregates all the information pertaining to

a system sequence diagram. Each diagram defines its own actor, system and the

messages exchanged between them; this field is defined just like its homonym of the

Operand entity, where messages can represent actual messages or message “con-

tainers” such as references to other diagrams or combined fragments (Table 4.32).

Table 4.32: Entity SystemSequenceDiagram.

Description Alloy

· seqDid: identifies the diagram.
· system: represents the system.
· alternatives: represents the actor.
· messages: a sequence of messages
between system and actor, which can
be an actual message, a frame or a ref-
erence to another system sequence di-
agram.

sig SystemSequenceDiagram {
seqDid: one SeqDid,
system: one System,
actor: one Actor,
messages: seq Message + Frame

+ Ref }

Similarly to the inclusion of use cases, there is a constraint on system sequence

diagrams which prevents cyclic references. This is done via the references function

which returns all pairs of sequence diagrams where the first use case of the tuple

references the second:

fact { acyclic[references, SystemSequenceDiagram] }
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4.3 Interaction Overview Diagram

Considering that most of interaction overview diagrams’ intricacies are related to

sequence diagrams, much of it has already been explained. Therefore, the inter-

action overview diagram meta-model, after being stripped down of its sequence

diagram elements, is rather simple (Fig. 4.5). Interaction overview diagrams were

modeled using a semantics similar to that of linked lists. The InitialNode has a

pointer to the next node in the flow, just like every node except the final nodes.

The difference is that the initial node can point only to a decision node (Deci-

sionNode), an embedded system sequence diagram (IODSSD) or a reference to a

system sequence diagram (IODREF ), and cannot point to any of the final nodes.

On the other hand, these three kinds of nodes can point to any one of themselves

plus the two kinds final nodes. However, the decision node is a special case since

it can point to an arbitrary number of nodes, even though only one can be chosen

during the execution of an interaction overview diagram. Which one to choose

depends on the evaluation the guard condition associated to each possibility. Each

of these elements will now be presented more thoroughly as well as some of the

well-formedness rules imposed on interaction overview diagrams.

4.3.1 Interaction Overview Diagram

Due to the linked list-like semantics adopted for the modeling of interaction overview

diagrams, the mapping the of interaction overview diagram concept to Alloy (Ta-

ble 4.33) is straightforward and contains only a pointer to the diagram’s initial

node.
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-nextNode
-alt_flow

DecisionNode
-nextNode

IODSSD

InteractionOverviewDiagram

Init ialNode

IODCondit ion

FlowFinalNode

-reference : SeqDid
-nextNode

IODRef

ActivityFinalNode

2..*

conditions

1 nextNode

1 firstNode

Figure 4.5: Interaction overview diagram meta-model.

Table 4.33: Entity InteractionOverviewDiagram.

Description Alloy

· firstNode: node where the flow
starts.

one sig
InteractionOverviewDiagram {
firstNode: one InitialNode }

4.3.2 Initial Node

The initial node marks the start of the execution of an interaction overview dia-

gram. Naturally, there is only one initial node per diagram, which explains the

use of the one keyword for defining the InitialNode entity (Table 4.34).

For the identification of the node following the initial node we use the nextNode

field, which can point to either a reference to an external system sequence diagram,

an embedded system sequence diagram or a decision node.
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Table 4.34: Entity InitialNode.

Description Alloy

· nextNode: points to the next node
in the flow, which can be a reference to
a system sequence diagram, an actual
system sequence diagram or a decision
node.

one sig InitialNode {
nextNode: one ( IODRef
+ IODSSD + DecisionNode )

}

4.3.3 Decision Node

Decision nodes are the elements through which alternative flows are defined in

interaction overview diagrams. When the execution of an interaction overview di-

agram reaches a decision node several conditions are evaluated. The condition that

is evaluated as true determines the path to take, i.e., which node to execute next.

For this reason, decision nodes contain two fields, alt_flow and conditions, both

of which are modeled as sequences (Table 4.35). The types of the sequences are

different though. The elements of the alt_flow sequence represent the nodes that

may be executed next, which may be of the same types as the nextNode of initial

nodes plus the two kinds of final nodes, ActivityFinalNode and FlowFinalNode.

The conditions sequence, on the other hand, represents a sequence of conditions.

These two sequences parallel the semantics of those in Alt frames, i.e., each con-

dition in the conditions sequence guards the corresponding node in the alt_flow

sequence.

Since the basic idea behind decision nodes is to model situations where one of

several things may happen depending on the veracity of some conditions, decision

nodes have at least two outgoing edges, otherwise there would be no decision to

make (Table 4.36).

Furthermore, different outgoing edges must lead to different nodes or, again,

there would be no real decision involved (Table 4.37). This restriction is imple-
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Table 4.35: Entity DecisionNode.

Description Alloy

· alt_flow: represents the flows
which may be executed after this de-
cision node.
· conditions: the conditions that
guards each flow following this deci-
sion node.

sig DecisionNode {
alt_flow: seq ( IODRef
+ IODSSD + DecisionNode
+ ActivityFinalNode
+ FlowFinalNode )
conditions: seq IODCondition }

Table 4.36: Well-formedness rule #10: Decision nodes have two or more
outgoing edges.

Alloy Counter-example

#alt_flow > 1
r e f

[ condition ]

mented by equaling the length of the alt_flow sequence to the length of the set

comprised of the nodes being pointed to. If the first were greater than the latter,

it would mean that at least two different edges were pointing to the same node.

Table 4.37: Well-formedness rule #11: Different outgoing edges of deci-
sion nodes must point to different nodes.

Alloy Counter-example

#alt_flow = #Int.alt_flow
r e f

[ condition 2 ]

[ condition ]
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4.3.4 Ref

The IODRef entity is analogous to the Ref entity of system sequence diagrams.

The only difference is that IODRef contains the nextNode field in addition the one

that identifies the system sequence diagram to be executed (Table 4.38).

Table 4.38: Entity IODRef.

Description Alloy

· reference: identifies the diagram
which the frame references.
· nextNode: points to the next node
in the flow, which may be another ref-
erence to a system sequence diagram,
an actual system sequence diagram, a
decision node, an activity final node
or a final flow node.

sig IODRef {
reference: one SeqDid,
nextNode: one (IODRef
+ IODSSD + DecisionNode
+ ActivityFinalNode
+ FlowFinalNode)

}

4.3.5 Sequence Diagram

The sequence diagrams embedded in interaction overview diagrams are very simi-

lar to those described before. In fact, the IODSSD entity inherits from SystemSe-

quenceDiagram entity. Like most of the entities of interaction overview diagrams,

though, it also defines a nextNode property which points to the node to be executed

next (Table 4.39).

4.3.6 Activity and Flow Final Nodes

Activity and flow final nodes are the two nodes where interaction overview dia-

grams’ flows end. Although their semantics differ, the activity final node indicates

the successful termination of the flow whereas the flow final node indicates its

failure, their implementation is identical. They do not contain any internal struc-
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Table 4.39: Entity IODSSD.

Description Alloy

· nextNode: the lifeline associated to
the system points to the next node in
the flow, which may be another refer-
ence to a system sequence diagram, an
actual system sequence diagram, a de-
cision node, an activity final node or
a final flow node.

sig IODSSD extends
SystemSequenceDiagram {
nextNode: one (IODRef
+ DecisionNode + IODSSD
+ ActivityFinalNode
+ FlowFinalNode)

}

ture or special constraints besides their multiplicity, which indicates there is one

of each, at most, per interaction overview diagram:

lone sig ActivityFinalNode {}

sig FlowFinalNode {}

4.4 Conclusion

In this chapter we discussed how use cases, system sequence diagrams and in-

teraction overview diagrams were modeled in Alloy. We also identified several

well-formedness rules for each of the diagrams and explained why we thought they

were appropriate. We made this translation so we can take advantage of the Alloy

Analyzer.



Chapter 5

Transformation Rules

Transformation rules are an essential element in the systematic passage of a model

to another. This process consists in isolating each construction of a source dia-

gram and then apply the corresponding transformation rule to get the equivalent

construct of the target diagram. The purpose is to obtain models consistent with

each other to be able to propagate changes in a controlled manner every time the

requirements change, from the system specification down to its implementation.

In this context, this chapter addresses the transformation rules between use cases

and system sequence diagrams in Section 5.1 and between use cases and interaction

overview diagrams in Section 5.2. In Section 5.3, we provide a succinct example

of the application of the transformation rules.

5.1 From Use Cases to System Sequence Diagrams

This section discusses the transformation rules between use cases and system se-

quence diagrams. Specifically, we will identify how to map action steps, alternative

flows, exceptions, include relations, and extends relations to sequence diagrams.
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5.1.1 Action Steps

Action steps are use cases’ most basic constructions. It makes sense therefore to

begin by examining the transformation rules of these so we can later elaborate

more complex rules like the ones relating to alternative flows.

The representation of the actor-system dialogue is the central purpose of the

textual specification of use cases. Thus, the elementary constructions of system

sequence diagrams are the messages corresponding to the input and output action

steps. Inputs correspond to requests made to the system or entering information

required by it. Either way, inputs correspond to actions performed by the actor

“on” the system. For this reason, in system sequence diagrams inputs are rep-

resented by a message originating in the actor and which has the system as the

target (Table 5.1).

Table 5.1: Transformation rule #1: Input steps to SSD.

UC Construct SSD Construct

Input Message from the actor to the sys-
tem, with or without parameters.

Example

1. Customer enters PIN.

: System

Customer

enterPin(pin)

In contrast, output steps correspond to the request or presentation of informa-

tion to the user, which, in any case, means that the system interacted with the

user. Such steps, as presented in Table 5.2, are represented by messages sent by

the system and received by the actor.

However, the actor-system interactions are not limited to these two types.
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Table 5.2: Transformation rule #2: Output steps to SSD.

UC Construct SSD Construct

Output Message from the system to the ac-
tor.

Example

1. System requests PIN.

: System

Customer

requestPin()

Sometimes the system needs to do some calculation or change its internal state

before it can respond to a user request. These operations, corresponding to system

responsibility action steps, are represented through system self-messages. Table 5.3

provides an example.

Table 5.3: Transformation rule #3: SR steps to SSD.

UC Construct SSD Construct

System Responsibility Message from the system to itself,
which: (1) changes its state and does
not return any value; or (2), corre-
sponds to a calculation based on its
state.

Example

1. System reads data from the
card.

: System

Customer

readCard(card)

Just as sometimes it is necessary to perform some internal operation to modify



92 Chapter 5. Transformation Rules

the system’s state, in other occasions, it is necessary to refer to this state to be

able to decide what action to take next. For example, if an ATM user attempts

to withdraw a certain amount of money, the system must first check if it has that

amount available before satisfying the user’s request. Such checks correspond to

the semantics of system check action steps. On the one hand, this kind of steps

corresponds to a verification of the internal state of a system that is transparent to

the user, which is why the are represented by a system self-message. On the other

hand, they are always connected to an alternative flow. Reason why following the

verification message, there is always a frame containing the alternative flow. The

frame that should be used in each situation is indicated in Section 5.1.2.

This rule and summarized in Table 5.4.

Table 5.4: Transformation rule #4: SC steps to SSD.

UC Construct SSD Construct

System Check Message from the System to itself, rep-
resenting a state query. Followed by the
frame corresponding to the alternative(s).

Example

1. System checks whether it has
enough money on hand.
1a. System does not have
enough money on hand.
1a1. ( . . . )
1aX. Resume

a l t

[ ! moneyOK ]

: System

User

moneyOk =
checkMoneyOnHand()

Similar to checking the system state, there are situations where it is necessary

to check the user input. It may be necessary to confirm that the input is correct,

that it is in the desired format, or that it is within the range of possible values for
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the input. Whatever the reason for the verification, the system behaves in different

ways depending on its outcome.

As shown in Table 5.5, the mapping of these steps, which correspond to input

validation action steps, is performed similarly to system check steps, since they

are always associated with an alternative too.

Table 5.5: Transformation rule #5: IVAL steps to SSD.

UC Construct SSD Construct

Input Validation Message from the system to itself, repre-
senting the validation of the user’s input.
Followed by the frame corresponding to the
alternative.

Example

1. System validates PIN.
1a. Invalid PIN:
1a1. ( . . . )
1aX. Resume

o p t

[ ! validPin ]

: System

Customer

validPin =
validatePin(pin)

Not all user inputs are equal. Sometimes, the input is treated the same way

every time. When a user identifies himself to a system, for example, the system

will always check the validity of identity, whatever it may be. On other occasions,

the action that the system performs is completely dependent on user input. Menus

that display various options are a typical example, where, generally, each option

is handled in a completely distinct manner.

This type of inputs, corresponding to user decision action steps, are mapped

to system sequence diagrams through a message from the actor to the system of

the form userDecision(decision); where the decision parameter is a token that

represents the choice made by the user. As the continuation of the execution of
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the system sequence diagram depends on the choice of the actor, following this

message there is usually one Alt frame, with as many operands as the options

bestowed upon the user. The conditions that guard each alternative must be

mutually exclusive and based on the value of the decision parameter.

Should any of the operands be empty, resulting, for example, from a branch

that simply contains a Resume step, it is possible to omit that operand and use

an Opt frame instead, in case there is only one remaining operand.

Specialize steps also correspond to user decisions. The nuance is that the

user chooses an use case to perform. Thus, in each branch of the Alt interaction

fragment there will be a Ref frame referencing one of the specializing use cases.

To clarify this transformation rule, we present an example in Table 5.6.

Table 5.6: Transformation rule #6: UD steps to SSD.

UC Construct SSD Construct

User Decision userDecision(decision) message from the
actor to the system, followed by an Alt
frame containing the flows of the different
options. The guards should be mutually
exclusive and based on the decision param-
eter.

Example

1.System asks if the user wants to con-
tinue.
2. User indicates his choice.
2a. User wants to continue:
2a1. ( . . . )
2b. User does not want to con-
tinue:
2b1. ( . . . )

a l t

[ decision == yes ]

[ decision == no ]

: System

User

userDecision(decision)

continue?()
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5.1.2 Alternative Flows and Exceptions

The use cases do not always run smoothly executing only the main success scenario.

When that happens, the execution path is diverted to alternative flows, later

returning to the main flow; or to exception flows, which invariably leads to the

unsuccessful termination of the use case.

Consequently, all alternatives end with the same type of step, the Goto; and

all the exceptions end with the same step, the Failure step.

The transformation of exception flows, as shown in Table 5.7, is straightfor-

ward: the steps corresponding to the flow are captured in a break frame.

Table 5.7: Transformation rule #7: exceptions to SSD.

UC Construct SSD Construct

Exception flow. Break frame containing the excep-
tion flow’s steps.

Example

1a. Invalid card.
1a1. System ejects the card.
1a2. System notifies the user.
1a3. Failure

break

[ ! validCard ]

: System

Customer

notifiyCardInvalid()

ejectCard()

About the alternative flows, it is possible to distinguish three different types:

• Goto next or resume flows

• Parallel flows

• Cyclic flows

These flows are classified according to the nature of the Goto step that con-

cludes them in relation to the step that leads to the alternative where the Goto is.
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Specifically, if, for example, an action step of the type system check is the fourth

step of a given use case and the alternative originated by it is concluded by a Goto

step pointing to the step immediately after the system check, i.e., the fifth step,

then we are dealing with a goto next or resume alternative flow. If, however, it

points to a further step than the fifth, then the flow is said to be parallel. Finally,

cyclic flows are characterized by a Goto step that points to a step prior to the one

which causes the alternative, which in the case of the running example would be

a step prior to the fourth. The three types of flows are pictured in Figure 5.1.
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…
…

4.1
4.2
4.3

(a) Goto next

4
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…
…

4.1

4.2
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(b) Parallel

4

3

5

6

…
…

4.1
4.2

4.3

(c) Cycle

Figure 5.1: The three types of alternative flows.

The frame to be used to capture the alternative flow depends on the type of

the flow. Alternative flows of the type represented in Figure 5.1a correspond to

conditional insertions, i.e., simply correspond to the addition of behavior under

certain conditions and do not involve the repetition or failure to perform any step

of the main flow. Thus, after the message corresponding to the step that originates

the alternative, an Opt frame that contains the alternative flow is inserted. This

rule is synthesized in Table 5.8.

There are situations, however, in which the verification of a condition allows

skipping some steps from the main flow, either because it no longer makes sense to

employ these steps or because its application is no longer necessary. Whatever the

reason, this type of situation originates the so-called parallel flows (Figure 5.1b).
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Table 5.8: Transformation rule #8: goto next/resume flows to SSD.

UC Construct SSD Construct

Goto step that points to the step imme-
diately after the one which originated the
alternative where the Goto is.

Alt or Opt frame containing the respec-
tive alternative flow.

Example

1. Librarian indicates the return of a book.
2. System checks whether the delivery was
made within the time limit.
3. System confirms the delivery.
4. Success
2a. Late delivery:
2a1. System calculates the amount to be
paid.
2a2. System provides fine value.
2a3. Librarian carries out payment.
2a4. Goto 3 (or Resume)

o p t

[ ! inTime ]

: System

Librarian

performPayment()

displayFine(fine)

f ine =
calculateFineValue()

confirmDelivery()

inTime =
checkTimeLimit(code)

returnBook(code)

This type of flow involves performing one of two possible paths. If the alternative

flow’s guard condition is true, the alternative flow is executed instead of part of

the main flow; if it is false, the main flow continues normally. For this reason, the

Alt combined fragment is the proper fragment for the modeling of such flows. The

fragment shall contain two operands: one of them containing the alternative flow

and the other containing the part of the main flow skipped if the alternative is

executed (Table 5.9).

Cyclic flows model situations where it may be needed to repeat some process.

As can be seen in Figure 5.1c, part of the flow that may have to be repeated is

part of the main success scenario. This means that, regardless the guard of the

alternative is true or false, these steps are always executed at least once. This

characteristic is reminiscent of the do ... while structure several programming

languages possess, where at the end of the execution of a block of code a condition
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Table 5.9: Transformation rule #9: parallel flows to SSD.

UC Construct SSD Construct

Goto step that points to a step posterior
to the one which originated the alterna-
tive where the Goto is, skipping some
steps from the main flow.

Alt frame with two operands. One of
them will contain the alternative flow.
The other will contain the skipped part.

Example

1. Customer wants to order the selected
products.
2. System verifies that the customer is a
new customer.
3. System requests shipping information.
4. Customer enters required information.
5. System requests credit card informa-
tion.
6. Customer enters credit card data infor-
mation.
2a. Customer is regular customer:
2a1. System displays shipping, pricing and
billing information.
2a2. Goto 5

a l t

[ ! newCustomer ]

[ newCustomer ]

: System

Customer

enterCreditCardInfo(info)

requestCreditCardInfo()

enterData(data)

requestData()

displayInfo()

newCustomer =
checkCustomer(cust)

orderProducts(prods)

is evaluated and if it is true the block of code is executed again. However, the UML

does not provide any combined fragment with this semantics. To work around this,

we use the combined fragment Loop, but always keeping in mind that, to simulate

the do ... while semantics, that the Loop’s entry condition is regarded as true the

first time it is evaluated. In addition, the loop contains all messages from the main

flow starting with the one that is referenced by the Goto and until the step of the

alternative, as well as the alternative flow itself, which is enclosed in a fragment

of its own. A typical example of this type of situations is shown in Table 5.10.
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Table 5.10: Transformation rule #10: cyclic alternatives to SSD.

UC Construct SSD Construct

Goto step that points to a step anterior
to that which originated the alternative
where the Goto is.

Loop frame that encompasses everything
from the step referenced by the Goto step
up to the step of the alternative, inclusive;
the alternative being included in an Alt or
Opt frame.

Example

1. Secret agent enters the code.
2. System validates the code.
3. System launches warhead.
4. Success
2a. Invalid Code:
2a1. System requests the code again.
2a2. Goto 1

l oop

o p t

[ ! codeOk ]

[ ! codeOk ]

: System

Secret Agent

launchWarhead()

requestNewCode()

codeOk =
validateCode(code)

enterCode(code)

5.1.3 Include and Extends Relations

The passage of inclusion steps to sequence diagrams is trivial as this type of dia-

gram has a construct with identical semantics: the Ref frame . Thus, whenever a

use case references another use case via an inclusion step, such corresponds, in the

sequence diagram, to the Ref frame indicating the included use case (Table 5.11).

References to use cases performed via the extension steps are treated analo-

gously. One should just be conscious that, just as extension steps can be present

only in alternative flows, also Ref frames corresponding to these steps must be

contained within an Alt or Opt frame, depending on the type of alternative. Ta-

ble 5.12 uses a similar example to that of Table 5.8 but where the alternative flow

was abstracted in another use case.
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Table 5.11: Transformation rule #11: inclusion steps to SSD.

UC Construct SSD Construct

Use case inclusion step. Ref frame.
Example

1. Include: Withdraw Money r e f
Withdraw Money

: System

Customer

Table 5.12: Transformation rule #12: extension steps to SSD.

UC Construct SSD Construct

Use case extension step. Ref frame inside an Alt or Opt frame.
Example

1. Librarian indicates the return
of a book.
2. System checks whether the de-
livery was made within the time
limit.
3. System confirms the delivery.
4. Success
2a. Late delivery:
2a1. Extended by: Handle Fine

o p t

[ ! inTime ]

r e f
Handle Fine

: System

Librarian

confirmDelivery()

inTime =
checkTimeLimit(code)

returnBook(code)

5.2 From Use Cases to Interaction Overview Dia-

grams

This section will identify the transformation rules that allow the systematic pas-

sage of use cases to interaction overview diagrams. Instead of action steps, this

transformation focuses on action blocks. Thus, we begin by demonstrating how
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to transform action blocks into the constructs of interaction overview diagrams,

subsequently addressing the transformation of alternative flows and exceptions,

and the include and extends relations among use cases.

5.2.1 Action Blocks

Owed to the characteristics of interaction overview diagrams, the transformation

of use cases into these is performed at a level of abstraction a bit higher than the

transformation into sequence diagrams. This means that instead of performing

the transformation action step by action step it will be made on an action block

by action block basis.

For transformation purposes, we can distinguish three kinds of action blocks:

• Simple action blocks

• Action blocks with alternatives

• Action blocks initiated by a user decision

Simple action blocks consist of linear flows; i.e., none of its steps can originate

alternative flows. Thus, we can abstract each of these action blocks in external

sequence diagrams, being sure that we are not concealing paths relevant to the

supervision of the functioning of the use case. The example in Table 5.13 con-

tains two simple action blocks. One composed of steps 1 and 2 (input and output,

respectively) and another composed of steps 3 and 4 (also input and output, re-

spectively).

As we can see, each action block was transformed into a reference to the external

sequence diagram that details the steps of the action block. To complete the

example, we present these sequence diagrams in Figure 5.2.

In cases where, owed to system check or input validation action steps, an action

block leads to alternative flows, this action block will have to be divided as many
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Table 5.13: Transformation rule #13: simple action blocks to IOD.

UC Construct IOD Construct

Simple action block, i.e., with no Choice
steps.

Ref frame that references an SSD contain-
ing the messages corresponding to the steps
of the action block.

Example
1. Pharmacist indicates that he wants
to view the stock of a medicine.
2. System asks which is the desired
medicine.
3. Pharmacist enters the medicine’s
identification.
4. System shows the existing stock for
the chosen medicine.
5. Success

r e f
Choose to view stock

r e f
Identify Medicine

s d Choose to view stock

: System

Pharmacist

requestMedicine()

consultStock()

(a) Choose to view stock.

s d Identify Medicine

: System

Pharmacist

displayStock()

IdentifyMedicine(id)

(b) Identify medicine.

Figure 5.2: External system sequence diagrams.

times as the number of input validation plus system check steps that the action

block contains. Except for the last frame, the last message of each of the frames

resulting from the division, be it either a reference to an external sequence diagram

or an embedded sequence diagram, will correspond to the proper Choice action

step. After each of these frames, there comes a decision node.

In the example of Table 5.14, we can observe a use case with an action block that

consists of three action steps, where the second one corresponds to the validation of
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the user’s input and, therefore, originates to an alternative flow. Thus, this action

block is divided into two frames. The first, containing the first two messages, and

the second, containing the third. These two frames are connected via a decision

node, which is necessary because at this point in the execution, resulting from the

existence of the system check step, there are two possible ways to go and the path

to choose depends on the evaluation of the guards.

Table 5.14: Transformation rule #14: action blocks with alternatives to
IOD.

UC Construct IOD Construct

Action block with alternative flows. Originates 1+𝑛 frames, where 𝑛 is the num-
ber of IVAL + SC steps present in the ac-
tion block. The last message of the 𝑛 first
frames is the message corresponding the ap-
propriate Choice step. After each one of
the first 𝑛 frames, there is a decision node.

Example
1. Librarian indicates the return of a
book.
2. System checks whether the deliv-
ery was made within the time limit.
3. System confirms the delivery.
4. Success
2a. Late delivery:
2a1. System calculates the amount to
be paid.
2a2. System provides fine value.
2a3. Librarian carries out payment.
2a4. Goto 3 (or Resume)

r e f
Return Book and Check Time Limit

r e f
Handle Fine

s d Confirm Delivery

[ time limit
not ok ]

[ time limit ok ]

The transformation of action blocks started by a user decision is similar to the

previous case. The message corresponding to a user decision is always the last

of the frame where it is contained and after that there is always a decision node.

The peculiarity of this transformation as compared with the previous one lies in

the message concerning the user decision step, whose parameter is used in the
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guards of the decision node. Table 5.15 provides an example and summarizes this

transformation rule.

Table 5.15: Transformation rule #15: action blocks initiated by a UD to
IOD.

UC Construct IOD Construct

Action block started by a UD Decision node after the userDeci-
sion(decision) message, forking on
the possible user choices.

Example

1. System asks if the user wants a
receipt.
2. User indicates his option. (de-
cision = Yes)
3. System prints receipt.
4. Resume
2a. User does not want a re-
ceipt: (decision = No)
2a1. Goto 4

s dAsk for Receipt

s d Print Receipt

[ decision == No ]

[ decision == Yes  ]

5.2.2 Alternative Flows and Exceptions

Unlike the transformation to sequence diagrams, the characteristics of interaction

overview diagrams permit that the way of transforming alternative flows be always

the same. Specifically, regardless of where the Goto step points to, in interaction

overview diagrams, it is always represented by an arrow originated from the frame

where the Goto’s preceding message is and whose destination is the frame where

the message which corresponds to the action step the Goto points to is.

As the example of Table 5.16 shows, it is not always possible, just by reading the
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interaction overview diagram, to know the exact step, within a sequence diagram,

to which the Goto points. This would be possible if one decomposed the frame

that contains the step pointed to in several frames in order to, via the arrow,

identify the step pointed to unambiguously. However, along with the other rules

that already perform the decomposition of action blocks under certain conditions,

this could lead to an explosion of tiny frames, which would make the interaction

overview diagram overcrowded and the reading more difficult. For this reason, a

commitment was made that introduces some ambiguity in the interaction overview

diagram in exchange for keeping their construction and reading simple. In any case,

this ambiguity can be undone by looking at the transformed use case.

Table 5.16: Transformation rule #16: Goto steps to IOD.

UC Construct IOD Construct

Goto step. Arrow with origin in the frame containing
the message corresponding to the action
step which precedes the Goto step and des-
tination in the frame containing the mes-
sage corresponding to the action step for
which the Goto points to.

Example

1. Secret agent enters the code.
2. System validates the code.
3. System launches warhead.
4. Success
2a. Invalid Code:
2a1. System requests the code
again.
2a2. Goto 1

r e f
Enter and Validate Code

s d Launch Warhead

s dRequest Code

[ code not ok ]

[ code ok ]
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The transformation of exceptions into interaction overview diagrams, like into

system sequence diagrams, is relatively simple. The messages corresponding to

the steps of the exception flow are encompassed in an external sequence diagram

and the interaction overview diagram merely references this diagram. However,

to mark the failure of the use case, we adapt the semantics of the final flow node.

That is, in the context of this work, the final flow node, which is characterized by

a circle with an ’x’ in the center, symbolizes the end of a flow that leads to the

failure of the use case.

Table 5.17: Transformation rule #17: exceptions to IOD.

UC Construct IOD Construct

Exception flow. Ref frame that references an SSD con-
taining the messages corresponding to
the exception flow’s steps, followed by
a Final Flow Node.

Example
1a. Invalid Card:
1a1. System ejects the card.
1a2. System notifies the user.
1a3. Failure

r e f
Handle Invalid Card

5.2.3 Include and Extends Relations

The include and extends steps, also similarly to the transformation into sequence

diagrams, are treated identically. Each of them corresponds to a frame that refer-

ences the proper use case. The difference between the two is the fact that before

all Ref frames relating to extensions, there will be a decision node. Tables 5.18

and 5.19 summarize the rules of inclusion and extension, respectively.
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Table 5.18: Transformation rule #18: inclusion steps to IOD.

UC Construct IOD Construct

Inclusion steps. Ref frame.
Example

1. Include: Withdraw Money
r e f
Withdraw Money

Table 5.19: Transformation rule #19: extension steps to IOD.

UC Construct IOD Construct

Extension flow. Ref frame.
Example

1. Librarian indicates the return of a
book.
2. System checks whether the delivery
was made within the time limit.
3. System confirms the delivery.
4. Success
2a. Late delivery:
2a1. Extended by: Handle Fine

r e f
Return Book and Check Time Limit

r e f
Handle Fine

s d Confirm Delivery

[ time limit
not ok ]

[ time limit ok ]

5.3 Application of the Transformation Rules

The use case to system sequence diagram transformation rules can be applied in

two distinct ways. One, as the definition of the rules might suggest, is action

step-oriented; the other is flow-oriented.

The former is characterized by taking each step of the use case in a sequence,

starting with the first, and applying the corresponding transformation rule. This
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is the more direct way but may result in redrawing part of the diagram in case

a loop is found since one has to include previously drawn messages in the Loop

frame. We explain this method in-depth later on in the case study (Section 6).

The latter involves the construction of auxiliary intermediate diagrams. Con-

cretely, a flow diagram and a frame schema. This approach is more visual and

allows an early identification of loops as well as the other types of alternative flows

and exceptions. The idea is to build the structure of the sequence diagram first

and only subsequently include the messages.

Both approaches lead to the same end result; so, either one may be used.

However, depending on the context, it may make sense to use one over the other.

In complex scenarios, for example, the flow-oriented approach may prove to be

more useful due to its visual nature, which aids in understanding the execution of

the use case, and due to the additional documentation, which may be a helpful

future reference. In contrast, for simpler use cases, the overhead introduced by

building intermediate diagrams is probably unnecessary and the more direct action

step-oriented approach is more appropriate.

The transformation from use cases to interaction overview diagrams is per-

formed, as stated before, on an action block basis. Similarly to the aforemen-

tioned action step-oriented process, the transformation into interaction overview

diagrams starts with the action block that initiates the use case, if there is one

(extension use cases, for example, might not start with an action block); otherwise,

the process is started with the first action step. The corresponding rule is applied

and then the process is repeated for each of the successive action blocks (or action

steps) until the end of the use case is reached.

To succinctly illustrate the transformation procedure into both system sequence

and interaction overview diagrams we will consider a use case describing the service

payment option of an ATM (Table 5.20). We use the colour red to highlight excep-
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tions and the colour orange to highlight alternative flows. Since in this instance

we shall use the flow-oriented approach for the transformation into a sequence di-

agram, these colours will then be used in the subsequent flow diagram and frame

schema to easily identify all alternative flows and exceptions. We also colour the

action blocks to better see the correspondence in the resulting interaction overview

diagram.

Starting with the transformation into a sequence diagram and based on the

textual specification of the use case, we build a flow diagram (Fig. 5.3). A flow

diagram abstracts the details of the action steps and instead only refers to their

relative order, i.e., the order in which they are executed. This is ideal for an early

identification of all alternatives and exceptions and, since we also label include,

extend, and specialize steps, to recognize all use cases the one the flow diagram

represents interacts with.

The next step is to build the frame schema (Fig. 5.4). The frame schema de-

picts the structure of the final sequence diagram (i.e., the frames that constitute

it) and its construction is based on the previous artefacts, i.e., the canonical tex-

tual specification of the use case and the flow diagram. Since the flow diagram

intuitively illustrates loops, exceptions and other alternative flows, the choice of

frame to represent each one is made easier.

Once the frame schema is completed, all there is left is to incorporate the

messages corresponding to each action step (Fig. 5.5). The definition of the trans-

formation rules can be consulted to find out the direction of the arrows depicting

each action step, but note that the part of the rules that states what and how

frames should be used is not to be applied since the previous steps of the flow-

oriented approach to constructing sequence diagrams have taken care of that.

Concerning the transformation into interaction overview diagram, the result

is always constructed directly from the use case by applying the transformation
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Table 5.20: Textual specification of the Service Payment use case.

AB AS Actor System

M
ai

n
Su

cc
es

s
Sc

en
ar

io

Q
ue

ry

INP 1. Customer selects the service
payment option.

OUT 2. System requests payment
data.

Q
ue

ry

INP 3. Customer enters payment
data.

IVAL 4. System validates the data.
OUT 5. System displays the data and

requests confirmation.

In
pu

t
V

al
. UD 6. Customer enters his choice.

IVAL 7. System verifies if the amount
is less than or equal to the ac-
count balance.
8. Include: Register Transac-
tion.

OUT 9. System asks if customer
wants a receipt.

UD 10. Customer enters his choice.
11. Success.

A
lt

er
na

ti
ve 4a. Invalid Data:

OUT 4a1. System displays a data er-
ror message.
4a2. Goto 2.

E
xc

ep
ti

on 6a. Customer cancels the operation (decision = Cancel):
OUT 6a1. System displays error mes-

sage.
6a2. Failure.

E
xc

ep
ti

on 7a. Insufficient balance:
OUT 7a1. System displays error mes-

sage.
7a2. Failure.

A
lt

er
na

ti
ve 10a. Customer wants a receipt (decision = Yes):

10a1. Extended by : Print Re-
ceipt.
10a2. Goto 11.
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1

2

3

4

5

6

7

8

9

10

11

10a1
ALT 2

Register 
Transaction

<<include>>

4a1
ALT 1

6a1 6a2

7a27a1

EXC 1

EXC 2

Print Receipt
<<extend>>

Figure 5.3: Flow diagram of the Service Payment use case.



112 Chapter 5. Transformation Rules

1
loop [invalid data] 2

3
4

opt [invalid data]
4a1

5
6

break [ cancel operation ]
6a1

7
break [ insufficient balance]

7a1

ref
<<include>> 8
Register Transaction

9
10

opt [ want receipt ]

ref
<<extend>> 10a1
Print Receipt

Figure 5.4: Frame schema of the Service Payment use case.
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s d Service Payment

break

[ decision == cancel ]

break

[ ! isAmountOk ]

Register Transaction
r e f

o p t

[ decision == yes ]

Print Receipt
r e f

loop

[ ! isDataOk ]

o p t

[ ! isDataOk ]

ATM System

Customer

userDecision(decision)

wantReceipt?()

isAmountOk =
checkBalance(am)

notifyBalanceNotOk()

notifyOperationCanceled()

userDecision(decision)

requestConfirmation()

notifyDataNotOk()

isDataOk =
checkData(_,_,am)

enterPaymentData(_,_,am)

requestPaymentData()

selectServicePayment()

Figure 5.5: System sequence diagram of the Service Payment use case.
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rules (Fig. 5.6). We use the same color coding as before to better clarify how the

two artefacts match. The action blocks, alternatives and exceptions, inclusions

and extensions, and even the action steps that do not fall into any action block

are clearly identifiable. For a step-by-step transformation of a use case into an

interaction overview diagram see the case study (Section 6).

s d Service Payment

r e f
Request Data

r e f
Enter and Validate Data

s d Request Confirmation

s dNotify Data Not OK

s d Confirm data?

r e f
Cancel Operation

r e f
Verify Amount

r e f
Notify Insufficient Balance

r e f
Register Transaction

s dAsk for Receipt

r e f
Print Receipt

[ decision
== yes ]

[ decision
== no ]

[ balance ok ]

[ insufficient balance ]

[ decision
= =

confirm ]

[ decision
= =

cancel]

[ data not ok ]

[ data ok ]

Figure 5.6: Interaction overview diagram of the Service Payment use case.

5.4 Conclusion

In this chapter, we showed the relevance of the role that the transformation rules

play in a systematic process of model-driven development. We addressed how

this process works generally and the relevance of its main purpose, consistency.

Particularly, we presented the transformation rules of use cases to system sequence
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diagrams and of use cases to interaction overview diagrams, explaining textually

and giving graphical examples for each. Finally, we presented a concise example

of the application of the transformation rules.



Chapter 6

Case Study

Having formalized the theoretical transformation rules, it is important to see how

they are applied in practical cases. To this end, we provide the case study of

an ATM. We model a typical ATM session through some use cases and pick the

most diverse one in terms of action steps and action blocks to provide a step-by-

step exposition of the transformations into both system sequence and interaction

overview diagrams. The models corresponding to the other use cases are presented

in Appendix A.

6.1 Domain

ATMs allow clients of financial institutions to make financial transactions without

having to go to a house of the institution. With a card and a personal identification

number (PIN), clients are allowed to withdraw, deposit or transfer funds, as well as

pay for services or check their account balance. Particularly, our use case includes

the transfer and withdraw money transactions (Fig. 6.1), which can be performed

numerous times during an ATM usage session.

During a session, a customer may perform different transactions. The abstract
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act of performing a transaction is represented by the abstract use case Perform

Transaction. The specific transactions a user may accomplish, like withdrawing or

transferring money, specialize this abstract use case.

Since it is not clear at the beginning of a session which transaction will be

realized, the Perform Session has an include relation with the abstract Perform

Transaction use case, meaning that the former will include at some point, the

latter’s specializations.

Handle Invalid Pin
extension points

Transfer MoneyWithdraw Money

Handle Invalid Pin

Perform Transaction

Perform Session

Customer

ATMSystem

<<Extend>>

<<Inc lude>>

Figure 6.1: Use case diagram of an ATM system.

Every time a customer wants to perform a session he will be asked to enter his

PIN. In a typical usage scenario, the user will enter the right PIN. However, should

the PIN be wrong, the ATM will employ the proper security mechanisms. Since

these mechanisms are used only under certain circumstances, they correspond to

an alternative flow and in this case study we have abstracted that alternative into

its own use case, Handle Invalid Pin, which extends the use case directly associated

with the user, Perform Session.

The textual specification of the Perform Session use case given in Table 6.1

is already in the canonical form, a prerequisite for applying the transformation

rules. We identify and categorize all action steps and action blocks, as well as all

alternatives and corresponding flows.
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Table 6.1: Textual specification of the Perform Session use case.

AB AS Narrative

M
ai

n
Su

cc
es

s
Sc

en
ar

io

Se
rv

ic
e

INP 1. Customer inserts card.
IVAL 2. System verifies card.
SR 3. System reads card.
OUT 4. System requests PIN.

Q
ue

ry

INP 5. Customer enters PIN.
IVAL 6. System validates PIN.
OUT 7. System requests a transaction.

8. Specialize: Perform Transaction.
OUT 9. System asks if the customer wants a receipt.

Q
ue

ry

UD 10. Customer indicates his choice.
OUT 11. System asks if the customer wants to perform an-

other transaction.

In
te

rn
al UD 12. Customer indicates his choice.

SR 13. System ejects card.
SR 14. System terminates the session.

15. Success.

E
xc

ep
ti

on

2a. System cannot read card:

SR 2a1. System ejects card.
O 2a2. System notifies customer of the error.

2a3. Failure.

E
xt

. 6a. Invalid PIN:

6a1. Extended by : Handle Invalid PIN.

A
lt

. 10a. Customer wants a receipt (decision = Yes):
SR 10a1. System prints receipt.

10a2. Resume.

A
lt

. 12a. Customer wants to perform another trans-
action (decision = Yes):
12a1. Goto 7.

A
lt

.

12b. Customer does not want to perform another
transaction (decision = No):

SR 12b1. System registers the decision.
12b2. Resume.
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6.2 From Use Cases to System Sequence Diagrams

In this section, we transform the Perform Session use case into its system sequence

diagram counterpart. We divide the aforementioned use case into small portions

of behaviour so one can better understand how the transformation rules are used

in practice. The transformation of the use case into system sequence diagrams is

done one action step at a time. However, since the transformation of non-Choice

action steps is straightforward, instead of explaining their transformation one by

one, we will, where appropriate, explain them together with other steps. Before

starting the transformation, though, to provide a proof of concept, we will present

the flow diagram (Fig. 6.2) and frame schema (Fig. 6.3) of the use case we are

about to transform. This will show that both approaches indeed coincide in the

end result.

6.2.1 Step One

The first step of the use case consists of an input step, whose transformation is

trivial. As stated in Section 5.1.1, input steps are mapped into system sequence

diagrams by a message from the user to the system. Here, we have called it

insertCard and passed it a card argument (Table 6.2).

Table 6.2: Transformation of Perform Session’s step 1 to SSD.

UC Construct SSD Construct

1. Customer inserts card.

: ATMSystem

Customer

insertCard(card)
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1

2

3

4

5

6

7

8

9

10

11

12

10a1
ALT 1

Perform 
Transaction

<<specialize>>

2a1 2a2 2a3

Handle Invalid Pin
<<extend>>

EXC 1

ALT 2
12b1

13

14

15

ALT 3

6a1

Figure 6.2: Flow diagram of the Perform Session use case.



6.2. From Use Cases to System Sequence Diagrams 121

1
2

break [ card not ok ]
2a1
2a2

3
4
5
6

opt [ invalid PIN ]

ref
<<extend>> 6a1
Handle Invalid Pin

loop [ want more transactions ] 7
8

alt [ withdraw money ]

ref
<<include>> 8a1
Withdraw Money

[ transfer money ]

ref

<<include>> 8b1
Transfer Money

9
10

opt [ want receipt ]
10a1

11
12

opt [ no more transactions ]
12b1

13
14

Figure 6.3: Frame schema of the Perform Session use case.
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6.2.2 Step Two

The second step of the use case validates the input of the previous one. So, it

corresponds to an Input Validation use case construct, which implies an alternative

flow. According to the rule summarized in Table 5.5, the validation step itself

corresponds to a system self-message in the system sequence diagram.

For the alternative, we need to inspect its last step to decide which frame to

use. In this instance, it is a Failure step, signalling the alternative flow models

an exception. This means that the suitable option is to use the Break frame.

As the alternative flow is composed of two steps, one corresponding to a system

responsibility and the other to an output, we placed two messages inside the Break

frame. The first being a system self-message mapping the system responsibility

step, and the second a message from the system to the customer, reproducing the

output (Table 6.3).

Table 6.3: Transformation of Perform Session’s step 2 to SSD.

UC Construct SSD Construct

2. System verifies card.

2a. System cannot read card:
2a1. System ejects card.
2a2. System notifies customer of
the error.
2a3. Failure.

break

[ ! isCardOk]

notifyCardNotOk()

ejectCard()

isCardOk =
checkCard(card)

6.2.3 Step Three

The use case’s steps 3 to 7 are of the same type of action steps as the ones already

alluded to. For this reason, we present their transformation together. The trans-

formation of steps 3 (corresponding to message readCard(card)), 4 (requestPin()),
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5 (enterPin(pin)) and 7 (requestTransaction(transOptions)) is direct since, owed

to the type of action step they represent, their transformation is always identical.

The transformation of step 6 is analogous to that of step 2 as they are both

input validations. However, there are two differences. The first one is about the

type of the step in the alternative flow, which indicates that use case Handle

Invalid Pin extends the one we are working on and, therefore, corresponds, in the

system sequence diagram, to a Ref frame. The second distinction is the last step

of the alternative. Since it is concluded by a Resume step, the flow is of the goto

next/resume type. This indicates that, as elucidated by the rule in Section 5.1.2,

we use the Opt frame to encompass the alternative flow (Table 6.4).

Table 6.4: Transformation of Perform Session’s steps 3 through 7 to SSD.

UC Construct SSD Construct

3. System reads card.
4. System requests PIN.
5. Customer enters PIN.
6. System validates PIN.
7. System requests a trans-
action.
6a. Invalid PIN:
6a1. Extended by : Handle
Invalid PIN.

o p t

r e f
Handle Invalid Pin

[! isPinOk]

requestTransaction(transOptions)

requestPin()

isPinOk = checkPin(pin)

enterPin(pin)

readCard(card)

6.2.4 Step Four

Step 8 of the use case corresponds to a Specialize step. This step specifies that

a user will be able to perform one among a number of use cases, each of which

specializing the use case referenced by the step. This allows specifying textual use

cases that will remain unaltered as the number of specializations changes.
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“Under the hood”, though, a Specialize step corresponds to a user decision.

The decision the user has to make is which specializing use case to perform. Each

different specialization is enclosed in its own alternative, with an Include step

referencing it. In this specific case, for example, there would be two alternatives.

One for the Withdraw Money use case and another for the Transfer Money use

case (Table 6.5).

Table 6.5: Concretization of the Specialize step.

AS Narrative

7. . . .
UD 8. Customer selects the desired transaction.

9. . . .

8a. Customer wants to withdraw money (decision = Withdraw
Money):
8a1. Include: Withdraw Money.

8b. Customer wants to transfer money (decision = Transfer
Money):
8b1. Include: Transfer Money.

The transformation of Specialize steps, into system sequence diagrams, is based

on their concretization. Therefore, step 8 of the Perform Session use case is mapped

to system sequence diagrams by a user decision message (userDecision(transaction)),

while its alternatives are enclosed in an Alt frame (Table 6.6).

6.2.5 Step Five

Step 9 of the flow is an output step. It consists of the ATM asking the customer

if he wants a receipt and is mapped to system sequence diagrams like all outputs,
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Table 6.6: Transformation of Perform Session’s step 8 to SSD.

UC Construct SSD Construct

8. Specialize: Perform Transaction.

a l t

r e f
Withdraw Money

r e f
Transfer Money

[ transaction == transferMoney ]

[ transaction == withdrawMoney  ]

userDecision(transaction)

a message from the system to the actor. Here, we called it needReceipt?().

Step 10 is a user decision. Unlike the user decision corresponding to Specialize

steps though, the customer choice is binary, being allowed to choose only between

“yes” or “no”. Since the “no” alternative simply means to continue in the main

flow (the textual specification of the alternative would just contain a Resume

step) we have omitted it. Thus, only the “yes” alternative was explicitly specified.

Hence, and because a Resume step concludes the alternative, we use an Opt frame.

Inside the frame, we place a system self-message corresponding to the system

responsibility step (Table 6.7).

Table 6.7: Transformation of Perform Session’s steps 9 and 10 to SSD.

UC Construct SSD Construct

9. System asks if the customer
wants a receipt.
10. Customer indicates his
choice.
10a. Customer wants a re-
ceipt (decision = Yes):
10a1. System prints receipt.
10a2. Resume.

o p t

[ decision == yes ]
printReceipt()

userDecision(decision)

needReceipt?()
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6.2.6 Step Six

This step is analogous to the previous one. There is an output action step followed

by a user decision action step. Invariably, the first one corresponds to a message

sent by the system to the user. The user decision, however, is still different to the

previous ones owed to the nature of the corresponding alternatives.

Similarly to the user decision of step 10, the choices provided in this step are

“yes” and “no” as well. The body of the alternative corresponding to the “yes”

branch reveals just a Goto step. However, the Goto points to step 7, originating,

thus, a cycle. Following the rule for cyclic alternatives, we construct a Loop

frame encompassing everything from the message corresponding to step 7 until

the message corresponding to the user decision on step 12.

On the other hand, the “no” branch contains a system responsibility action step

and ends with a Resume step. Therefore, Opt is the right frame to use and it will

contain a system self-message (setWantMoreTransactions(false)) corresponding to

step 12b1 (Table 6.8).

6.2.7 Step Seven

The last two action steps of the use case are system responsibilities, which are

trivially transformed into system self-messages (Table 6.9). The Success step marks

the end of the use case and has no special transformation into system sequence

diagrams other than concluding the diagram.
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Table 6.8: Transformation of Perform Session’s steps 11 and 12 to SSD.

UC Construct SSD Construct

11. System asks if the customer
wants to perform another trans-
action.
12. Customer indicates his
choice.
12a. Customer wants to per-
form another transaction (de-
cision = Yes):
12a1. Goto 7.
12b. Customer wants to per-
form another transaction (de-
cision = No):
12b1. System registers the deci-
sion.
12b2. Resume.

l oop

a l t

r e f
Withdraw Money

r e f
Transfer Money

o p t

o p t

[ decision == yes ]

[ transaction == transferMoney ]

[ transaction == withdrawMoney  ]

[ decision == no ]

[ wantMoreTransactions ]

setWantMoreTransactions(false)

userDecision(decision)

printReceipt()

userDecision(decision)

needReceipt?()

userDecision(transaction)

moreTransactions?()

requestTransaction(transOptions)

Table 6.9: Transformation of Perform Session’s steps 13,14 and 15 to SSD

UC Construct SSD Construct

13. System ejects card.
14. System terminates the ses-
sion.
15. Success.

terminateSession()

ejectCard()
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6.3 From Use Cases to Interaction Overview Dia-

grams

The transformation of use cases into interaction overview diagrams is done by

transforming one action block at a time. The Perform Session use case contains

four action blocks, but since steps 8 and 9 are not part of any of them, the trans-

formation is divided into six parts. One for each action block and another for each

one of the steps 8 and 9.

6.3.1 Step One

We start the transformation of the use case to an interaction overview diagram

by examining the first action block (steps 1 to 4). Analyzing the steps in the

action block, it is possible to see that there is an input validation step. As input

validation steps originate alternatives, the rule summarized in Table sh5.14ould

be used.

Following the rule, we divide the action block in two and the Insert and Verify

Card and Request Pin Ref frames are created. The former contains the messages

corresponding to steps 1 and 2, while the latter contains the other two. Still

following the same rule, a decision node is placed after the first Ref frame. The

decision node has two outgoing edges, one representing the alternative flow and

another representing the continuation of the main flow. We enclosed the messages

corresponding to the alternative flow in a third Ref frame, which we designated

Cancel Session. Since the alternative models an exception, we linked this frame to

a flow final node. The branch of the decision node that represents the main flow

is linked to the frame containing the second half of the action block (Table 6.10).
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Table 6.10: Transformation of Perform Session’s first action block to IOD.

UC Construct SSD Construct

1. Customer inserts card.
2. System verifies card.
3. System reads card.
4. System requests PIN.
2a. System cannot read card:
2a1. System ejects card.
2a2. System notifies customer of the
error.
2a3. Failure.

r e f
Insert and Verify Card

r e f
Request Pin

r e f
Cancel Session

[ card not ok ]

[ card ok ]

6.3.2 Step Two

Continuing the transformation, we analyze the second action block (step 5 to 7).

Like the first, this action block contains an input validation action step and the

same rule should be used. Therefore, we divide the action block in two, placing the

messages corresponding to steps 5 and 6 in the first half (the Enter and Validate

Pin frame) and the message corresponding to the last step on the second half (the

Request Transaction frame). Analogously to the previous case, these two frames

are connected via the main flow branch of the decision node. The alternative flow

branch leads to a frame referencing the Handle Invalid Pin system sequence dia-

gram. This frame was constructed following the transformation rule for extensions,

which is what the alternative flow specified in the use case consists of. Since the

last step of the Handle Invalid Pin use case is a Resume step, the equivalent a

Goto step pointing to the next step in the main flow, the frame referencing this

use case joins the main flow at the Request Transaction frame (Table 6.11).
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Table 6.11: Transformation of Perform Session’s second action block to IOD.

UC Construct SSD Construct

5. Customer enters PIN.
6. System validates PIN.
7. System requests a transaction.
6a. Invalid PIN:
6a1. Extended by : Handle Invalid
PIN.

r e f
Enter and Validate Pin

r e f
Handle Invalid Pin

s dRequest Transaction

[ pin ok ]

[ pin not ok ]

6.3.3 Step Three

Step 8 of the use case is a Specialize step. Since this type of steps correspond to

user decisions, the rule for transforming action blocks initiated by a user decision

applies. The message corresponding to the user decision is placed in the previous

frame of the flow and that frame is succeeded by a decision node. The decision

node’s outgoing edges each represent one of the options available to the user.

Here, the customer may choose between transferring money or withdrawing money

(Table 6.12).

Table 6.12: Transformation of Perform Session’s step 8 to IOD.

UC Construct SSD Construct

8. Specialize: Perform
Transaction. r e f

Withdraw Money

r e f
Transfer Money

s dRequest Transaction

[ transaction ==
TransferMoney ]

[ transaction ==
WithdrawMoney ]
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6.3.4 Step Four

After each transaction, the customer is provided the choice to print a receipt,

represented by step 9 of the use case. This step does not belong to any action

block and, therefore, is simply depicted as an embedded sequence diagram by

itself (Table 6.13).

Table 6.13: Transformation of Perform Session’s step 9 to IOD.

UC Construct SSD Construct

9. System asks if the customer
wants a receipt.

s dAsk About Receipt

6.3.5 Step Five

The following action block comprises steps 10 and 11. As step 10, the first step of

the action block, is a user decision, the suitable rule to use is the one used before

for step 8; i.e., the rule for action blocks initiated by user decisions. As before,

the message corresponding to the user decision is placed in the previous frame.

After which there is a decision node. Again, one of the options the user can take

keeps him in main flow while the other leads him to an alternative flow. The main

flow branch is connected to the frame containing the remaining messages of the

action block; here, the message corresponding to step 12 (moreTransactions?()).

The alternative flow related to this action block contains a single action step,

which is depicted inside the Print Receipt frame in Table 6.14, and is concluded

by a Resume step. This means that the alternative flow rejoins the main flow
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at the step after the user decision, which in this case means the Ask About More

Transactions frame.

Table 6.14: Transformation of Perform Session’s third action block to IOD.

UC Construct SSD Construct

10. Customer indicates his
choice.
11. System asks if the cus-
tomer wants to perform an-
other transaction.
10a. Customer wants a re-
ceipt (decision = Yes):
10a1. System prints receipt.
10a2. Resume.

s d Ask About More Transactions

s d Print Receipts dAsk About Receipt

[ decision
== Yes ]

[ decision
== No ]

6.3.6 Step Six

The last action block of the use case (steps 12 to 14) again begins with a user

decision. The transformation is analogous. First, the user decision message is put

on the previous frame of the flow, then a decision node is included in the diagram

follows. This time, however, there are two distinct alternative flows branching from

the decision node. The alternative where the customer chooses to perform more

transactions contains a single step, a Goto. The rule used in this case is the same

we used before for flows that ended with a Resume step; i.e., an arrow leading to

the frame where the message corresponding to the action step pointed by the Goto

is. Here, choosing to perform more transactions leads to the Request Transaction

frame. If, otherwise, the user decides not to perform more transactions, the deci-

sion node leads to the Register Decision frame, which is the frame that contains

the corresponding alternative flow. Since that alternative flow is concluded by a
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Resume step, the respective frame joins the main flow, which corresponds to the

second part of the action block, the Eject Card and Close Session Ref frame. After

which the use case terminates with success (Table 6.15).

Table 6.15: Transformation of Perform Session’s fourth action block to IOD.

UC Construct SSD Construct

12. Customer indicates his
choice.
13. System ejects card.
14. System terminates the ses-
sion.
15. Success.
12a. Customer wants to
perform another transac-
tion (decision = Yes):
12a1. Goto 7.
12b. Customer wants to
perform another transac-
tion (decision = No):
12b1. System registers the de-
cision.
12b2. Resume.

Eject Card and Close Session
r e f

s d Ask About More Transactions

s dRequest Transaction

s dRegister Decision

[ decision
== No]

[ decision
== Yes ]

6.4 Consistency Verification

To verify the consistency of the transformed models, each one has been coded in

Alloy. For this purpose, the entities that allow instances have been made abstract

so that we can control which instances the Alloy Analyzer creates. Had we not

done this, besides our manually created instances which are unique owed to the

one multiplicity keyword used in their signature, the Alloy Analyzer would create

random ones by itself.

The code for each instance is excessively long, so here we will just present some
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snippets. The following snippet shows how the entities corresponding to the use

case model, actor and use cases were instanced in Alloy:

one sig ATMUseCaseModel extends UseCaseModel {}

one sig Customer extends User {}

one sig PerformSession, PerformTransaction, HandleInvalidPIN,

WithdrawMoney, TransferMoney extends UseCase {}

Instantiating an entity is done analogously for all entities. The relations be-

tween entities are modeled via facts. The following snippet, taken from the Perform

Session interaction overview diagram instance, depicts a fact stating the sender and

receiver of some messages:

fact messages {

source = requestTransaction -> ATMSystem +

printReceipt -> ATMSystem +

moreTransactions -> ATMSystem

target = requestTransaction -> Customer +

printReceipt -> ATMSystem +

moreTransactions -> Customer

}

Manually creating the instances in Alloy is a time-consuming and error-prone

process. Also, debugging complex and long Alloy models, as the instances tend

to be, is difficult since Alloy only states whether a model is consistent or not and

does not provide an easy way to find the error and fix it. It is not uncommon that

inconsistencies are caused by a faulty description of the instances rather than by

faulty model transformations.
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6.5 Conclusion

In this chapter, we have applied the transformation rules provided in Chapter 5 in a

practical context. We picked the domain of ATMs and created use cases that model

a typical usage session. The chosen use case for the step by step transformation,

both into system sequence and interaction overview diagrams, was the one that

modeled a session as whole because it was the richest in terms of the different

action steps and action blocks contained.
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Chapter 7

Conclusion and Future Work

In this thesis we have presented a canonical form for writing textual use cases, rules

for the systematic transformation of use cases to system sequence diagrams and

interaction overview diagrams and a formal mechanism for verifying the correction

of these transformations.

The Unified Modeling Language (UML) specification provides meta-models

and Object Constraint Language (OCL)-based rules for the well-formedness of its

diagrams in an attempt to imbue some degree of formalization into the language.

However, the textual representation of use cases, a resource commonly used in

practice, is not touched upon by the specification. Hence, there is not a standard

way to textually specify use cases. The canonical form of writing use cases proposed

in this thesis attempts to provide a methodical and structured way to specify use

cases which, furthermore, lays down the basis for the progressive design of the

software system.

Using this basis as a solid foundation upon which to build the rest of the

computer system, a set of transformation rules was developed to continue the

systematic construction of the system. The transformation rules use the meta-

data existent in the use cases and map it to both system sequence diagrams and
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interaction overview diagrams. The application of these rules is systematic and

provides a way of methodically and unambiguously construct the aforementioned

diagrams. This means that if two independent modelers were given the same use

case, they should arrive to the same system sequence diagram and interaction

overview diagram. We believe this level of determinism is crucial to eliminate

many of the errors that arise during the design phase of a software project.

Moreover, since UML is only semi-formal, we have used Alloy to develop fully

formalized meta-models of use case diagrams and their textual representations,

system sequence diagrams, and interaction overview diagrams. Using this formal

basis, we also developed a mechanism for the verification of the transformation

process. Thus, it is possible for a modeler to confirm the transformation is accurate.

However, as in any project, there is always room for improvement either by

adding new features or perfecting the existing ones. One way the current work

could be improved would be by implementing a module to automatically transform

use cases to system sequence diagrams and interaction overview diagrams. This

feature would save time and possibly avoid transformation errors, considering that

the manual transformations, although systematic, are not error safe.

Also, as mentioned before, creating the Alloy instances to be analyzed is a

time-consuming and error prone process. An external tool with capacity to create

the UML models and automatically generate the corresponding Alloy code would

make this process a lot more agile and robust.

The application of this work in more practical contexts could also uncover

some other limitations. Thus, empirical studies of projects using this methodology

are encouraged and could result in the discovery of more transformation rules or

modifications on the existing ones.

Another line of work would be to add more UML diagrams to the process.

Particularly, refined sequence diagrams and posteriorly class diagrams would be a
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logical next step to making the framework more thorough and comprehensive.
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Appendix A

Case Study Diagrams

A.1 Textual Use Cases

Table A.1: Textual specification of the Transfer Money use case.

AB AS Narrative

M
.S

.S
ce

na
ri

o

Q
ue

ry

INP 1. Customer chooses to transfer money.
OUT 2. System requests the type of account to transfer from,

an account to transfer to, and the amount of money to
transfer.

V
al

id
at

io
n INP 3. Customer enters requested data.

IVAL 4. System verifies if the amount is less than or equal to
the account balance.
5. Resume.

E
xc

ep
ti

on

4a. Amount > Balance:

OUT 4a1. System notifies customer of insuficient balance.
SR 4a2. System ejects card.

4a3. Failure.
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Table A.2: Textual specification of the Handle Invalid Pin use case.

AB AS Narrative

M
.S

.S
.

OUT 1. System requests PIN again.

V
al

. INP 2. Customer reenters PIN.
IVAL 3. System validates PIN.

4. Resume.

A
lt

. 3a. Second invalid PIN submission:

3a1. Goto 1.

E
xc

ep
ti

on

3b. Third invalid PIN submission:

SR 3b1. System retains card.
OUT 3b2. System notifies customer.
SR 3b3. System terminates session.

3b4. Failure.
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Table A.3: Textual specification of the Withdraw Money use case.

AB AS Narrative

M
ai

n
Su

cc
es

s
Sc

en
ar

io Q
ue

ry

INP 1. Customer chooses to withdraw money.
OUT 2. System asks for a type of account to withdraw money

from.

Q
ue

ry INP 3. Customer selects the type of account.
OUT 4. System request the amount of money to withdraw.

In
te

rn
al

INP 5. Customer enters the amount of money to withdraw.
IVAL 6. System verifies if the amount is less than or equal to

the account balance.
SC 7. System verifies if it has sufficient money on hand.
SR 8. System dispenses the cash.

9. Resume.

E
xc

ep
ti

on

6a. Amount > Balance:

OUT 6a1. System notifies customer of insufficient balance.
SR 6a2. System ejects card.

6a3. Failure.

A
lt

er
na

ti
ve

7a. System does not have sufficient money on
hand:

OUT 7a1. System notifies customer there is not enough
money on hand.

OUT 7a1. System asks customer to enter a smaller amount.
7a2. Goto 5.
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A.2 System Sequence Diagrams

s d Transfer Money

break

[ ! isAmountOk ]

: ATMSystem

Customer

ejectCard()

notifyBalanceNotOk()

isAmountOk =
checkBalance(am)

enterTransferData(_,_,am)

requestTransferData()

selectTransfer()

(a) System sequence diagram of the
Transfer Money use case.

s d Handle Invalid Pin

loop

[ ! isPinOk]

break

[3rd invalid pin]

: ATMSystem

Customer

terminateSession()

notifyCardRetained()

retainCard()

isPinOk = checkPin()

reenterPin()

requestNewPin()

(b) System sequence diagram of the
Handle Invalid Pin use case.

Figure A.1: System sequence diagrams of the Transfer Money and Handle Invalid
PIN use cases.
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s d Withdraw Money

loop

[ ! isMoneyOk ]

o p t

[ ! isMoneyOk ]

break

[ ! isAmountOk ]

: ATMSystem

Customer

dispenseCash()

requestSmallerAmount()

notifyMoneyNotOk()

isMoneyOk =
checkMoneyOnHand()

ejectCard()

notifyBalanceNotOk()

isAmountOk =
checkBalance(am)

enterAmount(am)

requestAmount()

enterAccType()

requestAccType()

selectWithdraw()

Figure A.2: System sequence diagram of the Withdraw Money use case.
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A.3 Interaction Overview Diagrams

s d Transfer Money

r e f
Choose Transfer Money

r e f
Enter Data and Validate Amount

r e f
Notify and Eject Card

[ amount not ok ]

[ amount ok ]

Figure A.3: Interaction overview diagram of the Transfer Money use case.

s d Handle Invalid Pin

s d Request New Pin

r e f
Reenter Pin

r e f
Retain Card and Terminate Session

[ 3rd wrong pin ]
[ 2nd wrong pin ]

[ pin ok ]

Figure A.4: Interaction overview diagram of the Handle Invalid Pin use case.
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