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Abstract

The modelling and simulation of complex systems in natural science usu-

ally require powerfull and expensive computational resources. The study of

the plane wave properties in crystals, based on quantum mechanichs pose

challenging questions to computer scientists to improve the efficiency of the

numerical methods and algorithms. Numerical libraries had a significant

boost in recent years, taking advantage of multi-threaded environments.

This dissertation work addresses efficiency improvements in a plane wave

package, CPW2000, developed by a physicist scientist, targeted to a het-

erogeneous platform with multicore CPU and CUDA enabled GPU devices.

The performance botlenecks were previously identifed as being the module

functions with FFT computations, and the study started with the applica-

tion analysis and profiling. This study shows that (i)over 90% of the code

execution time was spent in two functions, DGEMM and FFT, (ii) code ef-

ficiency of current numerical libraries is hard to improve, and (iii) DGEMM

function calls were spread in the code, while FFT was concentrated in a

single function.

These features were adequately explored to develop a new code version

where parts of the code are computed on a multicore CPU with others tak-

ing advantage of the GPU multistreaming and parallel computing power.

Experimental results show that CPU-GPU combined solutions offer near

10x speedup on the program routines that we proposed to improve, giving

us a promising future work.





Computação eficiente do software CPW2000 em

plataformas heterogêneas CPU-GPU

Resumo

A modelação e simulação de sistemas complexos em áreas cientificas geral-

mente necessita de enormes e dispendiosos recursos computacionais de pro-

cessamento. O estudo das propriedades de cristais em ondas planas, com

base na mecânica quântica, oferece alguns desafios aos cientistas da com-

putação para melhorar a eficiência dos métodos numéricos e algoritmos. As

bibliotecas numéricas evoluiram muito tirando vantagem de ambientes mul-

tithreading de computação.

O trabalho apresentado nesta dissertação baseia-se na melhoria da eficiência

de um programa de ondas planas, o CPW2000, desenvolvido por um inves-

tigador da área da f́ısica, orientado para uma plataforma heterogênea de

computação com um CPU multicore e um GPU com suporte á plataforma

CUDA. As principais causas da deterioração da eficiência foram identifi-

cadas no módulo que contêm os cálculos de FFT, e o estudo começou com

a análise dos tempos de execução de cada componente da aplicação. Este

estudo mostra que (i) mais de 90% do tempo total de computação é divi-

dido por duas funções, DGEMM e FFT, (ii) é dificil de melhorar a eficiência

das bibliotecas numéricas atuais, e (iii) que as funções DGEMM estão dis-

tribúıdas pela aplicação enquanto as funções FFT estão concentradas numa

função.

Estas caracteristicas foram devidamente exploradas de forma a desenvolver

código em que partes deste executa num CPU multicore e outras aproveitam

o paralelismo e multistreaming presente nos GPU. Resultados experimentais

mostram que as soluções combinadas de CPU-GPU oferecem uma melho-

ria de aproximadamente 10x nas funções que nos proposemos a melhorar a

eficiência, culminando num trabalho futuro promissor.
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grams; API standard for publishing li-

braries to perform basic linear algebra

operations such as vector and matrix

multiplication.

DGEMM General Matrix Multiply

(GEMM). The first letter identifies the

precision of the operation, in this case d

stands for double-precision.

C60 A fullerene molecule composed en-

tirely of 60 carbon atoms.
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derived unit of pressure, internal pres-

sure, stress, Young’s modulus and ten-

sile.(unit Pa)
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Introduction

1.1 Context

Fields of study such as physics and chemistry use large systems of linear equations to

model and describe the forces of the universe and the most common method to model

and describe these large systems is using matrix operations of linear algebra. We may

state that the core of many scientific software is based on BLAS and other numerical

routines. And we can conclude that the performance offered by this software is condi-

tioned by the performance offered by the different adopted libraries.

In this document we present the CPW2000 software, a complete plane wave pack-

age (quantum mechanics field of study) for new hardware generations. CPW2000 was

developed by Prof José Lúıs Martins1 and, like most of the scientific software, is strongly

dependent on the performance offered by BLAS and other numerical libraries. This

application has assisted, beyond the software author, some researchers on their work

(1, 2) and for now is only available by author permission.

Our work will be focused on improving the efficiency of the most computational in-

tensive algorithms and libraries used on CPW2000 targeted for current CPU and GPU

architectures, and not focused on benchmarking CPW2000 against similar software

from competitors. Since quantum mechanics is beyond the goals of this dissertation,

1JLM is the author of the CPW2000 simulation package, that he developed during his stay at USA.

He is currently a Professor at IST/UTL in Lisbon, and Senior Researcher at INESC-MM.
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1. INTRODUCTION

we will not discuss the efficiency of the quantum mechanics algorithms in CPW2000

and we will not detail the theory behind quantum mechanics. Instead, we will focus our

expertise to improve CPW2000 overall performance by identifying the most intensive

numerical functions and the best approaches to code these algorithms to execute in

current CPU-GPU based computer systems.

The end-user perspective

Quantum mechanics is a field of study that aims to explain how matter and energy

change in time at different levels: sub-atomic (the smaller particles composing the

atom), atomic and molecular. The basis of quantum mechanics is the Schr̈odinger

equation (3):

Time dependent : i~
∂ψ

∂t
= Ĥψ (1.1)

Time independent : Eψ = Ĥψ (1.2)

where i is the imaginary unit, ~ is the reduced Planck constant, i~∂ψ∂t is the energy

operator, and Ĥ is the Hamiltonian operator (3, 4).

Solving the Schr̈odinger equation is hard due to the complexity of the system and

different approaches exist: the many body problem, mean-field-based ab initio methods,

many body ab initio methods and density functional theory (DFT) (1). CPW2000 uses

the DFT approach, one of the most successful and popular electronic methods available

to compute materials properties, with a pseudo-potential plane wave basis set (1, 5).

The computing perspective

The computing perspective can be divided into two different and strongly intercon-

nected views: the hardware and the software view. Concerning hardware, we want to

take advantage of the computing power/capabilities of new GPU devices as computing

units oriented to massive multi-threading and with very large number of cores units

to perform parallel computations under the SIMD approach. We also aim to obtain

the best performance of recent CPU architectures ,characterized by multi-core parallel

2



1.2 Motivation and objectives

computing devices (which is escalating to the many-core age (6)) with each core having

its specific features (e.g.,SIMD extensions and multi-level caches).

The software view is strongly connected with the hardware view since we aim to achieve

the best efficiency of each library at each different hardware configuration. To achieve

the best efficiency several factors must be underlined for a selected algorithm/library:

scalability and workload, communications latency, memory accesses and cache man-

agement.

1.2 Motivation and objectives

Our motivation is strongly related with the computing perspective described before.

Given an application that has intensive computational requirements, an effective use

of the resources and an efficient distribution of the workload among different devices in

a system, may increase the software performance and consequently decrease the total

run time of the referred software that can last for minutes or hours.

Our gold objective is to minimize the total run time of a software application. Consider-

ing that quantum mechanics is an intensive field of research, our work can be classified

as the first phase of a larger project. We will try to identify the most intensive compu-

tational routines, improve their efficiency, and give some impressions for what can be

done in future work to further improve the execution performance. The second phase

of the project, having a stable improved version, is to build a software library ready

to be available to other scientists. In this initial work we did not explore the second

phase of the project, which will require other aspects beyond the computational ones.

1.3 Dissertation structure

Next chapter describes the DFT plane wave pseudo-potentials theory and how CPW2000

implements this theory, with the main focus on the numerical algorithms and libraries.

We will also identify and characterize the most intensive algorithm/libraries, describe

their design and discuss how their efficiency can be improved. This chapter concludes

with a presentation of the target platforms that CPW2000 is currently tuned to execute

on.

Chapter 3 presents our approach to improve the intensive algorithms and libraries

3



1. INTRODUCTION

detected on chapter 2, and their design and implementation on current computing ar-

chitectures and presents and assesses the performance improvements.

The last chapter concludes the the work focusing on the obtained results an presents

suggestions for future work.

4



2

The computational simulation of

materials using plane waves

2.1 General framework for a description of materials

The starting point to model the behaviour of a material is a system energy function:

ε(si, ψnj , λk) (2.1)

where si are the atomic coordinates, ψnj is the jth component of the electrons wave

function n in a given basis, and λk are exterior variables of the problem (for example:

temperature, pressure or magnetic field).

From a thermodynamic view, λk are the macroscopic variables, while the others

are microscopic. The macroscopic variables are defined by environmental conditions,

and for each set of macroscopic variables there is a probability distribution to observe

a certain value of microscopic variables that is proportional to the Boltzmann factor at

a given temperature T, which is given by

e
ε

kBT (2.2)

where kB is the Boltzmann constant. In a simulation we may be interested in several

experimental conditions. For example a study of minerals of Earth’s mantle (which

we do not have direct access) we may be interested in pressures between 0 and 350

5



2. THE COMPUTATIONAL SIMULATION OF MATERIALS USING
PLANE WAVES

GPa1and could, for example, perform 36 simulations with 10 GPa intervals. Each one

of these simulations would be independent. If we want to find the equilibrium structure

of the mineral we must find its minimum of energy, that is, for each pressure λk we do

the minimization

E(λk) = min
si

min
ψnj

ε(si, ψnj , λk) (2.3)

For simulations at finite temperature we must sample ε which can be done with

Monte-Carlo or molecular dynamics methods. However, the numerical challenges are

the same for a minimization of the function or its sampling, namely we must efficiently

compute the value of the function and some of its derivatives; we only discuss here the

case of the minimization (4, 5, 7).

System complexity

The quantity that governs the number of variables that describe the system, e.g. the

system complexity in eq. 2.1 is the number of atoms Nat in the system. For an isolated

molecule, that is the number of its atoms. For a crystal that is a periodic repetition

of an atomic arrangement, it is the number of atoms in the arrangement that is being

repeated (called unit cell).

Since we are working in a 3 dimensional space, the number of si variables is 3Nat plus,

in the case of a crystal, the 6 extra variables which describe the crystal primitive unit

cell.

For the parameters that describe the electron wave ψnj , we have that the number

n depends on the type of atom, is proportional to Nat and if we just want a rough

estimate we can use a typical value of 4Nat. The number of components j needed to

describe each wave function also depends on the system and method, but again for

a rough estimate we may assume a typical value of 200Nat. Which gives us a rough

estimate of 800N2
at coefficients to describe electrons. Systems currently analysed can

have up to 50 atoms when studied on desktop system or 1000 atoms on supercomputers,

which means we are talking between 106 to 109 variables. A minimization of a function

with such large number of variables is not a trivial task (5).

However, we can use the same algorithm to minimize the energy with respect to both

1For all abbreviations see the glossary on page xv.
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2.1 General framework for a description of materials

types of variables as is done in the Car-Parrinelo method (4, 5, 7). As the two types of

variables have very different physical meanings we can split the minimization (eq.2.3)

in two steps:

E(λk) = min
si

B(si, λk)

B(si, λk) = min
ψnj

ε(si, ψnj , λk)
(2.4)

where B(si, λk) (with fixed λk) is known as the Born-Oppenheimer surface (8). The

advantage of this minimization split is that each one has different properties. While

B(si, λk) has many local minima, B(si, λk) is almost quadratic with fixed λk and si.

Assuming that ψ0
nj minimizes ε, then:

∂B

∂s`
(si, λk) =

∂ε

∂s`
(si, ψ

0
nj(si, λk), λk) +

∂ε

∂ψnj

∂ψnj
∂`

(si, ψ
0
nj(si, λk), λk) =

∂ε

∂s`
(2.5)

and solving this gradient is relatively simple compared to find ψ0
nj(si, λk) (5).

Since the gradient is ”costless”, typical ways to solve it use methods that are based

on the derivatives to minimize or sample B(si, λk). For example, molecular dynamics

is usually more efficient than Monte-Carlo and BFGS and related methods are more

efficient than the usual conjugate gradient methods, since the minimization based on

lines wastes the gradient ”costless” property.

Summarizing, the B(si, λk) minimization problem in electronic structures is essentially

the problem of a function with many local minima, but having a ”costless” gradient

(4, 5, 7, 9, 10).

The electronic problem with plane waves

The most critical computational resources is minimizing ε to fixed si and λk. There are

many basis sets for wave functions, each one leading to different methods (7). Here we

are considering the very popular pseudo-potential plane wave method, where the wave

function dependency in the coefficients is given by: (5)

Ψn(~r) =

Mtxd∑
j

ψnje
i ~Gj ·~r (2.6)

7



2. THE COMPUTATIONAL SIMULATION OF MATERIALS USING
PLANE WAVES

that is, the coefficients ψnj are the Fourier expansion coefficients of the wave func-

tion. For the sake of simplicity of notation, we will drop the ei
~G·~r pre-factor in the

remaining discussion, since it does not change the computational problem.

For every j -index we have a vector associated:

~Gj = m1(j)~b1 +m2(j)~b2 +m3(j)~b3, m ∈ Z (2.7)

The complete basis would be infinite with all the integer values of mk. This basis is

currently truncated to |~G| < Gmax and is ordered so that |~Gj | < | ~G`|, if j < `. The ~bj

usually are not orthogonal or unitary. For each Gmax value there are maximum values:

Mi = max
| ~Gj |<Gmax

mi(j) (2.8)

In the particular case of the plane wave functions, we will use a simplified equation

to compute the energy function in eq. 2.1, where the microscopic variables are kept

constant (ε(ψnj) and the energy only depends on ψnj :

ε(ψnj) =

Neig∑
n

Mtxd∑
j

1

2
|~G|2|ψnj |2+

Neig∑
n

Mtxd∑
j

Mtxd∑
`

ψ̄njv(~Gj − ~G`)ψn`+

Neig∑
n

Mtxd∑
j

Nanl∑
k

Nanl∑
i

Mtxd∑
`

ψnjĀkjBkiAi`ψn`+

Neig∑
n

Mtxd∑
j

Mtxd∑
`

ψ̄njw(~Gj − ~G`, ρi(ψ))ψn`

(2.9)

where the wave function coefficients must obey to the following rule:∑
j

|ψnj |2 = 1 (2.10)

On eq.(2.9), v(~Gj − ~G`) are the Fourier coefficients of the local potential:

V (~r) =
∑
j

ψne
i ~Gj ·~r

8



2.2 CPW2000 structure

and Akj and Bki are the projectors of the non-local part of the pseudo-potential.

The w potential has a functional dependency in ρi(ψnj) which introduces non-linearity

into the function. But since w is weak the non-linearity is also weak (5).

2.2 CPW2000 structure

CPW2000 is a software package developed in late 80’s, that was improved several

times during the following decades. The starting version for this work has a complex

structure as shown in fig. 2.1. This call graph was generated with Doxygen 1.8, and

the modifications that were introduced (boxes with a thicker border) aimed to show

the functions that took longer execution times: SCFKB, OUT DOS and OUT BAND.

These three functions consumed over 99% of the overall execution time on more

than one computing platform. An analysis of the caller graph for function DITSPC

(Fig. 2.2) shows that almost all execution time is spent on this function, which is

performing the following actions, according to the comments on the original program

version that we have used:

C ITERATIVE DIAGONALIZATION OF A MATRIX WITH A LEADING

C SUBMATRIX. IT IS INSPIRED ON THE RITZIT PROCEDURE

C (H. RUTHISHAUSER NUMER. MATH. 16, 205 (1970))

C BUT USES JACOBI RELAXATION. COMPLEX VERSION.

C THE NON-LOCAL PSEUDOPOTENTIAL IS SEPARABLE.

C WRITTEN FEBRUARY 1990. JLM

C MODIFIED 17 JANUARY 2007 FOR NEW ORTHOGONALIZATION

C AND DGEMM HAMILTONIAN CALCULATION. JLM

9



2. THE COMPUTATIONAL SIMULATION OF MATERIALS USING
PLANE WAVES

Figure 2.1: CPW2000 call graph. - Red boxes indicate that those functions call other

functions not represented in the call graph.
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2.2 CPW2000 structure

Figure 2.2: DITSPC caller graph. -

Figure 2.3: DITSPC call graph.
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2. THE COMPUTATIONAL SIMULATION OF MATERIALS USING
PLANE WAVES

The call graph for DITSPC is represented in fig. 2.3, where boxes drawn with a

thicker border were identified by a profiler as takers of almost 100% of the execution

time of DITSPC.

These functions are:

• DIAGC, which according to the program comments:

C DIAGONALIZES THE HERMITIAN HAMILTONIAN

C STORED IN LOWER TRIANGULAR FORM

C IN PACKED OR UNPACKED STORAGE.

C WRITTEN OCTOBER 11 1989. JLM

• HK PSI C, which according to the program comments:

C CALCULATES THE PRODUCT OF THE HAMILTONIAN TIMES

C NEIG WAVEVECTORS. THE NON-LOCAL PSEUDOPOTENTIAL

C IS SEPARABLE. THE LOCAL POTENTIAL IS DEALT WITH

C FAST FOURIER TRANSFORMS. COMPLEX VERSION

• GRSCH LOOP C, which according to the program comments:

C PERFORMS A GRAM-SCHMIDT ORTHOGONALIZATION STEP OF

C NVEC XVEC VECTORS. THE FIRST NCONV VECTORS ARE SUPPOSED

C TO BE ALREADY ORTHOGONAL.

C CALLS BLAS SUBROUTINES FOR SPEED

C IF ALSO=’H’ PERFORMS THE CORRESPONDING

C TRANSFORMATION IN HXVEC

C

C REAL VECTORS VERSION

C

C IT USES A MIXTURE OF BLOCK CLASSICAL GRAM-SCHMIDT (USING BLAS3)

C AND LOCAL MODIFIED GRAM-SCHMIDT. ALL STEPS ARE REPEATED

C ACCORDING TO THE "TWICE IS ENOUGH" PRINCIPLE.

• DGEMM, which is a level 3 BLAS1routine to perform a matrix-matrix opera-

tion:

C := alpha ∗ op(A) ∗ op(B) + beta ∗ C

Where alpha and beta are scalars. A,B and C are matrices. And op(X) = X or

op(X) = X ′;

As can be seen from the short description of these computational intensive functions,

the main focus of this dissertation work is on these issues.
1For all abbreviations see the glossary on page xv.
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2.3 Computing intensive numerical methods

Given the formal description of the scientific theory on CPW2000, we will now continue

this formal description introducing and relating with the computational aspects and

reaching the motivation of our work: (i) which are the most intensive numerical meth-

ods and how they are used, and (ii) what can be done to improve their efficiency using

heavily tuned available library functions in a platform with CPU and GPU devices.

From a computational point of view, (i) and (ii) may support a successful problem

comprehension and a better implementation in current computing platforms.

We identify matrix diagonalization as a computing intensive method. However, we

should consider this method as a ”black box” that requires a matrix and a function as

input, and computes the resulting matrix, containing the eigenvectors. For a detailed

problem description, we will continue describing the CPW2000 behavior to achieve the

core of our work: the function that matrix diagonalization requires and that will prove

to be one of the most intensive and resources consumer.

2.3.1 Matrix diagonalization on CPW2000

Without the dependence of w in ρ, we recognize in eq. 2.4 a quadratic form. There

are two approaches to deal with the non-linearity in the minimization of ε(ψnj). The

first is to use a conjugate gradient to do the full minimization, knowing that we are

close to a quadratic form, and therefore should quickly converge to the minimum. The

second is to have an iterative method. We assume that a given function ρ(~r) minimizes

the quadratic form, recalculates ρ(~r) and iterates until convergence (using convergence

acceleration techniques). Usually 5 to 15 iterations are sufficient to converge using

Broyden methods. We will be using the iterative method. But again the computa-

tional intensive step is the same in both cases, so our discussion is quite general (11).

The minimization of the quadratic form with the the rule (2.10) requires solving

Neig eigenvectors. Since Neig � Mtxd finding the eigenvectors is advantageous. The

explicit quadratic form of the linearised energy equation (eq. (2.9)) is given by:

13
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εlin(ψnj) =

Neig∑
n

Mtxd∑
j

Mtxd∑
`

ψ̄njHj`ψn` (2.11)

where Hj` is a Hermitian matrix. Either on iterative diagonalization or gradients

method we have to compute:

fnj =

Mtxd∑
`

ψ̄njHj`ψn` (2.12)

i.e. the computational heavy step is the same in both methods, and what really

matters is how many times we have to do that step to minimize ε with the different

methods. CPW2000 uses an algorithm that mixes the Davidson method (12) with the

ritzit method (13), the DIIS method (14) and other sources (15).

To give an idea of the problem size based on eq.2.9, we may consider C60
1as a problem

of considerable size. The sizes are given by:

Neig = 172, Nanl = 290, Mtxd = 105

so v and w requires 12 MB in memory, ψnj 262 MB memory, A 445 MB and the

Hermitian matrix H, where each dim has 105 length, requires approximately 150 GB of

memory space. Calculating and storing H is hard, but analysing the description given

so far and eq .(2.9) we do not need to resolve H to obtain fnj :

fnj =
1

2
|~Gj |2ψnj+

Mtxd∑
`

(v(|~Gj | − |~G`|) + w(|~Gj | − |~G`|, ρi))ψnl+

Nanl∑
k

Nanl∑
i

Mtxd∑
`

ĀkjBkiAi`ψn`

(2.13)

where the first line of the equation is diagonal and easy to compute (vector-vector

multiplication), the third line is a series of matrix-multiplications of significantly smaller

sizes than Mtxd ×Mtxd(efficiently executed with level 3 BLAS2routines). The second

line of the equation is a convolution and can be efficiently implemented with Fourier

1For all abbreviations see the glossary on page xv.
2For all abbreviations see the glossary on page xv.
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transforms.

From eq. 2.14, eq. 2.9 and from the problem description given so far, we conclude, ana-

lytically, that computing fnj is the most is the most repeated process during CPW2000

execution (5, 15).

From now on Hψ will represent the computational representation of fnj .

2.3.2 The Fast Fourier transform on CPW2000

The convolution can be efficiently implemented with Fourier transforms (16), namely

using efficient FFT code in widely available libraries.

hj =

Mtxd∑
`

v(~Gj − ~G`)ψ` (2.14)

For the sake of simplicity of notation, in this expression we are not including the

eigenvector n. The contribution to w is equal. To compute the convolution we need to

map the ψ` values in a three dimensional grid:

ψ` = ψ̃m1(`)m2(`)m3(`)
~G` = m1(`)~b1 +m2(`)~b2 +m3(`)~b3 (2.15)

The ψ` coefficients match the values on the ~G frequencies space, so we perform an

inverse Fourier transform to obtain the wave function Ψ(~r) (eq. 2.6) in an uniform grid

in the ”~r” space. The wave function is then multiplied with V (~r), which is the previous

calculated inverse transform of v(~G), since is the same for every n.

H(~r) = V (~r)Ψ(~r) (2.16)

We set the values from ”~r” space back to ”~G” space using Fourier transform. The

hj (eq. 2.14) values are given by (5):

hj = h̃m1(`)m2(`)m3(`) (2.17)

This approach to compute the convolution introduces an artefact well known in

computer science and signal processing, the aliasing phenomena that is characterized

by different signals becoming indistinguishable one of the other when sampled. The

adopted solution is padding the 3D structures with zeros (5, 17).

15



2. THE COMPUTATIONAL SIMULATION OF MATERIALS USING
PLANE WAVES

FFT description

The discrete Fourier transform (DFT) of an array X of n complex points is given by:

Y (k) =
n−1∑
j=0

X[j]ωjkn (2.18)

where 0 ≤ k < n, ωn = e−2πi/n is a primitive n-th root of unity, and i =
√
−1.

Computing directly the DFT definition requires Θ(n2) operations while the FFT algo-

rithms get the same result in O(n log n) operations (18, 19, 20, 21).

The most relevant FFT algorithm is the Cooley-Tukey (18), which is a divide-and-

conquer algorithm. It has the name of his authors (James W. Cooley and John W.

Tukey), but it is believed that it was derived earlier by Euler in 1805 and later by other

authors (20, 21, 22, 23). The Cooley-Tukey FFT algorithm re-expresses a DFT of com-

posite size n = n0 × n1 in terms of smaller DFT’s of sizes n0 and n1. Conceptually we

can see this as a 2-D FFT of size n0 × n1 where the output is transposed. Assuming

that n is a composite, i.e. n = n0 × n1, and rewriting the indices j,k of eq. 2.18 as

j = j0n2 + j1 and k = k0 + k1n0, eq. 2.18 can be written as (18, 19, 23):

Y (k0 + k1n0) =

n1−1∑
j1=0

[( n0−1∑
j0=0

X(j0n1 + j1)ω
j0k0
n0

)
ωj1k0n

]
ωj1k1n1

(2.19)

The algorithm computes n1 DFTs of size n0 (the inner sum), multiplies the result

by ωj1k0n (known in the literature as the twiddle factor), and then computes n0 DFTs

of size n1 (the outer sum). The algorithm continues in a divide-and-conquer strategy

(recursively, but efficient implementations avoid recursion) until the smaller DFT is

reached, a simple DFT of size 2 (butterfly in the literature).

Since n is divided by 2, this is known as radix-2 FFT algorithm, and using different

radices and different sizes from power of two lead to different variations of this algo-

rithm (19, 20, 21). Computing a DFT of length n recursively in terms of two DFTs

of size n/2, is the key concept of Cooley-Tukey FFT algorithm and it has its speed

(O(n log n)) by reusing the results of intermediate computations (twiddle factor) to
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compute the entire FFT.

The generalization of eq. 2.19 to more than two dimensions give us the definition

of multidimensional DFT of a L-dimensional array X of N0 × ...×NL complex points:

Y (n0...nl) =

NL−1∑
kL=0

...

N0−1∑
k0=0

ωkLnL
NL

× ...× ωk0n0
N0
×X(k0...kL) (2.20)

where 0 < n0, k0 < N0 − 1,and 0 < nL, kL < NL − 1. In a two dimension case

(matrix), we can see this as performing 1D FFTs along the rows and then perform

1D FFTs along the columns, so called row-column algorithm. In higher dimensions

the reasoning is similar. There are that also compute a multidimensional FFT, such as

the vector-radix FFT algorithm, but all of them have O(n log n) complexity (20, 21, 23).

Currently, many FFT libraries are available and most of them offer several algorithms

to compute FFT’s in special datasets with different sizes (although sizes that are pow-

ers of two tend to achieve better performance (19)). It is often recommended to use a

larger grid that is a power of two rather than a smaller grid, and never a grid whose

size is a prime number. In three dimensions it is better not to use a grid much larger

then needed, as long as the size factors are powers of two, three or even five.

These libraries are usually offered by the hardware vendors (24, 25, 26), being specially

tuned for their platform, others developed by open-source groups, aiming to achieve

the best efficiency in different platforms (27). CPW2000 needs to compute several

3D complex transformations, with the 3D structures size between 64 × 64 × 64 and

128 × 128 × 128 double precision complex points, and for this purpose we did not de-

velop special software to compute FFT, instead we focussed on the communications

problem. We used the available efficient libraries combined with our improvements to

the overall program structure and how data is transferred between memory CPU and

GPU, to obtain better results and to expose some of the bottlenecks in the overall

program efficiency.

2.3.3 Profiling CPW2000

To improve an application efficiency, the first approach is to profile the application to

identify the functions that consume more resources. In this section we will present some
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profiling results of CPW2000 program with different BLAS libraries (Netlib, ACML

and MKL) and different FFT libraries (FFTW3, MKL and JLM). Detailed informa-

tion about these libraries will be presented further in this document.

MCr 2nd MCr

BLAS + FFT Routine Time(%) Routine Time(%) Time(s)

seq.

Netlib + JLM DGEMM 87.7 FFT 9.9 12464

ACML + FFTW3 DGEMM 66.9 FFT 29.6 5256

MKL + JLM DGEMM 56.4 FFT 35.6 3475

par.

MKL + MKL FFT 60.4 DGEMM 30.7 1858

ACML + FFTW3 DGEMM 57.6 FFT 33.7 1773

MKL + JLM DGEMM 49.8 FFT 38.9 1372

Table 2.1: CPW2000 Initial profiling - MCr stands for ”Most Consuming routine”;

Seq stands for ”sequential” execution; Par stands for ”Parallel”. On the parallel versions

the number of threads is 4.

T
im

e(
s)

0

2000

4000

6000

8000

10000

12000

seq NETLIB
seq JLM

seq ACML
seq JLM

seq MKL
seq JLM

par MKL
par MKL

par ACML
par FFTW

par MKL
par JLM

FFT
BLAS
others

Figure 2.4: Libraries time consumption distribution. - Bar plot illustrating the

time distribution of 2.1. Seq stands for ”sequential” execution; Par stands for ”Parallel”.

The first conclusion from table 2.1 is that CPW2000 has the flexibility of using

different BLAS and FFT libraries. By convention, BLAS has a standard BLAS API

(28), so CPW200 can use different BLAS libraries (both free and proprietary). But it

can also use different FFT libraries with little effort from the user (adding 3 files to the

CPW2000 source library respecting the corresponding FFT API), which is a powerful
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feature considering that FFT libraries do not have a standard API that software de-

velopers should respect. This feature is available by a special API on CPW200 which

has wrappers for the most used FFT libraries (mainly MKL and FFTW).

Table 2.1 and Fig.2.4 show that the fastest version, a combination of the parallel

version of MKL BLAS library with JLM FFT parallel version, ends all operations in

1372 seconds. But we must pay attention to the implicit corollary from Amdahl’s law

(29): on the first row of the column (Sequential NETLIB BLAS and JLM), BLAS

and FFT consume 97.6% of the total computing time, remaining a small percentage

(2.4%) to the rest of the program. As we decrease the execution time by using different

libraries combinations, the percentage that was meaningless starts to have some impact

and on the fastest version the weight of the rest of the program is 11.3% (155 seconds).

Now that we have shown that BLAS and FFT are the most computational intensive

methods, from eq.2.13 we know that the FFTs computations are only used in the

convolution in Hψ function:

DGEMM + FFT H psi(s) rest of the program(s)

seq.

Netlib + JLM 3386 9078

ACML + JLM 1898 3016

MKL + JLM 1632 1843

par.

MKL + MKL 1232 626

ACML + FFTW3 798 975

MKL + JLM 664 708

Table 2.2: Routines time consumption distribution. - Routines time distribution

during CPW2000 execution.

We may also conclude from table 2.2 we can conclude that a single routine (H psi)

is consuming 49% of the total time of the program, but we also know that this function

contains all the FFTs computations (table 2.1 and Fig. 2.4). Again, the corollary

derived from Amdahl’s law (29) states that every optimization in the H psi routine

(FFT’s computations) will improve the overall application performance. So our work

will be mainly focused on improving the efficiency of this function.

A key feature when computing FFT on CPW2000

The 3D structure that holds the complex values that will be computed by the 3D FFT

algorithm several times during the program execution has a strong property: it is very
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sparse (Figure 2.5), and the values that are non-zero are grouped on the edges of the

cube.

Figure 2.5: 3D FFT data structure - Conceptual view of the 3D FFT data-structure

represented as a cube. Blue cubes represent memory positions holding a 0 value, while the

red ones contain values different from 0.

The percentage of values that are non-zero in most 3D-FFT computations is ap-

proximately 4% of the 3D structure size, which is a very small percentage considering

that the size of this structure varies from 64 × 64 × 64 to 128 × 128 × 128 complex

points.

FFT efficiency improvements already on CPW2000

The original CPW2000 code was already optimized to reduce the computational time

spent in 3D FFT computations, and the reader should be aware that the profiling

results presented in the previous section were obtained with the application version

that makes use of this optimization. According to the definition of multidimensional

FFT which states that it can be computed by performing 1D sub-transforms along each

dimension, the approach is based on the idea of skipping 1D sub-transforms that are

zero. The pros and cons of this optimization will be later discussed.

2.4 Target platforms

Multi-core computing

CPW2000 in the past years has been tuned for multi-core platforms that can be found

in cluster nodes or at desktop systems, mainly because a new parallel programming

paradigm had to be assumed and the ability to use some of the most tuned libraries

for this kind of parallel architecture (5). Current multi-core computing is characterized

by a single component with several cores (each core is an independent processor), they
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may be packed in a single die or packed in multiple dies in a single chip package. Each

core may have its own cache memory or it may be shared (or both) among all cores, and

cores may communicate trough high communication channels or among cache memory

(message passing or shared memory). So far all cores in the same chip have a single view

of the memory array, supporting the shared memory paradigm in parallel computing.

CUDA

Compute Unified Device Architecture (CUDA) (30) is a many-core parallel reference

model architecture developed by NVIDIA, that offers software developers the massive

parallelism present on GPU across some standard programming languages. It has

become very popular among the scientific community because of the speedup offered

by this architecture on some known algorithms (31, 32).

Figure 2.6: Architecure of a CUDA capable device - General CUDA architecture

overview (33).

Fig. 2.6 shows a typical architecture of a CUDA capable device, organized as an

array of threaded streaming processors (SM). In Fig. 2.6 there are 16 SM numbered

from 0 to 15. These may be grouped to form a block, but its size can vary among

CUDA GPU generations. Each SM contains several streaming processors (SP, also

called CUDA cores) that share a special control unit and a local memory(8 SP per SM

in Fig. 2.6). The device memory is organized in three levels: global, constant, and

texture which are shared by all SMs(34).
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Figure 2.7: Fermi Architecture. - Fermi architecture (35).

The current CUDA GPU generation is the code-named ”Fermi” (Fig. 2.7) and it has

several improved aspects on its architecture when compared to earlier GPU generations

(GT80 and GT200), namely: improved double precision conformance (full compliant

with IEEE 754-2008 32-bit and 64-bit precision), true cache hierarchy, larger shared

memory, faster context switching, dual warp scheduler and faster atomic operations.

Fermi has a new ISA, and the number of CUDA cores per SM increased to 32 (up to

512 cores total) (35).

Why not focus on distributed computing

Considering the problem complexity, developing a distributed memory implementation

seemed a good approach. But the gold objective of CPW2000 is to give the possibility

to a researcher that may not have access to a large distributed computing platform, to

run an efficient code version on a affordable CPU-GPU desktop platform. So we do not

need that the most resources consuming algorithms on CPW2000 to be embarrassing

parallel that it could run on 105 processors. Instead we opted to improve their efficiency

on 102 processors which is currently available (e.g., a motherboard with 8 sockets for

12-core Opteron). When the time comes that a common desktop has 105 processors,
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we may despatch 104 minimization programs with different starting points, different

temperatures, different compositions (5).
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Improving efficiency of CPW2000

Previous chapter identified the key computational intensive functions on CPW2000:

matrix-matrix multiplication and FFT. These are mainly related/located to Hψ func-

tion and more precisely with the convolution operations. The core of this work is is

focused on the performance improvements of these functions on CPW2000.

3.1 Improving convolution efficiency

The CPW2000 code was optimized for Cray supercomputer available at the end of

past century. It also includes the flexibility to interface to different BLAS and FFT

libraries. However, CPW2000 goes further to minimize the time spent in 3D-FFT, since

it skips the 1D sub-transforms that are all zero, reducing the waste of computation

time/resources.

Fig.3.1 illustrates this optimization. Assuming that the dimensions are given by

Nx,Ny and Nz, and assuming that Kx,Ky and Kz are the limits on each 1D sub-

transform of non zero values, the size of the conceptual cube is given by N = NxNyNz

and the size of each sub-cube is given by K = KxKyKz, which gives us a total of

T1D−FFT = Nz(Nx + Ny) + NxNy 1D sub-transforms.

Along z dimension there are no savings (due to the convolution definition), along x

dimension Sx = NyNz − 2KxNz 1D sub-transforms are saved , and along y dimension

Sy = NxNz − 2KyNz 1D sub-transforms are saved. Which gives a total of 1D sub-

transforms savings of S = T1D−FFT − Sx − Sy.
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Figure 3.1: FFT optimization in CPW2000. - Blue cubes represent memory posi-

tions holding a 0 value or values that do not matter to the convolution morphology, while

the red/magenta ones contain the wanted values after the transformation.

To give a sample of the total savings, assume that Nx = Ny = Nz = 100 complex

points, and that Kx = Ky = Kz = 25, we have that T1D−FFT = 30000, but only 20000

1D sub-transforms are computed (S = 10000 1D sub-transforms are saved).

Figure 3.2: Parallel implementation problem in CPW2000. - Different parallelism

implementations with different libraries.

The parallelism is implemented on slabs (each thread computes Ni 1D sub-transforms)

which, considering the DFT definition (chap.2.3.2), is a good approach to minimize

communications. However, there is an implementation problem already present in the

CPW2000 program concerning the FFT optimization that we were not able to solve
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yet: the MKL BLAS contains wrappers for the FFTW3 FFT routines, so when using

these BLAS routines the program automatically uses the FFT routines present on this

library. The problem arises because this wrappers of the MKL library are threaded, and

since FFTW3 is a threaded library and the referred optimization also implements par-

allelism, this scenario makes FFT optimization not thread safe. To ensure thread safety

on the FFT optimization, when used with MKL BLAS library, instead of applying par-

allelism on slabs the parallelism is applied on 1D sub-transforms on each slab (Fig. 3.2).

Although this approach is adequate to increase performance in FLOPS, the number of

FLOPS that an algorithm can offer is not the only fact that matters in current CPU

architectures. The other relevant issue is memory access time, which heavily depends

on cache efficient utilization.

By definition, the FFT algorithm is a highly non-local algorithm (23), and in a multi-

dimensional FFT this non-locality increases. Several techniques were developed (e.g.,

transposing data) so that the transforms are performed on contiguous data (20, 23, 27);

however, this optimization does not implement any technique to minimize the non local-

ity in multidimensional FFTs. Whether this 3D structure is stored in row-major format

or in column-major format, there is one dimension where the sub-transformations are

computed in contiguous data, and the other two are operated in non contiguous data

(the farthest the highly non-local). Looking at Fig. 3.1 and assuming that the data is

stored in row-major format, 1D sub-transforms along the z dimension are operated in

contiguous data, along the x dimension the elements of each sub-transform are oper-

ated with stride Nz and along the last dimension the elements are operated with stride

NzNx (extremely non-local).

Other performance issue is the poor cache management on this approach. Take for

example (in row-major format) the element stored in structure(0,0,0)(structure(Ny,Nx,Nz)).

This element will be accessed on the transformations structure(0,0,z ), structure(y,0,0)

and structure(0,x,0). So, along z dimension this element is loaded to compute one

transform, and along x dimension the same element is required to compute another

transform. However, Nx×Nz 1D transforms afterwards we will have a cache miss (same

reasoning along y dimension) since this element probably has already been cache over-

written. The reader may argue that recent CPU architectures have large cache sizes
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and this would not be a problem, but older CPU architectures with smaller caches or

larger problem sizes, suggest that we should try to achieve the best performance on a

wide range of CPU architectures.

Summed up briefly and bottom line: this feature is a good starting point to reduce the

FLOPS of the FFT computations in the convolution, and allied with an efficient use of

the cache and techniques to reduce the non-locality may lead to interesting results.

Prunned FFT solution

The previous optimization lead to an interesting and promising approach, for each 1D

sub-transform along each dimension, where data is 0.

Figure 3.3: Single 1D transform. - Morphology of each 1D sub-transform. Each 1D

sub-transform normally has a size of 100 complex points, where only half are non zero and

are located on the edges. This morphology gives that peculiar aspect to the conceptual

cube.

Recalling the FFT definition (chap. 2.3.2), the FFT algorithm breaks a DFT of com-

posite size into a sum of smaller DFTs. Considering the morphology of each 1D sub-

transform (Fig. 3.3), there are smaller DFTs where the result is zero. We could discard

(”prune”) some of the intermediate computations during the execution of the FFT al-

gorithm. Two options were available:

• Compute the first Kd and the last Nd − Kd (d ∈ {x, y, z}) outputs of a complex

FFT, and, after computed, multiply each element of the output with the missing

twiddle factors. Compute the 2 FFTs can be done with efficient libraries how-

ever, we would have to: pre-compute the twiddle factors and additional loops to

multiply the twiddle factors by the output. To convert this approach into real
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gains, Kd should be smaller than Nd, ideally by a factor of 100 or more(36). In

our case Kd is smaller by a factor of 2 in most cases.

• Develop special ”pruned” FFT algorithms in order to remove the intermediate

smaller DFTs that are zero (37, 38, 39). Like the previous item, this would require

Kd to be smaller than Nd by a larger factor and it would require an implementation

as fast as the best ones in order to obtain real gains and overcome them, since

high performance FFT libraries are specially tuned for different architectures,

hence their performance.(36)

Pruning ”0 computations” seemed to be an adequate approach to speed up FFT with

sparse values; however, the possible resulting implementations did not produced yet

the expected FFT performance improvements of our FFT problem.

Improving FFT efficiency

We concluded before that the CPW2000 FFT optimization allied with a an efficient

memory management may produce interesting results. We will exploit this strategy by

increasing the data reuse on cache and minimizing the operations on non-contiguous

memory read/write.

Fig. 3.4 represents the approach (implemented in some libraries and under research

(20, 23, 27)). The number of 1D sub-transforms and the FFT computations along the

z dimension are equal to the obtained in section 3.1, but the 1D FFT computations

along x and y dimensions have changed to achieve better data temporal and spatial

locality. Instead of sequentially compute y dimension after x dimension, on x dimen-

sion for each slab of size Nx × Ny we compute Nx 1D sub-transforms in parallel and

store it in an auxiliary matrix transposing the output (the transpose step is implicit,

e.g., each element after computed is stored with stride Ny) and then we compute the

Nx sub-transforms in parallel on the auxiliary matrix saving the output to the cube.

Comparing our proposed approach with the one already implemented on CPW2000

(Fig. 3.1), the number of 1D sub-transforms is the same, and our savings come on

the last dimension. The 1D-sub-transforms on the last dimension are contiguous (they

are allocated sequentially in the matrix), and this values are already cached since they

were used in the previous dimension.
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Figure 3.4: Improved FFT. - Blue cubes hold zero values or values that do not matter

to the convolution morphology, while the red/magenta ones contain the wanted values after

the transformation.
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On Fig.3.5 we present the performance offered by the FFT libraries used on our work.

The MKL library has an outstanding performance when compared with the other two
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Figure 3.5: Performance of the FFT libraries. - Performance offered by the FFT

libraries used in our work. the presented values are obtained when computing the 3D

transform without any of the optimizations described so far.

libraries. For the most used FFT sizes during CPW2000 computations, MKL is approx-

imately 2 GFLOPS faster than FFTW3 and JLM private routine. Which on the current

CPW2000 version this performance is being slightly wasted due to thread thread safety

issue described before.

Using CUDA to compute 3D FFT

The CUDA architecture has been conquering developers in different areas (32) due

to the performance offered in some of the most used scientific algorithms (31). Un-

fortunately, the current cuFFT library (version 4.0) does not support 1D transforms

in double precision with a data stride larger than one (24), which does support the

implementation of any of the optimizations described so far.

Table 3.1 presents results of computing 3D FFTs in double precision on the CUDA

device described in the testbed. The last array (2GB) exceeds the available device

memory. The FLOPS count is the one used to benchmark FFT algorithms by refer-

ence (5N log2N), where N is the number of complex points. This FLOPS count does
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3. IMPROVING EFFICIENCY OF CPW2000

Exec Performance

Size CPU→GPU (ms) GPU→CPU (ms) Kernel (ms) (GFLOPS)

32× 32× 32 0.18 0.17 0.07 35.73

64× 64× 64 1.29 1.26 0.33 70.83

100× 100× 100 4.85 4.78 2.05 48.51

128× 128× 128 10.14 10.02 2.69 81.88

200× 200× 200 38.63 38.17 15.73 58.32

256× 256× 256 80.99 80.03 32.63 61.58

300× 300× 300 130.32 128.80 80.63 41.61

400× 400× 400 308.90 308.05 191.12 43.42

512× 512× 512 - - - -

Table 3.1: Computing 3D FFT on CUDA using cuFFT libray.

not correspond to the real FLOP count, but is based on the Cooley-Tukey algorithm

asymptotic number of operations (36). The referred values used CUDA timers which

have a resolution of approximately half a microsecond (30). The GPU execution of the

kernels did not overlap with the the data communication to/from memory.

The performance offered by cuFFT library, without any of the FFT optimizations

described before and for the CPW2000 FFT computations (sizes between 64× 64× 64

and 128 × 128 × 128 complex points), can be up to 5 times faster (Fig.3.5) which is

an acceptable speedup for the application. But looking closer into table 3.1, we can

conclude that using the GPU device only to compute FFTs is not very efficient, con-

sidering the time that it takes to transfer data into/from the device and the time to

compute the FFT (in the 1283 test case,computing the FFT is 7× faster than the

memory transfers). In addition, we have n CPU threads completely idle, which is a

waste of resources. We could solve the ”idleness” of the CPU threads with a 3DFFT

hybrid solution (40, 41), but our problem offers the possibility of ”feeding” the GPU

with more computations which could minimize the data transfers overhead and max-

imize the use of data on GPU memory. The strategies that we will adopt to improve

CPW2000 overall performance will be based on the idea of using the CPU, GPU or

both to compute the Hψ (eq. 2.13).

3.2 Testbed platform

The CPW2000 software package is mainly used by physics scientists, and most of them

have easy access to desktop systems but harder access to HPC platforms. However,
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3.2 Testbed platform

current computing devices can offer affordable and powerful configurations to this com-

munity. Following this trend, our work seriously considered the hypothesis of exploiting

heterogeneous CPU+GPU platforms at desktop level to speed up execution times of

intensive algorithms on CPW2000. The selected test platform reflects this approach:

Hardware

For our tests we used a desktop system with the following hardware configuration;

• CPU: Intel R© E5630 with Intel R© Hyper-Threading Technology (4 cores, 8 threads)

with 2.53 GHz clock frequency (160 GFLOPS theoretical peak). This chip has a

multi-level cache: 64 KB L1 cache/core (32 KB L1 Data + 32 KB L1 Instruction),

256 KB L2 cache/core, and a 12 MB L3 cache shared by all cores. The theoretical

peak bandwidth between CPU and GPU is 25.6 GB/s,

• Memory: 2 GB DDR3 of memory.

• GPU: NVIDIA R© GeForce R© 8400 GS used for visualization, and 2 NVIDIA R©

GeForce R© GTX 480 used for CUDA computations. The GTX device has 480

CUDA cores (32 CUDA cores × 15 SM’s) operating at 1.4 GHz clock frequency, 64

KB of RAM with a configurable partitioning of shared memory and L1 cache. The

GPU board has 1536 MB GDDR5 of memory and the theoretical peak bandwidth

between GPU memory and the CPU memory is 177 GB/s.

Software

This operating system is Ubuntu 10.04.3 LTS (64 bit, Linux 2.6.32-33-generic), and we

used the following compilers/libraries versions:

• Compilers: Intel Fortran compiler(ifort) and Intel C Compiler(icc) v.12.0.0

• Libraries: Intel Math Kernel Library(MKL) v10.3, AMD Core Math Library

(ACML) v5.0.0, FFTW v3.3 , NVIDIA CUDA Toolkit v4.0, JLM FFT private

routine (available only by authorization), BLAS NETLIB, cuFFT and cuBLAS.
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3. IMPROVING EFFICIENCY OF CPW2000

3.3 Improved versions

Before we present our suggestions to use the CPU to compute Hψ, we will discuss

some issues to achieve efficient solutions on these devices.

Hψ scalability and parallelism analysis

Our analysis begins with the data structures sizes since we are using a co-processor

with its own device memory. Most of these structures are small, KB magnitude, which

do not have an impact on performance; others have MB magnitude and have some

impact in the system performance because they may have to be transferred, or part

of them, to the GPU memory. The structures size may vary in function of Neig and

assuming the worst case, which are the sizes given in 2.3.1 and that Mxddim = 50000,

the structures used during Hψ computations are:

• PSIR/PSII(Mxddim, Neig): PSIR/PSII (i,j ) is the real/imaginary part of the j-

th component of wave vector i and requires approximately 65 MB of memory each.

• HPSIR/HPSII(Mxddim, Neig): HPSII/HPSII (i,j ) is the real/imaginary part of

the j-th component of the product of the Hamiltonian by the wave vector i and

requires approximately 65 MB of memory each.

• ANLGAR/ANLGAI(Mxddim, Nanl) real/imaginary part of the separable pseu-

dopotential matrix and requires approximately 110 MB of memory each.

Using the GPU to compute/assist in the Hψ computation, almost 500 MB data

must be transferred to/from the GPU memory, which may hide any performance im-

provements due to fast GPU computing. Also this can be a large value for GPU memory

if we want our code improvements to execute in different GPU families. Considering

that CPW2000 computations are in double precision, we are only interested on CUDA

computing devices which support double precision arithmetic, and all the devices which

support this arithmetic have at least 512 MB memory.
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3.3 Improved versions

Figure 3.6: Hψ data flow diagram. - Top level overview of Hψ execution.

On Chap.2 we presented the Hψ formal definition. We will now analyse the com-

putational implementation of this function.

Beyond the execution steps of the function, Fig 3.6 presents some interesting facts.

The first phase is embarrassingly parallel if we apply parallelism on columns, which has

two performance bottlenecks: our work was developed on the C language, so matrices

are stored in row major and mapping to/into the 3D structure would be a non-coalescent

access to the matrices elements. This could be easily solved by letting the first phase

to be computed in the original CPW2000 version (written in Fortran, matrices stored

in column-major). The other fact is that each column would have to be computed by

a single thread, which is a naive scheduling policy since the workload of every thread

would be extremely high and some of the available FFT libraries are specially tuned

for parallelism.

The second phase Fig. 3.6, which is efficiently computed by BLAS libraries, can be

divided into two phases as seen in Fig. 3.7. This approach gives two computational

independent and dependencies free phases: convolution phase and dgemm phase

from now on, each one with heavy algorithms on large data structures, but completely
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3. IMPROVING EFFICIENCY OF CPW2000

Figure 3.7: Separable computing phases - Separable computing phases, first and

second phase have no dependencies between them. Third phase must be the last computed.

independent of each other. The last phase (reduce phase) just adds the results and must

be the last computed phase. Identifying these computing stages is an opportunity to

design more efficient scheduling policies between different devices.

Hψ in CUDA

Our first proposed solution, uses the CUDA model to compute Hψ.

Fig. 3.8 illustrates the work load among devices through time but it can demon-

strate an interesting fact, that this implementation wastes resources and exhibits a

deficient work load policy: we have all the CPU threads idle (except for some small

time fractions). To take advantage on the embarrassingly parallel convolution on the

columns and the massive parallelism present on CUDA devices, our initial approach

was to schedule each complex column (one column from PSII and another column

from PSIR) of the matrices (Fig. 3.6) to a block of threads (choosing the best CUDA

block dimension to achieve the best block configuration to maximize throughput). This

would lead to a full independent and efficient CUDA solution (independent in a way

that it only needs the CPU to initiate memory transfers and launch the kernel). Un-
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3.3 Improved versions

Figure 3.8: Hψ CUDA data flow diagram - Graphical representation of Hψ execu-

tion, showing the work load among devices through time.

fortunately, the kernel launchers on cuFFT API and on the cuBLAS API can only be

called on the host side (24, 42), which lead to this implementation where the CPU

is managing the kernel launches for each column and the small work fractions of the

CPU are related with these launches (these small work fractions are so small that they

should not be considered at all). Considering the complexity and the length of the

FFT computation, the eficiency offered by cuFFT (table 3.1), and the operations in

large structures that are done among the FFT computations 2.14, we can state that

the workload is well distributed among the GPU blocks.

FFT structure PSIR & ANLGAR & convolution dgemm & reduce HPSIR &

size PSII (ms) ANLGAI (ms) phase (ms) phase (ms) HPSII (ms)

100× 100× 100 23.72 40.57 908.91 417.49 24.92

Table 3.2: Data copies timings of single Hψ execution in CUDA - Transfer times of

the major structures. Only one FFT size is presented, the most common during CPW2000

computations.

Since ANLGAR and ANLGAI are only required for dgemm and reduce phase, their

copy latency is fully hidden by the convolution phase (table 3.2). This is possible due

to the overlap execution with memory copies feature of CUDA devices (30). Latencies

that can not be hidden are the ones associated with the initial and final copy, where any

of the devices is performing computations. As can be seen on table 3.2 these latencies,
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3. IMPROVING EFFICIENCY OF CPW2000

on our testbed, last approximately 50 ms.

Split phases Hψ

The above approach did not efficiently use the computational resources. Inspired on

Figs. 3.6 and 3.7, on the analysis made on the non-dependence between convolution

and dgemm phase and specially on the intensive computation work present on each

phase, we can assign to different devices each of the independent phases.

Figure 3.9: Split phases Hψ CUDA data flow diagram - Graphical representation

of Hψ execution, showing the work load among devices through time.

One CPU thread initiates the copy to GPU device (Fig. 3.9) and it will be respon-

sible for managing the convolution phase context (similar to the previous solution -

Hψ in CUDA). This includes signalling columns already computed and copying back

each one to the host side (overlap execution with memory transfers (30)). Meanwhile,

the remaining threads start computing the dgemm phase and when finished we have a

reduce synchronized phase. It starts reducing the columns that were already computed

by the GPU and it may happen that all the columns of the convolution phase have

been already computed and copied back to the host side, but if all the columns have

not been yet computed by the GPU we need to synchronize this reduce phase(CPU just

waits for the next column).
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This solution is more efficient than the previous one: it uses a significant part of the plat-

form computing power during the most intensive computational step of the CPW2000

applicaton (table 2.2). However, this exposed a major flaw: it is architecture depen-

dent. This dependency is evidenced by the condition on Fig. 3.9 and it can be defined

by:

cond : TCPUdgemm ≤ Tmemcpy + Tconvolution (3.1)

i.e, if the time that it takes for the CPU to compute the dgemm phase is larger than

the time it takes to copy the data to GPU and compute the convolution phase or if

CPU computes the dgemm phase extremely faster, than this solution is no better than

Hψ in CUDA (previous solution). And we can easily identify some CPU architecture

features for the to condition fail: a CPU with fewer threads or less performant (first

multi-core generations for example), lower bandwidth (PCIe 1.1 for example) or even

less efficient BLAS library (this one is not CPU architecture feature, but it also makes

the condition fail).

Scalable Hψ

The two solutions presented before can be mixed to obtain a scalable version across

all the devices present in the computational platform and therefore achieve better effi-

ciency on these devices. To execute in n devices, we need to further analyse the three

phases presented before (Figs. 3.6 and 3.7): a scalable convolution phase may be im-

plemented by dividing PSIR and PSII in n equal data chunks and each device would

compute n columns of the convolution. In the remaining phases we can use a block

matrix approach in a way that each device after computing its n part of the convolu-

tion could start computing the corresponding n blocks of the dgemm and reduce phases.

Fig. 3.10 presents a graphical overview of our strategy. However, our strategy in-

cludes slight modifications to minimize communications. The computing power of each

device in different computational platforms may vary. Currently, CUDA enabled de-

vices have larger floating point operations throughput than current CPU (specially the

current CUDA generation -Fermi) so, instead of dividing in n equal data chunks, we

perform this block division according to the computing power of each device. Assume,
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3. IMPROVING EFFICIENCY OF CPW2000

Figure 3.10: Scalable Hψ data flow diagram -

for example that the GPU is 5 times faster computing Hψ than other devices. Then,

according with our strategy, the GPU should have a data chunk approximately 5 times

larger than CPU. This strategy reduces the memory transfers latencies overhead since

the GPU does not need to be constantly fetching data blocks for the next computations.

Another possible implementation is to split the data structures in a larger number

of blocks, place these blocks in a pool or a queue, and each device picks a block for

computation. The memory transfers between the main memory and the GPU memory

can be hidden by overlapping data chunk computations with memory transfers (30).

This strategy has some overheads - dividing structures, synchronization of each block

already computed - that can be avoided: when compiling the library code, a embedded

profiler assesses the relative performance between devices so that we may tune the sizes

of the data chunks.

3.4 Overall performance assessment

We will now present the results obtained with our solutions and we will comment the

obtained results. To distinguish our optimization from the libraries used in 2.1 we will

call SLABv to our FFT optimization. We will begin our performance analyses by

accessing our FFT approach results.
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3.4 Overall performance assessment

Performance results of the FFT optimizations

Since the FFT optimization in CPW2000 has a thread safety issue with the FFT

routines of the MKL library, we made the decision of not presenting benchmark results

for this library. Our comparison model will be based on the original optimization

used with the FFTW3 routines. However, timings of CPW2000 executions with other

libraries will be used in order to quantify our gains.
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Figure 3.11: Comparison of the different FFT approaches. - CPW JLM and

CPW FFTW3 stands for the FFT optimization present in the original version of the

program when used with the FFT libraries JLM and FFTW3.

CPW JLM CPW FFTW3 SLABv

Size (GFLOPS) (GFLOPS) (GFLOPS)

32× 32× 32 13.4 13.8 7.5

64× 64× 64 15.8 15.9 6.8

100× 100× 100 14 14.1 13.9

128× 128× 128 10 10.9 12.5

200× 200× 200 9.7 11.1 17.0

256× 256× 256 6.4 9.1 13.5

300× 300× 300 6.3 9.9 15.2

400× 400× 400 5.7 6.4 14.4

512× 512× 512 4.3 5.6 5.9

Table 3.3: Comparison of the different FFT approaches.

Our approach behaves well for large array sizes, particularly those larger than 1283
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3. IMPROVING EFFICIENCY OF CPW2000

complex points (Fig.3.11), which entirely match expectations, our evaluation of mem-

ory coalescent accesses and the reuse of data on cache. With these results we strongly

believe that for CPU architectures with smaller caches size our approach may lead to

real gains. Unfortunately, for the array sizes that CPW2000 more frequently uses and

with the cache size of our testbed, our solution is a little disappointing considering that

it does not improve the performance of the FFT computations when compared to the

optimizations on CPW2000.

FFT Hψ Hψ Hψ

size MKL + JLM (s) ACML + FFTW3 (s) ACML + SLABv (s)

100× 100× 100 5.5 6.1 6.3

Table 3.4: Execution times of a single Hψ execution.

Table 3.4 presents the fact that our solution is not better that the one present in

CPW2000. Our approach results, in a single Hψ execution, is slightly worst than the

original optimization. This slight overhead is probably related with the number of calls

to 1D FFT routines which, according to our analysis (chapter3.1), has a significant

number of calls that may deteriorate performance.

Our solution does not beat the one present in the original version of the program;

however it allows CPW2000 to use the performance gains (Fig. 3.5) that MKL clearly

offers, leaving behind the strange thread safety problem that was originally present in

the program that we were not able to solve yet. And this benefit can be translated into

real and significant performance boost in the system overall performance.

CUDA based solutions performance results

The most significant performance gains arise from the use of the massive parallelism

available on CUDA capable devices (table 3.5).

Our analysis of the scalability and functioning of Hψ function translated to a better

distribution of the workload among the different devices of the computational platform

leading to a 5x speedup on the scalable Hψ approach when compared with CPW2000
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3.4 Overall performance assessment

FFT structure Hψ Hψ Hψ Hψ

size MKL + JLM (s) CUDA (s) split (s) scalable (s)

100× 100× 100 5.5 1.5 1.3 1.1

Table 3.5: Execution times for a single Hψ execution using CUDA.

original fastest version. This is not a remarkable application speedup of tens of mag-

nitude. However, the significant achievementto be noted are reduced communication

strategy and a balanced distribution of the workload, according to each device perfor-

mance. This lead to an efficient version faster than a full CUDA implementation.

Note that the FFT optimizations described in this work could not be implemented in

current CUDA version, since it does not support FFT computations of non contiguous

data points in double precision (24). In future CUDA versions, where it is expected this

feature, the application will be able to benefit from the FFT optimizations described

in this work, and a extra performance boost may be achieved.

MCr 2nd MCr

BLAS + FFT Routine Time(%) Routine Time(%) Time(s)

seq.

Netlib + JLM DGEMM 87.7 FFT 9.9 12464

ACML + FFTW3 DGEMM 66.9 FFT 29.6 5256

MKL + JLM DGEMM 56.4 FFT 35.6 3475

par.

MKL + MKL FFT 60.4 DGEMM 30.7 1858

ACML + FFTW3 DGEMM 57.6 FFT 33.7 1773

MKL + JLM DGEMM 49.8 FFT 38.9 1372

ACML + SLABv DGEMM 56.6 FFT 35.4 1815

MKL + SLABv DGEMM 48.8 FFT 38.3 1169

CUDA

Hψ CUDA DGEMM 58.2 others 41.8 874

Split Hψ w/

MKL + JLM DGEMM 80.6 others 19.4 852

Scalable Hψ w/

MKL + SLABv(MKL) DGEMM 69.7 others 30.3 829

Table 3.6: CPW2000 final profiling

The final profiling table 3.6 summarizes our initial proposed work to improve

CPW2000 overall performance, and gives us some hints for future optimizations. The

overall performance is still beyond our initial expectations, since we only made an

attempt to improve Hψ. Once this function has its efficiency improved, other li-
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3. IMPROVING EFFICIENCY OF CPW2000

braries/routines that did not seem to have a significant performance impact, will start

to have some meaning, and are candidates for further analysis.

DGEMM + FFT H psi(s) rest of the program(s)

seq.

Netlib + JLM 3386 9078

ACML + JLM 1898 3016

MKL + JLM 1632 1843

par.

MKL + MKL 1232 626

ACML + FFTW3 798 975

MKL + JLM 664 708

ACML + SLABv 837 978

MKL + SLABv 551 618

CUDA

Hψ CUDA 166 708

Split Hψ w/

MKL + JLM 145 707

Scalable Hψ w/

MKL + SLABv(MKL) 121 708

Table 3.7: Routines time consumption distribution. - Final Routines time distri-

bution during CPW2000 execution.

Finall, we must re-evaluate our profiling results keeping in mind the so helpful

corollaries derived from Amdahl’s law (29) presented by tables 3.7 and 3.6:: when

using CUDA devices, Hψ is not the most resources consuming routine in CPW2000

and is probably one of the least time consuming. This allows us to extend our efficiency

analysis to other software modules and attempt to improve these modules efficiency.

Assuming that these modules can be optimized, the use of devices CUDA in our work

may help not only to boost the application performance, but also to improve further the

efficiency of the program when executed on a computational platform without CUDA

enabled GPUs.
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Conclusions

4.1 Summary

From a high performance computing point of view the computational methods used

in a software that simulates a physical state are intensive and resources consuming.

Though the hardly tuned libraries and the different computational platforms available,

the computational work in CPW2000 continues to be extremely time and resources

consuming. This initial work provided us a sensibility of the impact that an algorithm

optimization can, or can not, have on computational science.

In this initial work we detected that a single routine, Hψ, consumes nearly 50%

of the total execution time and this percentage is most spent in FFT computations

on convolutions. We have identified a key feature in the FFT structure, this structure

is very sparse due to the nature of the convolution, that could be an opportunity to

improve the overall program efficiency. Our approach to minimize the time spent in

FFT computations based on the structure key feature, and to develop an architecture

independent solution did not produce the expected results. Consequently, we must

conclude that the FFT issue is still present on the software. However, the attempted

approaches are fully documented and detailed in this document to assist future re-

searchers having a description of the approaches that did not produce the expected

FFT efficiency improvement.

In a second phase of our work, we have identified and characterized Hψ function and

presented different approaches to implement parallelism on current computing devices.
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We achieved an interesting application speedup when computing Hψ with an effi-

cient scalable solution using CUDA enabled devices and CPU. These results are helpful

since they evidence the approximate 50% computing time of the rest of the program

that did not deserve before a special attention.

4.2 Future work

This dissertation work is part of the first phase of a total of two phases related with

the CPW2000 software. This first phase is only related with the computing aspects,

specially, the software efficiency. Our initial work showed interesting features available

in the software package when using CUDA enabled devices. Since our developed code

is in a development and testing stage, we should prepare it to fit in the library to be

ready for distribution.

Until the thread safety issue present in the original version is solved, we propose our

FFT optimization. A user, that has the possibility, may use the FFT performance boost

offered by MKL commercial library. However, respecting the CPW2000 feature of us-

ing different FFT libraries, we must develop special wrappers for our proposed solution.

Considering the methods that CPW2000 uses and analysing the performance results

that we obtained with CUDA, we should extend our analysis to the rest of the program.

A top level view of the application algorithms that we did not pay special attention,

gives a hint that the most algorithms are on linear algebra. These algorithms may fit

well on a SIMD architecture, well present in GPU devices, to implement parallelism

and achieve an application time to the solution improvement. We are particularly

interested to analyse these algorithms when implemented in CUDA, considering the

performance boost that we achieved in our work, which have not been higher due to a

library limitation (cuFFT).

The second phase of a future work, having a stable and the most possible efficient

version of the software, is to give the software and its main developer a dignified place

in scientific libraries. Dignified in our opinion due to two important aspects: (i) the

application age, it is almost 20 years old and it includes optimizations to achieve the
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best efficiency on a Cray supercomputer (available at the end of past century); (ii) it

has been contributing to other scientists work for the past years.
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Appendix A

CPW2000 sample output for C60

We present a sample output to illustrate some of the results that CPW2000 computes.

DENSITY-FUNCTIONAL PSEUDOPOTENTIAL PLANE-WAVE PROGRAM VERSION 4.51

RUN ON THE 22-JUN-11 AT 03:42:12

C60

SINGLE GEOMETRY CALCULATION

CRYSTAL STRUCTURE:

LATTICE CONSTANT 27.71000 (A.U.)

PRIMITIVE TRANSLATION VECTORS

IN A.U. IN LATTICE UNITS

A1= 0.000000E+00 0.138550E+02 0.138550E+02 0.000 0.500 0.500

A2= 0.138550E+02 0.000000E+00 0.138550E+02 0.500 0.000 0.500

A3= 0.138550E+02 0.138550E+02 0.000000E+00 0.500 0.500 0.000

NO. TYPE POSITION(LATTICE COORD.) POSITION(CARTESIAN COORD.) MASS

1 C 0.280 0.189 -0.283 -.130671E+01 -.397084E-01 0.649180E+01 12.011

2 C -0.029 0.189 0.222 0.568789E+01 0.267170E+01 0.220861E+01 12.011

3 C -0.222 0.381 0.029 0.568789E+01 -.267170E+01 0.220861E+01 12.011

4 C 0.283 0.069 0.029 0.136499E+01 0.432290E+01 0.488031E+01 12.011

5 C -0.029 0.381 -0.283 0.136499E+01 -.432290E+01 0.488031E+01 12.011

6 C 0.189 0.283 -0.189 0.130671E+01 0.000000E+00 0.653151E+01 12.011

7 C 0.189 -0.029 -0.381 -.568789E+01 -.267170E+01 0.220861E+01 12.011

8 C 0.381 -0.222 -0.189 -.568789E+01 0.267170E+01 0.220861E+01 12.011

9 C 0.381 -0.029 -0.069 -.136499E+01 0.432290E+01 0.488031E+01 12.011

10 C 0.069 0.283 -0.381 -.136499E+01 -.432290E+01 0.488031E+01 12.011

11 C -0.283 -0.189 0.283 0.130671E+01 0.000000E+00 -.653151E+01 12.011

12 C 0.029 -0.189 -0.222 -.568789E+01 -.267170E+01 -.220861E+01 12.011

13 C 0.222 -0.381 -0.029 -.568789E+01 0.267170E+01 -.220861E+01 12.011

14 C 0.029 -0.381 0.283 -.136499E+01 0.432290E+01 -.488031E+01 12.011

15 C -0.283 -0.069 -0.029 -.136499E+01 -.432290E+01 -.488031E+01 12.011
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16 C -0.189 -0.283 0.189 -.130671E+01 0.000000E+00 -.653151E+01 12.011

17 C -0.189 0.029 0.381 0.568789E+01 0.267170E+01 -.220861E+01 12.011

18 C -0.381 0.222 0.189 0.568789E+01 -.267170E+01 -.220861E+01 12.011

19 C -0.069 -0.283 0.381 0.136499E+01 0.432290E+01 -.488031E+01 12.011

20 C -0.381 0.029 0.069 0.136499E+01 -.432290E+01 -.488031E+01 12.011

21 C -0.283 0.283 0.189 0.653151E+01 -.130671E+01 0.000000E+00 12.011

22 C 0.029 0.283 0.069 0.488031E+01 0.136499E+01 0.432290E+01 12.011

23 C -0.283 -0.029 0.381 0.488031E+01 0.136499E+01 -.432290E+01 12.011

24 C 0.222 -0.029 0.189 0.220861E+01 0.568789E+01 0.267170E+01 12.011

25 C 0.029 -0.222 0.381 0.220861E+01 0.568789E+01 -.267170E+01 12.011

26 C -0.189 0.189 0.283 0.653151E+01 0.130671E+01 0.000000E+00 12.011

27 C -0.069 0.381 -0.029 0.488031E+01 -.136499E+01 0.432290E+01 12.011

28 C -0.381 0.069 0.283 0.488031E+01 -.136499E+01 -.432290E+01 12.011

29 C -0.381 0.189 -0.029 0.220861E+01 -.568789E+01 -.267170E+01 12.011

30 C -0.189 0.381 -0.222 0.220861E+01 -.568789E+01 0.267170E+01 12.011

31 C 0.283 -0.283 -0.189 -.653151E+01 0.130671E+01 0.000000E+00 12.011

32 C 0.283 0.029 -0.381 -.488031E+01 -.136499E+01 0.432290E+01 12.011

33 C -0.029 -0.283 -0.069 -.488031E+01 -.136499E+01 -.432290E+01 12.011

34 C -0.222 0.029 -0.189 -.220861E+01 -.568789E+01 -.267170E+01 12.011

35 C -0.029 0.222 -0.381 -.220861E+01 -.568789E+01 0.267170E+01 12.011

36 C 0.189 -0.189 -0.283 -.653151E+01 -.130671E+01 0.000000E+00 12.011

37 C 0.381 -0.069 -0.283 -.488031E+01 0.136499E+01 0.432290E+01 12.011

38 C 0.069 -0.381 0.029 -.488031E+01 0.136499E+01 -.432290E+01 12.011

39 C 0.381 -0.189 0.029 -.220861E+01 0.568789E+01 0.267170E+01 12.011

40 C 0.189 -0.381 0.222 -.220861E+01 0.568789E+01 -.267170E+01 12.011

41 C 0.189 -0.283 0.283 0.000000E+00 0.653151E+01 -.130671E+01 12.011

42 C 0.069 0.029 0.283 0.432290E+01 0.488031E+01 0.136499E+01 12.011

43 C 0.381 -0.283 -0.029 -.432290E+01 0.488031E+01 0.136499E+01 12.011

44 C 0.189 0.222 -0.029 0.267170E+01 0.220861E+01 0.568789E+01 12.011

45 C 0.381 0.029 -0.222 -.267170E+01 0.220861E+01 0.568789E+01 12.011

46 C 0.283 -0.189 0.189 0.000000E+00 0.653151E+01 0.130671E+01 12.011

47 C -0.029 -0.069 0.381 0.432290E+01 0.488031E+01 -.136499E+01 12.011

48 C 0.283 -0.381 0.069 -.432290E+01 0.488031E+01 -.136499E+01 12.011

49 C -0.029 -0.381 0.189 -.267170E+01 0.220861E+01 -.568789E+01 12.011

50 C -0.222 -0.189 0.381 0.267170E+01 0.220861E+01 -.568789E+01 12.011

51 C -0.189 0.283 -0.283 0.000000E+00 -.653151E+01 0.130671E+01 12.011

52 C -0.381 0.283 0.029 0.432290E+01 -.488031E+01 -.136499E+01 12.011

53 C -0.069 -0.029 -0.283 -.432290E+01 -.488031E+01 -.136499E+01 12.011

54 C -0.189 -0.222 0.029 -.267170E+01 -.220861E+01 -.568789E+01 12.011

55 C -0.381 -0.029 0.222 0.267170E+01 -.220861E+01 -.568789E+01 12.011

56 C -0.283 0.189 -0.189 0.000000E+00 -.653151E+01 -.130671E+01 12.011

57 C -0.283 0.381 -0.069 0.432290E+01 -.488031E+01 0.136499E+01 12.011

58 C 0.029 0.069 -0.381 -.432290E+01 -.488031E+01 0.136499E+01 12.011

59 C 0.029 0.381 -0.189 0.267170E+01 -.220861E+01 0.568789E+01 12.011

60 C 0.222 0.189 -0.381 -.267170E+01 -.220861E+01 0.568789E+01 12.011

POTENTIALS :

------------

C ca nrl nc

atom 5.69 29-JAN-08 Improved Troullier - Martinskb-loc= 0

2s( 2.00) rc= 1.292p( 2.00) rc= 1.29

NQL=1600 DELQL=0.015

LOCAL DENSITY APROXIMATION USING CEPERLEY AND ALDER AS PARAMETRIZED BY PERDEW AND ZUNGER

ENERGY CUTOFF FOR WAVE-FUNCTION KINETIC ENERGY IS 32.00 HARTREE

SCF IS CONVERGED IF DIFFERENCE IN POTENTIALS IS LESS THEN 0.00050000

FOR ATOMIC ORBITALS SCF PARAMETER IS 0.00050000

ITERATIVE DIAGONALIZATION IS CONVERGED IF ERROR IN |H PSI - E PSI| IS LESSTHEN 0.00100000

THE TEMPERATURE FOR ELECTRON FERMI DISTRIBUTION IS 0.00 KELVIN

PLANE-WAVE BASIS CALCULATION
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5319.24000275 volume

REAL-SPACE METRIC

383.92205000 191.96102500 191.96102500 metric g11,g12,g13

383.92205000 191.96102500 metric g22,g23

383.92205000 metric g33

19.59392891 19.59392891 19.59392891 length 1,2,3 (A.U.)

60.00000000 60.00000000 60.00000000 angle 12,13,23 (DEGREES)

POSITION (LATTICE COORD.) POSITION (CARTESIAN COORD. A.U.) NO. TYPE

0.28000 0.18855 -0.28287 -.13067E+01 -.39708E-01 0.64918E+01 1 C position

-0.02914 0.18855 0.22198 0.56879E+01 0.26717E+01 0.22086E+01 2 C position

-0.22198 0.38139 0.02914 0.56879E+01 -.26717E+01 0.22086E+01 3 C position

0.28287 0.06938 0.02914 0.13650E+01 0.43229E+01 0.48803E+01 4 C position

-0.02914 0.38139 -0.28287 0.13650E+01 -.43229E+01 0.48803E+01 5 C position

0.18855 0.28287 -0.18855 0.13067E+01 0.00000E+00 0.65315E+01 6 C position

0.18855 -0.02914 -0.38139 -.56879E+01 -.26717E+01 0.22086E+01 7 C position

0.38139 -0.22198 -0.18855 -.56879E+01 0.26717E+01 0.22086E+01 8 C position

0.38139 -0.02914 -0.06938 -.13650E+01 0.43229E+01 0.48803E+01 9 C position

0.06938 0.28287 -0.38139 -.13650E+01 -.43229E+01 0.48803E+01 10 C position

-0.28287 -0.18855 0.28287 0.13067E+01 0.00000E+00 -.65315E+01 11 C position

0.02914 -0.18855 -0.22198 -.56879E+01 -.26717E+01 -.22086E+01 12 C position

0.22198 -0.38139 -0.02914 -.56879E+01 0.26717E+01 -.22086E+01 13 C position

0.02914 -0.38139 0.28287 -.13650E+01 0.43229E+01 -.48803E+01 14 C position

-0.28287 -0.06938 -0.02914 -.13650E+01 -.43229E+01 -.48803E+01 15 C position

-0.18855 -0.28287 0.18855 -.13067E+01 0.00000E+00 -.65315E+01 16 C position

-0.18855 0.02914 0.38139 0.56879E+01 0.26717E+01 -.22086E+01 17 C position

-0.38139 0.22198 0.18855 0.56879E+01 -.26717E+01 -.22086E+01 18 C position

-0.06938 -0.28287 0.38139 0.13650E+01 0.43229E+01 -.48803E+01 19 C position

-0.38139 0.02914 0.06938 0.13650E+01 -.43229E+01 -.48803E+01 20 C position

-0.28287 0.28287 0.18855 0.65315E+01 -.13067E+01 0.00000E+00 21 C position

0.02914 0.28287 0.06938 0.48803E+01 0.13650E+01 0.43229E+01 22 C position

-0.28287 -0.02914 0.38139 0.48803E+01 0.13650E+01 -.43229E+01 23 C position

0.22198 -0.02914 0.18855 0.22086E+01 0.56879E+01 0.26717E+01 24 C position

0.02914 -0.22198 0.38139 0.22086E+01 0.56879E+01 -.26717E+01 25 C position

-0.18855 0.18855 0.28287 0.65315E+01 0.13067E+01 0.00000E+00 26 C position

-0.06938 0.38139 -0.02914 0.48803E+01 -.13650E+01 0.43229E+01 27 C position

-0.38139 0.06938 0.28287 0.48803E+01 -.13650E+01 -.43229E+01 28 C position

-0.38139 0.18855 -0.02914 0.22086E+01 -.56879E+01 -.26717E+01 29 C position

-0.18855 0.38139 -0.22198 0.22086E+01 -.56879E+01 0.26717E+01 30 C position

0.28287 -0.28287 -0.18855 -.65315E+01 0.13067E+01 0.00000E+00 31 C position

0.28287 0.02914 -0.38139 -.48803E+01 -.13650E+01 0.43229E+01 32 C position

-0.02914 -0.28287 -0.06938 -.48803E+01 -.13650E+01 -.43229E+01 33 C position

-0.22198 0.02914 -0.18855 -.22086E+01 -.56879E+01 -.26717E+01 34 C position

-0.02914 0.22198 -0.38139 -.22086E+01 -.56879E+01 0.26717E+01 35 C position

0.18855 -0.18855 -0.28287 -.65315E+01 -.13067E+01 0.00000E+00 36 C position

0.38139 -0.06938 -0.28287 -.48803E+01 0.13650E+01 0.43229E+01 37 C position

0.06938 -0.38139 0.02914 -.48803E+01 0.13650E+01 -.43229E+01 38 C position

0.38139 -0.18855 0.02914 -.22086E+01 0.56879E+01 0.26717E+01 39 C position

0.18855 -0.38139 0.22198 -.22086E+01 0.56879E+01 -.26717E+01 40 C position

0.18855 -0.28287 0.28287 0.00000E+00 0.65315E+01 -.13067E+01 41 C position

0.06938 0.02914 0.28287 0.43229E+01 0.48803E+01 0.13650E+01 42 C position

0.38139 -0.28287 -0.02914 -.43229E+01 0.48803E+01 0.13650E+01 43 C position

0.18855 0.22198 -0.02914 0.26717E+01 0.22086E+01 0.56879E+01 44 C position

0.38139 0.02914 -0.22198 -.26717E+01 0.22086E+01 0.56879E+01 45 C position

0.28287 -0.18855 0.18855 0.00000E+00 0.65315E+01 0.13067E+01 46 C position

-0.02914 -0.06938 0.38139 0.43229E+01 0.48803E+01 -.13650E+01 47 C position

0.28287 -0.38139 0.06938 -.43229E+01 0.48803E+01 -.13650E+01 48 C position

-0.02914 -0.38139 0.18855 -.26717E+01 0.22086E+01 -.56879E+01 49 C position

-0.22198 -0.18855 0.38139 0.26717E+01 0.22086E+01 -.56879E+01 50 C position

-0.18855 0.28287 -0.28287 0.00000E+00 -.65315E+01 0.13067E+01 51 C position

-0.38139 0.28287 0.02914 0.43229E+01 -.48803E+01 -.13650E+01 52 C position

-0.06938 -0.02914 -0.28287 -.43229E+01 -.48803E+01 -.13650E+01 53 C position

-0.18855 -0.22198 0.02914 -.26717E+01 -.22086E+01 -.56879E+01 54 C position

-0.38139 -0.02914 0.22198 0.26717E+01 -.22086E+01 -.56879E+01 55 C position
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-0.28287 0.18855 -0.18855 0.00000E+00 -.65315E+01 -.13067E+01 56 C position

-0.28287 0.38139 -0.06938 0.43229E+01 -.48803E+01 0.13650E+01 57 C position

0.02914 0.06938 -0.38139 -.43229E+01 -.48803E+01 0.13650E+01 58 C position

0.02914 0.38139 -0.18855 0.26717E+01 -.22086E+01 0.56879E+01 59 C position

0.22198 0.18855 -0.38139 -.26717E+01 -.22086E+01 0.56879E+01 60 C position

ROTATION MATRICES AND FRACTIONAL TRANSLATIONS IN LATTICE COORDINATES

1 1 0 0 0 1 0 0 0 1 0.0000 0.0000 0.0000

368139 G-VECTORS ARE SET UP IN 184070 STARS - KMAX = 49 49 49

1 K POINTS GENERATED BY PROGRAM FROM PARAMETERS :

N = 1 1 1 S = 0.62 0.29 0.00 NB = 140

EWALD

-30.90713624 ewaldpot energy

CONTRAVARIANT STRESS TENSOR (A.U.) CARTESIAN STRESS (GPA)

-0.040774 0.013128 0.014087 -0.565270E+02 0.687382E+00 0.577960E+00 ewaldstr 1

0.013128 -0.040377 0.013706 0.687382E+00 -0.561397E+02 0.155681E+00 ewaldstr 2

0.014087 0.013706 -0.040274 0.577960E+00 0.155681E+00 -0.582856E+02 ewaldstr 3

-0.00193681 -56.98412952 ewaldpress (au and GPa)

FORCE (LATTICE COORD.) FORCE (CARTESIAN COORD. A.U) NO. TYPE

0.19015 0.15042 -0.18534 -.48378E+00 0.66715E-01 0.47186E+01 1 C ewaldfrc

-0.03372 0.13556 0.13950 0.38109E+01 0.14656E+01 0.14110E+01 2 C ewaldfrc

-0.13955 0.24136 0.03380 0.38123E+01 -.14652E+01 0.14105E+01 3 C ewaldfrc

0.16117 0.05769 0.01306 0.98029E+00 0.24140E+01 0.30324E+01 4 C ewaldfrc

-0.01398 0.23240 -0.16090 0.99061E+00 -.24230E+01 0.30262E+01 5 C ewaldfrc

0.15696 0.19174 -0.15443 0.51689E+00 0.35056E-01 0.48313E+01 6 C ewaldfrc

0.13558 -0.03392 -0.24140 -.38146E+01 -.14661E+01 0.14086E+01 7 C ewaldfrc

0.24144 -0.13955 -0.13554 -.38113E+01 0.14673E+01 0.14117E+01 8 C ewaldfrc

0.23208 -0.01291 -0.05807 -.98336E+00 0.24109E+01 0.30366E+01 9 C ewaldfrc

0.05683 0.16142 -0.23243 -.98382E+00 -.24329E+01 0.30238E+01 10 C ewaldfrc

-0.19183 -0.15437 0.19180 0.51863E+00 -.31238E-03 -.47966E+01 11 C ewaldfrc

0.03367 -0.13561 -0.13945 -.38110E+01 -.14655E+01 -.14124E+01 12 C ewaldfrc

0.13948 -0.24137 -0.03371 -.38113E+01 0.14655E+01 -.14117E+01 13 C ewaldfrc

0.01342 -0.23186 0.16087 -.98352E+00 0.24147E+01 -.30265E+01 14 C ewaldfrc

-0.16101 -0.05752 -0.01346 -.98349E+00 -.24172E+01 -.30277E+01 15 C ewaldfrc

-0.15441 -0.19180 0.15438 -.51851E+00 -.48303E-03 -.47968E+01 16 C ewaldfrc

-0.13565 0.03374 0.24140 0.38121E+01 0.14651E+01 -.14120E+01 17 C ewaldfrc

-0.24134 0.13945 0.13562 0.38111E+01 -.14647E+01 -.14116E+01 18 C ewaldfrc

-0.05759 -0.16085 0.23189 0.98416E+00 0.24148E+01 -.30266E+01 19 C ewaldfrc

-0.23195 0.01344 0.05752 0.98311E+00 -.24168E+01 -.30275E+01 20 C ewaldfrc

-0.19187 0.19180 0.15448 0.47978E+01 -.51799E+00 -.91245E-03 21 C ewaldfrc

0.01350 0.16092 0.05760 0.30275E+01 0.98516E+00 0.24166E+01 22 C ewaldfrc

-0.16096 -0.01338 0.23197 0.30286E+01 0.98385E+00 -.24155E+01 23 C ewaldfrc

0.13953 -0.03368 0.13549 0.14106E+01 0.38104E+01 0.14665E+01 24 C ewaldfrc

0.03370 -0.13942 0.24131 0.14117E+01 0.38102E+01 -.14647E+01 25 C ewaldfrc

-0.15446 0.15438 0.19191 0.47978E+01 0.51883E+00 -.11140E-02 26 C ewaldfrc

-0.05762 0.23199 -0.01330 0.30300E+01 -.98258E+00 0.24158E+01 27 C ewaldfrc

-0.23190 0.05757 0.16095 0.30275E+01 -.98296E+00 -.24153E+01 28 C ewaldfrc

-0.24140 0.13555 -0.03373 0.14108E+01 -.38119E+01 -.14665E+01 29 C ewaldfrc

-0.13580 0.24142 -0.13941 0.14134E+01 -.38131E+01 0.14634E+01 30 C ewaldfrc

0.19186 -0.19192 -0.15437 -.47979E+01 0.51940E+00 -.96077E-03 31 C ewaldfrc

0.16141 0.01278 -0.23229 -.30414E+01 -.98205E+00 0.24134E+01 32 C ewaldfrc

-0.01345 -0.16093 -0.05756 -.30272E+01 -.98374E+00 -.24161E+01 33 C ewaldfrc

-0.13962 0.03373 -0.13557 -.14110E+01 -.38127E+01 -.14672E+01 34 C ewaldfrc

-0.03397 0.13949 -0.24141 -.14121E+01 -.38154E+01 0.14619E+01 35 C ewaldfrc

0.15440 -0.15452 -0.19180 -.47983E+01 -.51823E+00 -.15844E-02 36 C ewaldfrc

0.23248 -0.05779 -0.16091 -.30301E+01 0.99163E+00 0.24202E+01 37 C ewaldfrc

0.05757 -0.23193 0.01342 -.30275E+01 0.98350E+00 -.24158E+01 38 C ewaldfrc
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0.24139 -0.13548 0.03364 -.14109E+01 0.38106E+01 0.14674E+01 39 C ewaldfrc

0.13559 -0.24129 0.13943 -.14113E+01 0.38104E+01 -.14645E+01 40 C ewaldfrc

0.15442 -0.19179 0.19180 0.93957E-04 0.47968E+01 -.51783E+00 41 C ewaldfrc

0.05757 0.01343 0.16091 0.24154E+01 0.30270E+01 0.98364E+00 42 C ewaldfrc

0.23196 -0.16091 -0.01342 -.24154E+01 0.30279E+01 0.98440E+00 43 C ewaldfrc

0.13610 0.13941 -0.03402 0.14601E+01 0.14142E+01 0.38171E+01 44 C ewaldfrc

0.24176 0.03647 -0.14050 -.14415E+01 0.14029E+01 0.38549E+01 45 C ewaldfrc

0.19186 -0.15436 0.15435 -.12175E-03 0.47968E+01 0.51953E+00 46 C ewaldfrc

-0.01347 -0.05754 0.23193 0.24162E+01 0.30268E+01 -.98376E+00 47 C ewaldfrc

0.16094 -0.23192 0.05755 -.24158E+01 0.30273E+01 -.98336E+00 48 C ewaldfrc

-0.03372 -0.24130 0.13554 -.14654E+01 0.14107E+01 -.38105E+01 49 C ewaldfrc

-0.13949 -0.13552 0.24133 0.14659E+01 0.14109E+01 -.38103E+01 50 C ewaldfrc

-0.15460 0.19183 -0.19180 0.50691E-03 -.47994E+01 0.51588E+00 51 C ewaldfrc

-0.23196 0.16091 0.01345 0.24158E+01 -.30275E+01 -.98443E+00 52 C ewaldfrc

-0.05768 -0.01345 -0.16091 -.24158E+01 -.30284E+01 -.98551E+00 53 C ewaldfrc

-0.13561 -0.13944 0.03370 -.14651E+01 -.14119E+01 -.38109E+01 54 C ewaldfrc

-0.24132 -0.03370 0.13944 0.14650E+01 -.14115E+01 -.38105E+01 55 C ewaldfrc

-0.19198 0.15437 -0.15438 -.10236E-03 -.47988E+01 -.52101E+00 56 C ewaldfrc

-0.16104 0.23195 -0.05750 0.24170E+01 -.30278E+01 0.98240E+00 57 C ewaldfrc

0.01330 0.05748 -0.23195 -.24173E+01 -.30295E+01 0.98067E+00 58 C ewaldfrc

0.03344 0.24183 -0.13529 0.14761E+01 -.14112E+01 0.38139E+01 59 C ewaldfrc

0.13938 0.13555 -0.24519 -.15190E+01 -.14660E+01 0.38092E+01 60 C ewaldfrc

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1387.32339 0.13768 (.74E-12)

COMPUTING TIME FOR STARTING 1.60

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.7110 -1.9057 0.0000

K MTXD En(K)

1 46036 -14.74752-14.25602-14.24178-14.23632-13.29134-13.27455-13.26853-13.26705 -0.07 0.07 0.21

-13.26120-12.27644-12.26286-12.25615-11.45078-11.43093-11.42866-11.42336

-10.18691-10.16875-10.16287-10.15977-10.15597 -9.71798 -9.70471 -9.70314

-9.69174 -8.24188 -8.22495 -8.22055 -8.21872 -8.21451 -8.05770 -8.05485

-8.04454 -7.07676 -7.07628 -7.06948 -6.13911 -6.13241 -6.12837 -6.12684

-6.12464 -5.78619 -5.72794 -5.71189 -5.69720 -4.27131 -4.25150 -4.24641

-4.23577 -3.64087 -3.61342 -3.61162 -3.60709 -3.60065 -3.52200 -3.51575

-3.50676 -2.87861 -2.86839 -2.86388 -2.03403 -2.01400 -2.01037 -2.00387

-1.83194 -1.81908 -1.81442 -1.81076 -1.80078 -1.42996 -1.41680 -1.41161

-1.40351 -1.30787 -0.92425 -0.90538 -0.89938 -0.86824 -0.82174 -0.77918

-0.76184 -0.75840 -0.74781 -0.73130 0.18651 0.30199 0.31311 0.34318

0.34743 0.43545 0.45381 0.46567 0.47332 0.48005 0.68876 0.71113

0.71749 0.71874 0.73740 1.48743 1.49648 1.60406 2.03109 2.06513

2.09618 2.11553 3.50906 3.53662 3.57774 3.59110 3.63220 3.66161

3.69965 3.72508 3.75519 4.71345 4.76916 4.80808 4.82672 4.85645

6.53547 6.55656 6.65074 7.57683 7.64193 7.68927 8.65615 8.68252

8.70949 8.73655 8.78517 8.87604 8.91851 8.94432 11.25818 11.46828

11.54344 12.08625 12.15253 12.64772

THE FERMI LEVEL IS AT 4.8565 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1946.70871 0.01148 (.95E-12)

ITERATION NUMBER 1

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 44.20728 0.64597 0.61526 0.03071 -0.68444

-0.01982 -0.00027 -0.00036 0.00009 0.00041

3 0 -1 0 0.07712 44.12648 0.64477 0.61436 0.03041 -0.68345
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0.00751 0.00015 0.00002 0.00012 0.00000

4 0 0 1 0.07712 44.12604 0.64473 0.61435 0.03038 -0.68345

0.00477 0.00009 0.00002 0.00007 0.00000

5 1 0 0 0.07712 44.18581 0.64566 0.61531 0.03035 -0.68450

-0.02117 -0.00034 -0.00020 -0.00013 0.00021

6 -1 -1 0 0.10283 9.77488 0.11040 0.09694 0.01346 -0.10661

0.06340 0.00068 0.00067 0.00000 -0.00078

7 0 -1 -1 0.10283 9.77973 0.11050 0.09684 0.01366 -0.10646

-0.00524 -0.00008 -0.00001 -0.00007 0.00000

8 1 0 1 0.10283 9.81925 0.11093 0.09683 0.01410 -0.10645

0.06933 0.00077 0.00070 0.00007 -0.00079

9 -2 -1 -1 0.20566 -43.32371 -0.21804 -0.20638 -0.01166 0.27201

0.13402 0.00070 0.00058 0.00013 -0.00074

10 -1 -1 -2 0.20566 -43.36038 -0.21819 -0.20666 -0.01153 0.27238

-0.06955 -0.00039 -0.00026 -0.00013 0.00031

11 -1 1 0 0.20566 -43.28349 -0.21784 -0.20632 -0.01152 0.27195

-0.04826 -0.00024 -0.00024 0.00000 0.00032

12 0 1 -1 0.20566 -43.35395 -0.21819 -0.20651 -0.01168 0.27216

0.00922 0.00008 0.00002 0.00006 0.00000

13 1 0 -1 0.20566 -43.36100 -0.21823 -0.20661 -0.01162 0.27231

-0.04782 -0.00023 -0.00026 0.00003 0.00035

14 1 2 1 0.20566 -43.29443 -0.21787 -0.20630 -0.01157 0.27189

-0.05120 -0.00027 -0.00021 -0.00006 0.00027

15 -2 -2 -1 0.28278 -36.62420 -0.13312 -0.12166 -0.01146 0.16917

0.06215 0.00023 0.00022 0.00002 -0.00029

16 -2 -1 0 0.28278 -36.64526 -0.13320 -0.12173 -0.01147 0.16926

-0.00787 -0.00002 0.00001 -0.00003 0.00000

17 -1 -2 -2 0.28278 -36.47699 -0.13259 -0.12123 -0.01136 0.16858

-0.05317 -0.00019 -0.00016 -0.00004 0.00022

18 -1 -1 1 0.28278 -36.57380 -0.13292 -0.12153 -0.01139 0.16899

-0.00953 -0.00003 0.00000 -0.00003 0.00000

19 -1 1 -1 0.28278 -36.57291 -0.13292 -0.12153 -0.01139 0.16897

-0.03659 -0.00016 -0.00009 -0.00007 0.00010

20 0 -2 -1 0.28278 -36.52690 -0.13272 -0.12134 -0.01138 0.16873

0.00899 0.00005 0.00001 0.00004 0.00000

ITERATION NUMBER 1 :

----------

BAND ENERGY = -32.7587247774

HXC CORRECTION = 511.8737912644

-------------------------------------

KINETIC ENERGY = 269.6332452973

IONIC ENERGY = -688.4289750217

NONLOCAL ENERGY = -125.8367863174

HARTREE ENERGY = 312.6052058594

EXCHANGE CORRELATION = -106.7400596044

-------------------------------------

ALPHA TERM = 28.7276840051

EWALD TERM = -30.9071362392

-------------------------------------

TOTAL ENERGY = -340.9468220208

COMPUTING TIME FOR ITERATION 1 1726.14

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.8911 -1.7555 0.0000

K MTXD En(K)

1 46036 -13.22764-12.72314-12.71650-12.71090-11.74810-11.73558-11.72699-11.71721 -0.07 0.07 0.21

-11.71317-10.73474-10.72771-10.72103 -9.83233 -9.82140 -9.81753 -9.81121

-8.59694 -8.58593 -8.57753 -8.52916 -8.51805 -8.05616 -8.05017 -8.04348

-8.01551 -6.50018 -6.48095 -6.47641 -6.47487 -6.46807 -6.44768 -6.44531

-6.43608 -5.46927 -5.46709 -5.45981 -4.33729 -4.33320 -4.33000 -4.31144

-4.30797 -4.11514 -4.06632 -4.05657 -4.03963 -2.72730 -2.71391 -2.70108

-2.62965 -1.86932 -1.85074 -1.82678 -1.82111 -1.81759 -1.73457 -1.72837
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-1.72347 -1.12715 -1.11933 -1.11429 -0.69381 -0.36478 -0.34743 -0.34314

-0.33297 -0.24628 -0.19442 -0.09381 0.06415 0.06841 0.07488 0.09768

0.10699 0.50950 0.51441 0.52453 0.54265 0.83376 0.84772 0.85488

0.86610 1.02184 1.04042 1.07811 1.09229 1.21611 1.24609 1.25655

1.26543 2.22109 2.22913 2.30056 2.31126 2.32032 2.33763 2.35674

2.37448 2.60480 2.61447 2.65260 2.65771 2.66776 2.81408 2.85820

2.88526 2.90575 4.32668 4.35831 4.40961 4.43223 4.48290 4.52037

4.57198 4.63183 4.64918 5.63118 5.71974 5.75449 5.78009 5.81203

7.38626 7.40833 7.53256 8.50740 8.58628 8.64507 9.40673 9.42581

9.49141 9.55270 9.59738 9.71181 9.72226 9.74936 11.26161 11.52889

11.71086 11.85136 11.89718 12.33130

THE FERMI LEVEL IS AT 5.8120 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1805.79043 0.01913 (.82E-12)

ITERATION NUMBER 2

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 43.30033 0.63259 0.61844 0.01415 -0.68444

-0.02393 -0.00033 -0.00035 0.00002 0.00041

3 0 -1 0 0.07712 43.23533 0.63164 0.61751 0.01413 -0.68345

0.00052 0.00004 0.00004 0.00000 0.00000

4 0 0 1 0.07712 43.24055 0.63167 0.61749 0.01418 -0.68345

0.00382 0.00007 0.00002 0.00005 0.00000

5 1 0 0 0.07712 43.30172 0.63263 0.61845 0.01419 -0.68450

-0.01117 -0.00018 -0.00022 0.00003 0.00021

6 -1 -1 0 0.10283 9.01553 0.10226 0.09876 0.00350 -0.10661

0.06731 0.00072 0.00067 0.00005 -0.00078

7 0 -1 -1 0.10283 8.99832 0.10210 0.09868 0.00342 -0.10646

0.00439 0.00003 -0.00002 0.00005 0.00000

8 1 0 1 0.10283 9.02138 0.10235 0.09874 0.00361 -0.10645

0.06523 0.00073 0.00071 0.00001 -0.00079

9 -2 -1 -1 0.20566 -42.84423 -0.21555 -0.20930 -0.00624 0.27201

0.11332 0.00059 0.00061 -0.00002 -0.00074

10 -1 -1 -2 0.20566 -42.89071 -0.21574 -0.20955 -0.00619 0.27238

-0.04693 -0.00026 -0.00029 0.00003 0.00031

11 -1 1 0 0.20566 -42.82467 -0.21547 -0.20921 -0.00627 0.27195

-0.05072 -0.00025 -0.00024 -0.00001 0.00032

12 0 1 -1 0.20566 -42.87329 -0.21568 -0.20944 -0.00624 0.27216

-0.00173 0.00001 0.00003 -0.00002 0.00000

13 1 0 -1 0.20566 -42.89119 -0.21578 -0.20952 -0.00626 0.27231

-0.05822 -0.00028 -0.00025 -0.00003 0.00035

14 1 2 1 0.20566 -42.82987 -0.21545 -0.20920 -0.00625 0.27189

-0.03944 -0.00020 -0.00022 0.00002 0.00027

15 -2 -2 -1 0.28278 -35.69470 -0.12980 -0.12510 -0.00470 0.16917

0.05958 0.00022 0.00022 0.00000 -0.00029

16 -2 -1 0 0.28278 -35.72249 -0.12990 -0.12517 -0.00473 0.16926

0.00123 0.00001 0.00000 0.00002 0.00000

17 -1 -2 -2 0.28278 -35.57397 -0.12938 -0.12464 -0.00474 0.16858

-0.04327 -0.00015 -0.00017 0.00001 0.00022

18 -1 -1 1 0.28278 -35.66562 -0.12968 -0.12494 -0.00474 0.16899

-0.00298 -0.00001 -0.00001 0.00001 0.00000

19 -1 1 -1 0.28278 -35.65858 -0.12965 -0.12495 -0.00471 0.16897

-0.01630 -0.00008 -0.00011 0.00003 0.00010

20 0 -2 -1 0.28278 -35.62205 -0.12949 -0.12475 -0.00474 0.16873

-0.00054 0.00001 0.00002 -0.00001 0.00000

ITERATION NUMBER 2 :

---------------------

BAND ENERGY = -19.5716336083 13.18709117

HXC CORRECTION = 512.5978159390 0.72402467

55



5. APPENDIX A

-----------------------------------------------------

KINETIC ENERGY = 256.0999353859 -13.53330991

IONIC ENERGY = -671.3587119282 17.07026309

NONLOCAL ENERGY = -116.9106730051 8.92611331

HARTREE ENERGY = 297.1941074018 -15.41109846

EXCHANGE CORRELATION = -104.7107937823 2.02926582

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.8655881619 -0.91876614

COMPUTING TIME FOR ITERATION 2 1741.47

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.9012 -1.7364 0.0000

K MTXD En(K)

1 46036 -12.47075-11.96489-11.95967-11.95110-10.97904-10.97213-10.95851-10.95459 -0.07 0.07 0.21

-10.95054 -9.93380 -9.92546 -9.91629 -9.12564 -9.11262 -9.10911 -9.10357

-7.82248 -7.81572 -7.80553 -7.80385 -7.79753 -7.35602 -7.34888 -7.34023

-7.31572 -5.79503 -5.78186 -5.77700 -5.77315 -5.76811 -5.68909 -5.68596

-5.67491 -4.73479 -4.73118 -4.72507 -3.63483 -3.63021 -3.62567 -3.61692

-3.61051 -3.33633 -3.32260 -3.30530 -3.30190 -1.97895 -1.96855 -1.95443

-1.93988 -1.14373 -1.12527 -1.12440 -1.11624 -1.11232 -0.97889 -0.97473

-0.96684 -0.41310 -0.40525 -0.40016 -0.22710 0.20251 0.26562 0.35557

0.35992 0.36847 0.38467 0.39160 0.80411 0.81087 0.81621 0.81931

0.83157 1.21722 1.22521 1.23551 1.25482 1.32567 1.50757 1.53147

1.54612 1.55892 1.56475 1.57812 1.58895 1.96081 1.97132 1.98105

1.98993 2.70527 2.71635 2.86454 3.01655 3.03700 3.04216 3.05337

3.06239 3.29663 3.32727 3.33448 3.34045 3.34192 3.36336 3.37416

3.38695 3.40375 4.80281 4.84779 4.90212 4.92329 4.97043 5.01077

5.07456 5.13850 5.14672 6.11286 6.21482 6.26015 6.28560 6.32780

7.87267 7.89534 8.03819 8.99617 9.08304 9.14940 9.85520 9.89198

9.97474 10.01558 10.06953 10.20047 10.22168 10.24994 11.52733 11.60160

11.68445 11.82066 11.92031 12.24410

THE FERMI LEVEL IS AT 6.3278 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1812.14682 0.02835 (.89E-12)

ITERATION NUMBER 3

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.95249 0.62782 0.62109 0.00673 -0.68444

-0.02498 -0.00035 -0.00035 0.00000 0.00041

3 0 -1 0 0.07712 42.88645 0.62686 0.62016 0.00670 -0.68345

0.00235 0.00007 0.00004 0.00003 0.00000

4 0 0 1 0.07712 42.88732 0.62682 0.62015 0.00667 -0.68345

0.00171 0.00004 0.00003 0.00001 0.00000

5 1 0 0 0.07712 42.94180 0.62769 0.62111 0.00659 -0.68450

-0.01397 -0.00023 -0.00021 -0.00001 0.00021

6 -1 -1 0 0.10283 8.74903 0.09951 0.09964 -0.00012 -0.10661

0.06352 0.00068 0.00068 -0.00001 -0.00078

7 0 -1 -1 0.10283 8.73515 0.09939 0.09954 -0.00015 -0.10646

-0.00106 -0.00003 -0.00001 -0.00002 0.00000

8 1 0 1 0.10283 8.75508 0.09960 0.09964 -0.00004 -0.10645

0.06272 0.00070 0.00072 -0.00002 -0.00079

9 -2 -1 -1 0.20566 -42.65825 -0.21487 -0.21213 -0.00274 0.27201

0.12202 0.00064 0.00060 0.00004 -0.00074

10 -1 -1 -2 0.20566 -42.70621 -0.21506 -0.21235 -0.00271 0.27238

-0.05740 -0.00032 -0.00028 -0.00004 0.00031

11 -1 1 0 0.20566 -42.63085 -0.21476 -0.21205 -0.00272 0.27195
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-0.04760 -0.00024 -0.00025 0.00001 0.00032

12 0 1 -1 0.20566 -42.68552 -0.21499 -0.21227 -0.00272 0.27216

0.00209 0.00004 0.00002 0.00001 0.00000

13 1 0 -1 0.20566 -42.69904 -0.21507 -0.21236 -0.00271 0.27231

-0.04937 -0.00024 -0.00027 0.00003 0.00035

14 1 2 1 0.20566 -42.63456 -0.21472 -0.21203 -0.00268 0.27189

-0.04500 -0.00024 -0.00022 -0.00002 0.00027

15 -2 -2 -1 0.28278 -35.37866 -0.12892 -0.12766 -0.00126 0.16917

0.06263 0.00024 0.00022 0.00001 -0.00029

16 -2 -1 0 0.28278 -35.39695 -0.12899 -0.12775 -0.00124 0.16926

-0.00408 -0.00001 0.00001 -0.00001 0.00000

17 -1 -2 -2 0.28278 -35.23961 -0.12844 -0.12723 -0.00121 0.16858

-0.05009 -0.00018 -0.00016 -0.00002 0.00022

18 -1 -1 1 0.28278 -35.33666 -0.12875 -0.12753 -0.00123 0.16899

-0.00743 -0.00002 -0.00001 -0.00001 0.00000

19 -1 1 -1 0.28278 -35.33529 -0.12874 -0.12751 -0.00123 0.16897

-0.02511 -0.00012 -0.00010 -0.00002 0.00010

20 0 -2 -1 0.28278 -35.29177 -0.12855 -0.12734 -0.00122 0.16873

0.00358 0.00003 0.00002 0.00001 0.00000

ITERATION NUMBER 3 :

---------------------

BAND ENERGY = -13.6714667194 5.90016689

HXC CORRECTION = 514.3466786833 1.74886274

-----------------------------------------------------

KINETIC ENERGY = 254.1231904772 -1.97674491

IONIC ENERGY = -665.9837432756 5.37496865

NONLOCAL ENERGY = -116.1575926043 0.75308040

HARTREE ENERGY = 292.4872724516 -4.70683495

EXCHANGE CORRELATION = -104.2522452982 0.45854848

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9625704834 -0.09698232

COMPUTING TIME FOR ITERATION 3 1444.68

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.9229 -1.7153 0.0000

K MTXD En(K)

1 46036 -12.03042-11.52209-11.51815-11.50958-10.53441-10.52383-10.51275-10.50844 -0.07 0.07 0.21

-10.50657 -9.48043 -9.47378 -9.46501 -8.68210 -8.67048 -8.66651 -8.65948

-7.37233 -7.36673 -7.35576 -7.35130 -7.34783 -6.90552 -6.89991 -6.89194

-6.87945 -5.34713 -5.33303 -5.32760 -5.32410 -5.31836 -5.23485 -5.23081

-5.21918 -4.28149 -4.27680 -4.27062 -3.16823 -3.16158 -3.15993 -3.15628

-3.15044 -2.89554 -2.88346 -2.86308 -2.82459 -1.53243 -1.52568 -1.51887

-1.50463 -0.69003 -0.67826 -0.67418 -0.66519 -0.65808 -0.51078 -0.50634

-0.49855 0.03338 0.05100 0.05779 0.06268 0.46535 0.53091 0.65249

0.80400 0.80682 0.81486 0.82514 1.27498 1.28296 1.28676 1.29080

1.30177 1.59336 1.69428 1.69944 1.71083 1.71906 1.78781 1.81247

1.86911 1.87236 1.99472 2.00623 2.01561 2.44078 2.44878 2.45795

2.46794 2.99383 3.00682 3.15664 3.47956 3.49877 3.50218 3.50884

3.52379 3.58670 3.62840 3.67694 3.69848 3.79520 3.80904 3.81271

3.81729 3.83652 5.08972 5.13326 5.18772 5.21318 5.26613 5.31372

5.39499 5.43761 5.46341 6.41005 6.52776 6.57273 6.60237 6.64448

8.16094 8.18440 8.34067 9.29474 9.38963 9.45976 10.11752 10.16553

10.26670 10.29656 10.37080 10.50160 10.52863 10.55742 11.37148 11.84862

11.92391 12.01495 12.08678 12.10781

THE FERMI LEVEL IS AT 6.6445 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100
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MAX AND MIN VALUES OF CHARGE DENSITY: 1799.74836 0.03814 (.86E-12)

ITERATION NUMBER 4

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.71974 0.62460 0.62289 0.00171 -0.68444

-0.02528 -0.00035 -0.00035 -0.00001 0.00041

3 0 -1 0 0.07712 42.65547 0.62367 0.62195 0.00172 -0.68345

-0.00145 0.00001 0.00004 -0.00003 0.00000

4 0 0 1 0.07712 42.66098 0.62370 0.62194 0.00177 -0.68345

0.00142 0.00004 0.00004 0.00000 0.00000

5 1 0 0 0.07712 42.71963 0.62464 0.62288 0.00176 -0.68450

-0.01143 -0.00019 -0.00021 0.00003 0.00021

6 -1 -1 0 0.10283 8.63526 0.09834 0.09986 -0.00152 -0.10661

0.06497 0.00069 0.00069 0.00001 -0.00078

7 0 -1 -1 0.10283 8.61706 0.09817 0.09975 -0.00158 -0.10646

0.00319 0.00001 -0.00001 0.00003 0.00000

8 1 0 1 0.10283 8.63250 0.09833 0.09989 -0.00156 -0.10645

0.06385 0.00071 0.00071 0.00000 -0.00079

9 -2 -1 -1 0.20566 -42.50768 -0.21428 -0.21395 -0.00033 0.27201

0.11331 0.00059 0.00061 -0.00002 -0.00074

10 -1 -1 -2 0.20566 -42.55765 -0.21447 -0.21416 -0.00032 0.27238

-0.04636 -0.00026 -0.00029 0.00003 0.00031

11 -1 1 0 0.20566 -42.48644 -0.21421 -0.21386 -0.00035 0.27195

-0.04955 -0.00025 -0.00024 0.00000 0.00032

12 0 1 -1 0.20566 -42.53769 -0.21441 -0.21408 -0.00033 0.27216

-0.00120 0.00002 0.00003 -0.00001 0.00000

13 1 0 -1 0.20566 -42.55393 -0.21450 -0.21417 -0.00033 0.27231

-0.05673 -0.00028 -0.00026 -0.00002 0.00035

14 1 2 1 0.20566 -42.49391 -0.21417 -0.21383 -0.00034 0.27189

-0.04000 -0.00021 -0.00022 0.00001 0.00027

15 -2 -2 -1 0.28278 -35.12815 -0.12813 -0.12894 0.00081 0.16917

0.05977 0.00023 0.00023 0.00000 -0.00029

16 -2 -1 0 0.28278 -35.15345 -0.12823 -0.12902 0.00080 0.16926

-0.00005 0.00001 0.00000 0.00001 0.00000

17 -1 -2 -2 0.28278 -35.00281 -0.12770 -0.12849 0.00078 0.16858

-0.04260 -0.00015 -0.00017 0.00002 0.00022

18 -1 -1 1 0.28278 -35.09698 -0.12800 -0.12879 0.00079 0.16899

-0.00315 -0.00001 -0.00002 0.00001 0.00000

19 -1 1 -1 0.28278 -35.09254 -0.12798 -0.12878 0.00080 0.16897

-0.01812 -0.00009 -0.00010 0.00001 0.00010

20 0 -2 -1 0.28278 -35.05354 -0.12781 -0.12860 0.00079 0.16873

-0.00064 0.00001 0.00002 -0.00001 0.00000

ITERATION NUMBER 4 :

---------------------

BAND ENERGY = -10.0180570443 3.65340968

HXC CORRECTION = 515.0649041257 0.71822544

-----------------------------------------------------

KINETIC ENERGY = 252.1056268647 -2.01756361

IONIC ENERGY = -662.1703220272 3.81342125

NONLOCAL ENERGY = -115.0182660074 1.13932660

HARTREE ENERGY = 289.1647993966 -3.32247306

EXCHANGE CORRELATION = -103.8772653802 0.37497992

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9748793877 -0.01230890

COMPUTING TIME FOR ITERATION 4 1542.50

IN FFT FOR LOCAL POTENTIAL N = 100 100 100
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MAX AND MIN OF POTENTIAL 1.9169 -1.7186 0.0000

K MTXD En(K)

1 46036 -12.06995-11.56201-11.55750-11.54878-10.57403-10.56458-10.55154-10.54932 -0.07 0.07 0.21

-10.54565 -9.52296 -9.51534 -9.50668 -8.71807 -8.70817 -8.70301 -8.69524

-7.41195 -7.40553 -7.39467 -7.39057 -7.38709 -6.94331 -6.93698 -6.92869

-6.91559 -5.38636 -5.37233 -5.36698 -5.36303 -5.35728 -5.27424 -5.27045

-5.25894 -4.31683 -4.31227 -4.30619 -3.20910 -3.20319 -3.19908 -3.19591

-3.18786 -2.93541 -2.92337 -2.90317 -2.86662 -1.56728 -1.56090 -1.55337

-1.53890 -0.73185 -0.71766 -0.71495 -0.70608 -0.70058 -0.55488 -0.55035

-0.54244 0.00960 0.01759 0.02378 0.03854 0.46506 0.53089 0.65178

0.76683 0.76957 0.77815 0.78902 1.22888 1.23678 1.24122 1.24487

1.25619 1.58802 1.64872 1.65324 1.66407 1.67537 1.78400 1.80849

1.86497 1.86819 1.95391 1.96656 1.97504 2.38942 2.39872 2.40730

2.41724 2.98757 3.00020 3.14964 3.43338 3.45449 3.45575 3.46585

3.47838 3.57755 3.61967 3.66930 3.69099 3.74830 3.76055 3.76460

3.77375 3.79097 5.08055 5.12487 5.18012 5.20407 5.25711 5.30312

5.38152 5.42219 5.45235 6.39781 6.51284 6.55974 6.58784 6.63186

8.15057 8.17392 8.32841 9.28056 9.37396 9.44394 10.11479 10.16275

10.26335 10.29061 10.36255 10.49555 10.52114 10.55137 11.40852 11.83020

11.90188 11.95534 12.06036 12.07023

THE FERMI LEVEL IS AT 6.6319 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1805.80057 0.03984 (.89E-12)

ITERATION NUMBER 5

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.77611 0.62547 0.62310 0.00237 -0.68444

-0.02547 -0.00036 -0.00035 -0.00001 0.00041

3 0 -1 0 0.07712 42.71199 0.62454 0.62216 0.00238 -0.68345

0.00070 0.00004 0.00004 0.00000 0.00000

4 0 0 1 0.07712 42.71430 0.62453 0.62216 0.00237 -0.68345

0.00121 0.00003 0.00004 0.00000 0.00000

5 1 0 0 0.07712 42.77232 0.62546 0.62310 0.00236 -0.68450

-0.01301 -0.00021 -0.00021 0.00000 0.00021

6 -1 -1 0 0.10283 8.68019 0.09881 0.09966 -0.00085 -0.10661

0.06419 0.00069 0.00069 0.00000 -0.00078

7 0 -1 -1 0.10283 8.66477 0.09867 0.09955 -0.00088 -0.10646

0.00099 -0.00001 -0.00001 0.00000 0.00000

8 1 0 1 0.10283 8.68025 0.09883 0.09969 -0.00086 -0.10645

0.06300 0.00070 0.00071 -0.00001 -0.00079

9 -2 -1 -1 0.20566 -42.52139 -0.21437 -0.21407 -0.00030 0.27201

0.11772 0.00061 0.00061 0.00001 -0.00074

10 -1 -1 -2 0.20566 -42.57204 -0.21457 -0.21427 -0.00030 0.27238

-0.05209 -0.00029 -0.00029 -0.00001 0.00031

11 -1 1 0 0.20566 -42.49535 -0.21427 -0.21399 -0.00029 0.27195

-0.04855 -0.00024 -0.00025 0.00000 0.00032

12 0 1 -1 0.20566 -42.55096 -0.21450 -0.21420 -0.00029 0.27216

0.00021 0.00003 0.00002 0.00000 0.00000

13 1 0 -1 0.20566 -42.56541 -0.21459 -0.21429 -0.00029 0.27231

-0.05290 -0.00026 -0.00026 0.00001 0.00035

14 1 2 1 0.20566 -42.50388 -0.21424 -0.21395 -0.00029 0.27189

-0.04259 -0.00022 -0.00022 0.00000 0.00027

15 -2 -2 -1 0.28278 -35.18050 -0.12832 -0.12874 0.00041 0.16917

0.06067 0.00023 0.00023 0.00000 -0.00029

16 -2 -1 0 0.28278 -35.20165 -0.12840 -0.12882 0.00042 0.16926

-0.00213 0.00000 0.00000 0.00000 0.00000

17 -1 -2 -2 0.28278 -35.04774 -0.12786 -0.12829 0.00042 0.16858

-0.04694 -0.00017 -0.00016 0.00000 0.00022

18 -1 -1 1 0.28278 -35.14386 -0.12817 -0.12859 0.00042 0.16899

-0.00549 -0.00002 -0.00001 0.00000 0.00000

19 -1 1 -1 0.28278 -35.14165 -0.12815 -0.12857 0.00042 0.16897
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-0.02169 -0.00010 -0.00010 0.00000 0.00010

20 0 -2 -1 0.28278 -35.09978 -0.12797 -0.12840 0.00043 0.16873

0.00185 0.00002 0.00002 0.00000 0.00000

ITERATION NUMBER 5 :

---------------------

BAND ENERGY = -10.3063534914 -0.28829645

HXC CORRECTION = 515.4078942119 0.34299009

-----------------------------------------------------

KINETIC ENERGY = 252.6190647292 0.51343786

IONIC ENERGY = -662.9653549096 -0.79503288

NONLOCAL ENERGY = -115.3679575228 -0.34969152

HARTREE ENERGY = 289.8714771793 0.70667778

EXCHANGE CORRELATION = -103.9540605333 -0.07679515

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9762832913 -0.00140390

COMPUTING TIME FOR ITERATION 5 1332.33

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.9242 -1.7131 0.0000

K MTXD En(K)

1 46036 -12.04767-11.53887-11.53178-11.52273-10.54681-10.53489-10.52816-10.51956 -0.07 0.07 0.21

-10.51850 -9.51405 -9.50312 -9.49535 -8.64642 -8.64434 -8.62768 -8.62017

-7.37543 -7.36253 -7.35313 -7.32792 -7.31705 -6.86075 -6.85294 -6.84651

-6.83607 -5.30181 -5.27780 -5.27683 -5.27141 -5.26470 -5.22806 -5.22528

-5.21265 -4.23487 -4.23066 -4.22387 -3.10208 -3.09718 -3.09122 -3.08641

-3.07894 -2.87949 -2.86706 -2.84827 -2.80764 -1.50891 -1.49430 -1.47825

-1.45473 -0.64772 -0.62890 -0.62794 -0.61987 -0.61609 -0.48484 -0.47933

-0.47223 0.11275 0.12131 0.12720 0.14871 0.57319 0.63934 0.75772

0.84366 0.85919 0.86431 0.87288 1.31372 1.32218 1.32727 1.33199

1.34157 1.69513 1.74826 1.75414 1.76430 1.77280 1.87849 1.90227

1.96852 1.97534 2.03653 2.05250 2.05971 2.47353 2.48377 2.49463

2.50193 3.08527 3.09651 3.23435 3.51690 3.53156 3.54288 3.55281

3.56795 3.67567 3.71477 3.76802 3.79230 3.83116 3.84607 3.86297

3.86686 3.88105 5.17274 5.21500 5.26831 5.29886 5.35667 5.40805

5.48551 5.49610 5.55805 6.49305 6.60724 6.65654 6.68476 6.72956

8.24387 8.26698 8.42070 9.37472 9.46681 9.53706 10.23252 10.28483

10.39408 10.41044 10.49732 10.61637 10.65468 10.68167 11.66891 11.82940

11.96036 12.01316 12.05720 12.16311

THE FERMI LEVEL IS AT 6.7296 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1802.81642 0.06683 (.85E-12)

ITERATION NUMBER 6

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.89649 0.62758 0.62570 0.00188 -0.68444

-0.02364 -0.00033 -0.00035 0.00002 0.00041

3 0 -1 0 0.07712 42.83283 0.62666 0.62476 0.00190 -0.68345

0.00395 0.00009 0.00003 0.00006 0.00000

4 0 0 1 0.07712 42.82700 0.62652 0.62477 0.00175 -0.68345

0.00169 0.00004 0.00004 0.00001 0.00000

5 1 0 0 0.07712 42.88923 0.62751 0.62570 0.00181 -0.68450

-0.01515 -0.00024 -0.00020 -0.00004 0.00021
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6 -1 -1 0 0.10283 8.86866 0.10077 0.09842 0.00235 -0.10661

0.06309 0.00067 0.00069 -0.00002 -0.00078

7 0 -1 -1 0.10283 8.86817 0.10079 0.09825 0.00254 -0.10646

-0.00344 -0.00006 0.00001 -0.00007 0.00000

8 1 0 1 0.10283 8.87871 0.10090 0.09843 0.00247 -0.10645

0.06310 0.00070 0.00071 0.00000 -0.00079

9 -2 -1 -1 0.20566 -42.47242 -0.21428 -0.21553 0.00125 0.27201

0.12718 0.00066 0.00059 0.00007 -0.00074

10 -1 -1 -2 0.20566 -42.52426 -0.21448 -0.21572 0.00124 0.27238

-0.06325 -0.00035 -0.00026 -0.00009 0.00031

11 -1 1 0 0.20566 -42.43861 -0.21414 -0.21546 0.00132 0.27195

-0.04756 -0.00024 -0.00025 0.00001 0.00032

12 0 1 -1 0.20566 -42.50273 -0.21441 -0.21566 0.00125 0.27216

0.00305 0.00004 0.00002 0.00003 0.00000

13 1 0 -1 0.20566 -42.51104 -0.21447 -0.21575 0.00129 0.27231

-0.04549 -0.00022 -0.00028 0.00006 0.00035

14 1 2 1 0.20566 -42.44757 -0.21411 -0.21541 0.00130 0.27189

-0.04754 -0.00025 -0.00021 -0.00004 0.00027

15 -2 -2 -1 0.28278 -35.24238 -0.12849 -0.12774 -0.00075 0.16917

0.06396 0.00024 0.00023 0.00002 -0.00029

16 -2 -1 0 0.28278 -35.25812 -0.12854 -0.12783 -0.00071 0.16926

-0.00698 -0.00002 0.00001 -0.00003 0.00000

17 -1 -2 -2 0.28278 -35.09696 -0.12798 -0.12731 -0.00067 0.16858

-0.05431 -0.00020 -0.00015 -0.00005 0.00022

18 -1 -1 1 0.28278 -35.19633 -0.12830 -0.12761 -0.00069 0.16899

-0.01086 -0.00004 -0.00001 -0.00003 0.00000

19 -1 1 -1 0.28278 -35.19507 -0.12828 -0.12758 -0.00070 0.16897

-0.02568 -0.00012 -0.00009 -0.00003 0.00010

20 0 -2 -1 0.28278 -35.14886 -0.12808 -0.12741 -0.00068 0.16873

0.00404 0.00003 0.00001 0.00002 0.00000

ITERATION NUMBER 6 :

---------------------

BAND ENERGY = -9.6043856223 0.70196787

HXC CORRECTION = 516.9826117849 1.57471757

-----------------------------------------------------

KINETIC ENERGY = 252.6714509855 0.05238626

IONIC ENERGY = -663.9003384441 -0.93498353

NONLOCAL ENERGY = -115.3581099486 0.00984757

HARTREE ENERGY = 290.7700693280 0.89859215

EXCHANGE CORRELATION = -103.9720424045 -0.01798187

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9684227178 0.00786057

COMPUTING TIME FOR ITERATION 6 1578.82

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.9199 -1.7156 0.0000

K MTXD En(K)

1 46036 -12.03948-11.53132-11.52606-11.51723-10.54196-10.53227-10.52149-10.51682 -0.07 0.07 0.21

-10.51447 -9.49975 -9.49111 -9.48290 -8.66825 -8.66086 -8.65287 -8.64480

-7.37660 -7.36679 -7.35512 -7.35141 -7.34123 -6.88995 -6.88319 -6.87531

-6.86397 -5.33118 -5.31470 -5.30979 -5.30697 -5.30084 -5.23766 -5.23437

-5.22251 -4.26645 -4.26200 -4.25550 -3.14846 -3.14324 -3.13844 -3.13381

-3.12618 -2.89343 -2.88115 -2.86143 -2.82745 -1.52498 -1.51121 -1.50159

-1.49551 -0.67952 -0.66341 -0.66145 -0.65279 -0.64847 -0.50947 -0.50447

-0.49703 0.06810 0.07627 0.08219 0.10712 0.53258 0.59834 0.71824

0.81772 0.82302 0.83093 0.83884 1.28025 1.28853 1.29286 1.29713

1.30759 1.65456 1.70661 1.71125 1.72207 1.73175 1.84503 1.86838

1.93055 1.93363 2.00548 2.01906 2.02736 2.44132 2.45079 2.45966

2.46920 3.04977 3.06169 3.20567 3.48561 3.50420 3.51061 3.51649

61



5. APPENDIX A

3.53165 3.64005 3.68034 3.73190 3.75587 3.80150 3.81824 3.82222

3.82280 3.84418 5.14281 5.18499 5.24082 5.26550 5.32184 5.36821

5.44318 5.46919 5.51890 6.46041 6.57266 6.62235 6.64944 6.69663

8.21059 8.23365 8.38704 9.34028 9.43263 9.50294 10.18118 10.22972

10.33574 10.35915 10.43599 10.56448 10.59336 10.62274 11.61883 11.87800

11.93132 11.96533 11.98268 12.08947

THE FERMI LEVEL IS AT 6.6966 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1805.67061 0.05619 (.81E-12)

ITERATION NUMBER 7

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.80825 0.62617 0.62503 0.00114 -0.68444

-0.02490 -0.00035 -0.00035 0.00000 0.00041

3 0 -1 0 0.07712 42.74424 0.62524 0.62410 0.00115 -0.68345

0.00165 0.00005 0.00003 0.00002 0.00000

4 0 0 1 0.07712 42.74441 0.62519 0.62410 0.00110 -0.68345

0.00138 0.00004 0.00004 0.00000 0.00000

5 1 0 0 0.07712 42.80485 0.62616 0.62503 0.00113 -0.68450

-0.01400 -0.00022 -0.00020 -0.00002 0.00021

6 -1 -1 0 0.10283 8.75474 0.09955 0.09891 0.00064 -0.10661

0.06419 0.00069 0.00069 0.00000 -0.00078

7 0 -1 -1 0.10283 8.74302 0.09945 0.09877 0.00068 -0.10646

0.00001 -0.00002 0.00000 -0.00002 0.00000

8 1 0 1 0.10283 8.75634 0.09959 0.09894 0.00065 -0.10645

0.06368 0.00071 0.00071 0.00000 -0.00079

9 -2 -1 -1 0.20566 -42.50545 -0.21438 -0.21492 0.00054 0.27201

0.11960 0.00062 0.00060 0.00002 -0.00074

10 -1 -1 -2 0.20566 -42.55748 -0.21458 -0.21511 0.00053 0.27238

-0.05428 -0.00030 -0.00028 -0.00003 0.00031

11 -1 1 0 0.20566 -42.47786 -0.21428 -0.21484 0.00056 0.27195

-0.04840 -0.00024 -0.00025 0.00000 0.00032

12 0 1 -1 0.20566 -42.53544 -0.21451 -0.21505 0.00054 0.27216

0.00099 0.00003 0.00002 0.00001 0.00000

13 1 0 -1 0.20566 -42.54948 -0.21459 -0.21514 0.00055 0.27231

-0.05198 -0.00025 -0.00027 0.00002 0.00035

14 1 2 1 0.20566 -42.48756 -0.21425 -0.21480 0.00055 0.27189

-0.04379 -0.00023 -0.00021 -0.00001 0.00027

15 -2 -2 -1 0.28278 -35.20828 -0.12838 -0.12808 -0.00029 0.16917

0.06065 0.00023 0.00023 0.00000 -0.00029

16 -2 -1 0 0.28278 -35.22824 -0.12845 -0.12817 -0.00028 0.16926

-0.00291 0.00000 0.00000 -0.00001 0.00000

17 -1 -2 -2 0.28278 -35.07302 -0.12791 -0.12764 -0.00027 0.16858

-0.04851 -0.00017 -0.00016 -0.00002 0.00022

18 -1 -1 1 0.28278 -35.17025 -0.12822 -0.12794 -0.00028 0.16899

-0.00641 -0.00002 -0.00001 -0.00001 0.00000

19 -1 1 -1 0.28278 -35.16870 -0.12820 -0.12792 -0.00029 0.16897

-0.02281 -0.00011 -0.00010 -0.00001 0.00010

20 0 -2 -1 0.28278 -35.12633 -0.12802 -0.12774 -0.00028 0.16873

0.00238 0.00002 0.00002 0.00001 0.00000

ITERATION NUMBER 7 :

---------------------

BAND ENERGY = -9.8498093112 -0.24542369

HXC CORRECTION = 516.1734065250 -0.80920526

-----------------------------------------------------

KINETIC ENERGY = 252.6591076897 -0.01234330

IONIC ENERGY = -663.3081606057 0.59217784

NONLOCAL ENERGY = -115.3741629202 -0.01605297

HARTREE ENERGY = 290.1912042338 -0.57886509
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EXCHANGE CORRELATION = -103.9642345932 0.00780781

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9756984297 -0.00727571

COMPUTING TIME FOR ITERATION 7 1466.82

IN FFT FOR LOCAL POTENTIAL N = 100 100 100

MAX AND MIN OF POTENTIAL 1.9199 -1.7165 0.0000

K MTXD En(K)

1 46036 -12.03597-11.52845-11.52355-11.51457-10.54037-10.52948-10.52171-10.51394 -0.07 0.07 0.21

-10.51348 -9.49606 -9.48785 -9.47926 -8.67596 -8.66333 -8.65951 -8.65277

-7.37794 -7.36933 -7.35776 -7.35588 -7.34823 -6.89748 -6.89056 -6.88454

-6.87405 -5.34002 -5.32656 -5.32124 -5.31646 -5.31071 -5.24148 -5.23796

-5.22620 -4.27594 -4.27147 -4.26521 -3.16068 -3.15378 -3.15223 -3.14839

-3.14225 -2.89927 -2.88724 -2.86722 -2.83371 -1.53253 -1.51910 -1.51273

-1.50358 -0.68964 -0.67594 -0.67256 -0.66387 -0.65759 -0.51786 -0.51290

-0.50557 0.05471 0.06270 0.06863 0.10108 0.52608 0.59196 0.71230

0.80710 0.81203 0.81993 0.82777 1.26949 1.27802 1.28148 1.28638

1.29629 1.64693 1.69476 1.69965 1.71016 1.71587 1.83817 1.86166

1.92434 1.92757 1.99466 2.00787 2.01624 2.43038 2.44016 2.44843

2.45837 3.04433 3.05646 3.20081 3.47481 3.49347 3.49966 3.50548

3.52050 3.63225 3.67156 3.72383 3.74880 3.78979 3.80635 3.81023

3.81099 3.83217 5.13580 5.17785 5.23312 5.25731 5.31383 5.36007

5.43565 5.46028 5.51151 6.45163 6.56354 6.61311 6.64038 6.68757

8.20207 8.22524 8.37911 9.33136 9.42412 9.49441 10.16555 10.21443

10.31937 10.34322 10.42104 10.54808 10.57784 10.60629 11.61946 11.86841

11.92156 11.95266 11.96796 12.06163

THE FERMI LEVEL IS AT 6.6876 [eV]

IN FFT FOR HARTREE-XC N = 100 100 100

MAX AND MIN VALUES OF CHARGE DENSITY: 1805.00237 0.05428 (.83E-12)

ITERATION NUMBER 8

I K-PROT EK DEN V(OUT) V(IN) DELTA V VIONIC

1 0 0 0 0.00000 240.00000 -0.31509

2 -1 -1 -1 0.07712 42.76301 0.62550 0.62501 0.00049 -0.68444

-0.02493 -0.00035 -0.00035 0.00000 0.00041

3 0 -1 0 0.07712 42.69852 0.62456 0.62407 0.00049 -0.68345

0.00106 0.00005 0.00003 0.00001 0.00000

4 0 0 1 0.07712 42.69996 0.62453 0.62407 0.00046 -0.68345

0.00135 0.00004 0.00004 0.00000 0.00000

5 1 0 0 0.07712 42.75879 0.62548 0.62501 0.00046 -0.68450

-0.01328 -0.00021 -0.00020 -0.00001 0.00021

6 -1 -1 0 0.10283 8.71818 0.09916 0.09903 0.00013 -0.10661

0.06426 0.00069 0.00069 0.00000 -0.00078

7 0 -1 -1 0.10283 8.70669 0.09906 0.09889 0.00017 -0.10646

0.00032 -0.00002 0.00000 -0.00001 0.00000

8 1 0 1 0.10283 8.72021 0.09920 0.09905 0.00015 -0.10645

0.06353 0.00071 0.00071 0.00000 -0.00079

9 -2 -1 -1 0.20566 -42.52380 -0.21445 -0.21468 0.00024 0.27201

0.11887 0.00062 0.00061 0.00001 -0.00074

10 -1 -1 -2 0.20566 -42.57510 -0.21465 -0.21488 0.00023 0.27238

-0.05320 -0.00030 -0.00028 -0.00002 0.00031

11 -1 1 0 0.20566 -42.49763 -0.21435 -0.21460 0.00025 0.27195

-0.04871 -0.00024 -0.00025 0.00000 0.00032

12 0 1 -1 0.20566 -42.55339 -0.21458 -0.21481 0.00024 0.27216

0.00057 0.00003 0.00002 0.00000 0.00000

13 1 0 -1 0.20566 -42.56725 -0.21466 -0.21490 0.00024 0.27231

-0.05234 -0.00025 -0.00027 0.00001 0.00035
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14 1 2 1 0.20566 -42.50558 -0.21432 -0.21456 0.00025 0.27189

-0.04313 -0.00022 -0.00022 -0.00001 0.00027

15 -2 -2 -1 0.28278 -35.19100 -0.12832 -0.12818 -0.00013 0.16917

0.06107 0.00023 0.00023 0.00000 -0.00029

16 -2 -1 0 0.28278 -35.21182 -0.12839 -0.12827 -0.00013 0.16926

-0.00270 0.00000 0.00000 -0.00001 0.00000

17 -1 -2 -2 0.28278 -35.05696 -0.12785 -0.12774 -0.00012 0.16858

-0.04773 -0.00017 -0.00016 -0.00001 0.00022

18 -1 -1 1 0.28278 -35.15353 -0.12816 -0.12804 -0.00012 0.16899

-0.00608 -0.00002 -0.00001 -0.00001 0.00000

19 -1 1 -1 0.28278 -35.15134 -0.12814 -0.12802 -0.00013 0.16897

-0.02194 -0.00011 -0.00010 -0.00001 0.00010

20 0 -2 -1 0.28278 -35.10885 -0.12796 -0.12784 -0.00012 0.16873

0.00170 0.00002 0.00002 0.00000 0.00000

ITERATION NUMBER 8 :

---------------------

BAND ENERGY = -9.9192726190 -0.06946331

HXC CORRECTION = 515.8605449641 -0.31286156

-----------------------------------------------------

KINETIC ENERGY = 252.6636532995 0.00454561

IONIC ENERGY = -663.0582848848 0.24987572

NONLOCAL ENERGY = -115.3851859978 -0.01102308

HARTREE ENERGY = 289.9448358987 -0.24636834

EXCHANGE CORRELATION = -103.9622529834 0.00198161

-----------------------------------------------------

ALPHA TERM = 28.7276840051 0.00000000

EWALD TERM = -30.9071362392 0.00000000

-----------------------------------------------------

TOTAL ENERGY = -341.9766869019 -0.00098847

-341.9766869019 total kohn-sham energy

COMPUTING TIME FOR ITERATION 8 1097.79

-341.97668690 potential energy

CONTRAVARIANT STRESS TENSOR (A.U.) CARTESIAN STRESS (GPA)

-0.001401 0.000434 0.000439 -0.186714E+01 -0.256806E-01 0.121296E-01 stress 1

0.000434 -0.001494 0.000632 -0.256806E-01 -0.217820E+01 0.110999E+00 stress 2

0.000439 0.000632 -0.001529 0.121296E-01 0.110999E+00 -0.215180E+01 stress 3

-0.00007021 -2.06571254 pressure (au and GPa)

FORCE (LATTICE COORD.) FORCE (CARTESIAN COORD. A.U) NO. TYPE

0.00087 -0.00083 0.00051 -.44048E-02 0.19151E-01 0.68215E-03 1 C force

-0.00006 -0.00048 0.00014 -.46519E-02 0.11266E-02 -.73871E-02 2 C force

-0.00015 -0.00039 0.00011 -.39001E-02 -.50903E-03 -.74238E-02 3 C force

-0.00006 -0.00062 0.00024 -.53391E-02 0.23625E-02 -.94983E-02 4 C force

-0.00015 -0.00038 0.00002 -.50005E-02 -.18518E-02 -.73599E-02 5 C force

-0.00068 0.00001 0.00050 0.71756E-02 -.24968E-02 -.92897E-02 6 C force

-0.00042 -0.00015 0.00041 0.35953E-02 -.24484E-03 -.79183E-02 7 C force

-0.00040 -0.00013 0.00040 0.37321E-02 -.13443E-04 -.72534E-02 8 C force

-0.00041 -0.00006 0.00044 0.52500E-02 0.37043E-03 -.66093E-02 9 C force

-0.00066 -0.00002 0.00039 0.50566E-02 -.37620E-02 -.94963E-02 10 C force

0.00002 0.00053 0.00005 0.80125E-02 0.99411E-03 0.75397E-02 11 C force

0.00005 0.00046 -0.00012 0.47718E-02 -.99383E-03 0.70994E-02 12 C force

0.00015 0.00039 -0.00011 0.39125E-02 0.60760E-03 0.75615E-02 13 C force

0.00016 0.00037 -0.00005 0.43540E-02 0.15355E-02 0.73301E-02 14 C force

0.00004 0.00064 -0.00022 0.58931E-02 -.25126E-02 0.93763E-02 15 C force

0.00049 0.00004 -0.00063 -.80697E-02 -.18620E-02 0.74393E-02 16 C force

0.00047 0.00015 -0.00041 -.36859E-02 0.76860E-03 0.85747E-02 17 C force
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0.00039 0.00012 -0.00039 -.37530E-02 0.69613E-04 0.71113E-02 18 C force

0.00057 0.00007 -0.00041 -.47409E-02 0.22405E-02 0.87861E-02 19 C force

0.00040 0.00012 -0.00050 -.53376E-02 -.13281E-02 0.72052E-02 20 C force

0.00001 -0.00002 -0.00053 -.75946E-02 -.71669E-02 -.13739E-03 21 C force

0.00012 -0.00004 -0.00047 -.70955E-02 -.48540E-02 0.11074E-02 22 C force

0.00002 -0.00012 -0.00045 -.79005E-02 -.60817E-02 -.13932E-02 23 C force

0.00015 0.00003 -0.00054 -.71473E-02 -.53929E-02 0.25129E-02 24 C force

-0.00006 -0.00010 -0.00036 -.64045E-02 -.58754E-02 -.23236E-02 25 C force

0.00053 -0.00059 0.00003 -.76568E-02 0.77544E-02 -.85478E-03 26 C force

0.00042 -0.00037 -0.00008 -.62055E-02 0.47590E-02 0.73886E-03 27 C force

0.00041 -0.00046 0.00002 -.62326E-02 0.58787E-02 -.76960E-03 28 C force

0.00039 -0.00046 -0.00010 -.78233E-02 0.39825E-02 -.96288E-03 29 C force

0.00049 -0.00040 -0.00022 -.86864E-02 0.36628E-02 0.11821E-02 30 C force

-0.00001 0.00000 0.00055 0.76350E-02 0.74105E-02 -.87839E-04 31 C force

0.00000 0.00006 0.00044 0.68780E-02 0.61127E-02 0.86637E-03 32 C force

-0.00012 0.00004 0.00047 0.70666E-02 0.48616E-02 -.10296E-02 33 C force

-0.00016 -0.00002 0.00055 0.73117E-02 0.53354E-02 -.25597E-02 34 C force

0.00004 0.00013 0.00035 0.67186E-02 0.53660E-02 0.23775E-02 35 C force

-0.00050 0.00058 -0.00004 0.75530E-02 -.74384E-02 0.11222E-02 36 C force

-0.00040 0.00046 -0.00001 0.62384E-02 -.56116E-02 0.88185E-03 37 C force

-0.00044 0.00038 0.00010 0.66437E-02 -.47970E-02 -.85216E-03 38 C force

-0.00037 0.00045 0.00008 0.73980E-02 -.40006E-02 0.11353E-02 39 C force

-0.00049 0.00040 0.00022 0.85757E-02 -.36982E-02 -.12860E-02 40 C force

-0.00038 0.00000 -0.00014 -.19845E-02 -.71984E-02 -.52162E-02 41 C force

-0.00041 0.00019 -0.00007 0.16515E-02 -.66589E-02 -.30875E-02 42 C force

-0.00042 -0.00003 -0.00006 -.12155E-02 -.66916E-02 -.62857E-02 43 C force

-0.00047 0.00026 -0.00027 -.74974E-04 -.10219E-01 -.28789E-02 44 C force

-0.00073 0.00035 -0.00028 0.92851E-03 -.14070E-01 -.53308E-02 45 C force

-0.00004 0.00041 -0.00048 -.90431E-03 -.71999E-02 0.51496E-02 46 C force

-0.00017 0.00038 -0.00029 0.13008E-02 -.63224E-02 0.29481E-02 47 C force

0.00001 0.00045 -0.00056 -.14701E-02 -.76140E-02 0.64464E-02 48 C force

-0.00010 0.00044 -0.00048 -.53406E-03 -.79570E-02 0.47538E-02 49 C force

-0.00029 0.00053 -0.00046 0.97445E-03 -.10287E-01 0.33270E-02 50 C force

0.00038 0.00000 0.00014 0.18406E-02 0.71556E-02 0.51994E-02 51 C force

0.00043 0.00002 0.00005 0.88620E-03 0.65423E-02 0.61685E-02 52 C force

0.00038 -0.00019 0.00008 -.14001E-02 0.64586E-02 0.27140E-02 53 C force

0.00051 -0.00030 0.00026 -.57051E-03 0.10753E-01 0.29328E-02 54 C force

0.00044 -0.00014 0.00014 -.67989E-04 0.80059E-02 0.41565E-02 55 C force

0.00003 -0.00041 0.00049 0.11497E-02 0.72687E-02 -.52506E-02 56 C force

-0.00001 -0.00045 0.00054 0.13522E-02 0.73576E-02 -.63452E-02 57 C force

0.00016 -0.00036 0.00029 -.10010E-02 0.61646E-02 -.28364E-02 58 C force

0.00008 -0.00043 0.00053 0.14389E-02 0.84283E-02 -.48122E-02 59 C force

-0.00004 -0.00052 0.00019 -.45576E-02 0.21583E-02 -.77213E-02 60 C force

1 -341.976687 iteration, kohnsham energy = totalenergy

TOTAL COMPUTING TIME 12062.01 ELAPSED TIME 12076.65
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