
Universidade do Minho

Escola de Engenharia

Fábio Rafael Azevedo Costa

Internet Tomography: Network topology
discovery and network performance
evaluation

Outubro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Fábio Rafael Azevedo Costa

Internet Tomography: Network topology
discovery and network performance
evaluation

Mestrado em Redes e Serviços de Comunicação

Trabalho realizado sob orientação de

Professor Stefano Giordano
Professor Alexandre Santos

Outubro de 2013

Acknowledgements

First of all, I would like to thank the Erasmus program and University of Pisa for

accepting me as a mobility student. It was a wonderful year, full of new friends

and new experiences.

Secondly I would like to thank my family and my friends for all of their support

and love during this year.

I would also like to thank the Telecommunication Networks Research Group of

the Dept. of Information Engineering of the University of Pisa for receiving me

and all of the people in the lab for their help and contribution to my professional

growth and the very good time we spent together, with a special thank to Valerio

Dei for all of his help on my studies and for showing me some of the good things

in Tuscany.

Thanks to my professors and tutors prof. Stefano Giordano, prof. Davide Adami,

prof. Michele Pagano, prof. Gregorio Procissi and prof. Alexandre Santos for

their help and support.

I also would like to thank University of Minho and all the professors that con-

tributed to my professional growth.

And finally, I would like to give a special thank to José Teixeira, for all the support,

help, contribution for my personal and professional growth and for all the good

moments we spent together.

i

Abstract

Due to the security threats and complexity of network services, such as video con-

ferencing, internet telephony or online gaming, which require high QoS guarantees,

the need for monitoring and evaluating network performance, in order to promptly

detect and face security threats and malfunctions, is crucial to the correct opera-

tion of networks and network–based services. As the internet evolves in size and

diversity, these tasks become difficult and demanding. Moreover, administrative

limitations can restrict the position and the scope of the links to be monitored,

while legislation imposes limitations on the information that can be collected and

exported for monitoring purposes and almost all organization can’t monitor or

have knowledge or evaluate the performance of the entire network. They only can

do this to part of the network, which corresponds to their own network.

In this thesis, we propose the use of tomographic techniques for network topology

discovery and performance evaluation. Network tomography studies the internal

characteristics of the network using end-to-end probes, ie, it does not need the

cooperation of the internal nodes of the network and can be successfully adopted

in almost all scenarios. Thus, it is possible to have knowledge of the network

characteristics out of the administrative borders.

In this thesis we propose a new approach to Probe Packet Sandwich, where we

use TTL-limited probes to infer the delay of a path hop-by-hop. We have shown

that this approach is more effective than existing ones.

This work was developed under the ERASMUS student mobility program, in the

Telecommunication Networks Research Group, Dept. of Information Engineering,

University of Pisa.

Keywords: Internet Tomography, Network Topology Discovery, TTL-Limited

Probes, Packet Sandwich, Link Failure Detection

ii

Resumo

Devido às ameaças de segurança e complexidade dos serviços de rede, tais como

videoconferência, telefonia via Internet ou jogos on-line, que exigem altas garan-

tias de QoS, a necessidade de monotorização e avaliação de desempenho da rede,

a fim de detectar prontamente e enfrentar as ameaças de segurança e mau fun-

cionamento, é crucial para o correto funcionamento das redes e serviços baseados

em rede. À medida que a Internet evolui em tamanho e diversidade, essas tarefas

tornam-se dif́ıceis e exigentes. Além disso, as limitações administrativas podem re-

stringir a posição e o alcance dos links a serem monitorizados, enquanto a legislação

impõe limitações sobre as informações que podem ser coletadas e exportadas para

fins de monotorização e quase todas as organizações não podem controlar ou ter

conhecimento ou avaliar o desempenho de toda a rede. Eles só podem fazer isso a

parte da rede, o que corresponde à sua própria rede.

Neste trabalho, nós propomos o uso de técnicas tomográficas para a descoberta

da topologia da rede e avaliação de desempenho. A tomografia de rede estuda as

caracteŕısticas internas da rede usando medições fim-a-fim, ou seja, não necessita

da ajuda dos nós internos da rede, podendo ser adoptadas com sucesso em quase

todos os cenários. Desta maneira é posśıvel obter conhecimento das caracteŕısticas

da rede para além dos limites administrativos.

Neste tranalho propomos uma nova abordagem do Packet Sandwich Probe, onde

utilizamos pacotes TTL-Limited para inferir o delay de um path hop-by-hop. Nós

mostramos que esta abordagem é mais eficaz que outras já existentes.

Este trabalho foi desenvolvido no âmbito do programa de mobilidade de estudantes

ERASMUS, no Grupo de Investigação em Redes de Telecomunicações, Departa-

mento de Engenharia de Informação da Universidade de Pisa.

Palavras-Chave: Tomografia de Rede, Descoberta da Topologia de Rede, TTL-

Limited Probes, Packet Sandwich, Detecção de Falhas de Link

iii

Contents

Acknowledgements i

Abstract ii

Resumo iii

List of Figures vii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Layout . 2

2 Network Topology Discovery 3

2.1 Prior work . 3

2.2 The sandwich probing scheme . 4

2.3 Alpha measurement . 9

2.4 The decision theoretic approach . 10

2.4.1 Andrea’s approach . 10

2.4.2 Limitations . 13

2.4.3 The new approach . 13

2.5 The merge algorithm . 22

2.5.1 Overview . 22

2.5.2 Limitations . 23

3 Link Failure Detection 25

3.1 Prior Work . 25

3.2 Link failure detection with internal help 27

3.3 Link failure detection with no internal help 29

4 Implementation and Tests 30

4.1 Test Preparation . 30

4.1.1 Measurement Tools . 31

4.1.1.1 CORE . 31

4.1.1.2 GNS3 . 31

iv

Contents

4.1.1.3 NS-3 . 32

4.1.2 Network Topology . 32

NS-3 Topology Generator 32

BRITE . 32

Inet-3.0 . 33

4.1.3 Routing . 33

4.1.4 Location of the probes . 33

4.1.5 Traffic Generator . 34

4.2 Network Topology Discover Script 34

4.2.1 Network Topology Discover Application 35

4.3 Link Failure Detection . 36

4.3.1 Link Failure Detection with help 36

4.3.2 Link Failure Detection with no help 37

4.3.3 Link Failure Detection Application 37

4.4 Other Scripts . 37

4.4.1 Path Capacity Script . 37

4.4.1.1 Path Capacity Application 38

4.4.2 Path Pair Script . 38

4.4.2.1 Path Pair Application 38

4.5 Algorithms implementation . 38

4.5.1 Reconstructor . 39

4.5.2 Link Failure Detector with help 40

4.5.3 Link Failure Detector with no help 40

4.5.4 Others . 40

4.5.4.1 DataBaseConstructor 40

4.5.4.2 ProbeLocation . 40

4.5.4.3 PathCapacity . 41

4.5.4.4 PingPair . 41

4.5.4.5 Paths . 41

4.5.4.6 RemakeBrite . 41

4.5.5 Results Visualization . 42

5 Results 43

5.1 An Example . 43

5.2 Network Topology Discovery . 44

5.2.1 Comparasion with Andreas Results 46

5.2.2 Other . 48

5.3 Link Failure Detection . 49

5.3.1 With Help . 49

5.3.2 With No Help . 50

6 Conclusion 51

6.1 Conclusion . 51

6.2 Future work . 52

v

Contents

A Notation 53

B Interarrival Time Between Two Packets 55

C All paths src-des calculation through Breath Algorithm 59

D Linear Independent Matrix Function 60

E A large Topology 62

F Merge Algorithm Fail 64

Bibliography 65

vi

List of Figures

2.1 Packet Sandwich Probe working principle. 5

2.2 Packet q TTL manipulation. 14

2.3 Packet q TTL incrementation. 15

2.4 Different topologies cases. 17

2.5 Topology which causes the failure of the spanning tree merge algo-
rithm: the darker node is the multiple label node. 24

3.1 Simple Tree Topology. 25

4.1 Packet Sandwich Header. 35

5.1 Toy Topology. 43

5.2 Toy Topology with 8 probes connected. 44

5.3 Spanning Tree Probe 6: The red node represents the sender node,
the blue nodes represents the receiver nodes and the gray links and
the gray nodes are the links inferred. 45

5.4 Spanning Tree Probe 6: Comparasion with the real topology. The
darker and thicker nodes and links are the inferred topology, while
the lighter and thinner nodes and links are from the real topology. 45

5.5 Merged Topology. 46

5.6 Merged Topology: Comparasion with the real topology. 47

5.7 Merged Topology Andrea’s: Comparasion with the real topology. . . 47

5.8 BRITE generated topology: Model GLP (40 nodes, 47 links). 48

5.9 Link Failure Detection example: The green links mean good links,
i.e, links that are up (working), red links mean donw link (not
working), gray links mean links its state is unknown. 49

5.10 Link Failure Detection example 2. 49

5.11 Link Failure Detection From the Reconstructed Topology. 50

B.1 Network delays (figure also from [1]). 55

B.2 Packet delivery between source and destination nodes. 57

E.1 Large topology. 62

E.2 The merged Large Topology: the reconstruction and merge algo-
rithms were able to find 60/78 nodes and 81/191 Links with 38
probes. 63

F.1 Merge topology fail: In 300 paths, 99 were assymetric. 64

vii

Chapter 1

Introduction

1.1 Motivation

Due to the security threats and complexity of network services, such as video con-

ferencing, internet telephony or online gaming, which require high QoS guarantees,

the need for monitoring, management and evaluation of the network performance,

in order to promptly detect and face security threats and malfunctions, is crucial

to the correct operation of networks and network–based services. As the internet

evolves in size and diversity, this tasks become difficult and demanding. Moreover,

administrative limitations can restrict the position and the scope of the links to

be monitored, while legislation imposes limitations on the information that can

be collected and exported for monitoring purposes and almost all organization

can’t monitor, manage, have knowledge or evaluate the performance of the entire

network. They only can do this to part of the network, which corresponds to their

own network.

In this work, the first main topic to be addressed is network topology discovery:

such definition includes all techniques that allow obtaining internal knowledge

of internal network. This knowledge may be useful in various fields such trou-

bleshooting, SLA verification, topology aware (multicast apps), network manage-

ment, network monitoring, routing decisions or network performance evaluation.

Many prior studies have focused on Internet topology discovery based on ICMP

commands, such as ping and traceroute, SNMP querys, which were able to recon-

struct also layer-2 topology, and OSPF listening. However, these methods require

1

Chapter 1. Introduction

cooperation of the internal nodes, which is not always available due to security

requirements (firewall, ICMP rate limiter). Nevertheless, this limitation can be

resolved through network tomography.

Network tomography covers a large variety of techniques which try to obtain in-

formation about the state of the network (be it either its topology or the state of

congestion of its internal links) by applying statistical inference to measurements

which are performed by the end nodes. The main advantage of such an approach

is that it does not require cooperation from internal nodes, thus being able to cross

the administrative borders of the networks.

Our objectives in this work is the use of network tomography techniques, more

specifically in network delay tomography for not only network topology discovery,

but also for discovering network link capacities. Then we use these results and

loss tomographic techniques for detecting link failure on the network.

(For any problem with notation, please consult Appendix A)

1.2 Thesis Layout

This thesis is structured into five chapters: the present Chapter 1 is a brief intro-

duction of the proposed work, its motivation and objectives; then, on Chapter 2

we address the problem of network topology discovery. We start for the related

work on this field and then we present our proposal to solve the problem of net-

work topology discovery. On the third chapter, we address the problem of link

failure detection: firstly we present a proposal which requires the internal help

of the internal nodes of the network. Then we present a proposal which doesn’t

require internal help of network nodes, however, both require the knowledge of

the network topology. On the first proposal we assume the knowledge of the net-

work. The second proposal requires the results obtained in the second chapter.

On Chapter 4, we present the tools in order to get the results and in the next

section, section Chapter 5, we present the results obtained. Finally, on Chapter 6,

we present some conclusions and future work.

2

Chapter 2

Network Topology Discovery

2.1 Prior work

There are many different techniques and tools for network topology reconstruction.

A large number of prior studies have focused on Internet topology discovery based

on ICMP commands, such as ping and traceroute, e.g. [2–8]. In addition, ICMP

measurements are RTT measures which are not feasible due to asymmetric paths.

Other studies focused on SNMP querys, e.g. [9–11], which are able to reconstruct

also layer 2 network topology. And others studies based on OSPF listening [12].

However, these kind of methods requires cooperation of the internal nodes of

the network, which is not always available due to security requirements (such as

firewalls or query blockers).

More recent research have focused on tomographic inference of router-level topol-

ogy using end-to-end measurements of packet delay or loss. The main advantage

of such technique is that it doesn’t need the cooperation of internal nodes. Net-

work tomography can be divided in two types, network loss tomography, which is

based on end-to-end packet loss, and network delay tomography. Since the loss

rate of actual links are very low, loss tomography techniques are not well suited

for network topology reconstruction because several measures have to be made in

order to obtain relevant data.

Initial work on network tomography methodologies focused on the use of multicast

measurements [13–17]. Multicast traffic introduces a well structured correlation

3

Chapter 2. Network Topology Discovery

in the end-to-end behavior observed by the receivers that share the same multi-

cast session. This correlation allows to infer the performance characteristics as

packet loss rates and packet delay variance [18], and allows to estimate the delay

distributions on each individual link [19]. Also it has a low impact on the internet

traffic. However, multicast is not supported in all the networks due to scalability

limitations, and internal performance observed by multicast packets may differ

significantly from that observed by unicast packets [20]. More recent studies fo-

cused on unicast probing as an alternative to multicast, e.g. [18, 20–25]. These

techniques are able to reconstruct the topology, based on the hop count [26] or de-

lay distribution and clustering algorithms [25]. However, these algorithms lack on

adicional information and/or they are incomplete since they only reveal branching

nodes (they represent the node where the path from sender to receiver splits).

Andrea di Pietro presents, in his PhD thesis [27], a novel approach to network

topology discovery based on the choice among a set of possible topological hy-

potheses and on the packet sandwich probe [25]. In his thesis, he states that link

capacities usually belong to a restricted set of standard values (Ethernet, Optical

Carrier, . . .), and defining a finite space of possible topological hypotheses, the

most likely hypothesis can be chosen. Thus, it is possible to not only discover the

spanning trees associated to each sender probe but also to discover the link capac-

ities [28, 29]. In his work, he also presents a merge algorithm capable of merging

all reconstructed spanning trees [30]. However, despite of the very good results on

topology reconstruction, his work have some limitation and strong assumptions,

that are described below (Section 2.4.2), which can lead to wrong reconstructed

topologies or a complete fail of the algorithms.

In this chapter we will focus on Andrea’s approach but we will aim to overcome

the limitations of his work and to reduce the assumptions in order to obtain a

more complete and reliable topology reconstruction.

2.2 The sandwich probing scheme

The sandwich probing scheme, described in [25], is delay-based and only measures

delay differences. This way, there is no need for clock synchronization. The packet

sandwich probe is a particular packet train that consists of three packets, two

small packets (p1 and p2) separated by one much larger packet (q). The working

4

2.2. The sandwich probing scheme

principle of the sandwich probe is explained in Figure 2.1: the small packets (p1

and p2) are destined to the same receiver, while the larger packet (q) is destined

to other receiver. The idea behind the packet sandwich probe is that the second

small packet queues behind the larger packet, inducing extra separation between

the two small packets on the shared path. Each measurement (d) is generated by

the interarrival time of two small packets at a single receiver and it is related with

the shared path of the receivers, i.e., the greater the length of the shared path,

the greater will be the time difference between the small packets (d).

Figure 2.1: Packet Sandwich Probe working principle.

As shown in Appendix B, in the Equation B.9, the interarrival time the two small

packets (tinterarr1,2) can be calculated through the queueing time of those packets

(Q1 and Q2).

Let us consider the case where there is no cross-traffic on the network. The packet

p1 experiences no queueing delay (Q1 = 0), however, the second small packet

(p2) will always experience some queueing delay on the shared path by queueing

behind the large packet q. Let us now consider the queueing delay experienced

by the packet p2 on the i-th node of the shared path, i.e, on the i-th link of the

shared path (Q2
i). When the i-th node starts the transmission of the packet q on

the i-th link, the node i − 1 starts the transmission of the packet p2 on the link

5

Chapter 2. Network Topology Discovery

i − 11. So this second small packet will reach the i-th node namely after Lp

Ci−1

seconds (plus the propagation delay of that link (Pdi−1
) and the processing delay

of the packet on the i-th node (P 2
ri

)), it will be queued and it will wait to packet

q to finish its transmission (and we can not forget that the packet q also had the

transmission delay on the link i − 1 (Pdi−1
) and the processing delay at the i-th

node (P q
ri

)). Thus, the queuing time at the i-th node can be expressed by the

following equation:

Q2
i =

(
Pdi−1

+ P q
ri

+
Lq

Ci

)
−
(
Pdi−1

+ P 2
ri

+
Lp

Ci−1

)
(2.1)

Since the shared path is the same and the processing delays can be discarted, as

stated in Appendix B, we can simplify the Equation 2.1 to the following equation:

Q2
i =

Lq

Ci

− Lp

Ci−1
(2.2)

Note that this value is a time value and cannot be negative, thus:

Q2
i ≥ 0

⇔ Lq

Ci

− Lp

Ci−1
≥ 0

⇔ Lq

Lp
≥ Ci

Ci−1

(2.3)

In practice, we set Lq to be the MTU of the network, which is usually 1500 bytes,

and with Lp = 56 bytes, we have the following relation: Ci

Ci−1
≤ 25, which is

typically satisfied in actual networks, as also stated in [25].

By summing up all the queueing times of the packet p2 we can simplify the Equa-

tion B.9, resulting the following equation:

1Note that this is not completely true. As stated in Appendix B, one packet is subjected
by several delays. When a node finished to transmit one packet, it starts to transmit another
one, but the first packet will experience some propagation delay on the link and some processing
delay as soon it reaches the node.

6

2.2. The sandwich probing scheme

tinterarr1,2 = tinterdep1,2 +Q2 −�
�Q1

= tinterdep1,2 −Q2
1 +

Lq

C1

+
Lq

C2

− Lp

C1

+ . . .+
Lq

CN

− Lp

CN−1

= tinterdep1,2 − Lq

C1

+
N−1∑
i=1

Lq − Lp

Ci

+
Lq

CN

(2.4)

Since the tinterdep1,2 contains the queueing time of the second small packet on the

source node and since it is already added on the queuing time of the second small

packet, we must remove it.

Let us have a look to the α parameter on Figure 2.1. According to [25], there

should be a time difference between the transmission of the packet p1 and the

packet q so that the packet q and the packet p2 don’t queue behind the packet p1

(by queueing behind we mean queueing on the same node (same queue)), and the

α value represent that time difference. If the packet q queues behind the packet

p1, the measured sample can significantly differ from its theoretical value [31]. We

will talk further about this value in Section 2.3, but for now we can easily notice

that there is a minimum value for the α, which is the transmission time of the

packet p1 on the source node. Thus, this value can be expressed as shown in the

Equation 2.5.

α =
Lp

C1

+ δ (2.5)

As we can also see from Figure 2.1, the δ value can be expressed as δ = tinterdep−β,

where β is equal to the sum of the transmission times of the packets q and p2. So,

we can rewrite the equation Equation 2.4, resulting:

tinterarr1,2 = δ + β − Lq

C1

+
N−1∑
i=1

Lq − Lp

Ci

+
Lq

CN

= δ +
�
�
�Lq

C1

+
Lp

C1

−
�
�
�Lq

C1

+
N−1∑
i=1

Lq − Lp

Ci

+
Lq

CN

= δ +
Lq

C1

+
N−1∑
i=2

Lq − Lp

Ci

+
Lq

CN

(2.6)

7

Chapter 2. Network Topology Discovery

If δ = 0, then we have the same situation as in [28], i.e., the packets are sent back-

to-back and the formula for the interarrival time between the two small packet are

the same in [28]. Nevertheless, on this work we prefer to use the following formula:

tinterarr1,2 = δ +
Lq

C1

+
N−1∑
i=2

Lq − Lp

Ci

+
Lq

CN

= α− Lp

C1

+
Lq

C1

+
N−1∑
i=2

Lq − Lp

Ci

+
Lq

CN

= α +
N−1∑
i=1

Lq − Lp

Ci

+
Lq

CN

(2.7)

The cross-traffic induces substantial variation in the measurements, with queuing

delays before and after the branching node, disrupting the measured spacing from

its theoretical value. However, according to the paper [25], we can assume that the

cross-traffic has a zero-mean effect on the measurements, provided that α value is

sufficiently large.

In the case of heavy loaded networks, beyond the cross-traffic induces variation

in the measurements, it may also be losses of probe packets. In this case, the

measurement is discarted and a new measurement is made. In [25] states that

all the measurements provide informative measurement of the delay difference,

except when one or more packets are dropped, which make perfect sense, since

if the packet q is dropped we can also have a measurement, but it is not good

measurement, i.e., the packet q could be dropped anywhere on his path, but if

it was dropped on the shared path, the measurement is wrong; and, in the case

of one of the small packets is dropped, we don’t have measurement at all. In

that paper also states that the measure delay difference is made locally (on the

receiver), however, in this work, this delay difference will be made on the sender

node once the confirmation of the reception of the probe packets is required. So,

once an acknowledgement must be sent to the sender node, the arrival time can

be in it, except for the packet q (the arrival time of the packet q is irrelevant).

8

2.3. Alpha measurement

2.3 Alpha measurement

As stated in the previous section, the α value represents the time difference so

that the packet q and packet p2 don’t queue behind the packet p1. Is also stated

that the cross-traffic induces substantial variation in the measurements, however

we can assume a zero-mean effect provided that α value is sufficiently large. Here

arises the question: How do we get the value of α? We know that the packet

q must not queue behind p1, so, in the extreme, we can send the packet q only

when the confirmation of the packet p1 is received. But it is an extreme case, and

having this time as the α value, it would increase significantly the probing time.

Let us consider the worst possible case, which is when there is no shared path

(we know that the packet q induces extra separation between the small packets,

so the smaller the length of the shared path, the higher the probability of packets

queueing together). Let us assume also that the packet travel back-to-back, which

means that α = 0 and there is no cross-traffic. Once there is no shared path, the

queueing time of the packet p2 won’t contain the transmission time of the packet

q. However, since α = 0, the queueing time of the packet p2 contain and will be

the transmission time of the packet p1. So there is a minimum value for α, which

is the the transmission time of the first small packet. Let us consider the delay

experienced by the packet p2 on the i-th node of the path. When the i-th node

starts the transmission of the packet p1 on the i-th link, the node i− 1 starts the

transmission of the packet p2 on the link i−1 (still, this is the worst case scenario).

The queuing time at this node can be expressed by the Equation 2.2 except that

instead of Lq we will use Lp as expressed on the following equation:

Q2
i =

Lp

Ci

− Lp

Ci−1
(2.8)

From Equation 2.8, we can easily notice that, if the capacities of the i-th link and

the link i−1 are equal, the queueing time is equal to 0; if it is bigger, the queueing

time will not be negative, but will be 0; otherwise, there will be some queueing

delay. Note that, if the capacity of the i-th link is bigger than the capacity of the

link i − 1, the packet p1 will have some advance from the second small packet,

which will result that in the following node (node i+1) will start the transmission

of the packet p1 before the node i− 1 finishes the transmission of the packet p2.

9

Chapter 2. Network Topology Discovery

The α value can be, therefore, calculated by the interarrival time of these packets.

In this work, in order to have a more reliable value for α, we will add 20 % of the

calculated value. This small amount of time added to α was given intuitively.

This measurements can also be affected by the noise traffic, though. So, in order

to get a good estimate for the α value, we will use the noise reduction algorithm

presented in [31]. This algorithm is very important for this work; it not only will

be used to get a more reliable estimate for the α value, but also it will be used

to select the best measurements of the interarrival times of the sandwich probing.

This algorithm has as input all the arrival times of the packets p1 and p2 (this is

the main reason for the acknowledgements of these packets do include their arrival

times) and selects the best measurements, i.e., the measurements less affected by

the noise traffic.

Notice that, by only using the noise reduction algorithm, we can obtain the mea-

surements less affected by the noise traffic, which are the best measurements.

However, by using the α parameter, the best measurements are even better mea-

surements, and the number of best measurements is higher.

2.4 The decision theoretic approach

2.4.1 Andrea’s approach

The decision theoretic approach used in this work is completely based on the de-

cision theoretic approach presented in [28]. This paper states that in the real

networks, the link capacities usually belong to a restricted set of standard val-

ues (Optical Carier (OC), Ethernet, . . .) so, the set of capacities {C1,C2,. . . }
is discrete. By taking advantage of the TTL field of the packets is also possi-

ble to have an estimate of the depth of the shared path. It is simple to notice

that the depth of the shared path of one receiver pair (i, j) will be never bigger

than the minimum TTL of the paths from the source (s) to the receivers i and j:

N ≤ min(#Λs→i,#Λs→j). Thus, given the set of all possible links capacities (S)

and an upper bound of the depth of the shared path (N value), it is possible to

off-line pre-evaluate all the possible values of the metric d by using Equation 2.7.

Any possible combination of D elements of S will be referred as Link Capacities

Combination (LCC).

10

2.4. The decision theoretic approach

Given estimates d̂ of the metric obtained by averaging a given number of interar-

rival time samples (Equation 2.9), the fundamental decision problem is to select

the correct LCC that originated it.

d̂ =

∑M
i=1 di
M

, M is the number of interarrival samples (2.9)

As stated in [28], different combinations or combinations that only differ for the

elements order can produce the same value of the metric. Thus, topology recon-

struction based on LCCs decisions can be affected by a certain degree of ambiguity.

However, in the paper states that the incidence of this ambiguity is limited for

realistic network sizes and capacity sets. In addiction, It is possible to find out

the whole combination of end-to-end capacities by sending the three packets to

the same receiver i (di,i).

According to the paper, we can model the sample mean d̂ as a Gaussian random

variable by invoking the Central Limit Theorem. Thus, the link capacity combina-

tion decision can be made according to the Maximum Likelihood criterion, which

collapses into the minimum distance criterion. The selected link combination C̄

will be calculated through the following equation:

C̄ = arg minC∈LCC | d̂− γ(C) | (2.10)

where γ(C) is the function that evaluates the metric d of a link capacity combi-

nation by using Equation 2.7.

Once all decisions are made for each pair of receivers, they can be elaborated

to infer the network topology. Such a task will be elaborated by the algorithm

presented in [28], which is the following algorithm (Algorithm 1):

11

Chapter 2. Network Topology Discovery

Algorithm 1: Spannig tree reconstruction

1 Initializate set L containing the leaves of the spanning tree (T) ;

2 foreach leaf i ∈ L do

3 define Λroot→i = Bi,i
4 end

5 while L is not empty do

6 Choose the set Bi,j , with i, j ∈ L, composed by the maximum

number of links;

7 Find the set M ⊂ L such that Bm,n = Bi,j ∀n.m ∈M ;

8 Remove from L all the nodes that belong to M;

9 Add to L a new node k;

10 foreach node h ∈ L do

11 if h 6= k then

12 define Bk,h = Bm,h with m ∈M
13 end

14 end

15 define Λroot→k = Bi,j ;
16 foreach m ∈M do

17 define Λk→m = Λroot→m \ Λroot→k

18 end

19 end

Is still possible to obtain better topology reconstruction by taking advantage of

LCCs topological relations presented in [29]. The main idea presented in this

paper is that, if the measurements are not completely wrong, if the pre-evaluated

interarrival time for one pair of receivers (i, j) is less or equal to the pre-evaluated

interarrival time for other pair of receivers (i, k) then is possible to conclude that

the link combination for the pair (i, j) is a subset of the link combination of the

pair (i, k). It can be formalized as follows:

γi,j ≤ γi,k ⇒ LCCi,j ⊆ LCCi,k

γi,j ≥ γi,k ⇒ LCCi,j ⊇ LCCi,k

(2.11)

Constraints from previous decisions can prevent errors that may occur due to the

presence of ambiguous LCCs. However, if an error is made on the first iterations,

it will propagate to the rest of the inferred topology.

12

2.4. The decision theoretic approach

2.4.2 Limitations

Despite of the very good results obtained by the approach proposed by Andrea’s,

it still some limitations and it makes strong assumptions. As we already stated

before, one of the limitations of Andrea’s work is that the LCC reconstructed suffer

a certain degree of ambiguity due to link ordering. This problem can happen if a

branching node is not directly connected to a probe or other branching node. This

problem doesn’t lead to wrong network topologies but it can lead to topologies

with wrong capacity links.

Other problem of his work, and this problem can lead to erroneous reconstructions,

is that it doesn’t know the exactly depth of the shared path (it knows for the pairs

constituted with the same receiver, but not to the others constituted by different

receivers), it only knows the maximum depth of the shared path, which coincides

with the minimum TLL of paths of both receivers. Note that the chosen LCC can

have less or even more links than the actual shared path. Thus, if the algorithm

works, it will lead to a wrong network topology. Having knowledge of the exact

depth of the shared path can lead to a more accurate LCC decisions.

Assuming that the capacity of a link i is less than 25 times the capacity of previous

link (Ci

Ci−1
≤ 25) is a very strong assumption, even that in [28] states that it is

satisfied in actual networks. In a topology, if there is a link that doesn’t satisfy this

condition, by Andrea’s approach, the LCC’s that contains this link and the LCC’s

that doesn’t will have the same metric, and the algorithm may fail or reconstruct

a wrong topology.

These three problems are the main limitation in Andrea’s work. However there

are still problems due to the reconstruction be a router-level reconstruction. In

other words, layer 2 paths will be reconstructed as one link. Something similar

will happen in the case of VPN’s, i.e., the link reconstructed can represent several

physical links.

2.4.3 The new approach

In order to obtain a more precision of the network topology reconstruction, we

have focused on the link ordering limitation. As we know, this limitation results

13

Chapter 2. Network Topology Discovery

due to the LCCs that only differ for the element order and the lack of branching

points on the paths.

If the internal help of the network nodes was available, we could solve this problem

with existing tools, such as traceroute[32]. However, as a security measure, many

of the internal nodes have the icmp replys blocked. So we can not rely on internal

help of the network nodes and so, we can not use the traceroute tool.

However, we decided to use the underlying idea of the traceroute, which is make

several measurements with different TTL. On the small packets we can not do

this, otherwise we will not obtain a measurement, but we can manipulate the TLL

of the large packet.

Figure 2.2: Packet q TTL manipulation.

Let us consider the case where there is no cross-traffic on the network. As shown

in Figure 2.2 , if the TTL of the packet q is set to i− 1 then it will be dropped at

the node i (note that the sender node is first node on the path), and the shared

path will be until the link i− 1 (included); if it is set to i then it will be dropped

at the node i + 1, and the shared path will be until the link i (included). So,

by controlling the TTL of the packet q we can control where the packet q will

be dropped and so, the depth of shared path of the probing packets until the

branching point. The interarrival time of the small packets is completely related

to the length of the shared path, as shown in Equation 2.7. An increase or decrease

in the shared path will result also in an increase or a decrease of the interarrival

time of the small packets, respectively.

14

2.4. The decision theoretic approach

Figure 2.3: Packet q TTL incrementation.

Let us consider the example shown in Figure 2.3 assuming there is no cross-traffic.

In the case a), the TTL of the packet q was set to 1, and as shown, the packet

is dropped in the second node. The delay experienced by the packet in this path

will be just the delay experienced in the sender node which will be Q2 = Q2
1 = Lq

C1
,

which will result in the interarrival time shown in Equation 2.12a.

In the case b), the TTL of the packet q was set to 2. The packet is dropped in

the third node and the delay experienced will be the sum of the delay in the first

and in the second node: Q2 = Q2
1 +Q2

2 = Lq

C1
+ Lq

C2
− Lp

C1
, resulting in an interarrival

time shown in Equation 2.12b.

For the case c), following the same reasoning line we will obtain an interarrival

time shown in Equation 2.12c.

By looking to Figure 2.3, we can easily conclude that the shared path between

nodes R1 and R2 are links 1, 2 and 3. Therefor, we also can conclude that there

will be no queuing delay on forth node. By setting the TTL to 4, the packet will be

dropped on the fifth node, which is not on the shared path, so the queueing time

will be equal to the queueing time calculated for a TTL set to 3 and consequently

the interarrival times will also be equal, as shown in Equation 2.12d. The same

15

Chapter 2. Network Topology Discovery

happens in the case e), however, in this case, the packet q reaches is destination

and a acknowledgement is sent back to the sender.

tinterarr1,2 (1) =
Lq

C1

+ α (2.12a)

tinterarr1,2 (2) =
Lq − Lp

C1

+
Lq

C2

+ α (2.12b)

tinterarr1,2 (3) =
Lq − Lp

C1

+
Lq − Lp

C2

+
Lq

C3

+ α (2.12c)

tinterarr1,2 (4) =
Lq − Lp

C1

+
Lq − Lp

C2

+
Lq

C3

+ α (2.12d)

tinterarr1,2 (5) =
Lq − Lp

C1

+
Lq − Lp

C2

+
Lq

C3

+ α (2.12e)

With all equations in Equation 2.12 we can deduce a new formula for the interar-

rival time, expressed as follows:

tinterarr1,2 (ttl) =


α +

ttl−1∑
i=1

Lq − Lp

Ci

+
Lq

Cttl

if ttl ≤ N

α +
N−1∑
i=1

Lq − Lp

Ci

+
Lq

CN

if ttl > N

(2.13)

Notice the Equation 2.12a, all the values are known, except for C1, which is the

value we want to calculate (the capacity of the link). So, in a perfect world with

no cross-traffic we could simply calculate this value by resolving the equation.

Considering there is noise on the network, we have to use the Equation 2.10. To

obtain the capacity of the second link, we have two variables (C1 and C2), but C1

can be previously calculated and thus, we can calculate C2 and so on. The point

of all of this is that we can calculate the capacities of one path, one at a time,

thus solving the not only problem of link ordering but also, we can obtain the real

value of the shared path (not the estimate). Note that when ttl after reaching the

value of the depth of the shared path (N), the formula for tinterarr1,2 (ttl) is always

the same, i.e., the value will be always equal until packet q reaches the destination.

Also notice that making the measurements to each TTL will increase the number of

measurements to each receiver, which will may have impact on the network traffic.

16

2.4. The decision theoretic approach

However, since this approach obtain better results than the approach presented

by Andrea, this increase compensates.

Let us consider the Figure 2.2 where the capacity of the link i is greater than 25

times the capacity of the previous link (link i−1) (which we will represent by L25),

i.e., Ci

Ci−1
> Lq

Lp ⇔ Ci

Ci−1
> 25. So, we have that tinterarr1,2 (i − 1) = tinterarr1,2 (i), so the

capacity of the link i can not be determined, we only know what is its minimum

capacity. On the other hand, we know how much is its minimum capacity, which

is 25 times the capacity of the previous link. Depending on the set of possible

capabilities, the possibilities for this link become very few.

However, having that tinterarr1,2 (i − 1) = tinterarr1,2 (i), the i-th node can be confused

with a branching node. Which can difficult the reconstruction of the shared path.

Let us consider the various locations of the link L25 on a shared path, as shown

in Figure 2.4. The yellow link represents the link L25.

Figure 2.4: Different topologies cases.

The case a) shows the case where, in shared path, there is a link L25 followed by

a link that is not a link L25. Following the Equation 2.13, the value of interarrival

time will increase to TTL = i − 1, included. When TTL = i, the value of the

interarrival time will remain the same and when TTL = i + 1, the value will

increase again. Thus, it is not possible to the node i be a branching point, since

the value of the interarrival time will no longer increase again after the branching

node.

The b) case shows a particular case. Note that we are talking about what happens

in the shared path, and the yellow link is the last link of the path. This means that

the entire path was shared. This only happens when one intends to calculate the

interarrival time of a probe pair constituted only by one receiver, in our notation,

tinterarri,i . In these cases there are no branching points, so it is not possible to

confuse any node contained in the path with a branching node.

17

Chapter 2. Network Topology Discovery

The case d) presents a further special case where there are two links whose capac-

ities are 25 times bigger than the previous (2 links L25 consecutive). This just

makes the capabilities of these links even more restricted, becoming easier to get

their capacities. However, both the node i and node i + 1 can be confused with

branching nodes. Everything will depend on the following link.

The case c) shows the case where the branching node is the node where the yellow

link is connected. There is no queuing delay in the branching node, as the link

i is a link L25, at node i also won’t exist queuing delay. I.e., after the node i,

included, will not exist more queuing delay. And the branching point can be the

node i or the node i + 1. This problem can be exacerbated considering the cases

d) and c) together, which would result in three hypotheses for branching node.

Following this line of reasoning we could say that until any node after the not

increase of the value of the interarrival time can be a branching node. Therefore,

it is necessary to define when can exist a branching node. A node m may be a

branching node if it satisfies the following condition:

tinterarri,j (m) == tinterarri,j (TTL max j)

and also satisfies the following conditions in the following order:

1) Φ isEmpty

1.1) Bj,jm 6= Bi,im, e é único

1.2)
Cm

Cm−1
≤ Lq

Lp
, e é único

1.3)
Cm

Cm−1
>

Lq

Lp

2) (m− 1 ∈ Φ and
Cm−1

Cm−2
>

Lq

Lp
)

where Φ is the set of possible branching nodes in a shared path of a pair of receivers

(i,j). Having several possibilities for branching nodes into a shared path means

having several possibilities of the link capacities in a shared path, which also means

having several possibilities for the spanning tree of one sender node. However, it

is not possible to know the correct spanning tree without more information.

18

2.4. The decision theoretic approach

As shown in [28], Bi,j is reconstructed by Equation 2.10. Although it is possible

to calculate Bi,j for each ttl only with this expression, we will not do so. In this

work we present a new algorithm for choosing the paths and shared paths. This

algorithm is divided into two parts: the first one where the selection is made for

each of the paths for each receiver (only Bi,i values are used), shown by Algorithm

2; and another part where the choice of shared paths for each pair of receivers is

made, presented by Algorithm 3.

Algorithm 2: Decision algorithm part one
input : tarrp1 ; tarrp2 ; S ; timeout ; map ttl-receiver

output: B
1 Initializate set L containing the leaves of the spanning tree (T) ;

2 foreach i,j ∈ L do

3 Bi,j = ∅
4 end

5 foreach i ∈ L do

6 ttl max = TTLmax (i) ;

7 dprev = 0 ;

8 for ttl = 0 until ttl = ttl max, not included do

9 set d = noise reduction (tarrp1 , tarrp2 , timeout) ;

10 d̂ = mean d ;

11 if d̂ − dprev > min value(Bi,i) then

12 C̄ = arg minC∈LCC | d̂− γ(C) |, such that, for k = 0 until

k = ttl, not included, the k-th element of Bi,j is equal to

the k-th element of C ;

13 Bi,j = C̄ ;

14 else

15 C̄ = s ∈ S, such that, s > Lq

Lp× last element of Bi,j ;

16 Bi,j [ttl] = C̄ ;

17 end

18 dprev = d̂

19 end

20 end

Since the cross-traffic can induce variations in measurements, even though there

are links L25 or even after the branching point, the values of the interarrival time

may not be the same, although they are very close to each other. So we need

a function that, by introducing the capacity of one link, it returns the minimum

queuing delay expected by the addition of a new link to the shared path, provided

that the new link is not a link L25. For example, given a certain capacity Capacl,

this function should choose the larger capacity of the set S, so that the capacity

19

Chapter 2. Network Topology Discovery

chosen is not 25 times the capacity introduced and returns the minimum queuing

delay of packet p2 using Equation 2.2. If the difference between the d̂ of the

current ttl and d̂ of the previous ttl is very close to the returned value by the

function, then it is possible to conclude that there is one more link in the shared

path. Otherwise, it may mean that the following link is a link L25, or there are

no more links in the shared path.

20

2.4. The decision theoretic approach

Algorithm 3: Decision algorithm part two

1 foreach i,j ∈ L, that that, i 6= j do

2 ttl max = TTLmax (j) ;

3 dprev = 0 ;

4 Initializate set Φ as empty ;

5 for ttl = 0 until ttl = ttl max, not included do

6 set d = noise reduction (tarrp1 , tarrp2 , timeout) ;

7 d̂ = mean d ;

8 if d̂ - dprev > min value(Bi,i) then

9 if ttl-th element of Bi,i 6= ttl-th element of Bj,j then

10 Algorithm fail

11 else

12 Bi,j [ttl] = Bi,i[ttl] ;

13 end

14 else

15 if Φ is empty then

16 if Bi,i[ttl] 6= Bj,j [ttl] or (Bi,i[ttl] = Bj,j [ttl] and
Bi,i[ttl]
Bi,i[ttl−1] ≤

Lq

Lp) then

17 continue = false ;

18 else

19 if
Bi,i[ttl]
Bi,i[ttl−1] > Lq

Lp then

20 Bi,j [ttl] = Bi,i[ttl] ;

21 add ∞ to Bi,j [ttl] ;

22 add ttl to Φ ;

23 else

24 end

25 end

26 else

27 if Φ contains ttl − 1 and
Bi,i[ttl−1]
Bi,i[ttl−2] > Lq

Lp then

28 Bi,j [ttl] = Bi,i[ttl] ;

29 add ∞ to Bi,j [ttl] ;

30 add ttl to Φ ;

31 else

32 continue = false ;

33 end

34 end

35 end

36 end

37 end

If the algorithm concludes that there is one more link on the shared path, where a

pair (i,i), then this choice is made by the Equation 2.10, but with some restrictions,

21

Chapter 2. Network Topology Discovery

namely the new combination will be calculated taking into account the capabilities

of the first ttl−1 links are equal to the capacities of the links previously calculated.

If a pair (i,j) with i 6= j, then the capacity of the ttl-th link of the shared path will

be equal to the capacity of ttl-th link of the path (i,i) which in turn must be equal

to the capacity of the ttl-th link of the path (j,j). If different, then something went

wrong. It may have been the capacity of these links that have been misplaced

or it may have been a difference of the current d̂ and previous one which was a

relatively high value.

Regarding the reconstruction algorithm, it works correctly if all Bi,j are correct.

Therefore the algorithm used will be the same.

Thus, our work can exclude the assumption of the no existence of links L25 in the

network. However, we may be not able to accurately identify the capacity of that

link, but the possibilities will be very few.

2.5 The merge algorithm

2.5.1 Overview

The merging algorithm proposed in [30], does not require further probing traffic

and is able to reveal all the nodes of the network (not only the branching nodes).

This is an algorithm to be applied in network scenarios where each probe is either

a sender probe or a receiver probe.

This algorithm works in two phases: at first, it scans the path connecting each

sender-receiver pair and assigns the same label to the nodes representing the same

node on different trees. After that, a tree merging operation based on the value

of the labels is performed. Let I i→j
n be n-th node on the network path connecting

i and j, and let Ni,j be the total number of nodes composing such a path; the

merging algorithm works as follows:

22

2.5. The merge algorithm

Algorithm 4: Spanning tree merging algorithm
input : The set of all spanning trees

output: The merged graph G
1 foreach pair (i, j) do

2 for n = 1, 2, . . . , Ni,j do

3 if neither node Ii→j
n nor node Ij→i

Ni,j+1−n are labbeled then

4 both nodes are assigned with same label ;

5 else

6 if one of the nodes Ii→j
n and Ij→i

Ni,j+1−n has already been

labeled then

7 the node that wasn’t been labeled is assigned is the

same label.
8 end

9 end

10 end

11 end

12 Merge tree as follows:

13 – the nodes set of the resulting graph is the set-theoretic union of

the nodes sets of the input graphs ;

14 – all the edges in the input graph are retained in the resulting graph ;

15 Prune the edges of the resulting graph by leaving one single edge for

each pair of connected nodes ;

2.5.2 Limitations

Note that the node I i→j
n and the node Ij→i

Ni,j+1−n cannot be the same node. In the

cases where the routing is not symmetric the paths i to j and j to i may differ. So,

in [30], it is assumed that the network under test implements symmetric routing.

Although we tried to consider no such assumption, we were not able to find a

solution for this problem. One solution that we found was merge only the path that

was equal for both probes, however this could lead to a complete wrong topology.

In our work, the topology will be reconstructed even if there are asymmetric

routing, however, we need to discovery is the path is symmetric or asymmetric.

To be a symmetric path, the following conditions must be satisfied:

1) #Bii = #Bjj

2) #Biin = #Bjj#Bjj+1−n, ∀n ∈ 1, 2..#Bii

23

Chapter 2. Network Topology Discovery

If these conditions are satisfied, then we can assume that the path is symmetric.

But note that two paths can have the same depth and the same link capacity order

and yet not be the same path. So false positives may occur.

Other problem of the merge algorithm, also stated in [30], is that is not always

true that all nodes corresponding to the same physical device are assigned the

same label. In some specific topologies, such as the one shown if figure Figure 2.5

the label assignment algorithm may fail as it may assign different labels to nodes

which actually correspond to the same node. In this case, multiple instances of

this nodes, which will be referred to as multiple label nodes, will be present in the

reconstructed global topology. However, as shown in [30], the actual impact of

such nodes is quite low also in the case of very meshed topologies.

Figure 2.5: Topology which causes the failure of the spanning tree merge
algorithm: the darker node is the multiple label node.

This problem could be simply resolved if we were able to somehow get an ID from

the node, such as the IP. However, in this work we assume there is no cooperation

from the network internal nodes, and we weren’t able to find any solution to get

the nodes ID. So we weren’t able to find a solution for this problem.

24

Chapter 3

Link Failure Detection

3.1 Prior Work

Initial work on network tomography methodologies focused on the use of multicast

measurements [13–17]. Multicast traffic introduces a well structured correlation in

the end-to-end behavior observed by the receivers that share the same multicast

session. This correlation allows to infer the performance characteristics as packet

loss rates, packet delay variance and the delay distributions on each individual

link [18, 19].

Figure 3.1: Simple Tree Topology.

To illustrate the idea behind multicast based loss inference, consider the simple

tree in Figure 3.1 with the source (the red node) sending multicast packets to the

two leafs nodes 2 and 3 (blue nodes). If a multicast probe is sent by the source

node to both receivers, node 2 and 3, but the probe arrives only at node 3, and

25

Chapter 3. Link Failure Detection

not at node 2, then it is possible to immediately infer that the loss occurred on

link 2. By sending many multicast probes from source node to receivers nodes

2 and 3, it is possible to infer the loss rates on the two links, link 2 and link

3. Furthermore it it also possible to infer the loss rate on link 1 [33]. However,

multicast is not supported in all the networks due to scalability limitations. Hence,

new tomographic methods emerged as an alternative to multicast base on unicast

probes.

Papers [34, 35] use only unicast end-to-end flows for the simpler goal of identifying

the congested links, i.e. identify if the link loss rate or delay exceeds some value

Other studies focused on Boolean Tomography. This it is a class of network to-

mography in which links can have two possible states: ”good” or ”bad”. When all

links from one path are ”good” then the path will also be ”good”, but if there is

at least one link that is ”bad”, then the path will be ”bad”. And tries to identify

the smallest set of ”bad” links that explains the end-to-end unreachabilities. How-

ever, paper [36] shows that a basic ”Boolean Tomography” has several limitations

and performs poorly in identifying multiple link failures. So, it presents Tomo

that constitutes an extension of the Boolean tomography approach with multiple

probing sources and destinations. The problem of multiple sources and multiple

destinations is an instance of the Minimum Hitting Set problem, which optimiza-

tion version in NP-Hard. However, the paper states that has been shown that a

greedy heuristic approximates the solution to Min Set Cover within an approxi-

mation ratio of log µ, where µ is the set of elements from which the hypothesis

set can be chosen. Tomo a greedy heuristic with the aim of solving the Minimum

Hitting Set given the reachability matrix (R).

Nevertheless, in paper [37] states that the gist behind Tomo is that a few congested

links are responsible for many congested paths. This algorithm favors links that

participate in more congested paths. It also states that the Boolean Inference

problem is ill-posed, i.e., given any network graph and the outcome (set of ”bad”

paths), there may be possible solutions for ”bad” links. In this paper, the authors

introduce an algorithm that solves the Probability Computation problem than

those required by Boolean Inference and more challenging network conditions.

26

3.2. Link failure detection with internal help

3.2 Link failure detection with internal help

In this part of the work we went out a bit of the main focus of this chapter, which

is the detection of link failures without cooperation of the internal nodes, and we

assume that we have total control over the internal nodes. More precisely, in this

part we aim to solve the problem of link failure detection between two probe nodes

(a sender node and a receiver node) using the Tomo algorithm presented in [36].

According to [36], Tomo constitutes an extension of the Boolean tomography

approach with multiple probing sources and destinations. It is a greedy heuristic

with the aim of solving the Minimum Hitting Set given reachability matrix (R).

The reachability matrix R reflects the status of each path. The status of one path

Pij is 0 if is down or 1 if is up, in other words, the status of one path is 0 if the

packet from i to j was dropped (lost) and 1 if it reached the destination. So, Rij =

1 if the path from i to j is good, and Rij = 0 otherwise. Considering f(l) denote

the status of the link l, if Rij = 1 then f(l) = 1, ∀ l ∈ Pij. If Rij = 0 then

∃ l ∈ Pij f(l) = 0.

Algorithm 5 – Tomo proceeds iteratively as follows: first the set of the failure sets

F is initialized containing all the broken paths and all of them are still unexplained,

so the set of unexplained Fu is initialized (it will the same than F initially). Also,

we initialize the candidate set U , containing all the links from all broken paths, and

then remove the links that are contained in the working paths, since they cannot

be down. In each iteration, it is computed for each link l ∈ U , the number of

unexplained failure sets that l intersects with (called the ”score” of the link l).

Then the link or links with the highest score are added to the hypothesis set.

This problem is a single-source, single destination problem. If we consider the

”normal routing” we only have one path to measure and we can only obtain the

status of each link in the path. However, we have complete control over the

topology, which means that we can change the routing. Taking this into account,

we can calculate all the paths from the sender to the receiver. Thus, we can

obtain the status of more paths. However, all the paths from sender probe to the

destination probe may not include all the links of the topology, which means that

we will not obtain the status of these links.

27

Chapter 3. Link Failure Detection

Algorithm 5: Tomo
input : R
output: H

1 Initializate F = ∅ The set of failure sets ;

2 foreach Rij = 0 do

3 F = F + Pij {Add the failure set due to each broken path} ;

4 end

5 Initializate H = ∅ {Hypothesis set of failed links} ;

6 Initializate Fu = F {Set of unexplained failure sets} ;

7 U = ∪Pij ∀Pij ∈ F {The candidate set} ;

8 Remove from U every link l on a working path ;

9 while Fu 6= ∅ AND U 6= ∅ do
10 foreach link l ∈ U do

11 C(l) = set of failure sets in Fu containing l ;

12 score(l) = |C(l)| {The number of unexplained failure sets that

l intersects with} ;

13 end

14 Fm = {lm|lm = argmaxl ∈ F score(l)} {The set of links with the

maximum score} ;

15 foreach link lm ∈ Fm do

16 H = H ∪ {lm} {Add lm to hypothesis set} ;

17 Fu = Fu − C(lm) {All failure sets in C(lm) are now

explained. Remove from Fu} ;

18 U = U − {lm}
19 end

20 end

For calculating all the paths from the sender to the node we will use an algo-

rithm based on the Breadth-first search algorithm [38], which is the Algorithm 6,

described in Appendix C.

However, we do not need to obtain the reachability of all paths calculated since

some of them may be linearly dependent from the others. Thus, we only need

obtain the reachabilities only the paths that are linearly independent. In order

to obtain the linearly independent matrix, we modified the function rref [39] from

MatLab. This function produces the reduced row echelon form of a matrix using

Gauss Jordan elimination with partial pivoting, the number of rows with all zeros

are the linearly dependent vectors. So, our modification to the function was only

saving the initial index of each vector, and, in the end, eliminate the rows that

originated all zeros rows. We present our modification in Appendix D: at blue are

the lines that we added to the file rref.m.

28

3.3. Link failure detection with no internal help

The reachabilities can be measured by only send icmp ”ping” packet’s to the

destination, if a reply is received in a certain period of time, then the path is up,

otherwise will be set as down. After obtaining the linearly independent matrix

and the reachabilities matrix R we can apply the tomo algorithm to infer which

link or links were more likely to be down.

3.3 Link failure detection with no internal help

Returning to our main objective, we want now to detect link failure without in-

ternal cooperation. Assuming that the reconstruction algorithm reconstructed the

network topology correctly, then we can obtain the routing matrix P constituted

by all paths from the sender probe to the receiver probes of all probes. Note that

we are in a multiple source, multiple destination case, which Tomo was developed

to resolve.

Addressing this problem similarly to the problem in the previous section, we can

obtain the linearly independent matrix of the routing matrix P , and get the reach-

ability in the same way as proposed in the previous section. By applying the Tomo

algorithm we can infer the link or links more likely to be down.

However, in the previous case, is possible to not obtain the status for all links,

due to the paths from the source to the destination doesn’t cross that link. But,

in this case, the topology was reconstructed by the probes that will verify the

reachability. The reconstruction algorithm can not be able to reconstruct all links

of the topology (it is impossible to reconstruct a link if the packets does’t cross

them), however, for getting the reachabilities, all the links reconstructed will be

used.

29

Chapter 4

Implementation and Tests

In this chapter we will talk about the implementation of algorithms described in

previous chapters and the tools used to obtain results. We decided to completely

separate these two parts, i.e., measurements are obtained and stored in files. Later,

these files are used as input for the algorithms. Thus, it is possible to obtain

measures of any tool and use the same programs to generate results.

Firstly we will focus on the test preparation, i.e., the tools that we will use to obtain

measurements, the topologies, the routing adopted and the traffic generator. Then

we will focus on how we make the measurements. Finally, we will focus on the

tools developed that implements the algorithms proposed in the previous chapters.

4.1 Test Preparation

Obtaining reliable measurements in order to successfully test our algorithms is

a major concern. The way to get the most realistic measurements would be to

make measurements on real equipment in real networks. However it would be very

expensive (if we have to buy or rent the equipment) and/or it would take a lot of

time just to prepare a test scenario. An alternative would be the use of emulation

or simulation tools.

30

4.1. Test Preparation

4.1.1 Measurement Tools

4.1.1.1 CORE

The first tool that was addressed was the Common Open Research Emulator

(CORE)[40, 41]. CORE is an emulator developed by Network Technology research

group that is part of the Boeing Research and Technology division. As an emulator,

it builds a representation of a real computer network that runs in real time and

the live-running emulation can be connected to physical networks and routers.

It provides an environment for running real applications and protocols, taking

advantage of visualization provided by the Linux or FreeBSD operating systems.

The architecture consists of a GUI for easily drawing topologies, a services layer

that instantiates lightweight virtual machines, and an API for tying them together

[41].

The main problem of this tool is that it only emulates layers 3 and above. We

could use this tool for Link Failure Detection, since the link failure just verifies

the reachability of the probes. However, it cannot be used for network topology

discovery, since our work rely on queueing time, which is layer 1 and 2.

However, it is possible to join CORE with a simulation tool for layers 1 and 2,

such as, EMANE or ns-3, but this junction is not very simple to do, so this tool

was discarted.

4.1.1.2 GNS3

Other possible choice is Graphical Network Simulator [42]. No official document

regarding GNS3 was found, however, GNS3 is a simulator that uses emulators to

run the operating systems in the devices as in real networks. It uses the Cisco IOS

emulator Dynamips, VirtualBox that runs desktop and server operating systems

as well as Juniper JunOS and Qemu, which runs Cisco ASA, PIX and IPS.

As stated in [43], one of the main limitations of GNS3 is obtaining the proper

devices to be used with the simulator. Without these devices, operating system

GNS3 cannot perform any significant tasks. Other limitation is the high consump-

tion of processing resources. Although we were unable to find a reference value

for the number of nodes in a topology in execution at the same time, from our

31

Chapter 4. Implementation and Tests

experience while searching this tool and by consulting the GNS forum, the number

of nodes running simultaneously is about 15 nodes, which is very low.

This option was also discarted.

4.1.1.3 NS-3

The network simulator 3 [44, 45] is a discrete-event network simulator, targeted

primarily for research and educational use. In comparison with other discrete-event

network simulators, ns-3 is distinguished by the following high level design goals:

C++ and Python emphasis; Callback-driven events and connections; Flexible core

with helper layer; Emphasis on emulation.

We choose this simulator to obtain the measurements because script development

in C++ is quite appealing. And it was mentioned several times while We were

searching for tools. Also, from [45], it seemed to be a good bet for obtaining the

measurements.

4.1.2 Network Topology

After resolving the problem of which tool to use to get the measurements, other

problem rises, which topologies using for testing. We will build some toy topologies

to check whether the algorithms are well implemented, but we need some tool

to generate topologies, in order to test the algorithms in different topologies to

evaluate their performance.

NS-3 Topology Generator In the site of ns-3, they present a tool [46] with

a GUI which the user can draw one network topology and this tool is capable of

generate the ns-3 C++ or Python code of that topology.

BRITE NS-3 has also a integration Module with BRITE topology generator

[47]. BRITE topology generator framework was built with flexibility and extensi-

bility in mind and is able to quickly and efficiently generate large topologies in 4

different Mmodels: WAXMAN, BA, BA-2 or GLP.

32

4.1. Test Preparation

Inet-3.0 Other solution is generate topologies with inet-3.0 [48]. Inet-3.0 is

other topology generator, however, this generator can only generate topologies

with a minimum number of nodes of 3037, which is a very, very large network. I

will not need so big networks, so this tool is excluded.

Once we need to control the capacity of the links of the topology, we decided to

generate topologies with BRITE, but not inside ns3 context, i.e., we will generate

the topology network, save the topology in a file, change the capacities randomly

given a set of possible links and then we will import that topology to ns3.

4.1.3 Routing

The routing protocol is very important for the merge algorithm, the major problem

of this algorithm is the occurrence of asymmetric paths. This asymmetric paths

occur due to the variety of ”best” routes to forwards the packet. In our first

approach, we wanted to give as input to the ns-3 script, the routing algorithm to

be applied. Thus we could evaluate the impact that the routing algorithm has

on the reconstruction algorithm. More precisely, we wanted to choose RIP and

OSPF. However, these routing algorithms are not implemented on ns3. The DCE

quagga support [49] allows the use of these routing protocols. However, we were

unable to join the DCE quagga support with the ns3.

Ns-3 has several modules for routing but a large part of them are mobile routing

protocols. The routing module that most closely resembles the ospf protocol is

the Global Routing, this routing executes a Dijkstra Shortest Path First (SPF)

algorithm on the topology for each node, but it does not take into account the

capacities of the links.

4.1.4 Location of the probes

Supposing the topology is a real network topology, we cannot place probes in an

arbitrary location of the network, e.g., assuming that the topology is the topology

of an ISP, we cannot place probes at the core of the ISP, the probes should be

connected in the access network, which, generally, is one the periphery of the

network.

However, we prefer to give the location of the probes as input of the ns-3 script.

33

Chapter 4. Implementation and Tests

4.1.5 Traffic Generator

In order to create some noise for a more realistic values of the measurements,

we must join a traffic generator in the network. NS-3 has a traffic generator,

the OnOffApplication. This application, given the destination node and the data

rate, generates traffic until it is stopped. In order to create the minimum traffic

possible and have the more realistic values for the measurements, a noisy host

will be created on the same network of the probing node, this way, all the path

from the sender to destination for each receiver probe will have traffic, but only

that path. However, since for each sender probe, there is multiple receiver nodes

and the measurements are made to each receiver probe but not at the same time.

So, multiple OnOffApplication should be added on the sender noisy node (node

in the same network than sender probe), and for each receiver probe start and

stop the corresponding OnOffApplication. Other way to resolve this was to create

an application similar to OnOffApplication but at any time of the execution it

would be possible to change the source, the destination and the data rate of the

generator.

4.2 Network Topology Discover Script

The network topology discover script is the script responsible for generate values

that will be used to make the topology reconstruction. This script has as input

the BRITE topology (as stated before, this topology will be manually done or can

generated by BRITE and then, the links will be modified to a given set of possible

capacities. Even the topologies manually done must obtain the BRITE layout),

the location of the probes and the percentage load of noise that will be on the

measurements should also be given as input. Also, the timeout and the number

measurements can be set when starting the script.

In any ns-3 script made by us, the first thing to be done is build the topology and

assign the probes to their locations. Then the noisy hosts (host that will generate

noise) will be assigned to the same nodes than the probes. After everything

connected, routing set, the generator will calculate the bottlenecks for each path,

in order to set the required noise percentage on the network. The noise on the

path will be the percentage of the bottleneck. This is accomplished by the Ping

Pair application and the Ping Pair algorithm, which are described below.

34

4.2. Network Topology Discover Script

After the bottlenecks are calculated, then the alphas for each path should be calcu-

lated. The calculation of the alphas is accomplished by Path Capacity Application

and algorithm that also are described below.

After the alphas are calculated, we can start the measurements on the probes. This

is accomplished by the Network Topology Discovery Application. One application

is installed in each probe on the topology.

4.2.1 Network Topology Discover Application

This application is the application responsible for making the measurements and

obtain the arrival times of packet p1 and p2. But before starting to make the

measurements, this application requires the probe pairs (destinations pairs), the

alpha values to the receivers and a path to store the measured values.

The user can set the number of measurements that each sender will make for each

ttl when he starts the script. If none is give, then the application will make 10

measurements.

We will not use any transport protocol, we made the probe sandwich header that

uses the IP protocol 200.

Figure 4.1: Packet Sandwich Header.

The Packet Sandwich Header is a very small header, the width represents 8 bits,

i.e., Version + Type + ID = 8 bits, and PairID = 16 bits. The Data value depends

on the Type and ID of the packet. The Type can be REQ (1) or ACK (2), if a

node received a REQ, then he must send a ACK back to the receiver with the

same ID and with the arrival time of the packet. The arrival time is a integer with

8 bytes. The ID can be P1 (0), Q (1) or P2 (2). The PairID represents the number

35

Chapter 4. Implementation and Tests

of the packet train sent to the same receiver to the same ttl. The Data value, if

the packet is REQ, then data will have 64 (minimum size of ethernet packets) -

20 (size of the ip header) - 15 (size of the ethernet header) - 3 (size of the packet

sandwich header) = 26 bytes, if this packet is a packet P1 or P2. Otherwise this

packet will have 1462 bytes. If the packet is an ACK, then Data will have 8 bytes

that represents the arrival time of the packet if it is a P1 or P2 packet, otherwise

Data will have 0 bytes.

Each sender probe will make the measurements for each probe pair at a time.

When it finished the measurements for a probe pair, then it will begin the mea-

surements on the following probe pair. When all the measurements are done, it

will store the measurements and the script is over.

4.3 Link Failure Detection

4.3.1 Link Failure Detection with help

The Link Failure Detection with help script is the script responsible for, given the

brite topology, the source and the destination, to calculate all the paths from the

sender to the receiver and present the result as a matrix. Through that matrix, the

linearly independent matrix is calculated containing only the linearly independent

paths. Also the timeout and the number of measurements (tries for reaching the

node) can be specified when starting the script.

The applications, on the source and the destination nodes are installed and then

a random link or set of links will be calculated to be shutdown in the network.

In this particular case, we can not use any routing protocol, otherwise, when

sending the packet to verify the reachability will always be the same. So, in this

particular case, we will use static routing. For each path to be measured, the

routing table of the involved internal nodes will be modified so that the packet

cross the path that we are analyzing.

After doing this and getting the reachability for all paths, then the node will store

the values in a file, ending the script.

36

4.4. Other Scripts

4.3.2 Link Failure Detection with no help

In this case, we must use the routing protocol. And in this approach, the probes

must be located in the exact same nodes than they were when the reconstruction

was made. In this script, besides the brite topology and the location of the nodes,

the matrix with the paths linearly independent must be introduced. In each path,

the sender and the destination must be identified, otherwise, it wouldn’t be possible

to know who should make measurements. The number of measurements (tries)

and timeout can be set at the input.

Then a random link or set of links will be calculated to be shutdown in the network.

And then, the applications are installed in the nodes and the reachabilities can be

calculated. Since we are using the ns-3 Global Routing, the routing table remains

the same even after the link or links go down. So, all paths that contain the link

or links down, their reachability will be 0. Otherwise, the routing could resolve

the problem and all the paths could be all good.

When all probes finished their measurements, they will store the files with the

measurements and the script is over.

4.3.3 Link Failure Detection Application

The link failure detection application consists in only send a packet to the desti-

nation. If a ack is received inside the timeout period, then the reachability is 1,

and it starts the measurements for the next path. Otherwise, it will resend the

packet until the number of tries, if this value is exceeded, the reachability will be

0.

4.4 Other Scripts

4.4.1 Path Capacity Script

This script is not a main objective for our work, but since the application must

be made then script just to evaluate the path capacity can be made. Also it

will permit to pre-evaluate the alpha values (and we can pass the alpha values to

network topology discover script).

37

Chapter 4. Implementation and Tests

This script has as the same input as the network topology discover script. And

after installing the path capacity applications, the measurements can start. When

all the probes finish the measurements, they will store the measurements in files

and the script is over.

4.4.1.1 Path Capacity Application

The path capacity application consists in send two small packet of the packet

sandwich back-to-back to a single receiver and obtain their arrival time.

4.4.2 Path Pair Script

This script also is not a main objective for our work, but since the application

must be made then script just to evaluate the bottleneck capacity, then the script

can also be made. However, in this script, the source and the destination node is

a required input. This application is well defined in [50].

And after installing the ping pair application on the sender node, the measure-

ments can start. When it finishes the measurements, it will store the measurements

in files and the script is over.

4.4.2.1 Path Pair Application

The ping pair application consists only in sending two back-to-back icmp packets

to the receiver and store the times obtained.

4.5 Algorithms implementation

For the implementation of the algorithms we decided to choose the language C++.

Such language was chosen because: first, some of the algorithms implemented

would be reused for obtaining measurements, which restricted my choices to only

two languages C++ and Python); secondly, because we were much more comfort-

able with the chosen language. Though we were not very ”strong” programming

38

4.5. Algorithms implementation

in the C++ language, we had obtained some knowledge in programming language

C, in Python we had no knowledge.

Three main programs were made: the reconstructor, the link failure detector with

internal help and the link failure detector with no internal help.

4.5.1 Reconstructor

This program is responsible for the reconstruction of the topology. It is divided

into three parts: the decision of the links, the reconstruction of spanning trees, and

finally, the merging of spanning trees. As the third part does not always work, due

to asymmetric routing, we decided to record the results of the reconstruction of

spanning trees at the end of the second part and read these files at the beginning

of the third part.

The reconstruction of the spanning trees only includes the Reconstruction Algo-

rithm (Algorithm 1) and saves the spanning trees in binary files. This task is

accomplished through the Boost library [51]. The third part is the Merge Span-

ning Tree Algorithm (Algorithm 4) and if this is successfully applied, then another

algorithm is responsible for the correct identification of the various nodes and links

of all spanning trees, according to the merged topology. The purpose of this algo-

rithm is to get only an ID for a link or node for all spanning trees. At the end of

this part both spanning trees and merged topology are stored in files.

The first part contains two algorithms, the Noise Reduction Algorithm and LCC

Decision Algorithm (Algorithm 2 and 3). The Noise Reduction Algorithm was

implemented according to his definition, without any included special libraries.

Our first approach to pre-evaluate offline all the possible LCC was to build a

database. The database chosen was SQLite [52] however other databases could be

chosen such as MySQL. Other solutions was considered like a database in XML

with a search algorithm RAPIDXML. This approach was latter discarted due to

the increased time to reconstruct a topology. This pre-evaluation is made in real-

time at the same time that the algorithm is making the decision. But note that,

for a very large set of possible links this can consume a lot of RAM.

39

Chapter 4. Implementation and Tests

4.5.2 Link Failure Detector with help

This program is the program responsible for detecting link failures. It only includes

the Tomo Algorithm (Algorithm 5). Given the set of reachabilities, this program

will return the link or links that are more likely to be down. In order to produce

a graphical representation of the solution, the brite file that was used for making

the measurements is required as input.

4.5.3 Link Failure Detector with no help

This program is the program responsible for detecting link failures where there is

no cooperation from the internal nodes. It is implemented in a similar way to Link

Failure Detector with help.

4.5.4 Others

4.5.4.1 DataBaseConstructor

This program was made initially when we first used the database to make the

reconstruction of the topology. However, the idea of using a database was discarted

and so did this program.

This program is able to build a database given the set of possible links and the

maximum number of hops of the shared path.

4.5.4.2 ProbeLocation

This program was initially create to calculate where the probes should be placed

in order to use the minimum number of nodes and obtain the best reconstruction

possible. However, as stated before, supposing a real topology, this nodes can-

not be placed in an arbitrary location. Usually this nodes are in the periphery

of the network. Since the nodes in the periphery usually are the nodes with less

adjacencies this algorithm chooses the links that have the minimum number of

adjacencies. In particular, it will always choose a node that have only one adja-

cency. In no maximum number of probes to be assigned is set at the input, this

40

4.5. Algorithms implementation

algorithm will return the location of N/2 probes, where N is the number of nodes

in the topology. If there are many nodes with only one adjacency, this value may

increase.

4.5.4.3 PathCapacity

Since a script for ns-3 was made to pre-evaluate the α value of the topology, the

program to evaluate the α value also must be made. This algorithm only includes

the Noise Reduction Algorithm to choose the best measurements and evaluates

the α values by simply evaluating the interarrival time of packet p1 and p2.

4.5.4.4 PingPair

Like the program PathCapacity, since the PingPair script was made, also the

PingPair program was made. It also uses the Noise Reduction Algorithm to choose

the best measurements, but it uses an algorithm [50] to determinate the bottleneck

capacity.

4.5.4.5 Paths

Paths is a program that contains two functions: one function that from all span-

ning trees in a topology reconstruction, it returns the all-path matrix; and other

that returns the linearly independent matrix given the all-path matrix. This sec-

ond functions is completely based on the function of the matlab presented in

Appendix D.

The returned value of this program is used as input to the Link Failure Detection

with No Help ns-3 Script. This value will determine which path are needed to

calculate the reachability matrix.

4.5.4.6 RemakeBrite

As the name indicates, this program will remake a brite file. Given the set of

possible link capacities, this program will randomly choose a link from this set

and will assign it to the brite link.

41

Chapter 4. Implementation and Tests

4.5.5 Results Visualization

For display of the results, we found a list1 of free software tools capable of graph-

ically display the spanning trees and merged topology. Although no specific test

has been done in each of the tools, we choose Graphviz [53] because it seemed to

be the most simple and easy to use (you only need to ”write” the graphic in DOT

language and run the program. this case was used neato, which is the program to

draw not oriented graphs).

1This list can be consulted in:
http://www.dmoz.org/Science/Math/Combinatorics/Software/Graph Drawing

42

Chapter 5

Results

5.1 An Example

Let us consider the Toy Topology on the in Figure 5.1. This is an example of

a topology that we will use for test our algorithms. By invoking the program

that chooses the location for the probes, it will return (0,3,4,7,9,10,13,14) since

these are the nodes that contain only one adjancy. When we add the probes to

the topology, we will also create a link between the probe and the node choosen.

This link will have a capacity of 100Mbps. The topology will be like as shown in

Figure 5.2

Figure 5.1: Toy Topology.

43

Chapter 5. Results

Figure 5.2 shows the node probes P0, P3, P4, P7, P9, P10, P13 and P14 connected

in the nodes 0, 3, 4, 7, 9, 10, 13 and 14 respectively. Notice that in the program

the probes P0, P3, P4, P7, P9, P10, P13 and P14 will be identified as 0, 1, 2, 3,

4, 5, 6 and 7 respectively.

Figure 5.2: Toy Topology with 8 probes connected.

5.2 Network Topology Discovery

Using the toy topology in Figure 5.1, an example of a spanning tree obtained (in

this case for probe 6) is shown in Figure 5.3.

44

5.2. Network Topology Discovery

Figure 5.3: Spanning Tree Probe 6: The red node represents the sender node,
the blue nodes represents the receiver nodes and the gray links and the gray

nodes are the links inferred.

Figure 5.4: Spanning Tree Probe 6: Comparasion with the real topology. The
darker and thicker nodes and links are the inferred topology, while the lighter

and thinner nodes and links are from the real topology.

In the Figure 5.4 we show a comparasion between the reconstructed spanning tree

and the actual network. As we can see in the figure, not only the spanning tree

45

Chapter 5. Results

was correctly reconstructed but also all the capacities were correctly identified.

And as shown in the figure, only one link was not recontructed by this probe.

Note that while Figure 5.3 was one of the output of the reconstruction algorithm,

Figure 5.4 was manualy made ir order to the comparation between the the spanning

tree and the actual network to be easier.

By combining all the spanning trees calculated, we can get the Merged Topology as

shown in Figure 5.5, the comparation with the real topology is shown in Figure 5.6.

Figure 5.5: Merged Topology.

As we can see in Figure 5.6, for the toy topology, we were able discovery all the

topology (100 % reconstruction) and discovery the capacity of each link in the

topology.

5.2.1 Comparasion with Andreas Results

Also, the Andrea’s algorithm works and reconstructs sucefully the topology. How-

ever, there can be some problems due to link ordering as we can see from nodes

46

5.2. Network Topology Discovery

Figure 5.6: Merged Topology: Comparasion with the real topology.

Figure 5.7: Merged Topology Andrea’s: Comparasion with the real topology.

47

Chapter 5. Results

10 to 8. As shown in Figure 5.7, links that connects nodes 10 and 9 and nodes 9

and 8 have more than one hypothesis for link capacity. These links can a capacity

of 155.52 Mb or 51.54 Mb, but is unknown which capacity relates to each link.

5.2.2 Other

Figure 5.8: BRITE generated topology: Model GLP (40 nodes, 47 links).

Figure 5.8 represents a topology generated by BRITE in model GLP with 40 nodes.

This topology was also completly reconstructed and we were able to discover all

link capacities.

We also made some test in relativey ”large topologies”. One example is in Ap-

pendix E. This topology was manually made and it tries to simuate a ISP topology,

highly redundant. The algorithm was able to infer 60 of the 78 nodes and 81 of

191 links with 38 probes.

Appendix F is other example, however this states a complete fail of the merge

algorithm. Note that for each assymetric path, two complete path are added to

the topology.

48

5.3. Link Failure Detection

Figure 5.9: Link Failure Detection example: The green links mean good links,
i.e, links that are up (working), red links mean donw link (not working), gray

links mean links its state is unknown.

Figure 5.10: Link Failure Detection example 2.

5.3 Link Failure Detection

5.3.1 With Help

Figure 5.9 and Figure 5.11 shows two examples of Link Failure Detection with

internal help. The gray nodes represent the network topology; the blue nodes

49

Chapter 5. Results

represent the the probing nodes: the probe node represented as ’0’ is the sender

probe and the probe node represented as ’1’ is receiver probe. The green links

represents the good links, i.e., working links, the red links represents the links

that are not working and the gray links represents links which state is unknown

(no traffic crossed these links). Note that the network graph considered in this

case is a oriented graph, which means that not all links may reach the destination,

like the topology Figure 5.11, and in some topologies, may have no path from one

sender to the receiver.

5.3.2 With No Help

Figure 5.11: Link Failure Detection From the Reconstructed Topology.

In the case of Link Failure Detection without internal help, unlike Link Failure

Detection with internal help, the state of all links must be known (all links re-

constructed) once there will be traffic crossing all links. The gray nodes are the

inferred nodes and the blue nodes are the probe nodes. The green links are the

good links and the red links are the failed links.

Figure 5.11 shows a perfect identification of the failed link. However, in some

cases, the identification is not perfect, i.e., the links identified as failed sometimes

include the actual failed link and some working links (false positives). If the actual

failed link was the link from node 10 to node 9, the links identified as failed would

be links from 10 to 9; from 9 to 8 and from 8 to 3.

50

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we presented a novel approach to Probe Packet Sandwich, by limiting

the TTL of the large packet. We show that by controlling the TTL of the large

packet of the packet train, we could control the the shared path, and consequently

the interarrival time of the small packets. This way the reconstruction of the

path could be hop-by-hop, which resolves the problem of link ordering and it is

possible to know exactly the depth of the shared path. Also, we show that with

this approach, there is no need to still assume that there is no links whose capacity

is bigger 25 times or more the capacity of the previous link. We show that we are

always able to find these links, the problems that can emerge is that, there can be

more than one hypothesis for the capacity of that link, or when this link is the last

link of the shared path. In such cases, there will be uncertainty for the location

of the branching node, consequently, the depth of the shared path.

We showed that our approach performs better than the Andrea’s approach (due

that our approach is capable of resolving the link ordering problem). We also

show that the spanning trees are almost always correctly constructed. However

the merging algorithm is not always applied without any error. Due to the routing

algorithm, in very large topologies many paths can be asymmetric.

Then, given the result of a reconstructed topology, we were always able to find

links that failed on the network. However, in some results, working links are also

identified as failed. This happens when a portion of the network is composed by

51

Chapter 6. Conclusion

consecutive nodes with two links connected and one of the links between them is

down.

6.2 Future work

There are still many improvements that we can make in this work. We could

change the algorithm for link failure detection, despite the good results that we

had, Tomo is not a very good algorithm. It is ill-posed as state in [37]. It favors

the links that participate in more congested paths, which means that good links

may be identified as failed links and some actual failed links not identified as failed

link.

Discovery if it is possible to discover the % assigned to each service in a DiffServ

network, or infer a congested link or the link delay also could be added.

52

Appendix A

Notation

General
Pr Processing delay

Q Queueing delay

T Transmission delay

Pd Propagation delay

D Distance between two nodes

Ps Propagation speed

L Length of the packet

C Transmission rate (link Capacity)

tdep Departure time (at the sender node)

tarr Arrival time (at the receiver node)

tinterdep Interdeparture time (at the sender node)

tinterarr Interarrival time between two packets

carnality (number of elements)

Packet Sandwich
p1 Packet 1 (first small packet of the sandwich probe)

p2 Packet 2 (second small packet of the sandwich probe)

q Packet q (large packet of the sandwich probe)

Lp Size of the packets p1 and p2

Lq Size of the packets q

d Interarrival time between packets p1 and p2

δ Interdeparture time between packets p1 and q

α Transmission time of p1 on the first link

53

Appendix A. Notation

β Transmissions times of q and p2 on the first link

d̂ Mean value of the d values

Bi,j The set of real links capacities in the shared path of receivers i and j

Bi,jn The n-th link capacity of the shared path of receivers i and j

Ci, j The set of links capacities in the shared path of receivers i and j

S The set of possible links capacities

L25 Represents a link that its capacity is greater than 25 times the capacity

of the previous link

LCC Link Capacities Combination

Λi→j Path (link capacities) from node i to node j

L The set containing the leaves (receiver probes) of the spanning tree

T The spanning tree

C̄ The selected LCC

γ Function that evaluates the metric d of a LCC

Φ The set of possible branching nodes for a shared path

Link Failure Detection
E Set of all links

P Routing matrix (set of all paths)

Pid Routing matrix linearly independent

R Reachabilities matrix

54

Appendix B

Interarrival Time Between Two

Packets

As shown in [1] a packet is subjected to several delays since it is created in the

source node until it is fully received and processed in the destination node. The

most important delays are the processing delay (Pr), the queueing delay (Q), the

transmission delay (T) and the propagation delay (Pd). The Figure B.1 explain

very well these delays and where they occur.

Figure B.1: Network delays (figure also from [1]).

The time between the packet is created in the source node until it is fully received

and processed in the destination node, i.e., the packet delivery time (Pt) can be

calculated as the sum of the delays described above as shown in Equation B.1.

Pt =
N∑
i=1

(
Ti + Pdi

)
+

M−1∑
i=1

Qi +
M∑
i=2

Pri (B.1)

55

Appendix B. Interarrival Time Between Two Packets

where (N) is the number of links comprising the path between the source and the

destination and (M) is the number of nodes contained in the path (source and

destination nodes included).

Since the path between the source and the destination, both included, has M − 1

links, Equation B.1 can be simplified to:

Pt =
N∑
i=1

(
Ti + Pdi +Qi + Pri

)
= T + Pd +Q+ Pr

(B.2)

The propagation delay is the quotient between the length of the cable or the

distance between the nodes (D), if it is a wireless connection, and the propagation

speed (Ps). The propagation speed depends on the physical medium of the link.

In the case of an optical fiber, this speed will be the speed of light in glass which

is typically around 180,000 to 200,000 km/s as shown in [54]. The transmission

delay is not related with the length of the cable or the distance between the nodes.

This delay is directly proportional with the length of the packet (L) and inversely

proportional with the transmission rate of the link (R). The equations are shown

in the Equation B.3 and Equation B.4 respectively.

Pd =
D

Ps

(B.3) T =
L

R
(B.4)

Thus, we can rewrite the Equation B.1 to the folowing equation:

Pt =
N∑
i=1

(L
Ri

+
Di

Psi

+Qi + Pri

)
(B.5)

Let’s now consider the following scenario: one node (source node) sends two iden-

tical packets to other node (receiver node) but but separated in time that we will

call (tinterdep). The time difference between the two packets that we will call by

(tinterarr) is the difference between the arrival time of the second packet (tarr2) and

the arrival time of the first packet (tarr1) as shown in Figure B.2 and demonstrated

in Equation B.6.

56

Appendix B. Interarrival Time Between Two Packets

Figure B.2: Packet delivery between source and destination nodes.

tinterarr1,2 = tarr2 − tarr1 (B.6)

We also know that the arrival time of one packet is the instant of time that the

packet is sent from the source node (tdep) plus the packet delivery time (Pt):

tarr = tdep + Pt (B.7)

From Equation B.7 and Equation B.5 we can expand the Equation B.6 resulting

the following equations:

tinterarr1,2 = (tdep2 + P 2
t)− (tdep1 + P 1

t)

= tinterdep1,2 +
N∑
i=1

(L2

R2
i

+
D2

i

P 2
si

+Q2
i + P 2

ri

)
−

N∑
i=1

(L1

R1
i

+
D1

i

P 1
si

+Q1
i + P 1

ri

)
(B.8)

Now, taking into account that the packets are identical, we know that the length

of the packets are the same. By assuming that the two packets traverse the same

path, i.e., exactly the same links and the same nodes we know that the transmission

rate and the distance/length of the link are the same for both packets. Since the

57

Appendix B. Interarrival Time Between Two Packets

packets are sent close in time, the medium of the link is the same and subjected

to the same conditions so we know that the propagation speed are equal. Given

that the packets are identical, we can say the processing time of the packets are

the same despite of not being entirely true. The processing time also depends on

work load of the CPU of the routers but since that this values are in the range of

pico/nanoseconds, they can be discarted.

Thus, we can simplify the previous equation (Equation B.8) resulting the following

equation:

tinterarr1,2 = tinterdep1,2 +
N∑
i=1

(L2

R2
i

+
D2

i

P 2
si

+Q2
i + P 2

ri

)
−

N∑
i=1

(L1

R1
i

+
D1

i

P 1
si

+Q1
i + P 1

ri

)
= tinterdep1,2 +

N∑
i=1

(
Q2

i

)
−

N∑
i=1

(
Q1

i

)
= tinterdep1,2 +Q2 −Q1

(B.9)

58

Appendix C

All paths src-des calculation

through Breath Algorithm

Algorithm 6: Breath-first search Algorithm
input : G ; s ; d

output: Psd

1 if s equal d then

2 Return ∅
3 end

4 Initialize queue Q = ∅ ;
5 enqueue {s} in Q ;

6 while Q not empty do

7 t ← dequeue Q {Set Containing the path} ;
8 adjacents = adjacent nodes(last(t)) {Set composing by the adjacent

nodes};
9 foreach adj ∈ adjacents do

10 if adj = d then

11 p = t ;

12 p ∪ {adj} ;
13 Psd ∪ {p} ;
14 else

15 if adj /∈ t then

16 p = t ;

17 p ∪ {adj} ;
18 enqueue p in Q ;

19 end

20 end

21 end

22 end

59

Appendix D

Linear Independent Matrix

Function

lim.m
1 function [R,A,jb] = lim(A,tol)

2

3 Z=A;

4 [m,n] = size(A);

5 lin_order=1:m;

6

7 % Does it appear that elements of A are ratios of small integers?

8 [num, den] = rat(A);

9 rats = isequal(A,num./den);

10

11 % Compute the default tolerance if none was provided.

12 if (nargin < 2), tol = max(m,n)*eps(class(A))*norm(A,’inf’); end

13

14 % Loop over the entire matrix.

15 i = 1;

16 j = 1;

17 jb = [];

18 while (i <= m) && (j <= n)

19 % Find value and index of largest element in the remainder of

20 % column j.

21 [p,k] = max(abs(A(i:m,j))); k = k+i-1;

22 if (p <= tol)

23 % The column is negligible, zero it out.

24 A(i:m,j) = zeros(m-i+1,1);

25 j = j + 1;

26 else

27 % Remember column index

28 jb = [jb j];

60

Appendix D. Linear Independent Matrix Function

29 % Swap i-th and k-th rows.

30 lin_order([i k])=lin_order([k i]);

31 A([i k],j:n) = A([k i],j:n);

32 % Divide the pivot row by the pivot element.

33 A(i,j:n) = A(i,j:n)/A(i,j);

34 % Subtract multiples of the pivot row from all the other

35 % rows.

36 for k = [1:i-1 i+1:m]

37 A(k,j:n) = A(k,j:n) - A(k,j)*A(i,j:n);

38 end

39 i = i + 1;

40 j = j + 1;

41 end

42 end

43

44 % Return "rational" numbers if appropriate.

45 if rats

46 [num,den] = rat(A);

47 A=num./den;

48 end

49

50 for i=1:length(jb)

51 R(i,:) = Z(lin_order(i),:);

52 end

53

54 end

61

Appendix E

A large Topology

Figure E.1: Large topology.

62

Appendix E. A large Topology

Figure E.2: The merged Large Topology: the reconstruction and merge algo-
rithms were able to find 60/78 nodes and 81/191 Links with 38 probes.

63

Appendix F

Merge Algorithm Fail

Figure F.1: Merge topology fail: In 300 paths, 99 were assymetric.

64

Bibliography

[1] Delay and loss in packet-switched networks, October 2013. URL http://

netlab.ulusofona.pt/rc/book/1-introduction/1_06/index.htm.

[2] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuristics for internet

map discovery. In INFOCOM 2000. Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE,

volume 3, pages 1371–1380. IEEE, 2000.

[3] Benoit Donnet, Philippe Raoult, Timur Friedman, and Mark Crovella. Effi-

cient algorithms for large-scale topology discovery. In ACM SIGMETRICS

Performance Evaluation Review, volume 33, pages 327–338. ACM, 2005.

[4] Benoit Donnet, Timur Friedman, and Mark Crovella. Improved algorithms

for network topology discovery. In Passive and Active Network Measurement,

pages 149–162. Springer, 2005.

[5] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies

with rocketfuel. ACM SIGCOMM Computer Communication Review, 32(4):

133–145, 2002.

[6] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael

Hoffmann, Matús Mihal’ak, and L Shankar Ram. Network discovery and

verification. Selected Areas in Communications, IEEE Journal on, 24(12):

2168–2181, 2006.

[7] Benoit Donnet. Internet topology discovery. In Data Traffic Monitoring and

Analysis, pages 44–81. Springer, 2013.

[8] Thomas Bourgeau and Timur Friedman. Toward fast and efficient ip-level

network topology capture. In Proceedings of the 2012 ACM conference on

CoNEXT student workshop, pages 5–6. ACM, 2012.

65

http://netlab.ulusofona.pt/rc/book/1-introduction/1_06/index.htm
http://netlab.ulusofona.pt/rc/book/1-introduction/1_06/index.htm

Bibliography

[9] Yuri Breitbart, Minos Garofalakis, Ben Jai, Cliff Martin, Rajeev Rastogi,

and Avi Silberschatz. Topology discovery in heterogeneous ip networks: the

netinventory system. IEEE/ACM Transactions on Networking (TON), 12(3):

401–414, 2004.

[10] Suman Pandey, Mi-Jung Choi, Sung-Joo Lee, and James W Hong. Ip network

topology discovery using snmp. In Information Networking, 2009. ICOIN

2009. International Conference on, pages 1–5. IEEE, 2009.

[11] Bruce Lowekamp, David O’Hallaron, and Thomas Gross. Topology discovery

for large ethernet networks. In ACM SIGCOMM Computer Communication

Review, volume 31, pages 237–248. ACM, 2001.

[12] Aman Shaikh, Mukul Goyal, Albert Greenberg, Raju Rajan, and KK Ra-

makrishnan. An ospf topology server: Design and evaluation. Selected Areas

in Communications, IEEE Journal on, 20(4):746–755, 2002.

[13] Ramón Cáceres, Nick G Duffield, Joseph Horowitz, and Donald F Towsley.

Multicast-based inference of network-internal loss characteristics. Information

Theory, IEEE Transactions on, 45(7):2462–2480, 1999.

[14] Tian Bu, Nick Duffield, Francesco Lo Presti, and Don Towsley. Network to-

mography on general topologies. In ACM SIGMETRICS Performance Eval-

uation Review, volume 30, pages 21–30. ACM, 2002.

[15] Nick G Duffield, Joseph Horowitz, and F Lo Prestis. Adaptive multicast

topology inference. In INFOCOM 2001. Twentieth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE,

volume 3, pages 1636–1645. IEEE, 2001.

[16] Nick G Duffield and Francesco Lo Presti. Network tomography from mea-

sured end-to-end delay covariance. IEEE/ACM Transactions on Networking

(TON), 12(6):978–992, 2004.

[17] Nick G Duffield, Joseph Horowitz, F Lo Presti, and Don Towsley. Multicast

topology inference from measured end-to-end loss. Information Theory, IEEE

Transactions on, 48(1):26–45, 2002.

[18] Nick G Duffield, Joseph Horowitz, F Lo Presti, and D Towsley. Network delay

tomography from end-to-end unicast measurements. In Evolutionary Trends

of the Internet, pages 576–595. Springer, 2001.

66

Bibliography

[19] AHeroIII Coates, Alfred O Hero III, Robert Nowak, and Bin Yu. Internet

tomography. Signal Processing Magazine, IEEE, 19(3):47–65, 2002.

[20] Nick Duffield, Francesco Lo Presti, Vern Paxson, and Don Towsley. Net-

work loss tomography using striped unicast probes. Networking, IEEE/ACM

Transactions on, 14(4):697–710, 2006.

[21] Yolanda Tsang, Mehmet Yildiz, Paul Barford, and Robert Nowak. Network

radar: tomography from round trip time measurements. In Proceedings of the

4th ACM SIGCOMM conference on Internet measurement, pages 175–180.

ACM, 2004.

[22] Brian Eriksson, Gautam Dasarathy, Paul Barford, and Robert Nowak. To-

ward the practical use of network tomography for internet topology discovery.

In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[23] Brian Eriksson, Gautam Dasarathy, Paul Barford, and Robert Nowak. Effi-

cient network tomography for internet topology discovery. IEEE/ACM Trans-

actions on Networking (TON), 20(3):931–943, 2012.

[24] Jian Ni and Sekhar Tatikonda. Network tomography based on additive met-

rics. Information Theory, IEEE Transactions on, 57(12):7798–7809, 2011.

[25] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and

Yolanda Tsang. Maximum likelihood network topology identification from

edge-based unicast measurements. ACM SIGMETRICS Performance Evalu-

ation Review, 30(1):11–20, 2002.

[26] Vanniarajan Chellappan and Kamala Krithivasan. Network (tree) topology

inference based on prüfer sequence. In Communications (NCC), 2010 Na-

tional Conference on, pages 1–5. IEEE, 2010.

[27] Andrea di Pietro. Architectures and algorithms for packet processing and

network monitoring. PhD thesis, University of Pisa, 2011.

[28] Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Francesco Oppedis-

ano, and Gregorio Procissi. Network topology discovery based on a finite

set of hypotheses. In Global Telecommunications Conference, 2008. IEEE

GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

67

Bibliography

[29] Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gre-

gorio Procissi, and Fabio Vitucci. Network topology discovery through

self-constrained decisions. In Global Telecommunications Conference, 2009.

GLOBECOM 2009. IEEE, pages 1–6. IEEE, 2009.

[30] Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Francesco Oppedis-

ano, Gregorio Procissi, and Fabio Vitucci. Merging spanning trees in to-

mographic network topology discovery. In Communications, 2009. ICC’09.

IEEE International Conference on, pages 1–5. IEEE, 2009.

[31] Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Francesco Oppedis-

ano, and Gregorio Procissi. Noise reduction techniques for network topology

discovery. In Personal, Indoor and Mobile Radio Communications, 2007.

PIMRC 2007. IEEE 18th International Symposium on, pages 1–5. IEEE,

2007.

[32] Tracerotue manual, October 2013. URL http://www.zytek.com/

traceroute.man.html.

[33] D Ghita. Practical Network Tomography. PhD thesis, PhD thesis, Ecole

Polytechnique Federale de Lausanne, 2012.

[34] Venkata N Padmanabhan, Lili Qiu, and Helen J Wang. Server-based infer-

ence of internet link lossiness. In INFOCOM 2003. Twenty-Second Annual

Joint Conference of the IEEE Computer and Communications. IEEE Soci-

eties, volume 1, pages 145–155. IEEE, 2003.

[35] Nick Duffield. Network tomography of binary network performance char-

acteristics. Information Theory, IEEE Transactions on, 52(12):5373–5388,

2006.

[36] Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and Christophe

Diot. Netdiagnoser: Troubleshooting network unreachabilities using end-to-

end probes and routing data. In Proceedings of the 2007 ACM CoNEXT

conference, page 18. ACM, 2007.

[37] Denisa Ghita, Can Karakus, Katerina Argyraki, and Patrick Thiran. Shifting

network tomography toward a practical goal. In Proceedings of the Seventh

COnference on emerging Networking EXperiments and Technologies, page 24.

ACM, 2011.

68

http://www.zytek.com/traceroute.man.html
http://www.zytek.com/traceroute.man.html

Bibliography

[38] Breadth-first search algorithm, October 2013. URL http://en.wikipedia.

org/wiki/Breadth-first_search.

[39] Matlab rref function documentation, October 2013. URL http://www.

mathworks.com/help/matlab/ref/rref.html.

[40] Common open research emulator (core), October 2013. URL http://cs.

itd.nrl.navy.mil/work/core/.

[41] Jeff Ahrenholz. Comparison of core network emulation platforms. In MIL-

ITARY COMMUNICATIONS CONFERENCE, 2010-MILCOM 2010, pages

166–171. IEEE, 2010.

[42] Graphical network simulator (gns3), October 2013. URL http://www.gns3.

net/.

[43] Woratat Makasiranondh, S Paul Maj, and David Veal. Pedagogical evaluation

of simulation tools usage in network technology education. Engineering and

Technology, 8:321–326, 2010.

[44] Network simulator 3, October 2013. URL http://www.nsnam.org/.

[45] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and

JB Kopena. Network simulations with the ns-3 simulator. SIGCOMM demon-

stration, 2008.

[46] Ns-3 topology generator, October 2013. URL http://www.nsnam.org/wiki/

index.php/Topology_Generator.

[47] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:

An approach to universal topology generation. In Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, 2001. Proceedings.

Ninth International Symposium on, pages 346–353. IEEE, 2001.

[48] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator. Tech-

nical report, Technical Report CSE-TR-456-02, University of Michigan, 2002.

[49] Dce quagga support, October 2013. URL http://www.nsnam.org/docs/dce/

manual-quagga/html/getting-started.html.

[50] Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Francesco Oppedis-

ano, and Gregorio Procissi. Pingpair: a lightweight tool for measurement

69

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://www.mathworks.com/help/matlab/ref/rref.html
http://www.mathworks.com/help/matlab/ref/rref.html
http://cs.itd.nrl.navy.mil/work/core/
http://cs.itd.nrl.navy.mil/work/core/
http://www.gns3.net/
http://www.gns3.net/
http://www.nsnam.org/
http://www.nsnam.org/wiki/index.php/Topology_Generator
http://www.nsnam.org/wiki/index.php/Topology_Generator
http://www.nsnam.org/docs/dce/manual-quagga/html/getting-started.html
http://www.nsnam.org/docs/dce/manual-quagga/html/getting-started.html

Bibliography

noise free path capacity estimation. In Communications, 2008. ICC’08. IEEE

International Conference on, pages 1–5. IEEE, 2008.

[51] Boost c++ libraries, October 2013. URL http://www.boost.org/.

[52] Sqlite, October 2013. URL http://www.sqlite.org/.

[53] Graphviz - graph visualization software, October 2013. URL http://www.

graphviz.org/.

[54] Optical fiber cable (propagation speed and delay), October 2013. URL http:

//en.wikipedia.org/wiki/Optical_fiber_cable.

70

http://www.boost.org/
http://www.sqlite.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://en.wikipedia.org/wiki/Optical_fiber_cable
http://en.wikipedia.org/wiki/Optical_fiber_cable

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Layout

	2 Network Topology Discovery
	2.1 Prior work
	2.2 The sandwich probing scheme
	2.3 Alpha measurement
	2.4 The decision theoretic approach
	2.4.1 Andrea's approach
	2.4.2 Limitations
	2.4.3 The new approach

	2.5 The merge algorithm
	2.5.1 Overview
	2.5.2 Limitations

	3 Link Failure Detection
	3.1 Prior Work
	3.2 Link failure detection with internal help
	3.3 Link failure detection with no internal help

	4 Implementation and Tests
	4.1 Test Preparation
	4.1.1 Measurement Tools
	4.1.1.1 CORE
	4.1.1.2 GNS3
	4.1.1.3 NS-3

	4.1.2 Network Topology
	NS-3 Topology Generator
	BRITE
	Inet-3.0

	4.1.3 Routing
	4.1.4 Location of the probes
	4.1.5 Traffic Generator

	4.2 Network Topology Discover Script
	4.2.1 Network Topology Discover Application

	4.3 Link Failure Detection
	4.3.1 Link Failure Detection with help
	4.3.2 Link Failure Detection with no help
	4.3.3 Link Failure Detection Application

	4.4 Other Scripts
	4.4.1 Path Capacity Script
	4.4.1.1 Path Capacity Application

	4.4.2 Path Pair Script
	4.4.2.1 Path Pair Application

	4.5 Algorithms implementation
	4.5.1 Reconstructor
	4.5.2 Link Failure Detector with help
	4.5.3 Link Failure Detector with no help
	4.5.4 Others
	4.5.4.1 DataBaseConstructor
	4.5.4.2 ProbeLocation
	4.5.4.3 PathCapacity
	4.5.4.4 PingPair
	4.5.4.5 Paths
	4.5.4.6 RemakeBrite

	4.5.5 Results Visualization

	5 Results
	5.1 An Example
	5.2 Network Topology Discovery
	5.2.1 Comparasion with Andreas Results
	5.2.2 Other

	5.3 Link Failure Detection
	5.3.1 With Help
	5.3.2 With No Help

	6 Conclusion
	6.1 Conclusion
	6.2 Future work

	A Notation
	B Interarrival Time Between Two Packets
	C All paths src-des calculation through Breath Algorithm
	D Linear Independent Matrix Function
	E A large Topology
	F Merge Algorithm Fail
	Bibliography

