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Abstract

Over the last decade component-based software development arose as a promising

paradigm to deal with the ever increasing complexity in software design, evolution and

reuse. Such components typically encapsulate a number of services through a public

interface which provides limited access to a private state space, paying tribute to the

nowadays widespread object-oriented programming principles. This work is based

on the calculus developed by L.S. Barbosa over several years and it aims at helping

the development of formal software component solutions and to explain how they can

be related, reducing their complexity. SHACC is a prototyping system for component-

based systems in which components are modeled coinductively as generalized Mealy

machines incorporating the ideas above. The prototype is built as a HASKELL library

endowed with a graphical user interface developed in Swing.

Keywords: Software composition, Mealy machines, Prototyping.
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Chapter 1

Introduction

1.1 Context

A coalgebraic calculus for software components

The third party software component is a reusable piece of software developed to be

distributed freely or to be sold by a retailer. The market for this kind of components is

auspicious, because many of their developers believe that it improved their performance

and the quality of the software. The software system that support the providers became

more complex and larger, their design and verification became extremely difficult. One

of the ways to cope with the growing complexity of software is to allow systems to

be partially modelled, increasing the productivity, the quality and the effective way of

adapting to requirements changes. Some modelling languages are particularly well-

suited to model the behaviour of such system parts, since they have a mathematical

background in terms of a transition system that describes exactly which steps are

possible in the model in any given state.
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The simulation of such system can only be done from a mathematical model and it

works as follows. Given any state, we can determine which states are reachable from

here by looking at the structure of the model. This way it is possible to explore the

behaviour of a model by selecting an initial state, and then visiting one of the reachable

states from the initial state. This selection and visiting of the next reachable states

can continue indefinitely until a terminal state is reached, but the system can contain

also a deadlock, i.e, the selection of the next reachable state can’t continue because

no other state can be reached. Simulations are important when developing software

systems, since they can answer many what-if questions about the behaviour of the

current system and so that helps when we need to find some unnoticed errors, asking

"What if the model enters this state and where do we go from there?", "What is the

condition to reach that state?", "Does that deadlock make sense?" and if perhaps we

know in advance what is the desirable behaviour that system must support, we only

asks "Can you support such behaviour?".

However, as time is a limited resource and manual verification is prone to errors

and for that reason it is not always a real possibility for a given model. Verification and

simulation are clearly nice attributes of formal behaviour languages, but another great,

and perhaps more fundamental, advantage is the ability to give a precise description

which is not opened to interpretation. Non-formal models have a big disadvantage they

are not always precise, and the reason is partly the lack of formality, which leaves the

structure of the models open to interpretation.

Formality is not always a blessing. In contrast with non-formal models, formal

models tend to be difficult to understand by non-experts, and this is partly because they

have not experience about the intuitive simple nature of non-formal models. Of course,

one can argue that non-formal models are impossible to understand, since they are not
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completely clear (i.e., formal) about each element in the model, but we do see in real

life that they are somehow understood.

In this dissertation we will focus our research on state-based components calculus

which gives us a system as a set of interconnected components, with an observable

state, because studies related to component calculi are extensive. In general, state-based

systems satisfy the follow criteria:

• Their behaviour depends on internal states, which are not visible to their environ-

ment

• System as reactive, interact with their environment, and are not necessarily

terminating

• The interaction is performed by mutually calling services/operations declared in

systems interfaces.

This favours adoption of a behavioural semantics: components are inherently dynamic,

possess an observable behaviour, but their internal configurations remain hidden and

should be identified if not distinguishable by observation. The qualificative ‘state-

based’ is used in the sense the word ‘state’ has in automata theory — the internal

memory of the automaton which both constrains and is constrained by the execution of

component operations. Such operations are encoded in the specification of a functor

which constitutes the component interface.

Since systems can be described as a set of linked state-based components, they can

be seen as coalgebras. All our work follows research made by L. S. Barbosa over several

years, and his PhD thesis published in 2001 entitled Component as Coalgebras[13].

As its title suggests, the subject emerged a model for representation of components as
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co-algebras as generalized Mealy machines[5][13], with a public interface and a private

state.

Our departure point is the an junction of two ideas: i) a black-box characterization

of software components, favouring an observational semantics as a particular simple

class of state-based systems having a display shows an element d of some fixed set D of

data. The button t changes the inner state of the black box, in such a way that when h is

pressed after t the black box shows a element d’∈ D on its display[8]; ii) the proposed

constructions should be generic in the sense that they should not depend on a particular

notion of component behaviour[13].

The language chosen to implement the component model was HASKELL as an ad-

vanced purely-functional programming language, it allows rapid development of robust,

concise, correct software, with strong support for integration with other languages.

Furthermore it support, the notion of monad, to encode computative non functional

behaviour. Later adopted to create one graphical environment in Swing(Java), because

swing gives a abstraction to APi for providing a graphical user interface(GUI) for Java

programs,that we link through the work developer in a HASKELL library, becoming it

easier to create environments.

The QoS challenge

Non-functional properties of software components, such as response time, availability,

bandwidth requirement, memory usage, etc., cannot be ignored and become decisive

in the component’s selection procedure. Actually, often adaptation mechanisms have

to take them into account, going far behind simple functionality wrapping to bridge

between published interfaces. The expression Quality of Service (QoS) is widely
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accepted to group together all these concerns [17, 25, 26]. It suggests twin notions of

a level to be attained and cost to be paid, as well as point out to the design of suitable

metrics to quantify such properties. Over the past few decades, several formalisms

d(e.g., stochastic Petri Nets [14] and interactive Markov Chains [10]) have been

proposed to capture different QoS metrics. In programming languages like Java or

C#, QoS properties are often specified using meta-attributes. From a static validation

perspective, these attributes can be treated like structured comments, which may be

used to generate runtime monitors but their semantics is too weak to allow reasoning

effectively about QoS properties. Dealing with QoS aspects in a coherent and systematic

way became a main issue in component composition, which cannot be swept under

the carpet in any formal account of the problem. The challenge is, then, to extend the

component calculus, that is based on a coalgebraic model used to capture components

with a observable behaviour and a persistence over transitions, to take into account,

in an explicit way, QoS information. A possible way to express QoS properties is

through (a slight generalization) of the notion of Q-algebra proposed in [7]. In

brief, a Q-algebra amounts to two semirings over a common carrier, representing

some form of cost domain, which allows different ways of combining and choosing

between quality values. Such a perspective, which is expected to be studied in this

MSc dissertation, is put forward in [18]. In any case the resulting calculus should

provide a compositional approach which offers potential for complex components to be

constructed systematically while satisfying QoS constraints. Although most previous

laws have to be revisited in this extended model, and most of them will, most probably,

turn from equalities (i.e., bisimilarity) to inequalities (i.e., refinements), proofs should

still be carried on in the calculation style which is the watermark of [4, 5]. This style

avoids the explicit construction of, e.g., bisimulations, when proving observational
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equality, favouring an equational, essentially pointfree reasoning style as in, e.g., [6].

1.2 Objectives

1.2.1 Project aims

This MSc dissertation intends to address the following objectives:

• Develop an HASKELL prototype of a framework upon which software compo-

nents can be specified, composed and animated along the lines of the calculus

introduced in [4][5].

• Test this framework proof-of-concept implementation with a number of examples.

• Extend the component calculus to include QoS-aware composition mechanisms

along the lines suggested in [18].

1.2.2 Institutional context

This research was carried on within the Formal Methods for High-assurance Soft-

ware group, HASLab, In- formatics Department of the University of Minho. The

specific context was the MONDRIAN project on Foundations for architectural de-

sign: Service certification, dynamic reconfiguration and self-adaptability, funded by F

CT under contract PTDC/EIA-CCO/108302/2008. Information about this project is

available at http://wiki.di.uminho.pt/twiki/bin/view/Research/

MONDRIAN/WebHome.

http://wiki.di.uminho.pt/twiki/bin/view/Research/MONDRIAN/WebHome
http://wiki.di.uminho.pt/twiki/bin/view/Research/MONDRIAN/WebHome
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1.3 Overview of the approach taken

As stated in 1.2, this dissertation intends to build a prototyper for the component

calculus, implementing a semantical model for software components, parametric on

a notion of behaviour. A component represent, a modular part of a system, that

encapsulates its content and whose manifestation is replaceable within its environment.

A component defines its behaviour in terms of provided and required interfaces. The

calculus under this dissertation can captured well the behaviour of such components,

because the formal semantics of components and their combinators is parametric on a

strong monad. The monadic structure is one of the most important technologies used

in the calculus, because it allows, an effective representation of e.g. non deterministic

behaviour.

The research underlying this dissertation project required, first some background

studies in the component calculus to get familiar with the area, and the formalisa-

tion of some architectural patterns to illustrate the calculus at work. Secondly, the

implementation of a prototype for the component calculus in HASKELL. Thirdly, it

was necessary to endow the prototype built as an HASKELL library with a graphical

user interface developed in Swing. Fourthly, the extension of the prototype with a

behavioural customization was considered. Fifthly, the extension of the component

calculus to include QoS information along the lines of [18] and the extension of the

prototype to mirror the QoS extended calculus, closed the work.

A main contribution of this work is the prototype tool, Shacc, developed as a

proof-of-concept for component calculus, as published in [15]. The remainder of this

dissertation is organized as follows. Chapter 2 gives a background overview of the

coalgebraic component calculus which underlies our prototyper. Along chapters 3, 4
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and 5, we developed a experimental prototype named SHACC based on some of the

proposed calculus. Chapter 3 presents, an initial version of prototype that reflects

directly the calculus defined in chapter 2. Chapter 4 documents an extension of the

prototype that encompasses behavioured. At the end we extended the calculus endowed

with QoS information, this is detailed in chapter 5. Finally, Section 6 provides some

conclusions.



Chapter 2

Background

State-based software components are characterised as dynamic systems with a public

interface and a private, encapsulated state. The behaviour can be partly characterised

by a resorting to functor1 Id×O + 1, i.e., an instance of the popular maybe monad.

Components are themselves concrete coalgebras2. For a given value of the state space

— referred to as a seed in the sequel — a corresponding ‘process’, or behaviour, arises

by computing its coinductive extension.

Other components may exhibit different behaviour models. For example, one

can easily think of components behaving within a certain degree of non determinism

or following a probability distribution. Genericity is achieved by replacing a given

1 A functor is a mapping between algebraic structures that preserves structures, that can be thought
of as homomorphisms between algebraic structures, or morphisms in the category of small algebraic
structures[8]

2Let F : C → C be a functor. A coalgebra for F is a pair (A,a), where a : A→ FA in C.
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behaviour model by an arbitrary strong monad3 B, leading to coalgebras for functor:

TB = B(Id×O)I (2.1)

as a possible general model for state based software components. Therefore computation

of an action will not simply produce an output and a continuation state, but a B-structure

of such pairs. The monadic structure provides tools to handle such computations. Unit

(η) and multiplication (µ), act, respectively, as a value embedding and a ‘flatten’

operation to reduce nested behavioural effects. Strength, either in its right (τr) or

left (τl) version, caters for context information. Finally, a strong monad is said to be

commutative whenever δr and δl coincide.

Definition 1. A software component

Given a collection of sets I , O, ..., acting as component interfaces, a component

taking input in I and producing output in O is specified by a pointed coalgebra:

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉 (2.2)

where up is the initial state, often referred to as the seed of the component computation,

the coalgebra dynamics is captured by currying a state-transition function ap : Up ×

I −→ B (Up ×O).

3A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and µ are strong natural
transformations. B being strong means there exist natural transformations τT

r : T×− =⇒ T(Id×−) and
τT

l : −× T =⇒ T(−× Id), called the right and left strength, respectively, subject to certain conditions.
Their effect is to distribute the free variable values in the context “−” along functor B. Strength τr,
followed by τl maps BI × BJ to BB(I × J), which can, then, be flattened to B(I × J) via µ. In most
cases, however, the order of application is relevant for the outcome. The Kleisli composition of the
right with the left strength, gives rise to a natural transformation whose component on objects I and J is
given by δr = τrI,J

• τlBI,J
Dually, δl = τlI,J

• τrI,BJ
. Such transformations specify how the monad

distributes over product and, therefore, represent a sort of sequential composition of B-computations.
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Several possibilities can be considered for B. The simplest case is, obviously, the

identity monad, Id, whereby components behave in a totally deterministic way. Some of

other possibility’s can be considered to capturing more complex behavioural features,

include:

• Partiality, i.e., the possibility of deadlock or failure, captured by the maybe

monad, B = Id + 1.

• Non determinism, introduced by the (finite) powerset monad, B = P .

• Ordered non determinism, based on the (finite) sequence monad, B = Id∗.

• Monoidal labelling, with B = Id × M . Note that, for B to form a monad,

parameter M should support a monoidal structure.

• ‘Metric’ non determinism capturing situations in which, among the possible

future evolutions of a component, some are stipulated to be more likely (cheaper,

more secure, etc) than others.

2.1 A component calculus

We shall now look at the structure of Cp4 by introducing an algebra of TB-components

parametric on a behaviour model B.

Let us start from the simple observation that functions can be regarded as particular

instances of components, whose interfaces are given by their domain and codomain

types.

4 Cp is a bicategory whose objects are sets, standing for interface universes, arrows are seeded
TB-coalgebras and 2− cells are the correspondent comorphisms[13].
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Definition 2. The representation of a function

A function f : A −→ B is represented in Cp by

pfq = 〈∗ ∈ 1, apfq〉

i.e., a coalgebra over 1 whose action is given by the currying of

apfq = 1× A id×f // 1×B
η(1×B)// B(1×B)

Definition 3. Sequential composition

Components with compatible interfaces (for example, p : I −→ K and q : K −→

O) can be composed sequentially5 as

p ; q = 〈〈up,uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows 6

5 See
6The definition resorts to standard isomorphisms, such as associativity (a) and exchange (×r :

A×B ×C → A×C ×B, ×l : A× (B ×C)→ B × (A×C)), as well as to natural transformations
τr : T ×− =⇒ T (id×−) and τl : −× T =⇒ T (−× id) denoting right and left monad strength.
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ap;q = Up × Uq × I
×r−−−→ Up × I × Uq

ap×id−−−→

B(Up ×K)× Uq τr−−−→ B(Up ×K × Uq)
B(a·×r)−−−−→

B(Up × (Uq ×K)) B(id×aq)−−−−−→ B(Up × B(Uq ×O))
Bτl−−−→ BB(Up × (Uq ×O)) BBa◦

−−−→

BB(Up × Uq ×O) µ−−−→ B(Up × Uq ×O)

The pre- and post-composition of a component with Cp-lifted functions can be

encapsulated into a unique combinator, called wrapping, which is reminiscent of the

renaming connective found in process calculi (e.g., [20]). Let p : I −→ O be a

component and consider functions f : I ′ −→ I and g : O −→ O′. Component p

wrapped by f and g, denoted by p[f,g] and typed as I ′ −→ O′, is defined by input

pre-composition with f and output post-composition with g. Formally,

Definition 4. Wrapping

The wrapping combinator is a functor

−[f,g] : Cp(I,O) −→ Cp(I ′,O′)

which is the identity on morphisms and maps component 〈up, ap〉 into 〈up, ap[f,g]〉,

where

ap[f,g] = Up × I ′
id×f−−−→ Up × I

ap−−−→ B(Up ×O) B(id×g)−−−−→ B(Up ×O′)
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Components can be aggregated in a number of different ways, besides the ‘pipeline’

composition discussed above. Next, we introduce three other generic combinators,

corresponding to choice, parallel and concurrent composition.

Let p : I −→ O and q : J −→ R be two components defined by 〈up, ap〉 and

〈uq, aq〉, respectively. The first composition pattern to be considered is external choice,

as depicted bellow:

•
I

��	�
��
O

p

•
J

��	�
��
R

q −→
•

I + J

��	�
��
O +R

p� q

When interacting with p � q, the environment is allowed to choose either to input

a value of type I or one of type J , triggering the corresponding component (p or q,

respectively) and producing output. Formally,

Definition 5. Choice

The choice combinator is defined as a lax functor � : Cp × Cp −→ Cp, which

consists of an action on objects given by I � J = I + J and a family of functors

�I,O,J,R : Cp(I,O)× Cp(J,R) −→ Cp(I + J,O +R)

yielding

p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉



15 2.1. A component calculus

ap�q = Up × Uq × (I + J) (xr+a)·dr // Up × I × Uq + Up × (Uq × J)
ap×id+id×aq // B (Up ×O)× Uq + Up × B (Uq ×R)

τr+τl // B (Up ×O × Uq) + B (Up × (Uq ×R))
Bxr+Ba◦

// B (Up × Uq ×O) + B (Up × Uq ×R)
[B (id×ι1),B (id×ι2)] // B (Up × Uq × (O +R))

and mapping pairs of arrows 〈h1, h2〉 into h1 × h2.

Definition 6. Parallel

Parallel composition, denoted by p � q, corresponds to a synchronous product:

both components are executed simultaneously when triggered by a pair of legal input

values. Note, however, that the behaviour effect, captured by monad B, propagates. For

example, if B can express component failure and one of the arguments fails, product

fails as well. Formally,

The parallel combinator � is defined by an action I � J = I × J on objects and

a family of functors

�IOJR : Cp(I,O)× Cp(J,R) −→ Cp(I × J,O ×R)

which yields

p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉
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where

ap�q = Up × Uq × (I × J) m // Up × I × (Uq × J)
ap×aq // B (Up ×O)× B (Uq ×R)

δl // B (Up ×O × (Uq ×R))
B m // B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.

Finally, concurrent composition, denoted by �, combines choice and parallel, in

the sense that p and q can be executed independently or jointly, depending on the input

supplied. Formally,

Definition 7. Concurrent

The concurrent combinator is defined by an action I � J = I + J + I × J on

objects and a family of functors

�IOJR : Cp(I,O)× Cp(J,R) −→ Cp(I + J + I × J,O +R +O ×R)

yielding

p� q = 〈〈u0, v0〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I � J)

[B(id×ι1),B(id×ι2)]·(ap�q+ap�q)·dr

��
B (Up × Uq × (O �R))

and maps pairs of arrows 〈h1, h2〉 into h1 × h2.

The laws of concurrent composition combine corresponding results about � and �.
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In particular we get again permutation with sequential composition and the structure of

a tensor product, which is symmetric for commutative behaviour monads.

So far component interaction was centred upon sequential composition, which is

the Cp counterpart to functional composition in Set. This can be generalised to a new

combinator, called hook, which forces part of the output of a component to be fed back

as input. Formally,

Definition 8. Interaction

The hook combinator − �Z is defined, for each tuple of objects 〈I, O, Z〉, as a

functor between the (categories underlying) hom-sets Cp(I + Z,O + Z) and Cp(I +

Z,O + Z) which is is the identity on arrows and maps each component p : I + Z −→

O + Z to p�Z : I + Z −→ O + Z given by

p�Z = 〈up ∈ Up, ap�Z 〉

where

ap�Z = Up × (I + Z) ap // B(Up × (O + Z))
B((id×ι1+id×ι2)·dr)// B(Up × (O + Z) + Up × (I + Z))

B(η+ap) // B(B(Up × (O + Z)) + B(Up × (O + Z)))
µ·BO // B(Up × (O + Z))

i.e., ap�Z = (O · (η + ap) · (id× ι1 + id× ι2) · dr) • ap.

For components with the same input/output type, the hook combinator has a parti-

cularly simple definition as the Kleisli composition of the original dynamics. It is then
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called a feedback and denoted by

p �: Z −→ Z = 〈up ∈ Up, ap�〉

where

ap� = Up × Z
ap // B(Up × Z) Bap // BB(Up × Z) µ // B(Up × Z)

i.e., ap� = ap • ap.



Chapter 3

A prototype for the component

calculus

We resort to the programming language HASKELL to prototype the calculus referred in

chapter 2. HASKELL is a standardized, general-purpose purely functional programming

language, with non-strict semantics and strong static type system based on Hindley-

Milner type inference. As a functional programming language, the primary control

construct is that of a function. The language is guided by the following criteria1:

"A proof is a program; The formula it proves is a type for the program"

Typically, a function in HASKELL does not have side effects, but there is a distinct

type for representing side effects, orthogonal to the type of functions. The type which

represents side effects is an example of a monad. Monads are a general framework

which can handle different sorts of computation, the most relevant being error handling

and non-determinism. The calculus detailed in chapter 2 is parametric on a monad B

and therefore HASKELL turn out to be one of the most suitable tool for our purposes.
1Also known as Curry-Howard isomorphism
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With the progress of the work, it became clear the need to abstract from code details in

HASKELL and offer a graphical user interface that makes possible to create a whole

system by claimed component composition in a more simple and appealing away. The

range of tools for such a purpose is extensive, but the library Swing that belongs to

the Java has been the one that became more attractive, because it is a flexible, stable

framework that proved to be an asset. Swing is the primary Java GUI widget toolkit. It

was developed to provide a more sophisticated set of GUI components than the previous

version. Swing provides a native look and feel that emulates the look and feel of several

platforms, and also allows applications to be unrelated to the underlying platform. On

the other hand, Swing is also a component-based framework, concisely, a component is

a well-behaved object with a known/specified characteristic pattern of behaviour. A

new version of the prototyper arose and it became closer to the definition of integrated

development environment (IDE). The tool is a software application that provides

comprehensive facilities to computer programmers for software development. The

main goal of IDE’s is to use the technique of RAD (Rapid Application Development),

which aims at increased productivity of developers. An IDE normally consists of a

source code editor, a compiler or an interpreter and built in automation tools.

SHACC is a HASKELL-based prototyper for a calculus of state-based components

framed as generalised Mealy machines. It was developed as a proof-of-concept proto-

type for the component calculus proposed in [2, 4]. It allows the (interactive) definition

of state-based components through the set of combinators available in the calculus.
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3.1 Monadic Technology

Chapter 2 introduced a small set of component combinators and studied their properties.

Their implementation in SHACC is parametric on the component behaviour discipline

encoded in a monad B.

As mentioned in chapter 2, the components with compatible interfaces (for example,

p : I −→ K and q : K −→ O) can be composed sequentially2 as

p ; q = 〈〈up,uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows:

ap;q = Up × Uq × I
×r−−−→ Up × I × Uq

ap×id−−−→

B(Up ×K)× Uq τr−−−→ B(Up ×K × Uq)
B(a·×r)−−−−→

B(Up × (Uq ×K)) B(id×aq)−−−−−→ B(Up × B(Uq ×O))
Bτl−−−→ BB(Up × (Uq ×O)) BBa◦

−−−→

BB(Up × Uq ×O) µ−−−→ B(Up × Uq ×O)

HASKELL monadic technology provides all the ingredients for a direct implementa-

tion of this definition, suitably parametric on a strong monad b. Each component is

represented by a monadic function from pairs of state-input values to b-computations of

state-output pairs. The HASKELL definition of each combinator in the calculus follows

closely the corresponding mathematical construction, as illustrated in figure 3.1 for

2 For more details see definition 3
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sequential composition. Computation proceeds through Kleisli composition. Note,

finally, that in order to guarantee state persistence (and propagation of state values) the

implementation of SHACC resorts to HASKELL state monad which is suitably combined

with monad b capturing the underlying behavioral model.

seqCompostion :: Strong b =>
((u,i)-> b (u,k)) -> ((v,k)-> b (v,o))
-> ((u,v), i) -> b ((u,v),o)

seqCompostion p q = mult . (fmap (fmap assocl)). (fmap lstr).
(fmap (id >< q)) . (fmap xl).
rstr . (p >< id) . xr

Figure 3.1: Implementation of sequential composition in HASKELL

3.1.1 Interfaces

A typical example of such a state-based component is the ubiquitous stack. Denoting

by U its internal state, a stack of values of type P is handled through the usual

top : U −→ P, pop : U −→ P × U and push : U × P −→ U

operations. An alternative, ‘black box’ view hides U from the stack environment and

regards each operation as a pair of input/output ports. For example, the top operation

becomes declared as top : 1 −→ P , where 1 stands for the nullary (or unit) datatype.

The intuition is that top is activated with the simple pushing of a ‘button’ (its argument

being the stack private state space) whose effect is the production of a P value in the

corresponding output port. Similarly typing push as push : P −→ 1 means that an

external argument is required on activation but no visible output is produced, but for a

trivial indication of successful termination. Such ‘port’ signatures are grouped together
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in the diagram below. Combined input type 1 + 1 + P models the choice of three

functionalities (top, pop and push in this order), of which only one takes input of type

P .



pop : 1 −→ P

top : 1 −→ P

push : P −→ 1
•

��	�
��
Stack

P + P + 1

1 + 1 + P

(3.1)

The interface of stack are defined as 1+1+P for the input and P +P +1 for the output,

that is represented in the code using the data type Either and with the increasing of

the complexity of this example, placing the two stacks together side by side and then

redirect some of the outputs to the input, we come across to a problem - the order of the

operations is important and it have some complexity, that we want to reduce. Several

approaches have been tried , but we faced always with the same error:

Occurs check: cannot construct the infinite type: t = Either t t1

What makes sense because the type of genericB = A+B isB = A+A+A+ ... which

it is intuitively an infinite type. In order to overcome this difficulty and because each

interface are defined using either or/and split, it became necessary create an abstract

tree where the order of each operation of the interface can be set, with the possibility of

later, if necessary, rebuilding.

For example, if we have two components, where the interfaces - Input are defined

as Figure 3.2 and Figure 3.3 and we have the intent to create a new component with

the both components. We can do this, using this new approach where we create a new

branch in the interface of the new component such that in the left side represents the
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+

A : Op1 +

B : Op2 C : Op3

Figure 3.2: I1 - Interface of A : Op1 + (B : Op2 + C : Op3)

+

E : Op′1 F : Op′2

Figure 3.3: I2 - Interface of E : Op′1 + F : Op′2

component with the interface I1 and the right side have the interface of the components

with the interface I2. At this moment we can say that the first operation of the interface

of the left side is linked to the first operation in the interface of right side, as illustrated

in Figure 3.4.

+

A: Op1
+

B: Op2 C: Op3

+

E: Op’1 F: Op’2

+

Figure 3.4: New component formed based in interface I1 and I2
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3.1.1.1 Data Structure

The data structure created in Figure 3.5 aims to accommodate the possibility of defining

the interface for each operation to which is assigned an identifier. It also provides a way

to define the state of each component.

data Exp a o = Val a | Branch o (Exp a o) (Exp a o)
deriving (Show)

data Op = Sum | Prod
deriving (Show)

data Leave a b = Empty
| None Id
| K a
| D (a, Id)
| State b

deriving (Show)
type Id = String

Figure 3.5: Interface data structure

Each interface may contain zero or more operations. An interface with no operation,

will be represented by Empty. If the interface contains two operations then it could be

formed using the construct Branch, and then we can use Sum or Prod depending on

idealized interface. In this approach the construct Sum represent disjoint union and

the construct Prod represent the split type. In each leaf it is recorded if that does not

contain any operation (Empty) or the operation can be defined and assigned a name

(using the construct D(a, Id) where a is the value used in the operation and the Id is

the operation name). For example, with this data structure, we can represent in the

Figure 3.6 the interfaces created in Figure 3.2, whereOp1, Op2, Op3 are the operations

names.
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Branch Sum

D(A,Op1) Branch Sum

D(B,Op2) D(C,Op3)

Figure 3.6: I ′1 - Interface I1 defined in our structure

3.1.1.2 Data Dynamic

While constructing the examples we found a constraint: two different components that

work with different types that are attached in the various forms available, may become

incompatible. The fusion of two distinct interfaces that type has to be unified in the

generic type compatible with both types contained in their interfaces. Why? Because

HASKELL types are limited in that the type of the state cannot change during the

computation. Normally this is fine, but what if we really wanted to use the mechanics of

a state monad to pass some state value that changed type, e.g, some mutually-recursive

tree structure we would like to traverse?

In this sense, the need to resort to Data.Dynamic library3. This framework provides

operations for injecting values of arbitrary type into a dynamically type value(Dynamic)

and operations for converting dynamic values into a concrete(monomorphic) type.

In this library we use only two functions:

toDyn :: Typeable a => a -> Dynamic

which it converts an arbitrary value into an object of type Dynamic, and

fromDynamic :: Typeable a => Dynamic -> a -> a

3 Available in http://haskell.org/ghc/docs/6.12.2/html/libraries/base-4.
2.0.1/Data-Dynamic.html

http://haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-Dynamic.html
http://haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-Dynamic.html
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which converts a Dynamic object back into an ordinary HASKELL value of the correct

type.

For example, the following code shows the way it is used.

Prelude Data.Dynamic> :t toDyn

toDyn :: (Typeable a) => a -> Dynamic

Prelude Data.Dynamic> :t fromDynamic

fromDynamic :: (Typeable a) => Dynamic -> Maybe a

Prelude Data.Dynamic> fromDynamic (toDyn ’c’) :: Maybe Char

Just ’c’

3.1.2 Defining Components

A component is defined by a set of functions that receive input and, according to a

behavioural produced, return an output, which may affect or no the component’s state.

In the interface of the new component, it needs to be inserted @Input : and @Output :,

to identify the input/output of the interface that have all operations, their names and their

types. This code does not affect the behaviour of the function because it is contained in

comments which the compiler will ignore, as we can see in Figure 3.7.

{-
@Input: (A:Op1.:Int + B:Op2.:Int)
@Output: C:Result.:Int
-}

Figure 3.7: I3: A+B/C

The commented code is interpreted as shown in the Figure 3.8
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A : Op1. : Int + B : Op2. : Int

C:Result.: Int

Figure 3.8: Component I3

3.1.3 Examples

Example 1. A folder from two stacks

Component Stack encapsulates a number of services through a public interface pro-

viding limited access to its internal state space. Furthermore, it persists and evolves

in time, in a way which can only be traced through observations at the interface level.

One might capture these intuitions by providing an explicit semantic definition in terms

of a function [[Stack]] : U × I −→ (U × O + 1), where I,O abbreviate 1 + 1 + P

and P + P + 1, respectively. The presence of 1 in its result type indicates that the

overall behaviour of this component is partial: in a number of state configurations the

execution of some operations may fail. This function describes how Stack reacts to

input stimuli, produces output data (if any) and changes state. It can also be written in a

curried form as

[[Stack]] : U −→ (U ×O + 1)I

that is, as a coalgebra U −→ T U for functor TX = ((X ×O) + 1)I .

The Stack example illustrates the basic elements of a semantic model for state-based
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components: a) the presence of an internal state space which evolves and persists in

time, and b) the possibility of interaction with other components through well-defined

interfaces and during the overall computation. Components are inherently dynamic,

possess an observable behaviour, but their internal configurations remain hidden and

should be identified if not distinguishable by observation. The qualificative ‘state-based’

is used in the sense the word ‘state’ has in automata theory — the internal memory of

the automaton which both constrains and is constrained by the execution of component

operations. Such operations are encoded in a functor which constitutes the (syntax

of the) component interface. On top of such a framework, reference [4] developed a

calculus of component composition.

The definition of a new, base component is directly made in HASKELL . A specific

strong monad B is chosen to model the envisaged behavioral effect. Figure 3.9

corresponds to a Stack component, where B is instantiated to HASKELL Maybe monad

to capture partiality.

stack (xs, ("Push", Just a)) =Just ( a:xs, ("Push", a))
stack (xs, ("Pop", Nothing)) | xs== [] = Nothing

| otherwise = Just ( tail xs, ("Pop", head xs))
stack (xs, ("Top", Nothing)) | xs== [] = Nothing

| otherwise = Just ( xs, ("Top", head xs))

Figure 3.9: Stack Component

In a subsequent step the component’s interface is created from a suitable annotation

in the source code. For this example:

@Input: (( 1:Pop + 1:Top) + P:Push)

@Output: (( P:Pop + P:Top) + 1:Push)
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where Pop, Top and Push are introduced as labels for the component’s available

services.

Figure 3.10: Linking ports through the hook combinator

Figure 3.10 refers to an example in the SHACC library in which a folder component

is built through the combination of two stacks modelling, respectively, the folder left

and right piles. The Folder component provides ports corresponding to the operations

read, insert a new page, turn a page right and turn a page left. Its construction involves

first that an adaptation is performed on each instance of the Stack component. This

is needed, for example, to hide the top operation on the left stack whereas renaming

the top on the right as the Folder read operation. In a second stage, both stacks are put

together through the � combinator and, finally, suitable feedback loops are established,
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through the hook operator, to connect ports. This ensures, for example, that the left

turn of a page is achieved through a pop action on the right stack connected to the push

of the left one. Formally, this amounts to the following expression in the component

calculus (see [3] for a detailed discussion)

Folder = ((LeftS� RightS)[wi,wp]) �P+P

where RightS = Stack[id+ O, id] and LeftS = Stack[i2 + Id, (id+!p+1) · a+].

A crucial ingredient in defining Folder is to suitably wrapp the two underlying Stack

components so that the intended output-input ports are effectively connected. Formally

this is achieved through the wrapping combinator, as in the specification of LeftS and

RightS. The effect is depicted in Figure 3.11. In SHACC, however, the user has the

option of manually selecting the ports to be linked, as illustrated in Figure 3.10.

Figure 3.11: Assign ports
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Figure 3.12: Component prototyping in SHACC

SHACC allows both the (interactive) definition of this sort of component expressions

and their execution in a simulation mode. Actually, once components are defined

either from scratch (i.e., by providing the corresponding HASKELL code directly) or

by composition of other components, SHACC offers an environment for testing by

simulation. The Run window in the tool offers two simulation modes: a free mode in

which, if the component’s behaviour model allows, execution may lead to ‘disaster’

(e.g., by violation of port pre-conditions on a partial component), and a safe mode in

which the effect of a port operation is foreseen and eventually precluded. Component

testing, on the other hand, can be made in a purely interactive way, running event by

event, or by executing a whole sequence of events specified through a regular expression

and supplied to the tool. Figure 3.12 illustrates the tool execution mode.

The box labelled State in Figure 3.12 shows the initial value of the component’s

state. Box Operation, on the other hand, accepts the component service to be called.

On executing a service from the component’s interface SHACC displays three boxes

representing the component state before, during and after service completion.
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Example 2. Calculator

Our second example is a calculator which computes averages. The first step is to

define a component that represents the calculator with all the intended operations. The

operations defined are:

• Add: needs one argument and sum it with the value in memory

• Div: needs one argument and do division with the value in memory

• Mem: returns the value in memory of calculator

• Insert: inserts an element in the memory of the calculator

where,

Add : P −→ P, Mem : 1 −→ P Div : P −→ P and Replace : P −→ 1

P + 1 + P + P

P + P + P + 1

Calculator

Calculator protect the internal state space, and it can only be access through a public

interface. This can be defined in terms of a function as

[[Calculator]] : U × I −→ (U ×O + 1)

where I,O abbreviate P + 1 + P + P and P + P + P + 1, respectively.
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The interaction with Calculator can be defined in a curried form as

[[Calculator]] : U −→ (U ×O + 1)I

that is, as a coalgebra U −→ T U for functor TX = ((X ×O) + 1)I .

The code below corresponds to a Calculator component, where we a strong monad

B is instantiated to HASKELL Maybe monad to capture partiality.

calculator (m,("Add",x)) = Just (m+x,("Add", m+x))

calculator (m,("Div",x)) | m == 0.0 = Nothing

| otherwise = Just( (x/m), ("Div", (x/m) ))

calculator (m,("Mem",x)) = Just( m, ("Mem", m ))

calculator (m,("Insert",x)) = Just (x,("Insert",x))

In a subsequent step the component’s interface is created from a suitable annotation

in the source code. For this example:

@Input: ((( P:Add.:Int + 1:Mem.:Int) + P:Div.:Int) + P:Insert.:Int )

@Output:((( P:Add.:Int + P:Mem.:Int) + P:Div.:Int) + 1:Insert.:Int )

where Add, Mem, Div and Insert are introduced as labels for the component’s

available services and Int define the type that port will support.

The calculator is formed by the junction of two components - the first that does the

operation Sum and the operation Mem and the second that does the operation Divide

and the operation Insert. This is needed, for example, if we want to pass a value from

the component MSum to the component MDivide in order to do the averages, we

need two operations one to sums the values into memory and other to pass the value in
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value to another component that will do the averages. So we define:

C1 : P + 1 −→ P + P

C2 : P + P −→ P + 1

Then, we form the � composition of both components:

C1 � C2 : P + 1 + (P + P ) −→ P + P + (P + 1)

The nex step builds the desirable connections using hook over ths composite, which

requires a previous wrapping by a pair of suitable isomorphisms:

AlmostCalculator = ((C1 � C2)[wi,wo])�P+P

where, wi and wo redirect the output to input, this connection and the final interface of

the system can be seen in the Figure 3.13.

Example 3. Bank

In this section we will introduce a small example that represents a Bank. A typical

Bank provides the possibility to create a new account, withdraw some quantity of

money from the account and do deposits of any quantity of money. In this example we

define the three operations, that will receive a pair of values: the first element is the id
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Result

Sum + Div + Ins

Sum + Mem

DoDiv + Ins

ResSum + ResMem

Res

C2

C1

Figure 3.13: Calculator - Assign ports

from the account and the second element is a value, i.e.:



NewAcc : P × P −→ P × P

Withdraw : P × P −→ P × P

Deposit : P × P −→ P × P
•

��	�
��
Bank

(P × P ) + (P × P ) + (P × P )

(P × P ) + (P × P ) + (P × P )

In order to make this a more interesting example, we added two component to the

bank that will do every arithmetical operations. The first component will do Sums and

the second will do Subtractions. Both of them will receives the same types, i.e, an

account identifier and the amount of money - (id, quantity).
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SumDep : P × P −→ P × P

DoSums : P × P −→ P × P •

��	�
��
Sums

(P × P ) + (P × P )

(P × P ) + (P × P )


SubWith : P × P −→ P × P

DoSubtrac : P × P −→ P × P •

��	�
��
Subtract

(P × P ) + (P × P )

(P × P ) + (P × P )

Component Bank can be specifies with using a function [[Bank]] : U × I −→

(U × O + 1), where I abbreviate (P × P ) + (P × P ) + (P × P ) and O abbreviate

(P × P ) + (P × P ) + (P × P ).

Figure 3.14 corresponds to a Bank component, where B is instantiated to HASKELL

Maybe monad to capture partiality.

bank (xs,("NewAcc", x)) = Just (x:xs, ("NewAcc",x))
bank (xs,("Withdraw", x)) = case getAcc xs x of

Nothing -> Nothing
Just val -> case (snd val) >= (snd x) of

True -> Just ( remove xs x, ("Withdraw", val))
False -> Nothing

bank (xs,("Deposit", x)) =case getAcc xs x of
Nothing -> Nothing
Just val -> Just ( remove xs x, ("Deposit", val))

Figure 3.14: Bank component
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In a subsequent step the component’s interface is created from a suitable annotation

in the source code. For this example:

@Input: ((P:NewAcc.:((Int,Int)) +P:Withdraw.:((Int,Int))) + P:Deposit.: ((Int,Int)))

@Output: ((P:NewAcc.:((Int,Int)) +P:Withdraw.:((Int,Int))) + P:Deposit.: ((Int,Int)))

where NewAcc, Withdraw and Deposit are introduced as labels for the compo-

nent’s available services and the type that port support, is (Int, Int).

The definition of component, which does Sums is directly made in HASKELL, as :

sums (xs,("SumsDep", x)) =Just ( snd x,("SumsDep", x))

sums (xs,("DoSums",x)) =Just ( xs, ("DoSums", (fst x, (snd x)+xs)))

where the interface is created from annotation in the source code, as:

@Input: (P:SumsDep.:((Int,Int)) + P:DoSums.:((Int,Int)))

@Output: (P:SumsDep.:((Int,Int)) + P:DoSums.:((Int,Int)))

The following code describes the component that will support the operationWithdraw

from the Bank.

subtrac (xs,("SubWith", x)) =Just ( snd x,("SubWith", x))

subtrac (xs,("DoSubtrac",x)) =Just ( xs, ("DoSubtrac", (fst x, (snd x)-xs)))

whose interface is specified as:

@Input: (P:SubWith.:((Int,Int)) + P:DoSubtrac.:((Int,Int)))

@Output: (P:SubWith.:((Int,Int)) + P:DoSubtrac.:((Int,Int)))

The Bank, the Sum and the Subtract components, together form a system that

typically supported a BankF . The BankF component provides ports corresponding to
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the operations new account, withdraw and deposit some money. This component can not

do operations as sums or subtract accounts, so we need connect with the components

Sums and Subtract, in order to support the operation Withdraw and Deposit. In the

second stage, we put component Sum and component Subtract together through the

� combinator that we named as Calculator. In the third stage we composed with the

component Bank using the same combinator - � and, finally, suitable feedback loops

are established, through the hook operator, �, to connect ports. Formally, this can be

expressed as follows.

BankF = ((Bank� (Sums� Subtrac))[wi,wo]) �P+P+P+P+P

where �P+P+P+P+P represent DoGetAccSub, DoSub, DoGetAccSums, DoSums

and DoNewAcc respectively, that will do some loops and feed again the input of the

component BankF .

A crucial ingredient in defining BankF is to suitably wrap the two underlying Bank

and Calculator components so that the intended output-input ports are effectively

connected. The effect is depicted in Figure 3.15.

In order to provide the final interface to the user we hide the operations needed for

the hook combinator, because this operations only concern to the computation of such

a combinator. For this purpose, the final interface can be seen in the Figure 3.16.
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Res + DoGetAccSub + DoSub + DoGetAccSums + DoSums + DoNewAcc

NewAcc + Withdraw + Deposit + DoGetAccSub + DoSub + DoGetAccSums + DoSums + DoNewAcc

NewAcc + Withdraw + Deposit

NewAcc + Withdraw + Deposit

SumDep + DoSums

SumDep + DoSums

SubWith + DoSubtrac

SubWith + DoSubtrac

Bank Sum Subtract

Figure 3.15: Bank - Assign ports

Res

NewAcc + Withdraw + Deposit

BankF

Figure 3.16: Bank - Final interface

Example 4. Shipments between banks

In this example, we aim to join two banks in order to provide the possibility of transfer-

ence between them. Thus the bank allows to make deposits, withdraws and transfers.
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While the transactions deposits and withdraws belong to the internal operations of each

bank, the operation transfer connect, the two banks, and allows for the exchange of

funds. Formally, we define the BankShip, as:



Ins1 : P −→ P

With1 : P −→ P

Trans1 : P −→ P

Ins2 : P −→ P

With2 : P −→ P

Trans2 : P −→ P

•

��	�
��
BankShip

P + P + P + P + P + P

P + P + P + P + P + P

Component BankShip gives services that provides limited access to its internal state

space. It is describes using the follow definition:

[[BankShip]] : U × I −→ (U ×O + 1)

where I,O abbreviate P+P+P+P+P+P and P+P+P+P+P+P , respectively.

Function [[BankShip]] describes how BankShip reacts to input stimuli, produces output

data (if any) and changes state. It can also be written in a curried form as

[[BankShip]] : U −→ (U ×O + 1)I

that is, as a coalgebra U −→ T U for functor TX = ((X ×O) + 1)I .

The definition of a new, base component is directly made in HASKELL . A specific

strong monad B is chosen to model the envisaged behavioral effect. The code below
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corresponds to a Bank component, where B is instantiated to HASKELL Maybe monad

to capture partiality.

bank (m,("Ins",x)) = Just (m+x,("Ins", m+x))

bank (m,("With",x)) | (m-x)>=0 = Just( m-x, ("With", m-x ))

| otherwise = Nothing

bank (m,("Trans",x)) | (m-x)>=0 = Just( m-x, ("Trans", x ))

| otherwise = Nothing

In a subsequent step the component’s interface is created from a suitable annotation

in the source code. For this example:

@Input: (( P:Ins.:Int + P:With.:Int) + P:Trans.:Int)

@Output:(( P:Ins.:Int + P:With.:Int) + P:Trans.:Int)

where Ins, With and Trans are introduced as labels for the component’s available

services.

The component BankShip, permits six operations where the first three belongs to

the Bank1 and the last three belongs to the Bank2. In the first stage, we put component

Bank1 side by side with component Bank2 through the � combinator and, finally,

suitable feedback loops are established, through the hook operator, to connect ports.

Formally, we can express this as follows.

AlmostBankShip = ((Bank1 � Bank2)[wi,wo]) �P+P

The final interface provide to the user is describe in Figure 3.17, where we show how the

inner components will behaving and the the ports TransB2 is connect to the operation
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TransB2 of the component Bank2 that will produce a output named TransB2 that

will be redirected to operation Ins1 of the component Bank1 and then we produces a

output that will be show to the user by the port Result.

Result

InsB1 + LevB1 + TransB1 + InsB2 + LevB2 + TransB2

InsB1 + LevB1 + TransB1

InsB2 + LevB2 + TransB2

Res + TransB1

TransB2 + Res

Bank1

Bank2

Figure 3.17: Bank Shipment - Final interface
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Chapter 4

Behavioural customization

Executions may lead to ’disaster’ (e.g., by violation of port pre-conditions on a partial

component), and a safe mode in which the effect of a port operation is foreseen and

eventually precluded. Component testing, on the other hand, can be made in purely

interactive way, running event by event, or by executing a whole sequence of events

specified through a regulars expression.

4.0.4 Regular Expressions

Regular expressions describe regular languages in formal language theory. They have

thus the same expressive power as regular grammars. Regular expressions consist

of constants and operators that denote sets of strings and operations over these sets,

respectively. The following definition is standard, and found in most textbooks on

formal language theory[12, 23].

Definition: Given a finite alphabet
∑

. A regular expression over
∑

is a word in the

language ER(A) over the alphabet
∑∪{∅, ε, (,), |, ., ∗} inductively defined by:
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• ∅, denotes the empty set

• ε, denotes the set containing the empty string

• a, denotes literal character contained in
∑

• alternation - if e1, e2 ∈ ER(A), then (e1|e2) ∈ ER(A)

• concatenation - if e1, e2 ∈ ER(A), then (e1.e2) ∈ ER(A)

• kleene closure - if e ∈ ER(A), then (e*) ∈ ER(A)

Explaining them with the use of an example is perhaps the best way to understand

regular expressions and their use.

Example 5. Good or bad person

Let the alphabet
∑

be the 26 letters {a, b, ..., z}. If language A = {good, bad} and

language B = {boy, girl}, then:

• A | B = {good, bad, boy, girl}

• A . B = {goodboy, goodgirl, badboy, badgirl}

• A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, ...}

Based on the example 5, we can define that all the boys are good and in a set of

girls only one is good, the pattern described is (good.boy|bad.girl)∗.good.girl.

The Kleene’s Theorem[21] says if an language which can be be defined by either:

• Regular Expressions

• Finite Automaton

• Non-deterministic Finite Automaton(NFA)
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it can also be defined by any of the other models. So for each regular expression it is

possible to build an finite automata that recognizes the language it specifies.

This pattern can be converted into an automata and it is given by:

1

2

3

4

5

Good

Good

Bad

Boy

Girl

Good

Good

Girl

The automata says that it recognises an element if a move can be made from

one state to another state, and this move can be done if there is a transition which a

recognized symbol. An element will be accepted by the automata if there is a sequence

of moves through states of the automata starting at the start state and terminating at

one of the terminal states. For instance, the element goodboygoodgirl will produce the

following path:

1 2 3 3 4
Good Boy Good Girl

Imagine that our world is described by the previous expression. Let’s call the

population of
∑

that has elements like: {goodboy, goodgirl, badgirl, goodboybadgirl,

...}, where goodboybadgirl represent two different people, one good boy and one bad

girl. Our goal is to find a good girl to lead our civilization for a new balanced Karma.

Initially, all people are apt to be the ideal candidate, but we have restricted the

candidates to only one a good girl. According to the automata that describes our

population, we only want one trace of it that represent the requirements. The trace is

given by the following automata, where the trace is not dashed:
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1

2

3

4

5

Good

Good

Bad

Boy

Girl

Good

Good

Girl

Our goal is submit all population to that requirement, which will produce a subset

that contains all possible candidates, from that sub-set we are able to select the perfect

candidate and singleton good girl.

4.0.5 Prototype with customization

To support modelling, manipulating and animating regular languages in HASKELL,

we resort to the HaLeX library [22]. Using this library, the construction of regular

expressions and their conversion to the automata has been shown concisely and easily

modelled in HASKELL.

This library was developed in the context of a course for undergraduate students. I

was one of the students covered by this course, where Professor João Saraiva introduced

the basic concepts of regular expressions, finite automata and context-free languages.

At the end of the course we had developed a complete HaLeX library.

Figure 4.1 shows the graphical representation of the non-deterministic finite au-

tomaton(NDFA) induced by the previous example 5, produced by HaLeX.

Formally, we describe the definition of Non-deterministic Finite Automata, as:

Definition 9. Non-deterministic Finite Automata

• A finite state space X
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Figure 4.1: Non-deterministic Good or bad person Automaton

• A finite alphabet
∑

which represents the possible input symbols. Let
∑
ε =∑∪{ε}

• A transition function, δ : X ×∑
ε → P (X). For each state and symbol, a set of

outgoing edges is specified by indicating the states that are reached.

• A start state x0 ∈ X

• A set A ⊆ X of accept states

We could convert all non-deterministic finite automata into deterministic finite

automata(DFA) in order to reduce the number of states, by eliminating the transition

labelled by the symbol ε, to draw the automaton. In deterministic automata, every state

has exactly one transition for each possible input. In non-deterministic automata, an

input can lead to one, more than one or no transition(ε) for a given state. There are

algorithms to convert from any NFA into a DFA with identical functionality, in the

majority of the cases a equivalent DFA has the same number of states that a NFA, but

with more transitions[1]. So on, let us restrict to the use of NFA.

Let’s see now how automata and regular expression can be used to specify the

constrained behaviour of a component in our prototyper.

Consider again the folder example in chapter 3.1.3. The last interface provided to

the final user, had four operations:

• Turn right page - Tr
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• Turn left page - Tl

• Read a page - Rd

• Insert a page - Ins

So the folder needs to support every operation and we express the language L1 =

(Tr|T l|Rd|Ins)∗ with regular expression and then turn it in a automaton:

1 Tl

Tr

Rd

Ins

Now for each operation the user tries, the prototyper runs the automaton to find out

whether there is a transition from the initial state to a possible reachable state which

is labelled with a possible operation. For example, if the folder already contains the

elements "A" and "B" on the left and the elements "C" and "D" on the right side of the

folder. Putting side by side the automaton that emerges from the L1 and the folder. If

user chooses operation Read then iff there exists a transition with the symbol Read,

this operationis allowed to be executed. The result should be element A.

1 Tl

Tr

Rd

Ins

If the user enters a transaction not previously defined, the automaton will not

recognize it as a valid path. This customization is used to constrain the way the user

can interact with the component.
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All the simulations that can be done in the system can be described and exemplified

through a sequence trace of the automaton. In this way we create a free mode in which

something can possibly go wrong, or a secure mode in which is based on constrained

behaviour: only a number of traces are allowed.

4.0.6 Extension of the regular expressions

The usual regular expression have not the necessary expressive power to express all

possible behaviours. In particular we do not have a way to express behaviour generated

by the concurrent combinator. So it is necessary to extend regular expressions to model

a concurrent computation.

To define concurrent operations, it is especially useful to be able to specify the

interleaving of two sequences. Consider for example the waiting room, where a system

that has two vending machines exists VM1 and VM2. The behaviour of VM1 can be

defined as (coin.choc)∗ and we can visualize it as a automaton:

1 2

coin

choc

The behaviour of VM2 as (coin.tea)∗ is given by automaton:

2 1

coin

tea
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With a normal regular expression, the system only work in sequential mode, i.e,

first, we can put a coin and get the tea and second we can put a coin and get the

chocolate or vice-versa or non of them or even only one of them. We can express that

as (coin.choc|coin.tea)∗ and with the following automaton.

1

2

3

coin

choc

coin

tea

As expected the previous automaton have not sufficient expressive power to express

the behaviour of such system as a real one, where we are able to do it simultaneously.

The behaviour of the entire system would be defined as a interleaving of VM1 and

VM2.

To achieve these objectives, we define an operator called interleaving, denoted by ||,

and with it we are able to define systems with a multiple autonomous process in order

to achieve a common goal.

Interleaving is formally defined as follows[9]:

• a||ε = ε||a = {a}, ∀a ∈ ∑
• a.s||b.t = a.(s||bt) ∪ b.(a.s||t),∀a,b ∈ ∑

, s,t ∈ ∑∗
For example, if we consider two sets A and B as follows A = {ab} and B = {ba}

then A||B = {abac, aaba, abab, bacb, baba}
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This operator does not increase the modelling power of regular expressions with the

interleaving operator, because any expression that uses || can be reduced to a regular

expression without ||.

The automaton that accepts the language represented by the extension of regular

expressions is called Parallel Finite Automata(PFA) where it is capable of directly

express interleaving forms of parallelism without having it encoded into the meaning of

state. The formal definition of PFA is slightly modified to express parallel activity but

it is still similar to that commonly used for deterministic and non-deterministic finite

automata.

Definition 10. Parallel finite automaton

A PFA can be formally defined as a 7−tuple M = (N,Q,∑, γ, δ, q0, F ) in which

• N is a finite set of nodes

• Q ⊆ 2N is a finite set of states

• ∑
is a finite input alphabet

• γ : 2N × (∑∪γ) −→ 22N is the node transition function

• δ : Q× (∑∪γ) −→ 2Qis the state transition function

• q0 ∈ Q is the start state

• F ⊆ N is the set of final nodes

and where γ and δ are partial functions.

The node transition function γ is used to generalize the notion, where a element of

γ can be defined like ((A,B,a),C,D,E), where the transition labelled a exists with

sources nodes A and B, and with target nodes C, D, and E.
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Initially, the set of active nodes forM is exactly q0, the initial state. During execution

of M , observing the input symbol c in state q, the set of active nodes constituting the

next state for M is any one of the sets in δ(q,c)1.

1

2

4

3

5

λ

coin

coin

choc

tea

1

2 43

5 6

λ

c d
c

b

a

c d

Figure 4.2: PFA - a∗b||(c+d+)+

Figure 4.2 is a representation of PFA, where the nodes 4 and 6 are the final nodes,

and the initial node is the node 1. This PFA represent the automaton that accept the

language:

a∗b||(c+d+)+ (4.1)
1For more details please see the reference [24]
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Operator || represents interleaving of languages.

Figure 4.3 specifies the DFA a equivalent to PFA in figure 4.2, ie. that accepts

the same language.

1

2

3

4

5

6

b

c

dc

b

c d

c

d

a,d

a,c

a

c

Figure 4.3: DFA - a∗b||(c+d+)+

We can do some executions, where we show how the execution sequence was

obtained while accepting the word. In this example we will see if the word accbd is

accepted.

{1} λ−−−→ {2,5} a−−−→ {2,5} c−−−→ {3,5} c−−−→

{3, 5} b−−−→ {3,6} d−−−→ {3, 4}

−−−→ accept

If we execute some word that the automaton must not accept, the trace must be finalized

with the word fail. The following sequence is one of the possible executions that must
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fail.

{1} λ−−−→ {2, 5} c−−−→ {3, 5} a−−−→ {3, 5} b−−−→

{3, 6} a−−−→ {3,6} −−−→ fail

The example of PFA shown in the figure 4.2 has an equivalent and minimal DFA

shown in the figure 4.3. So we can translate every language with the operator || into

a PFA − automaton and then in a DFA − automaton. This customization have

been added to Shacc, producing a new simpler, and more direct way to express the

component calculus.
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QoS information

Systems nowadays are typically heterogeneous and geographically distributed, usually

exploit communication infrastructures whose topology frequently varies and compo-

nents can, at any moment, connect to or detach from. The underlying system and

the communication resources are constantly changing for a several reasons, including

equipment failures, competition from other consumers and security attacks.

Providing a possible hostile computing environment, that requires a dynamic adapta-

tion to changes in quality of service is essential to the survival of the system. There is no

shared agreement on what QoS is and what it is not, but generally the service quality is

a measure of the non-functional properties of services along multiple dimensions, such

as reliability, security, scalability, response time, reputation, and it is often confused

with performance level or achieved service quality. The properties of such components

cannot be ignored and become decisive in the selection procedures. In brief, QoS is

the acceptable cumulative effect on subscriber satisfaction of all implementation and

imperfections that are affecting the service.

Quality of service (QoS) can capture different QoS metrics using constraint semir-
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ings, that provide a suitable level of abstraction for QoS values. The c-semirings provide

an algebraic structure with operations for combining values into a new QoS value.

5.1 Extension of the component calculus

The component calculus in chapter 2 was extended to be taken into account, in an

explicit way, as QoS information. The extension of the calculus was discussed in refer-

ence [19] where the authors introduced QoS information represented as a Q-algebra

where R = (C,⊕,⊗,⊗, 0, 1) is an algebraic structure, with R⊕ = (C,⊕,⊗, 0, 1) and

R⊗ = (C,⊕,⊗, 0, 1), both c-semirings, where:

1. C, represents the QoS domain

2. ⊕, represents a choice between two QoS values

3. ⊗, compose two QoS values sequentially

The definition of c-semirings[7] entails the following laws:

a⊕ a = a (5.1)

a⊕ b = b⊕ a (5.2)

a⊗ 0 = 0 (5.3)

a⊕ 0 = a (5.4)

a⊗ 1 = a (5.5)

a⊕ 1 = a (5.6)

a⊕ b = b⊗ a (5.7)

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) (5.8)

(a⊕ b)⊗ (a⊕ c) = a⊕ (b⊗ c) (5.9)
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We can derive the result of (5.9) using the distribution law already established, i.e.

(a⊕ b)⊗ (a⊕ c)

⇔ { (5.8)}

(a⊗ a)⊕ (a⊗ c)⊕ (b⊗ a)⊕ (b⊗ c)

⇔ { (5.8)}

(a⊗ a)⊕ (a⊗ b)⊕ (c⊗ a)⊕ (c⊗ b)

⇔ { (5.1),(5.8) and (5.2)}

a⊗ (1⊕ b⊕ c)⊕ (c⊗ b)

⇔ { (5.6)}

(a⊗ 1)⊕ (c⊗ b)

⇔ { (5.5)}

a⊕ (c⊗ b)

The operation ⊕ defines a partial order ≤ on C defined by a ≤ b, iff a⊕ b = b. That is

a important rule required to establish the QoS values of each component, meaning that

a is worse than b. For example,

a⊕ b ≤ a⊕ b

⇔ { definition of partial order}

(a⊕ b)⊕ (a⊕ b) = a⊕ b

⇔ { (5.1)}

a⊕ b = a⊕ b
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And,

a⊗ b ≤ a⊗ b

⇔ { definition of partial order}

(a⊗ b)⊕ (a⊗ b) = a⊗ b

⇔ { (5.8)}

(a⊕ a)⊗ b = a⊗ b

⇔ { (5.1)}

a⊗ b = a⊗ b

This sort of representation of QoS informations allows for different ways of combining

and choosing between quality values. A new attribute, that represents the QoS infor-

mation, is included in each operator of the component calculus. On the other hand its

execution generates a QoS value which is observable. New definitions appears, that

go through an evolution of definitions already defined previously in chapter 2. For

example, the first definition 2.2 that appears in this document, was changed into the

following definition that contains an additional QoS attribute- C.

Definition 11. A software component with QoS is specified by a pointed coalge-

bra

〈up ∈ Up, ap : Up −→ B(Up × C ×O)I〉 (5.10)

where C is the domain of some Q-algebraR = (C,⊕,⊗,⊗, 0, 1). Component calculus

changes to take the observed QoS levels of their parameters into account. Most of the

component combinators need to be changed to take this into account. An example is
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the sequential combinator that becomes:

Definition 12. Sequential composition with QoS information

ap;q = Up × Uq × I
xr−−−→ Up × I × Uq

ap×id−−−→ B(Up × C ×K)× Uq
τr−−−→ B(Up × C ×K × Uq)

B(id×aq)−−−−−→ B((Up × C)× B(Uq × C ×O))
Bτl−−−→ BB(Up × C × (Uq × C ×O))

BBa◦
−−−→ BB((Up × C × (Uq × C))×O)

µ−−−→ B((Up × C × (Uq × C))×O)

B(m×id)−−−−−→ B((Up × Uq × (C × C))×O)
B(id×⊗×id)−−−−−−−→ B(Up × Uq × C ×O)

where the use of ⊗ denotes the sequential composition of QoS levels.

The same happens with the hook− �Z , which is essentially a generalization of se-

quential composition and becomes:

Definition 13. Hook combinator with QoS information

ap�Z = Up × (I × Z) ap−−−→ B(Up × C × (O × Z))
B(id×ι1+id×ι2)·dr−−−−−−−−−−→ B(Up × C × (O × Z) + Up × C × (I × Z))
B(η+ap×id)−−−−−−−→ B(B((Up × C × (O + Z))) + B((Up × C × (I + Z))))
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B(id+B(xl×id))−−−−−−−−→ B(B((Up × C × (O + Z))) + B(C × Up × (I + Z)))
B(id+B(id×ap))−−−−−−−−−→ B(B((Up × C × (O + Z))) + B(C × B(Up × C × (O + Z))))
B(id+B(τr×xl))−−−−−−−−→ B(B((Up × C × (O + Z))) + BB(C × C × Up × (O + Z)))
B(id+µ)−−−−→ B(B((Up × C × (O + Z))) + B(C × C × Up × (O + Z)))
B(id+B(xl·(⊗×id)))−−−−−−−−−−−→ B(B((Up × C × (O + Z))) + B(Up × C × (O + Z)))
[B(id×ι1),B(id×ι2)]−−−−−−−−−−−→ B(Up × (C × C)× (O + Z))
B(id×⊗×id)−−−−−−−→ B(Up × (C × C)× (O + Z))

The redefinition of parallel composition, on its turn, resorts to definition of ⊗ where:

Definition 14. Parallel composition with QoS information

αp�q = Up × Uq × (I × J) m−−−→ (Up × I)× (Uq × J)
αp×αq−−−−→ B(Up × C ×O)× B(Uq × C ×K)
δl−−−→ B((Up × C ×O)× (Uq × C ×K))

Bm−−−→ B((Up × C)× (Uq × C)× (O ×K))
B(m×id)−−−−−→ B((Up × Uq)× (C × C)× (O ×K))
B(id×⊗×id)−−−−−−−→ B(Up × Uq × C × (O ×K))

The combinator choice, �, in turn uses the operator - ⊕. The QoS level of p � q is

computed as c1 ⊕ c2 where ⊕ is the glb of order 6. Formally, the combinator choice

becomes:

Definition 15. Combinator choice with QoS information
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αp�q = Up × Uq × (I × J) (xr+a)·dr−−−−−→ Up × I × Uq + Up × (Uq × J)
ap×id+id×aq−−−−−−−→ B(Up × C ×O)× Uq + Up × B(Uq × C ×R)
τr+τl−−−→ B(Up × C ×O × Uq)× B(Up × Uq × C ×K))
B(id×xr)+Ba◦

−−−−−−−−→ B(Up × Uq × C ×O) + B(Up × Uq × C ×R)
[B(id×ι1),B(id×ι2)]−−−−−−−−−−−→ B(Up × Uq × (C × C)× (O +R))
B(id×⊕×id)−−−−−−−→ B(Up × Uq × C × (O +R))

Finally, the concurrent composition is defined using the operator � as:

Definition 16. Combinator concurrent with QoS information

αp�q = Up × Uq × (I × J) �−−−→ Up × Uq × (I + J + I × J)
�−−−→ Up × Uq × (I + J) + Up × Uq × (I × J)

ap�q+ap�q−−−−−−→ B(Up × Uq × C × (O +R)) + B(Up × Uq × C × (O +R))
[B(id×ι1),B(id×ι2)]−−−−−−−−−−−→ B(Up × Uq × (C × C)× (O +R))
B(id×⊗×id)−−−−−−−→ B(Up × Uq × C × (O +R))
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5.2 Extension of the prototype to mirror the QoS ex-

tended calculus

Few changes need to be designed to attach QoS infrastructure into the prototype. The

prototype was developed already to facilitate the integration of new functionalities,

since it is divided in three layers - Components, Combiners and Final system interface.

This modification will change mostly the part of component definition. It must contain

a new attribute to represent the value of QoS, and change the definition of the interfaces

in the Combiners layer. The algebraic structure R = (C,⊕,⊗,⊗, 0, 1) mentioned

in chapter 5.1, will be represented in the HASKELL implementation with a datatype

defined, as:

data QualityOfService v b a’=

QoS {

value :: v,

choice :: b-> b-> a’,

sequential :: b-> b-> a’,

concurrent :: b-> b-> a’

}

deriving ( Typeable)

The value is the initial QoS variable, the choice, the sequencial and the concurrent

operators are functions that will transform QoS variables in a new QoS variable. The

definition of such functions should be provided by the user depending on what sort of

QoS measures he is interested in. The QoS information defined in all components will

be propagated and perhaps modified through the applied combinators and its effect will
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be shown at the end of the system. For example, when we want to know how long the

system takes to process a operation, i.e. the round-trip delay time, we need to establish

the functions that will support such behaviour.

The action choice can be defined by the function max:

max :: (Ord a) => a -> a -> a

because the function is applied to two components, but only one is actually executed at

a time.

The operation sequencial can be defined by the function sum′:

sum’ :: (Num a) => a -> a -> a

as one component is executed after the other, we need to increment the time in each

execution.

Finally the operation concurrent can be defined by the function max:

max :: (Ord a) => a -> a -> a

where the components were executed and the component that takes less time waits for

the slower component to finish execution.

Example 6. Publisher subscribe

In this section we will introduce a small example that represents the Publish/subscribe

architectural schema wit QoS propagation. Publish/subscribe is a messaging pattern

where publishers do not send messages directly to specific receivers (subscribers).

Subscribers express the interest in one or more publishers, and they only receive
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Figure 5.1: Publish/subscribe

messages that are of their interest. This mechanism of publishers and subscribers can

allow scalability and a more dynamic network topology.

Figure 5.1 shows an integration solution where the publisher write a message in the

channel and two subscribers that had subscribed to these topics, receive the messages

from the subscribed channel.

The first step is to define a component that represents the subscriber with the

operation Receive that represents the messages received through the channel and

produces a behaviour represented by the port Result, i.e.:

P:Receive

P:Result

Subscriber

In this example, we have two subscribers - Subscriber1 e Subscriber2; who are

registered to a specific topic written by the publisher. Therefore the system should be
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in charge of forwarding all messages from the subscribed channel. The system can be

represented by the following diagram, in which there are two components inside the

system that represent the two existing subscribers. The publisher writes the message,

the system duplicates the message and sends it to the two subscribers simultaneously.

Receive

Result

Subscriber1

Publish

Result

Receive

Subscriber2

Result

The definition of a new, base component is directly made in HASKELL . A specific

strong monad B is chosen to model the envisaged behavioral effect. Figure 5.2

corresponds to a Subscriber component, where B is instantiated to HASKELL Maybe

monad to capture partiality. where, the qosV alue is described by figure 5.3. In a

subscriber1 (xs, x) =Just ( x:xs,(qosValue 1, x))

Figure 5.2: Component subscriber

subsequent step the component’s interface is created from a suitable annotation in the

source code. For example:

@Input: P:Receive

@Output: P:Result
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qosValue x = QoS {
value = x,
choice = max ,
sequential= sum’,
concurrent = max
}

Figure 5.3: Definition of the subscriber qos value

where Receive and Result are introduced as labels for the component’s available

services.

The component Publisher permits one operation which will be duplicated to be

sent to subscribers. In the first stage, we put component Subscriber1 side by side with

component Subscriber2 through the� combinator. After this step we need to duplicate

the message and for this we use the diagonal operator, i.e.:

M : C −→ C× C

So, at this stage we need to join the definitions given above with the combiner ;.

Formally, we can express this as follows.

Publisher = M; (Subscriber1 � Subscriber2)

SHACC allows both the (interactive) activation of this sort of component expressions

and their execution in a simulation mode. Actually, once components are defined either

from scratch (i.e., by providing the corresponding HASKELL code directly) or by

composition of other components, SHACC offers an environment for simulation testing.

If the component’s behaviour model allows the Run window in the tool offers two

simulation modes: a free mode in which, execution may lead to ‘disaster’ (e.g., by
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Figure 5.4: Publish/subscribe

violation of port pre-conditions on a partial component), and a safe mode in which

the effect of a port operation is foreseen and eventually precluded. Component testing,

on the other hand, can be made in a purely interactive way, running event by event, or

by executing a whole sequence of events specified through a regular expression and

supplied to the tool. Figure 5.4 illustrates the tool execution mode.

The box labelled State in Figure 5.4 shows the initial value of the component’s state.

Box Operation, on the other hand, accepts the component service to receive the inputs

from the environment. Executing a service from the component’s interface SHACC

displays three boxes that representing the component state before, during and after

service completion.
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Conclusion

This dissertation invested in the study of a component calculus. Several aspects remain

to be explored. So in this document we started by joining two ideas that favour

an observational semantics for state-based systems The thesis developed an Haskell

library,and a prototype with a graphical user interface with the intent of helping the

design of systems based on components.

The prototype is the implementation of the calculus. It provides a framework to

specify, compose and animate software components. This calculus, which generalizes

the algebra of Mealy machines, acts as a glue code for wiring autonomous components.

A component’s interface is, basically, a collection of ports through which values flow.

Several operators are given to produce new components from old ones. Co-algebra

proved to be helpful in the calculus since it is a convenient way to observe a component’s

behaviour upon a status change caused by some trigger, and the use of monads to encode

behaviour models.

SHACC is the name of the prototyping framework developed. It includes:

• full animation of the component calculus
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• a simulation mode guided by a customization expression

• the incorporation of QoS reasoning in the definition of the component combina-

tors

This framework was tested with a wide number of the examples. The examples that we

have presented in this dissertation proved to be useful in improving the tool, in particular

by refining of the way that the user specifies the software components, and how this

can be captured in an efficient Haskell implementation. We believe this technology will

help create better structured components, through the implementation and design in

SHACC.

In this work we show how such combinators can be neatly and effectively imple-

mented in Haskell by exploring some techniques that we have implemented in our

work. This provides not only a smooth way to directly incorporate component-ware in

Haskell, but also a testable method for prototyping software patterns.

We have also seen how we can specify some behaviour customization, resorting to

regular expressions to help us in the definition of the customization behaviour. But this

choice was just one of the possibles paths that we could have chosen. Instead of the

extension of regular expressions we could have resort to a formalism for specifying and

verifying concurrent system for example CCS( Milner, 1980). The Calculus of Commu-

nicating Systems (CCS) is a process calculus introduced by Robin Milner around 1980.

The formal language includes primitives for describing parallel composition, choice

between actions and scope restriction. CCS is useful for evaluating the qualitative

correctness of properties of a system such as deadlock or livelock.

In this document we show how we can extend the calculation of components to deal

with measures of QoS with the help of the generalization of the notion of Q-algebra.



73

This is a smooth extension of the original calculus. As mentioned in the bibliography

[QoS] it is feasible and it opens many paths to be followed, providing a new way

to guarantee not only the functional simulation relation given by the behaviour of

components but also a higher service quality.

With this work, we have not only gained a new method to implement software

components, but we have also gained quality and organization. We have seen with exam-

ples how simple it is to implement systems in SHACC and how the based-components

implementation is well organized with simple primitives and code organization that

allows the fast use of this technology. The simplicity of our language hides, however,

the powerful mechanism and strategies that we support.

State-based component calculus, is an area with great potential in software ar-

chitecture. Such a study would constitute an excellent future project and it would

quantify the true gains on specifying a calculus of qos-aware software components

through the SHACC prototype. Our language captures a fair amount of information and

allows us, as we have illustrated in several examples, to perform relevant architectural

transformations.

Availability. SHACC is available from shacc.wetpaint.com. It is documented

in publication [15].

shacc.wetpaint.com
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Appendix A

User’s Guide of Shacc

Figure A.1: Main windows

In our framework the first window (figure A.1) shows a compiler for the functional

language Haskell, where one can see if all components were successfully created.

Along with this first window, the tool provides another window named Project, which

gives us an overview of the entire system of components being developed, by showing

the components created or added. The menu bar present in window Animator has three

sub-menus: Menu File that permits some basic operations as:
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• Import - Add existing components directly, they will appear in the window

Component

• Open - Open existing file Haskell in a new window named Open File

• Load - Load existing file Haskell, run a compiler and show the result in the

window Animator

• Exit - Quits from application

Menu Combinators includes the following combinators:

• External Choice - Produces an interface through the amalgamation of two disjoint

interfaces

• Hook - Part of the output is redirected to the input ports of the same component

• Wrap - Adds or modifies on interface to a component

Menu Run is provided to test the system being developed. Menu Help contains

some information about the context of this framework.

In window Opened File in the figure A.2, we can reload the current component,

open a new component, save the current component and exit from the current window.

All these operations are available from the sub-menu File. In sub-menu Extra we are

allowed to create components and add them to the window Project automatically.

Note: In order to do this correctly, it is necessary to annotate the code, the input and

the output, for each interface port. If the component takes some argument, we add P:, if

it receives nothing, we add 1:. E.g. ((1: A + P: B) + 1: C), means that A and C do not

receive any arguments and B receives an argument.
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Figure A.2: Window where we can choose to create or import components

Figure A.3: Create components

Now, we explain each combinator window usage. The window Component in the

figure A.3 belongs to the sub-menu Wrap, consisting of one label where we can put the

name of new component, one label where to define the input interface and another to

define the output interface. Subsequently we will show how an interface can be defined.
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As an example, suppose we want to specify an interface with three ports. We can put

them as ((A+B)+C) or (A+(B+C)) without any behaviour change. The step is achieved

by pressing the Add button, used to connect the interface defined with the component.

At the end of this process we can press the Create button that will generate the code

which represents component.

Figure A.4: Main windows

Window Interface - figure A.4, is the second part of the sub-menu Wrap, where we

name the new component and connect the several ports, in order to produce the desired

effect on the component.

Figure A.5: External choice

In window External Choice in the figure A.5 , all we need is to put a name of the

new component and press button Create.
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Figure A.6: Hook window

Window Hook(see in figure A.6) allows one to define the name of the new compo-

nent and its supporter interface. In this step we need to press the button Connections

which allows to perform all connections between the interface defined previously and

the internal component interface. To finish this component definition we must press

button Create.

Finally, Run window in figure A.7, we can be accessed through menu Run, by
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Figure A.7: Running tests

selecting Run Project. This window allows one to test the composed system built into

the tool. Here, we can choose between a lazy execution, where the animation allows the

crash of the system, and a safe execution, where the animation is based on previously

defined regular expressions1.

Folder

A Folder component is built through the combination of two stacks modelling, respec-

tively, the folder left and right piles. The Folder component provides ports correspond-

ing to the operations: read, insert, turn page right and turn page left.

1 Important Note: In order to perform each actions it is necessary to choose at least one of the
components defined in the Project window, the number of components needed to select is describe as:

• Component - Select 1 Component

• Interface - Select 1 Component

• External Choice - Select 2 Components

• Hook - Select 1 Component

• Run Project - Select 1 Component
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Folder

1:Tl + 1:Tr + 1:Rd+ P:Ins

1:Tl + 1:Tr + P:Rd

In a second stage, we will use the stacks, to helping in the computation, where it is

characterized by three fundamental operations, pop, top, push. The pop operation

removes an item from the top of the stack, and returns this value to the caller. The top

operation return the current top element of the stack without removing it. The push

operation adds an item to the top of the stack, hiding any items already on the stack, or

initializing the stack if it is empty.

Denoting by U its internal state, a stack of values of type P is handled through the

usual

Top : U −→ P, Pop : U −→ P × U and Push : U × P −→ U

operations. An alternative, ’black box’ view hides U from the stack environment and

regards each operation as a pair of input/output ports. For example, the top operation

becomes declared as:

Top : 1 −→ P,
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where 1 stands for the nullary(or unit) datatype. The intuition is that top is activated

with the simple pushing of a ’button’ (its argument being the stack private state space)

whose effect is the production of a P value in the corresponding output port. Similarly

typing push as:

Push : P −→ 1,

means that an external argument is required on activation but no visible output is

produced, but for a trivial indication of successful termination. Such ’port’ signatures

are grouped together in the diagram below. Combined input type 1 + 1 + P models

the choice of three functionalities (top, pop and push in this order), of which only one

takes input of type P .

Representation in Shacc: Open Shacc go to the menu File and click Open, and in

the directory of the tool we will find a file named "Stack.hs", press open and we will see

a windows as the follow image: In the number 1 we defined the input and output port

Figure A.8: Stack

as well if it receive and produce a value ( 1 represents that port does not receive any

type in argument, and P represents a value type). The number 2, 3 and 4 is the function
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of stack who receives a pair in argument, and in first element in this pair is the inner

state of stack, the second element is as well other pair who in the first element identifies

what kind of operation and the second element is the argument of this operation.

In next stage, suitable feedback loops are established, through the hook operator,

to connect ports. This ensures, form example, that the left turn of a page is achieved

through a pop action on the right stack connected to the push of the left one. Formally,

this amounts to the following expression in the component calculus:

Folder = ((LeftS� RightS)[wi,wo]) �P+P

where RightS = Stack[id+ O, id] and LeftS = Stack[i2 + Id, (id+!p+1) · a+].

Representation in Shacc: LeftS is allowed to make two operations (pop and push),

these operations are linked to the operations on Stack. In the first stage, we need select

the interface of stack, who is found in the Project Window( see Figure A.9 where the

interface is marked with 1) Now, fill the fields like the Figure A.10 Finally, when we

Figure A.9: Select Stack
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Figure A.10: LeftS component

press button Create a new item will appear on window Project in main window -

LeftS.

Do the same steps forRigthS, and in the windowsComponent first we need named

the new component with RightS, in the second and third stage we need label operations

in input and output with ((Pop+Top)+(Push1+Push2)) and ((Pop+Top)+Push)

respectively, and then press Add button who permits linked this new labels with the

operations in the Stack, this step corresponds to the number 4, 5 and 6 to the interface

input, and 7,8 and 9 to the interface output. Follow the Figure A.11 to fill all fields,

and press button Create a new item will appear on window Project in main window -

RigthS.

Now go to the main windows (Figure A.12). As we can see number 1 show LeftS

and number 2 show RightS, the next step is necessary select first the LeftS and then

RightS in order to combine with external choice. With the to components selects go
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Figure A.11: RightS component

Figure A.12: Main window

to menu Combinators and click on item Externalchoice, and a new window will

appear. Insert the new name - LeftSAndRightS, then press the button create and a

new item will be added on Project window, Figure A.13.

In this stage, we select the component LeftSAndRightS (number 1 Figure A.13)



Appendix A. User’s Guide of Shacc 90

Figure A.13: External choice

and go through menu Combinators and select item Hook, and the window Hook will

appear. To complete this step is necessary fill the name, the interface and how we will

connect wires of the interface. In the field Component is necessary introduce the new

name of component - AlmostFolder. In the section interface we have a label for input

where we introduce ((((Tr + T l) + Rd) + Ins) + (Push1 + Push2)) and for the

output - (((Tr + T l) +Rd) + (Push1 + Push2)), matches to numbers 1 and 2 next

image. To pass to next phase is required press the buttonConnections, then will be

appear all ports (see numbers 4, 5 , 7 and 8 in Figure A.14) corresponds to the interface

of this component and the interface of component that will be used by this component.

Select each item in the list From Input (4) with the corresponding list To Input (5), and

then click on button Add Input (6) in order to make up the list of links below the button

Add Input. The same should be done in list FromOutput and ToOutput. Finally we

able to press the button Create and a new item will appear in the window Project

named AlmostFolder.

In this last step we will provide the interface that will provide a front end so they can
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Figure A.14: Applying hook

interact with the system based on component. First name the component with Folder,

in the Figure A.15 on number 1 and 2 corresponds to the interface of the component

used by this and the final datatype that this component will be used, connect them and

press the button Add. In number 4 and 5 is where we can filter some of arguments of

component, if a port return one element and that will not interest to end-system then we

can return a Nill that correspond to nothing. After this phase click on Create button,

and we are able to do stage of tests. In the test phase, this component allows us to do

four operations:
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Figure A.15: Final interface

• Tl

• Tr

• Rd

• Ins

To introduce one of the operations allowed, go through the menu Run in window

Animator, select Run Project and choose Lazy mode and press Run. In number 1 in

Figure A.16 is where we introduce the state of component, in this case is a pair of
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empty list - ([],[]). In number 2 is where we introduce the operations chosen. Aiming

to show how it makes those operations, we will illustrate them all as a template:

• Tl (Nil) - Turn left do not receive any argument

• Tr (Nil) - Turn right do not receive any argument

• Rd (Nil) - Read do not receive any argument

• Ins (Any "A") - Insert a element on system

interest to end-system then we can return a Nill that correspond to nothing. After this

phase click on Create button, and we are able to do stage of tests. For example suppose

Figure A.16: Test window

we choose to do a turn right the output is in Figure A.17, where the previous stage of

component have a element A in left stack and after we do turn right, the same element

will pass to the right stack.
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Figure A.17: Testing turn right page
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