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Abstract

Heart diseases can often manifest themselves by irregularities in the movement of the he-
art muscle. To assess the function of the myocardium, a method based in the Optic Flow
Constrain Equation (OFCE) is applied in tagging MR images. The sequence of tagging
MR images allows us to detect deviations in deformation and strain through time. Howe-
ver, the application of the OFCE implies the assumption of spatial phase conservation.
Therefore, harmonic filters in the Fourier domain were used in each frame of the sequence
to remove the variation of intensity trough time.

In order to achieve a model capable of distinguishing a malfunction from normal func-
tion of the cardiac wall it is necessary to acknowledge what is the ground truth and which
factors can affect the results. This study explores several scenarios using synthetic data that
mimic tagged MR images in order to discover which variables can optimize the OFCE.

This work allows us to analyze up to what extension the OFCE can be applied to a
cardiac motion simulator (CMS) based on Waks et al. [1], capable of reproducing the
normal function of the heart. After a series of tests with simulated data and the respective
comparison with real volunteers data, it is possible to assess quantitatively the method
used.
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Resumo
Grande parte das doenças cardíacas estão associadas a um consequente mau funciona-
mento dos músculos cardíacos. Sendo que o músculo cardíaco maior e do qual depende o
funcionamento do coração é o miocárdio, torna-se relevante quantificar a deformação do
mesmo. Esta quantificação permite calcular o volume do sangue que é bombeado por ciclo
cardiaco e a fracção de ejecção cardíaca. Neste trabalho propoem-se a aplicação de um
método que utiliza a "Optic Flow Constrain Equation"(OFCE), a imagens de ressonância
magnética (RM) marcadas. A sequencia de imagens the RM marcadas permite-nos detec-
tar desvios na deformação e tensão no tempo. No entanto, o uso da OFCE implica que se
assuma a existência de conservação de fase. Para tal, para remover a variação de intensi-
dade no tempo, foram aplicados filtros no domínio de Fourier a cada uma das imagens da
sequência.

Para atingir um modelo capaz de distinguir um funcionamento anormal do miocárdio é
necessário saber o que significa numéricamente o comportamento normal de um músculo
saudável e quais os factores que podem afectar a sua quantificação. Este estudo baseia-se
na simulação de cenários para determinar que variáveis podem ajudar a optimização do
método com OFCE.

Este trabalho permite analizar a aplicabilidade da OFCE a um simulador de movimento
cardíaco (SMC), baseado no trabalho de Waks et al. [1], capaz de reproduzir o movimento
normal do coração. Depois do estudo intensivo das várias simulações e respectiva compa-
ração com dados reais, é possível avaliar quantitativamente o método utilizado.
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Chapter 1

Introduction

Cardiovascular diseases (CVD) are the main cause of mortality in the world. In the year
2012, they represented 47% of the cause of deaths in Europe and 40% in the US [4].
Everyday life habits such as smoking, diet, physical activity or even other diseases like
obesity and diabetes can be the cause of heart diseases.

According to the Frank-Starling relation, the strength of the pump function of the heart
is proportional to the distention of the myocardium. This means that any diseases that de-
crease the myocardium’s capacity to distend or that cause a higher distention, affect the
blood flow in the human body. Therefore, the study and quantification of the myocardium
motion can become a relevant step in preventing CVD. Despite the fact that the myocar-
dium extends itself through both ventricles in this work only the left ventricle (LV) is
taken in consideration. This decision was based on the fact that the LV is responsible for
the transport of the arterial blood to the aorta and consequently to the entire body, as is
presented in Figure 1.1. Also, the majority of cardiovascular diseases influence the interior
walls of the heart diminishing the myocardium capacities hence affecting the movement
and pump function of the LV.

One of the imaging techniques that allow us to visualize the interior of the heart is Mag-
netic Resonance (MR). Nonetheless with MR we are only able to distinguish the different
tissues by calculating their times of relaxation (explained in Chapter 2). Which means that
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CHAPTER 1. INTRODUCTION

Figure 1.1: Netter’s image of the heart with LV on the right [2].

the interior of the heart wall appear has a whole. A useful way to assess intramyocardial
movement is the use of tagging MR.

By the use of magnetic spatial modulation, an artificial brightness pattern is created.
This pattern is represented by black stripes superimposed on the original MR images.
However the tagging images can only solve the problem of visualization. To quantify the
motion of the left ventricle a method based in the classical optical flow method in the
spectral domain is applied. In order to solve the optical flow constrain equation (OFCE)
without the necessity of additional constrains we apply the method described by Florack
et al. [5], which makes use of two tagging MR image sequences simultaneously. These
two sequences are obtained in the same temporal space and for the same movement but
have different tag patterns (one has horizontal patterns and the other vertical patterns, see
Figure 1.2). However, the assumption that there is no loss of pixel brightness has to be
made. In the end is finally possible to quantify the motion, deformation and strain of the
heart muscle.

Nonetheless, no quantification is relevant if there is no ground truth to compare to. In
this work, a quantification and validation of the method explained above is proposed. This
is accomplished by comparing the results calculated using the OFCE, with synthetic data

2



1.1. TEST METHODOLOGY

(a) (b)

Figure 1.2: Short axis MR images of the left ventricle with (a) vertical tag pattern and (b)
horizontal tag pattern.

produced by a model of the left ventricle based on the work of Waks et al. [1].

1.1 Test methodology

All the methods and tests described in this work required the use of the computational
software program Mathematica 9, from Wolfram Research. The choice of the program
was made taking in consideration the software licenses owned by the Technical University
of Eindhoven, where this work was developed, and the compatibility with the work already
done on the topic and possible extensions to this work to be made in the future.

1.2 Dissertation layout

This work is divided in five chapters. Throughout the first chapter are explained the basic
ideas that led us to this study. As well as the basic knowledge necessary to understand the
practical work presented in the following chapters. In the same chapter is also presented
some useful information on synthetic and real data from MR images. In chapter three the
analysis of the factors that can affect velocity is made. Chapter four explores the presence
of noise in MR images and the effect that this can have in the factors studied in chapter

3



CHAPTER 1. INTRODUCTION

three. Finally in chapter five the conclusions of this study are presented as well as the
future work that can be done.

4



Chapter 2

Background

2.1 Tagging MR

Magnetic Resonance (MR) is a noninvasive technique used mainly in medicine to pro-
duce high quality images of the human organs. This technique is based in the interaction
between radio frequency pulses with a strong magnetic field and the water molecules of
the human body. During the procedure the patient is introduced in a cylindric scanner that
produces a high magnetic field such as 1.5 up to 9.4 Tesla. The magnetic field produced by
the machine is capable of realigning the magnetic moments of hydrogen protons and, by
imposing a radio frequency signal usually perpendicular to the machine’s magnetic field,
the protons rise to a higher energy level. When the radio frequency signal is turned off
the hydrogen protons return to their original alignment with a particular relaxation time.
The energy released on the decay of the realignment produces a signal detectable by the
machine. As known, the human body is primarily water distributed in distinct ways in
different tissues. Therefore each tissue has a distinct relaxation time producing a different
level of contrast in MR images.

Magnetic Resonance cardiac images can be obtained in two different views: long axis
(LA) that divides the heart in vertical sections (parallel to the axis of the left ventricle) and
the short axis (SA) perpendicular to the LA that gives us horizontal sections of the heart

5



CHAPTER 2. BACKGROUND

from apex to the base.

Despite of the contrast between tissues obtained by magnetic resonance, MR becomes
useless in the case of motion evaluation of the inside of a particular tissue. In 1988 a new
technique called “tagging" for visualization of the intramyocardial motion with MR was
introduced by Zerhouni et al. [6]. This method locally saturates the magnetization of the
tissue and it results in lines or grids in the final MR image. On the other hand, due to the
influence of longitudinal relaxation of the magnetization the tagging information decays
restricting the application of these methods. This phenomena it is called tag fading.

In 1993, Fischer et al. [7] proposed a modification to Zerhouni’s technique. The
(C)SPAMM (complementary spatial modulation of magnetization) allows access to systolic
and diastolic motion data guaranteeing that the tagging pattern remains constant during the
whole cardiac cycle. This method also grants the possibility to analyse local dynamic be-
havior of deformation and strain in the LV by creating patterns inherent in the tissue.

2.1.1 Extraction of Phase Images from tagging MR

In the late 1990’s a new approach to the analysis of tagged MR images called HARP
(harmonic phase imaging) was introduced by Osman et al. [8]. This approach applies
tagging combined with spectral filtering in k-space and by directly measuring phase in-
formation of the MR signal, it overcomes the problem of tag fading.

Following the idea of phase-based algorithms, in 1999 the DENSE (displacement en-
coding with stimulated echoes) method [9] and later the imaging protocol for dynamic
analysis called Phase Contrast MRI (PC-MRI) were introduced [10].

The HARP method uses bandpass filters to isolate k-th spectral peaks in SPAMM-
tagged magnetic resonance images, centered at a certain frequency. After the most suitable
filter is selected and applied to each image of the sequence given as a result of the tagging
MR, the inverse Fourier transform of the bandpass region yields a complex harmonic im-

6



2.2. OPTIC FLOW

age, given by

Ik(y, t) = Dk(y, t)e
jφk(y,t) (2.1)

whereDk is the harmonic magnitude image and φk is the harmonic phase image. Given
φk is possible to compute ak known has the harmonic phase angle, in Equation 2.2.

ak(y, t) = W (φk(y, t)), (2.2)

and the nonlinear wrapping function is given by

W (φ) = mod(φ+ π, 2π)− π. (2.3)

In a second stage of the method the harmonic phase angle image is used to track the
phases. After the application of the HARP method to the tagged MR images (Figure 1.2)
we obtain the result shown in Figure 2.1.

The HARP method serves as a basis for the OFCE approach explained in Section 2.2.

2.2 Optic Flow

Following the idea described by Barron et al. [11] optic flow theories can be divided in
three main types: differential methods, correlation methods and frequency domain meth-
ods. The main goal of these methods is to detect apparent motion by extracting the velo-
city of moving patterns in image sequences. Nowadays, the methods are not as simple to
define in types nonetheless the OFCE developed by Florack et al. [5] is mainly based in
the differential techniques presented in Section 2.2.1.

7
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(a) (b)

(c) (d)

Figure 2.1: Harmonic phase (HARP) images of :(a) vertically tagged MR image in short
axis of the left ventricle and (b) horizontally tagged MR image in short axis of the left
ventricle. (c),(d): Sine of the HARP images in (a) and (b) respectively.

8



2.2. OPTIC FLOW

2.2.1 Differential Techniques

Differential Techniques use image intensity or filtered versions of the image to assess
the velocity by computing spatiotemporal derivatives. However, the assumption that there
is no pixel brightness decay, has to be made. Given an image sequence f(x, y, t) : <2 ×
<+ → <, where x, y and t represent the spatial and temporal coordinates

f(x+ δx, y + δy, t+ δt) = f(x, y, t) (2.4)

and δx, δy, δt represent the displacement in space and time. After applying the Taylor’s
series in the left hand side of the previous equation we have the basic Optic Flow Constrain
Equation (OFCE)

∂f

∂x

δx

δt
+
∂f

∂y

δy

δt
+
∂f

∂t
= 0⇔ fxu+ fyv + ft = 0 (2.5)

where u and v are the velocities in the x and y direction. This equation, however,
presents itself with a problem called “aperture problem". The problem resumes in the
fact that u and v are both unknown variables and so Equation 2.5 has no unique solution.
The usual way to overcome the “aperture problem" is to complement our data with prior
knowledge or by making an assumption about the true motion field. According with Horn
et al. [12] the physical motion fields tend to get smoother due to inertial and coherence
of physical objects. Therefore, they introduced a new term in Equation 2.5 obtaining the
regularized optic flow technique

∫
Ω⊂<2

[
(fxu+ fyv + ft)

2 + λ(|∇u|2 + |∇v|2)
]
dxdy (2.6)

where ∇ is the gradient and λ is a positive weight that leads to a smoother velocity field
when given large values. Nevertheless if the motion field presents strong variations it will
not be retrieved correctly.

A multiscale generalization of this model was proposed by Florack et al. [13], Niessen

9
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et al. [14][15] and Suinesiaputra et al. [16]. In this new method conditions that reflected
known facts about simulated object dynamics were imposed. Their success was based in
the use of spatial and temporal scale degrees of freedom (d.o.f.’s) of Gaussian derivative
filters. An assumption that the source data forms a scalar field is made. Therefore, given
an image f0(x, y, t) where x, y and t are spatial and temporal coordinates by convolution
with a derivative of a normalized Gaussian

φ(x, y, t;σ, τ) =
1

2πσ2
√

2πτ 2
e−

x2+y2

2σ2 −
t2

2τ2 (2.7)

we obtain a scale space representation f

f(x, y, t, σ, τ) = f0(x, y, t) ∗ φ(x, y, t;σ, τ) (2.8)

where σ > 0 and τ > 0 represent the isotropic spatial scale and the temporal scale re-
spectively.

The optic flow scheme uses a local polynomial expansion of the velocity field, in every
point, up to a certain order. For a first order scheme, the two components of the velocity
field are U(x, y, t) = u+ uxx+ uyy+ utt and V (x, y, t) = v+ vxx+ vyy+ vtt. Equation
2.5 can now be represented by a system of matrices

Av = a (2.9)

A=
fx fy fxtτ

2 fytτ
2 fxxσ

2 fxyσ
2 fxyσ

2 fyyσ
2

fxt fyt fx + fxttτ
2 fy + fyttτ

2 fxxtσ
2 fxytσ

2 fxytσ
2 fyytσ

2

fxx fxy fxxtτ
2 fxytτ

2 fx + fxxxσ
2 fy + fxxyσ

2 fxxyσ
2 fxyyσ

2

fxy fyy fxytτ
2 fyytτ

2 fxxyσ
2 fxyyσ

2 fx+ fxyyσ
2 fy + fyyyσ

2

 ,

v = [uvutvtuxvxuyvy]
T and a = −[ftfttfxtfyt]

T .

10



2.2. OPTIC FLOW

In order to retrieve the missing d.o.f.’s, Florack et al. [5] added more intrinsic evid-
ence to the one already existing by using a second independent recording of the same
spatiotemporal region of interest. This improved method uses two MR image sequences
with distinct tagging patterns. We now have a second image sequence g that after the
convolution can be represented by

Bv = b. (2.10)

Assuming that f and g are truly independent we have

Cv = c (2.11)

whereC =
[
A
B

]
, c =

[
a
b

]
and the only possible solution is v. Having this, the "aperture

problem" ceases to exist.

2.2.2 3D OFCE

In this work will be analysed 3D MR images, therefore it is necessary to apply a method
adapted to this conditions. Taking in consideration the OFCE explained below is then
possible to use it in a 3D environment. Having that, we would have a third image h with
dimension z and velocity w. The vectors U, V and W would then be

U(x, y, z, t) = u+ uxx+ uyy + uzz + utt

V (x, y, z, t) = v + vxx+ vyy + vzz + vtt (2.12)

W (x, y, z, t) = w + wxx+ wyy + wzz + wtt

11
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PT
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Consequently, the matrices involved in Equation (2.9) are

v = [uvwutvtwtuxvxwxuyvywyuzvzwz]
T and a = −[ftfxtfytfztftt]

T .

Following the same arguments given in section 2.2.1, after convolution, image h is represented by

Dv = d (2.13)

Which means that Equation (2.11) is now

Cv = c (2.14)[
A
B
D

]
v =

[
a
b
d

]
(2.15)

12



2.3. EXPECTED VALUES OF VELOCITY

2.3 Expected values of Velocity

The assessment of the velocities of the myocardium movement can also help to under-
stand the limitations and constrains of the OFCE. Therefore, it is important to know what
range of values are expectable to be detected in a tagged MR sequence of images. As it
was mentioned before this kind of knowledge can’t be directly obtained with MR, non-
etheless there are other imaging techniques capable of detect and analyze the movement
of a certain moving target.

The most common imaging technique used to obtain the velocities of the movement
of the heart is Tissue Doppler (TD). Manouras et al. [17] used spectral TD, color TD
and M-mode recordings to determine the longitudinal systolic myocardial velocities and
displacement of the LV. For that study the basal septal and lateral wall of 24 healthy indi-
viduals were analyzed. After comparing the results of the 3 different methods, the range
of velocities obtained for the myocardium was [7, 12] cm/sec and the respective displace-
ment was [9, 19] mm.

Considering a typical MR image resolution of 1.3× 1.3mm2 and that, per each second
approximately 30 frames are obtained it is possible to convert the velocities to pixel/frame.
By direct calculation we would then obtain a minimum velocity of 1.846 pixels/frame

and a maximum velocity of 3.07 pixels/frame. Whereas the displacements would be in
the range [6.92, 14.61] pixels. These resolution values are based on real tagging MR data
obtained from anonymous volunteers.

After knowing the range of values that are expected, it is possible to evaluate the lim-
itations of this method.

13
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Chapter 3

Analysis of the Factors Affecting
Velocity

For every method or theory there is a range of values and situations for which these
are valid and possible to apply. The 3D OFCE method exposed in this work is no excep-
tion. Therefore, in order to test the conditions in which this method is reliable, a study of
possible combinations of variables was made.

To evaluate and quantify the accuracy of the results obtained, it is necessary to dis-
tinguish the factors that influence this method. The knowledge of the consequence of
variables such as the width of the tag, the values of σ and τ and also the effect of the
boundaries are fundamental. Allowing the possibility of a better manipulation of a spe-
cific group of given data and consequently the optimization of the results.

In order to analyze all the factors mentioned above, we create a phantom image that
simulates a constant and unidirectional movement. The main idea behind this simulation
is to test the system in the simplest case, assuming that if the method fails, it will most
likely fail in more complex situations.

To recreate the tag patterns, a sinusoidal function was used. Following the symbology
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used in Section A.2 the intensity of each pixel is given by

µ = sin
2π

L
(a(x− ut) + b(y − vt) + c(z − wt)) (3.1)

In Equation (3.1) L represents the period of the function, t is the time, x, y and z are
the coordinates of the pixels, u, v and w are constant velocities imposed to the system and
a, b and c represent the unit vector of the movement, a2 + b2 + c2 = 1, that allows us
to consider any type of movement (unidirectional or oblique). By applying the functions
presented above simultaneously, it is possible to simulate a sequence of images were the
velocity of the movement can be easily manipulated.

In contrast with Equation (A.7) that uses a tag pattern grid, Equation (3.1) uses three
distinct tag patterns and so it is represented as a sum and not a product of the different
unidirectional movements.

In a perfect system, when a mathematical method is used to calculate the velocities
of the movement created by µ, the final values obtained would be u, v and w. However,
this is a unrealistic expectation considering that the input given to the method is not a
continuous function, but a sequence of images. As follows, the input for the OFCE is a
3D matrix where the movement of the myocardium is represented by the change in pixel
intensity frame by frame. Every factor that modifies the pixel value will directly modify
the accuracy of the results.

3.1 Image Boundaries

Just like any other method of image analysis that uses convolutions with extended ker-
nels, the OFCE generates artifacts in the boundaries of the image. These artifacts are due
to repetitive convolutions in the spatial and temporal domain. The cyclic nature of the
method creates a strong edge by neighboring pixels at the ends of the image. Unfortu-
nately there is no way to eliminate the artifacts therefore, a decision in how to deal with
this problem has to be made [18].
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3.1. IMAGE BOUNDARIES

As a matter of convenience it was decided that the better solution would be to define a
section of artifacts and remove it. This decision was based on the fact that the input images
used in this work are a section of Thoracic Tagging MR images (see Figure 3.1). Having
that, it is easy to manipulate the dimension of the image and the section to be removed
without affecting relevant data.

Figure 3.1: Original Thoracic Tagged MR image from anonymous patient (on the left) and
analyzed section of the heart (on the right).

It is then necessary to define where is the heart information and remove a section from
the Thoracic MR image taking in consideration the area for the artifacts.

Taking in consideration an input image µ(x, y, z) of dimensions {D,D,D} the heart
will be in a region of interest RoI{x, y, z} = {DRoI , DRoI , DRoI}. The relation between
the two dimensions will be defined by

DRoI = D − 2λσ (3.2)

where σ is the spatial scale used for the kernel convolutions and λ is a constant. For a
better comprehension of what is the RoI this was synthesized in Figure 3.2.

In the tests presented in this work, the dimension D used was 20 pixels and λ was set
to 2, meaning that DRoI = 12. Nonetheless, the boundaries effect tend to be worst with
the increase of D so the value of λ as to be increased. Thus is necessary to find a balance
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Figure 3.2: Scheme of the RoI and the original image µ.

between D and the value of λ and adjust the margins of the image so that no relevant
information is removed.

3.2 Tag Pattern’s Width

The Tag Pattern’s width represented by L in Equation (3.1) is one of the parameters
that can influence the results the most. This determines the number of tag lines that will
be present in an image. In this work, a test was made to understand the relation between
the number of tag lines per image, the velocity of the movement and the dimensions of the
image µ.

The values for the parameters used by Equation (3.1) are in Table 3.1. Different velo-
cities were induced to the system in the z direction.

1The dimension of the images used in the tests were limited by the RAM capacity of the computer in
use. Therefore, the maximum value for D that was possible to analyse in a efficient time interval was 20.
Nonetheless, the results where similar in a more time consuming test made for D = 30.
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Table 3.1: Parameters used for the tag pattern’s width analysis.

Value Unit
u 0 Pixel/Frame
v 0 Pixel/Frame

w = w0 { 0.5 , 1.5 , π/2,
√

2 } Pixel/Frame
t [0, 19] Frame
L equation (3.3) Pixel
D1 20 Pixel
σ 1 Pixels
τ 1 Frames

Here L is expressed by Equation (3.3), and D is the unidirectional size of the image
such that as shown in Section 3.1.

L ∈
[

(D − 5)

D
, 2×D

]
, (3.3)

This means that our input image will be a 4-dimensional image with dimensions
{x, y, z, t} = {20, 20, 20, 20}. For each value of w, an evaluation of all the values in
Equation (3.3) will be made.

For a simpler comprehension of the results, the graphs “Box Whisker Chart" from
Mathematica 9 were used in this work.

In this type of chart, the accuracy of the results is represented by the distribution boxes.
Thus, if the final values are all accurate for a particular value of L

D
, then the representative

box will be shown as a line centered in wm
w0

= 1. Here wm is the value of the velocity
calculated and w0 is the value of the initial velocity given to the system. A wider box
shows that there is a lower accuracy in the results. Another indicator of the accuracy are
the outliers. These are values that lie outside the overall pattern of the distribution [19].

In a first evaluation of the method exact values of L were used. Meaning that for
D = 10 and L

D
∈ [1, 2] in intervals of 0.1 all the values of L would be integers from 1

to 20. Having this set of variables, only integer and half-integer values of w0 could be
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analyzed. In the following attempts, non-integer values of L were used. It was then viable
to apply the method for any value of w0. It was possible to conclude that only particular
values of L can be used.

(a) (b)

(c) (d)

Figure 3.3: Tag pattern’s width variation: (a) w0 = 0.5; (b) w0 = 1.5; (c) w0 = π
2

and (d)
w0 =

√
2 pixels/frame.

For w0 = 0.5 pixels/frame, it is possible to observe that the best results are obtained
for L

D
= 0.51 and L

D
= 1.01 as presented in Figure 3.3(a). For some values of L

D
≤ 1.2

there are no visible outliers. Nonetheless, in a expanded observation of the same results, it
is possible to confirm that for each value of L

D
there is at least one far outlier whose value

is much bigger than the value of w0.

Setting w0 to 1.5 pixels/frame there are more than one set of acceptable results,
being L

D
= 0.61, L

D
= 1.01 and L

D
= 1.51 as it is possible to observe in Figure 3.3(b). For
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w0 = π pixels/frame, Figure 3.3(c), the best ratios of L
D

are in L
D

= 1.01 and L
D

= 1.61.
Finally with w0 =

√
2 pixels/frame, in Figure3.3(d), the best values are L

D
= 0.91 and

L
D

= 1.41.

Despite the fact that for each value of w0 more than one acceptable value for L
D

was
found, these are only applicable to a movement of specific constant velocity. Considering
that the method will receive a variable velocity, it is necessary to find a common value of
L
D

.

By the analysis of multiple scenarios similar to the ones above, it was possible to
conclude that for every value of w0, if the size of tag pattern is close or equal to the
dimension of the image, L

D
≈ 1.01, the results are accurate. As a contrast, for L

D
= 0.21

the values of wm
w0

are not acceptable.

3.3 Spatial and Temporal Scales

Another relevant factor that can affect the accuracy of the results is the scale. Following
the knowledge about the OFCE method given in Section 2.2, there are two types of scales
to evaluate, temporal scale τ and spatial scale σ.

Thus to solve the OFCE, 3-order Gaussian derivatives had to be used. When dealing
with spatiotemporal images, space and time have their own physical scale parameter. As
a result this method requires four parameters: three spatial scales σx, σy and σz ∈ <+ and
one τ ∈ <+ that determine the width of the Gaussians.

In terms of image representation the increase of the scale lowers the resolution such as
shown in Figure 3.4. Therefore, is relevant to determine an interval for σx, σy and σz ∈ <+

and τ ∈ <+ for which the assessment of the optic flow is acceptable.

Following the conclusions of the previous Section 3.2, the parameters in Table 3.2
were set for an analysis of the scales.

For the evaluation of temporal and spatial scale, multiple tests were made. In the first
assessments, both values σz and τ were tested within σz ∈]0, 10] and τ ∈]0, 10] separately
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Figure 3.4: Scale space representation of Figure 2.1(c). From left to right σ = 1, 4, 8pixels

Table 3.2: Parameters used for the scale analysis

Value Unit
u 0 Pixel/Frame
v 0 Pixel/Frame

w = w0 { 0.5 ,1.7, 2.4 } Pixel/Frame
t [0, 19] Frame
L D + 0.1 Pixel
D 20 Pixel

and then in simultaneous. It was possible to conclude that for smaller values of σz and τ
the results of wm

w0
are better. A second group of experiments was performed. In this study

the values of s and t were set to s ∈]0, 3] and s ∈]0, 3] and a study of the relation between
the two variables was made.

Using the parameters in Table 3.2 multiple simulations were made and three were
represented in Figure 3.5. Each representation shows the interval for the values of σ and
τ that generate good results for different values of w0. As it can be seen, there are three
distinct areas represented by different colors. The red area represents the values that are
not usable for being too small. The gray area represents the multiple ratios tested and the
values that would be expected to work fine. Finally, the blue area contains all the values
of σ and τ that generate good results.

The development of the values of the scales and the relation with the respective ratio
σ
τ

for w0 = 0.5 pixel/frame can be analyzed in Figure 3.5(a). The good results of scale
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3.3. SPATIAL AND TEMPORAL SCALES

are within the intervals σ ∈ [0.63, 3.2] pixels and τ ∈ [0.63, 2] frames. Nonetheless,
these values are restricted to appear in a certain ratio. Having a maximum ratio of 3

pixels/frame for τ = 0.63 frames and a minimum σ
τ

= 1.7 pixels/frame for τ = 2

frames.

Taking now in consideration w0 = 1.7 pixel/frame, shown in Figure 3.5(b), the blue
area is restricted to the intervals σ ∈ [0.63, 3] pixels and τ ∈ [0.63, 2] frames. The
minimum ratio is 3 pixels/frame and the maximum value for σ

τ
is 1.5 pixels/frame.

At last for w0 = 2.4 pixel/frame, in Figure 3.5(c), the interval for spatial and temporal
scales are σ ∈ [0.63, 3] pixels and τ ∈ [0.63, 2] frames, and the maximum and minimum
values for σ

τ
are 3 and 1.2 pixels/frame respectively.

A smooth decline of the ratios σ
τ

with the increase of the value of τ and w0 can be seen
in Figure 3.5.

The relative error δ was calculated for each value of σ above the acceptable ratio of
σ
τ

. These are presented as different colored dots (Magenta, Red and Black) representing
δ < 20%, δ < 40% and δ > 40% respectively. For every value of w0 it is possible to detect
a growth in the errors above the maximum acceptable ratio. Likewise, the increase of the
relative error δ is sharper for larger values of w0.

In a situation where the input velocity is unknown the safest interval of ratios to use is
the one below the minimum value of σ

τ
obtained in the study, this being 1.2 pixels/frame.

In tests made with larger values of D the results obtained were similar. Therefore, we can
conclude that the best values of σ and τ to use are σ ∈ [0.63, 3.2] pixels and τ ∈ [0.63, 2]

frames and with σ
τ
≤ 1 pixels/frame.
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(a)

(b)

(c)

Figure 3.5: Interval for spatial and temporal scale for: (a) w0 = 0.5 pixel/frame, (b)
w0 = 1.7 pixel/frame, (c) w0 = 2.4 pixel/frame.
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Chapter 4

The Influence of Noise

So far we have simulated and analyzed the effect of a variety of factors that can influ-
ence the results obtained by OFCE. Nevertheless this has been made with simple examples
of sinusoidal functions like Equation (3.1). With the goal of mimicking as closely as pos-
sible, the input given by a tagged MR image, it is necessary to consider the influence of
noise.

When talking about image processing, noise is a common problem. Consequently,
one of the first steps required to retrieve and analyse relevant information from a image is
denoising. Despite the extensive literature existent about this process, it is imperative that
we know what type of noise we are dealing with. Commonly, the assumption that the noise
in MR images is defined by Gaussian distribution is made. This would simplify the method
of deblurring and filtering, but generates poor quality results. In 1984, Edelstein et al. [20]
proved that noise in magnitude MR images is governed by the Rayleigh distribution, later
in 1989 Bernstein et al. [21] presented a closed form solution of the more general Rician
distribution. It is then, in 1995, that Gudbjartsson et al. [22] presents a way to express
noise with a Rician distribution for both magnitude and phase MR images.

As explained in Section 2.1 the input images for the OFCE method are phase images.
These are obtained after the use of the HARP method and the application of the Sine
function as shown in Figure 2.1. According to Ding et al. [23] a sinusoidal function mixed
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with noise can be expressed by Equation (4.1).

y(t) = µ(t) + n(t) (4.1)

Where y(t) is the noisy image, µ(t) is the clean image generated in Chapter 3 (Equation
(3.1)) and n(t) the noise. Following the statements made before in this section, n(t) will be
defined as a Rician distribution, also known as Rice density or Rice distribution. Therefore,
the distribution of the phase noise ∆θ is given by Equation (4.2).

P∆θ
=

1

2π
e−A

2/2σ2

[
1 +

A

σ

√
2π cos ∆θe

A2 cos2 ∆θ/2σ
2

.
1

2
√
π

∫ A cos ∆θ
σ

−∞
e−χ

2/2dχ

]
(4.2)

WhereA is the image pixel intensity without noise. Despite the complexity of Equation
(4.2), whenA� σ the distribution can be considered as a zero mean Gaussian distribution
[22]. Also when A

σ
= 0 a Rayleigh distribution is obtained [23].

Having that, it is possible to reanalyze all the factors tested in Chapter 3 with the
influence of noise.

With the addition of noise, not only the pixel intensity of the input image will change,
but also the variables necessary to assess the viability of the method. For a better un-
derstanding of the results presented in the following section, these will be continuously
confronted with Chapter 3. Therefore, the conditions tested will be similar.

Regarding the boundaries effect, there was no evident influence of noise in the artifacts.
For this reason all the tests regarding the noise influence will use the parameters of the RoI
as explained in Section 3.1.
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4.1 Tag Pattern’s Width

In Section 3.2, it was concluded that the suitable values of L
D

are approximately one
and that only non-integer values of L can be used. Using the conditions presented in Table
4.1 it was possible to assess the effect of the Rician noise.

Table 4.1: Parameters used for the Tag Pattern’s Width analysis with the addition of Rician
noise

Value Unit
u 0 Pixel/Frame
v 0 Pixel/Frame

w = w0 { 0.5 , 1.5 , π/2,
√

2 } Pixel/Frame
t [0, 19] Frame
L Equation (3.3) Pixel
D1 20 Pixel
σ 2 Pixels
τ 2 Frames

While in tests made without noise the best solutions were found in L
D
∈ [0, 2], after the

addition of noise this was no longer a suitable interval. As we can see in Figure 4.1, the
values below L

D
= 1.01 are much smaller than wm

w0
= 1 and therefore unacceptable. Hence

it was used a new interval for the evaluation of the width of tag patterns.

The best solutions were then found in the interval L
D
∈ [1, 3]. For the velocity w0 = 0.5

pixels/frame in Figure 4.2(a), L
D

= 2.01 is the best result possible. There is a bigger
occurrence of outliers for values above the optimal result. Also, it is notable the decrease
in the accuracy of wm

w0
as L

D
deviates from L

D
= 2.01. Such as the previous analysis, also

for w0 = 1.5 pixels/frame, in Figure 4.2(b), the best result found was for L
D

= 2.01. The
decrease of accuracy for the results as L

D
deviates from the optimal value is also notable.

There is a strong decline of the accuracy for the values of wm
w0

as L
D

decreases.

Considering now w0 = fracπ2 pixels/frame, in Figure 4.2(c), there is only one
occurrence of L

D
for which the value of wm

w0
is acceptable, L

D
= 2.11. Finally for w0 =

√
2

pixels/frame, in Figure 4.2(d), there is no optimal result. Nonetheless, the results in
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Figure 4.1: Tag pattern’s width variation from 0 to 2 with influence of Rician noise:w0 =
0.5 pixels/frame.

L
D
∈ [1.81, 2.01] and L

D
∈ [2.61, 2.71] are considered acceptable.

Analyzing all the results as a group, in Figure 4.2, there is a constant decline of the
accuracy of wm

w0
for L

D
≤ 1.81. It is also possible to observe that regardless of the values

of wm
w0

are very close to one for L
D
≥ 2.11, these tend to have a bigger distribution as L

D

increases. The best results were mostly found in values of L
D

approximated to 2.

4.1.1 Quantity of Noise

Later experiments where made to evaluate the influence of the quantity of the noise
in the results. In the previous tests made in Section 4.1 a random function was used to
generate the Rician noise n(t) (Equation (4.1)). The manipulation of the interval of the
random generation allowed to simulate a wider concentration of noise and also a more
narrow concentration.

It was possible to conclude that there are differences in the results with a small quantity
of noise and with a lot of noise, shown in Figure 4.3. Just as expected, for tag pattern’s
width below D and with n(t) ∈ [1, 10], presented in Figure 4.3(b), the results obtained
were worse than with n(t) ∈ [0, 0.3], as is possible to observe Figure 4.3(a). Nonetheless,
the results obtained are not distinct enough and the conclusions remain the same as the
ones of previous analysis.
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(a) (b)

(c) (d)

Figure 4.2: Tag pattern’s width variation from 1 to 3 with influence of Rician noise: (a)
w0 = 0.5; (b) w0 = 1.5; (c) w0 = π

2
and (d) w0 =

√
2 pixels/frame.

Ended the evaluation of the tag pattern widths with the addition of Rician distributed
noise, we can conclude that the best tag pattern width to use should be a non-integer
number and approximately the double of the dimension D of the image.

4.2 Spatial and Temporal Scales

As it was possible to see in the previous sections, there are evident differences in the
results obtained with a clean image and with noisy images.

Thus following the conclusions taken in Section 4.1, the influence of noise in spatial
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(a) (b)

Figure 4.3: Noise quantity variation for a w0 = 1.5 pixel/frame. Results with (a) n(t) ∈
[0, 0.3]; (b) n(t) ∈ [1, 10]

and temporal scales was evaluated with the parameters presented in Table 4.2. The values
of σ and τ are explained in Section 3.3.

Table 4.2: Parameters used for the Scale analysis with rician noise

Value Unit
u 0 Pixel/Frame
v 0 Pixel/Frame

w = w0 { 0.5 ,1.7, 2.4 } Pixel/Frame
t [0, 19] Frame
L 2D + 0.1 Pixel
D 20 Pixel

After extensive testing it was possible to conclude that there are relevant differences
regarding the spatial and temporal scales to be used with noise. For smaller values of w0

like w0 = 0.5 pixels/frame the maximum value for σ
τ

was 2.5 pixels/frame and it was
found for τ = 0.63 frames. There is a strong decline of σ

τ
with the increase of τ where

the maximum value of τ acceptable is τ = 2 frames. Also, for the values above the
acceptable ratios, there is a strong increase in the relative error, δ with the increase of σ,
such as is possible to observe in Figure 4.4(a).
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(a)

(b)

(c)

Figure 4.4: Interval for spatial and temporal scale for: (a) w0 = 0.5 pixel/frame, (b)
w0 = 1.7 pixel/frame, (c) w0 = 3.2 pixel/frame.
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Analyzing the results forw0 = 1.7 pixels/frame, we can find a similar evolution as in
w0 = 0.5 pixels/frame. The main difference between the two velocities is the maximum
value of τ . Likewise, the decline of σ

τ
is sharper than in w0 = 0.5 pixels/frame. This

can be easily observed by comparing Figure 4.4(a) and 4.4(b).

For the value of w0 = 3.2 pixels/frame, the results obtained were more restricted
than for smaller values w0. For this velocity the maximum value of τ that is capable
of generating results with an error below δ < 10% is τ = 1.8 frames for which the
maximum value of σ

τ
is 0.8 pixels/frame as shown in Figure 4.4(c).

Despite the fact that the minimum values of σ and τ remain the same for each value of
w0, there is an evident relation between the maximum temporal scale τ acceptable and the
input velocity w0. Nonetheless, it is still possible to establish a safe interval for σ, τ and
the ratio σ

τ
were the results generated are acceptable for any value of w0. They are

σ ∈ [0.63, 1.38] pixels

τ ∈ [0.63, 1.26] frames
σ
τ
∈ [0, 1.1] pixels/frame.

4.3 Dimension D

During the evaluation of the scales in Section 4.2 it was found a strong relation between
the dimension D of the image and the input velocities w0. During the tests made with
D = 10 pixels, the input velocities for which the method was capable to produce results
with errors δ < 10% were w0 < 2.5 pixel/frame. Therefore, when produced a graph for
w0 = 2.4 pixel/frame, this presents a very restrict interval of σ and τ , such as in Figure
4.5.

In order to understand if the case presented was a isolated phenomena the analysis of
the relation w0

D
was made for bigger values of D. The result was a constant pattern for

every value of D. Once the value of w0 approximates to one forth of D, the value of the
ratio w0

wm
declines and the accuracy of the results decreases with the increase of w0. The
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effect can be synthesized by Figure 4.6.

Figure 4.5: Scales evaluation graph for w0 = 2.4 pixels/frame and D = 10 pixels.

Figure 4.6: Relation w0

D
in noisy images.

Ideally, there would be no relation between dimension and the velocities. Nonetheless,
as exposed in Section 3.1 is possible to manipulate the dimension of the image D in order
to get the best possible results. Considering that the real velocities of the myocardium are
within [1.846, 3.07] pixel/frame, as shown in Section 2.3, the dimension D should be
at least four times bigger than the maximum w0 (w0max). The recommended value of D
would then be D > 4× w0max i.e. D > 12 pixels.
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Chapter 5

Conclusion

The main goal of this dissertation project was to present the limitations and constrains of
the OFCE regarding the quantification of myocardial movement using tagging MR images.
Initially, it was also stipulated that if the method would be proven efficient, having time
and disposability resources, this would be combined with a Cardiac Motion Simulator to
detect abnormalities in the motion of the heart.

By the end of the project multiple scenarios were simulated and tested in order to asses
the constrains of the OFCE method when applied to tagging MR images. It was then
possible to assemble a group of factors that can affect the accuracy of the results and the
best way to optimize the method was discussed. This discussion contemplates multiple
situations including synthetic tagged MR images with and without Rician noise.

With this study it was possible to unravel very important characteristics of the OFCE
method and the tagged MR images. In the evaluation of the method with clean synthetic
images it was discovered a relation between the boundaries artifacts and the accuracy of
the method. Also the tag pattern as an important influence in the method such as the
temporal and spatial scales. Following tests made with noisy images, proved that the same
factors still affect the results but in a different way. During this survey it was found that
the dimension of the images can also affect the results. For the expected values of the
movement of the myocardium of [1.846, 3.07] pixel/frame, it was determined a interval
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of values for which the velocities would be achieved with minimal errors.

During the development of this work many difficulties were found. The first stage of
the project included the familiarity with a new software which revealed to be a extens-
ive time consuming task. Not all the goals settled in the beginning of the project were
concluded due to the discovery of a wide group of limitations of the method. In order to
provide the reader to the most accurate results an extensive series of tests were made sim-
ulating every case possible. Unfortunately, due to the RAM limitations of the computers
provided, this was a task that consumed the majority of the time of the project.

5.1 Future Work

In a future work, the first step would be to complete the evaluation of the factors with
a study of the outliers. The Outliers revealed a certain pattern during the tests, so the
theory that these might be connected with the borders of the tag patterns would be worth
considering.

After an extensive testing series to prove that the outliers are indeed a relevant variable
it would be possible to complete the goals of this project with the combination of the
OFCE with the CMS.

Finally, this prototype together with some acquired knowledge about heart malfunc-
tions, would allow the construction of a application capable to detect and diagnose heart
diseases.

Such as mentioned in the previous paragraphs not all the goals were achieved. Non-
etheless, the knowledge obtained is fundamental to understand up to what extend the
OFCE is a valid method for the detection of Optic Flow in tagged MR images. Des-
pite all the restrictions and limitation, the OFCE shows a great potential for the detection
and quantification of Optic Flow using tagged MR images. With the correct manipulation,
this method can be used to create new applications that can improve medical care.
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Appendix A

Cardiac Motion Simulator

Like any other method created with the goal of evaluating a specific behavior it is funda-
mental to be able to recognize and distinguish a normal event from defective occurrences.
In the specific case of the method described in this work it is necessary to establish ground
truth for myocardial deformation, strain and movement velocities. The evaluation of these
variables revealed to be possible with the use of an adaptation of the cardiac motion simu-
lator (CMS) for tagged MR, developed by Waks et al. [1]. The CMS developed by Waks et
al. [1] incorporates a 13-parameter model of left ventricular motion applied to a confocal
prolate spherical shell, which resembles the shape of the left ventricle (LV). Using the
CMS, true motion can be computed in two or three dimensions and used as a comparative
reference for motion estimation algorithms. Therefore, it is imperative to ensure that the
simulations are representative of a true cardiac motion.

The CMS developed within the context of this work is a simplified version of Waks’
et al. [1] model that uses only 10-parameters, discarding translational factors. Using the
CMS is then possible to obtain strain and deformation as well as to create synthetic tagged
MR images.
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A.1 Cardiac Motion Simulator

A.1.1 Shape

The model developed by Waks et al. [1] is based on data obtained by Arts et al. [3] as a
result of a bead experiment on a dog heart. The basis of the geometric model is the prolate
sphere, which is a three-dimensional ellipsoidal object. A point in the prolate sphere is
defined by (λ, η, φ) where λ is the radius, η the elevation angle and φ the azimuthal angle.
These variables can also be expressed in Cartesian coordinates as shown in Equation (A.1)

x = δ sinh λ sin η cosφ

y = δ sinh λ sin η sinφ

z = δ cosh λ cos η (A.1)

Here δ is a fixed parameter called the focal radius (the distance from the origin to either
focus). In order to define a point (x, y, z) in prolate spheroidal coordinates, one can use
Equations (A.2)

λ = cosh−1 r1 + r2

2δ
(λ > 0),

η = cos−1 r1 − r2

2δ
(0 6 η 6 180),

φ = tan−1 y

x
(0 6 φ 6 360),

r1 =
√
x2 + y2 + (z + δ)2

r2 =
√
x2 + y2 + (z − δ)2 (A.2)

The LV can be defined by λ0 and λi, where λ0 is the outer radius and λi the inner
radius of the myocardium with λi < λ0. Given the restriction 0 6 η 6 120 and using the
values specified in Table A.1, it is possible to build the model of the LV shown in Figure
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A.1 with the prolate sphere.

Figure A.1: Example of a LV’s inner and outer layers using the CMS model. Settings as
in Table A.1.

Table A.1: Constant values model.

Constant Description Value Unit
λi Inner radius 0.35 None
λ0 Outer radius 0.55 None
δ Focal radius 4.00 cm

A.1.2 Motion

As mentioned before the model of Arts et al. [3] induces deformation based on the 13
parameters k1 to k13 listed in the Table A.2. However the simplified model discards the
translational factors meaning that the parameters k11 to k13 are set to zero.

Motion is specified by a transformation which maps a material point p to a corres-
ponding spatial point r at a time t. When the LV deforms, the spatial coordinates cor-
responding to the material points change. To obtain the final matrix that transforms point
p = (px, py, pz) into r(t) = (rx, ry, rz) several matrices where defined in [1], namely F0
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trough F6 and Fb described in Appendix A.5. The overall equation for transforming point
p to point r is Equation (A.3)

r = FbF6F5F4F3F2F1F0p (A.3)

For each step in time it is necessary to compute the value of all ten k-parameters. Arts
et al. [3] used the Levenberg-Marquardt parameter estimation algorithm to estimate all ten
parameters. In order to simulate all the parameters between end-diastole and end-systole,
simplified equations have been used, see Equations (A.4) given below. The parameters
can be obtained according to Equation (A.3).

k1 =
(t− 8)2

320
− 0.1

k2 =
−(t− 8)2

320
+ 0.1

k3 =
−(t− 8)2

640
+ 0.04

k4 = −0.03

k5 = 0.001875t− 0.02 (A.4)

k6 = 0.00046875t2 − 0.0075t

k7 = 0.00234375t2 − 0.0375t+ 0.06

k8 = −0.00375t+ 0.03

k9 = 0.08

k10 = −0.001875t− 0.22

The overall equation for transforming material point p to spatial point r is given by
Equation (A.3). If A is a transformation matrix determined by matrices F0 through F6 and
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Fb then Equation (A.3) can be rewritten in the simplified way

r = Ap (A.5)

All the k-parameters depend on a time instant and are modeled according to the results
of Waks et al. [1]. Spatial points r are determined for each time frame from the material
points p, which means no preceding time frames are required to determine the next.

Arts et. al [3] developed a method to produce deformation using 13 k-parameters.
The main goal is to compute strain and deformation, therefore the parameters k11 to k13

regarding translation don’t bring any relevant information and so these are set to zero. The
description of the original 13 k-parameters is presented in Table A.2.

Table A.2: Parameters for the motion model based in Arts et al. [3] deformation theory.
k1 Radially dependent compression
k2 Left ventricular torsion
k3 Ellipticallization in long axis planes
k4 Ellipticallization in short axis planes
k5 Shear in z direction
k6 Shear in y direction
k7 Shear in x direction
k8 Rotation about x-axis
k9 Rotation about y-axis
k10 Rotation about z-axis
k11 Translation in x direction
k12 Translation in x direction
k13 Translation in x direction

A.2 Synthetic Tagged MR Images

In order to use ground truth motion, synthetic tagged MR images also need to be cre-
ated. If the model is validated, the images can be used to evaluate the OFCE method.
Realistic tag patterns are generated by using a tagged MR imaging equation as described
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in Prince et al. [24]. The pixel intensity value for each point r is µ, which is given by

µ = D0e
−TE
T2 ×

(
1 + ((1− e−TR−td)ξ(r)− 1)e

−td
T1

)
(A.6)

Where, td = ti − t0 and D0, T1 and T2 are constants representing spin density, lon-
gitudinal relaxation time and transverse relaxation time respectively. These constants are
determined by the properties of the LV. TE and TR are the echo and pulse repetition time.
All these parameters have to be specified, see Table A.3. The function ξ(r) represents the
tag pattern and is given by

ξ(r) =(cos2 θ − sin2 θ cos kxrx)×

(cos2 θ − sin2 θ cos kyry)× (A.7)

(cos2 θ − sin2 θ cos kzrz)

kx, ky and kz are spatial frequencies in the x, y and z directions respectively. θ is the tag
pattern flip angle, which is the angle by which longitudinal magnetization is tipped towards
the transverse plane (there is an overall increase in brightness as the flip angle increases)
[25]. Prince et al. [24] only provide ξ(r) in the x and y direction, whereas Equation
(A.7) has been extended in the z direction. In order to obtain images with tagging lines in
e.g. the x direction, one has to set ky and kz to zero, and similarly for lines in the other
directions.

To create images from the transformed data, interpolation needs to be done since the
points r are no longer on a regular grid in the Cartesian coordinate system. A weighted
linear interpolation is used, for which the three nearest neighbors are taken into account.
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Table A.3: Constants tagged spin-echo MR imaging equation.

Description Value Unit
D0 Spin density 300 None
TE Echo time 0.03 Sec
TR Pulse repetition time 10 Sec
T1 Spin-lattice relaxation time 0.6 Sec
T2 Spin-spin relaxation time 0.1 Sec
kx Frequency in x 8.0/0.0 rad/cm
ky Frequency in y 8.0/0.0 rad/cm
kz Frequency in z 8.0/0.0 rad/cm
θ Tip angle of tag pattern 45.00 Degrees

A.3 Deformation

To obtain the Green-Lagrange strain tensor E, the deformation gradient tensor F is re-
quired. The matrices representing torsion and ellipticallization depend on the material
points p, see Appendix A.5, Equations (A.12) to (A.15). Therefore to obtain the deforma-
tion gradient tensor F, the derivation in Equation (A.8) is required.

Fij(p) =
∂ri(p)

∂pj
=

3∑
k=1

∂Aik(p)

∂pj
pk + Aij(p), (A.8)

(A.9)

Here i, j = 1, 2, 3.

Equation (A.8) shows that the derivative of the new coordinates r with respect to the
old coordinates p has to be obtained. The deformation gradient tensor F is only equal to
transformation matrix A, when the latter does not depend on material points p.
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A.4 Strain

Once the deformation gradient tensor F is computed we can calculate the Green-Lagrange
strain tensor E, defined by Equation (A.10).

Eij =
1

2
(FkiFkj − δij) (A.10)

Considering that i, j, k = 1, 2, 3 we have the Equation (A.11)

E =
1

2
(FTF− I) (A.11)

Here I is the identity matrix and δij is the Kronecker delta (δij = 1 if i = j and 0

otherwise).

In order to investigate the properties of E, the eigenvalues, determinant and trace are
calculated. Also, the Frobenius norm of a diagonal matrix containing the eigenvalues of E
in arbitrary order (i.e. the sum of the squared eigenvalues) is computed.

A.5 Matrices developed by Waks et al.[1]

In order to resolve Equation A.3 proposed by Waks et al.[1] is necessary to compute the
matrices F0 to F6 and Fb. The matrices (A.12) to (A.18) give us all the elements necessary
to compute the F- matrices.

F0 =

a
1
3 0 0

0 a
1
3 0

0 0 a−
2
3

 (A.12)

F1 =

ε 0 0

0 ε 0

0 0 ε

 , ε = 3

√
1 +

3k1Vw
4π|F0p|3

(A.13)
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F2 =


cos ak2z1
|r1|

− sin ak2z1
|r1| 0

sin ak2z1
|r1|

cos ak2z1
|r1| 0

0 0 1

 , (A.14)

r1 = F1F0p =

x1

y1

z1



F3 =

a
− 1

3 ek4−(
k3
2

) 0 0

0 a−
1
3 e−k4−(

k3
2

) 0

0 0 a
2
3 ek3

 (A.15)

F4 =

 1 k5 0

k5 1 + k5
2 0

0 0 1



F5 =

 1 0 k6

0 1 0

k6 0 1 + k6
2

 (A.16)

F6 =

1 0 0

0 1 k7

0 k7 1 + k7
2

 (A.17)

Fb = B3B2B1,
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B1 =

1 0 0

0 cos k8 − sin k8

0 sin k8 cos k8



B2 =

 cos k9 0 cos k9

1 0 1

− sin k9 0 cos k9

 (A.18)

B3 =

cos k10 − sin k10 0

sin k10 cos k10 0

0 0 1


In the Equations (A.12), (A.13), (A.14) and (A.15) Waks et al.[1] uses two extra para-

meters a and Vw. Parameter a is used for correction in matrix F0, which transforms a
prolate sphere into a more spherical shape, to deal with possible uniform distortion by
compression, see Equation (A.19). After a few transformations, which require a spherical
sphere, the effect of F0 is undone in matrix F3. Parameter Vw is the volume of the myocar-
dium of the LV. Waks et al. [1] obtained this volume by integrating in prolate spheroidal
coordinates as shown in Equation (A.20)

a =
coshλ

sinhλ
(A.19)

Vw =
πδ3

4
× (3(coshλ0 − coshλi) + 4(cosh3λ0 − cosh3λi)) (A.20)
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