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ABSTRACT 

Paradela Bridge is a metallic bridge located along the bank of the Tua River in northern Portugal. 

While the bridge is not currently in service, its structure is representative of many metallic truss 

structures built across the country between the 19
th
 and the 20

th
 century. The construction of the 

Paradela Bridge was completed in 1886 and served for about 120 years connecting northern Portugal. 

Tua Line belongs to the Douro area that UNESCO recently declared as world heritage. This work 

acquires its importance since it might serve as an insight for the study of many other similar structures 

all over the country. This paper comprises a historic investigation of archived documents, an on-site 

survey to evaluate its present conditions, a dynamic testing and the construction and calibration of 

numerical models in finite element analysis software for structural assessment and capacity rating 

estimation. 

Keywords: Dynamic analysis, modal testing, mode shape, sensitivity analysis. 

1. INTRODUCTION 

Tua line is a narrow gauge railway line of 133.8km in length, intended to connect the Douro vineyard 

region in Portugal. It goes from Foz do Tua station until Bragança station [1]. This railway line crosses 

a dramatic landscape of deep valleys, and it is considered as one of the most difficult railway lines 

ever built in the Iberian Peninsula. The line was several times closed and reopened to service due to 

maintenance after the Metro de Mirandela Corporation acquired the rights to operate and manage it, in 

1995. Nevertheless, in August 22
th
, 2008, the line was completely closed due to governmental cuts, 

lack of generated profits and a sequence of fatal accidents where several people resulted either killed 

or injured. Nowadays, only a small parcel of the line, which goes from Cachao to Mirandela, is in 

service. Paradela Bridge belongs to the closed part of the Tua line. Likewise, due to the construction of 

Foz Tua Dam, part of the route of the Tua line will be submerged under water when the Dam project is 

completed.  
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2. BACKGROUND 

Paradela Bridge structure is a metallic underslung deck truss bridge shown in Figure 1. It is located 

along the Tua River, in Tras-os-Montes northeast Portugal. Paradela Bridge is part of the Tua line 

which comprises other 3 similar bridges. 

  

Figure 1The Paradela Bridge [2] 

2.1. Historical research  

Paradela Bridge was designed by the Belgium company Societé Anonyme Internationale de 

Construction et d'Entreprise de Travaux Publicsand built by the construction company Castanheiro. 

From the original design documents, it was found that the bridge truss was designed as a simply 

supported beam. The trainload was basically assumed as auniform distributed load (udl) and the 

reactions applied onto the midspans of the bearing members. Moreover, the original design 

calculations revealed that only static loads were considered and dynamic forces were neglected [3].  

2.2. In-situ structural survey 

A visual inspection of the bridge was carried out in order to verify and compare information gathered 

through the historical survey, i.e. the actual geometry of the bridge, the dimensions of the cross 

sections of each element, the materials used. This process allowed a better understanding of the 

connections work principle, likely changes throughout the years and finally to detect likely damage or 

material decay. 

2.2.1. Materials 

In spite the fact that no information regarding the materials used was found in the original design 

documents and due to the impossibility of carrying out non destructive or destructive tests onto the 

bridge, visual characterisation and dating were used to define the materials of the bridge for its study. 

Since the construction was completed in 1886, wrought iron or early steel were the likely materials 

used to build the bridge [4]. 

2.2.2. Geometry survey 

The aim of the geometrical survey was to verify and compare information contained in the original 

documents as well as to obtain the missing information required to build a reliable and representative 

numerical model. Figure 2 shows some of the photos taken during the on-site geometry survey. 

The dimensions of the bridge were 25.85 m in length and consisted of 10 similar modules of 2.58 m 

each and 2.6 m width. The structure is simply supported on masonry abutments. The dimensions 

measured on-site were fairly similar to the information contained in the original project files, with the 

exception of the width of the bridge that was wider than in the drawings by 25 cm, as shown in Figure 

4. Lateral bracing systems are present in the horizontal and vertical planes. The vast majority of the 

members are built-up sections, and only some few bracing elements are identified as hot rolled 

sections. Furthermore, missing information on secondary members, as well as slight changes in main 

member’s dimensions that might have been changed at some point was gathered. 
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Figure 2 Images of the on-site geometry survey [3] 

 

Figure 3 Plan view of Paradela Bridge [3] 

 

Figure 4 Elevation and cross section of Paradela Bridge [3] 

Gusset plates and rivets were used all over the bridge connections and no welding works were 

detected. Moreover, no corrosion was found at all and no missing elements were identified. In fact, the 

condition of the structure is good due to maintenance performed in 2007 according to tags found along 

the bridge. Despite no further investigations on the supports of the bridge, visual inspection suggested 

that the abutments were sound enough and no cracks or damage were perceived [3]. 

3. DYNAMIC TESTS 

In order to evaluate the dynamic properties of the Railway Bridge, vibration levels and identification 

of modal parameters, on-site dynamic tests were conducted. Such tests consisted in acquiring the 

response of the structure due to the ambient or natural excitation and due to forced excitations imposed 

by an impact hammer [2,5].  

The current abandoned state of the line provided a great opportunity to perform the forced vibration 

test with the impact hammer and compare with the ambient test results. In this way, a comparison of 

two modal analysis approaches was made, i.e. an operational modal analysis and the traditional modal 

analysis using the data from both input and output. 

3.1. Equipment  

The equipment used for the dynamic test consisted on an acquisition system with 3 data acquisition 

modules, which allowed obtaining high-accuracy data from 12 channels simultaneously. For both 
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ambient and forced dynamic tests, piezoelectric accelerometers of high sensitivity (10 V/g) were used, 

enabling the measurement of low vibration levels. Moreover, the acquisition system was connected to 

a laptop running software (Figure 5). For the forced vibration test an impact hammer was used.  

   
Figure 5 Dynamic test on Paradela Bridge [4] 

3.2. Testing procedure 

The test on the bridge implied special logistics due to its remote location and difficult access. 

For instance, electricity was not available and batteries of the equipment had to be wisely managed. 

Thus, the test had to be properly planed in advance since only one visit was intended to achieve all the 

goals of the test. 

The test planning involved the preparation of a simplistic Finite Element (FE) model of the bridge 

based on the available information resulting from the historical research. The model served to estimate 

the frequencies and mode shapes of the bridge; so, the selection of the adequate equipment and the 

testing setup’s for the dynamic test were designed. The information provided by the FE model also 

allowed the selection of the optimal locations and the selection of the appropriate sampling frequency 

for the test. It was found that the main frequencies were somewhat within a range of 4 and 20 Hz, 

involving vertical, lateral and some torsional mode shapes.  

In order to ensure a good spatial distribution along the structure for the dynamic test, a regular grid of 

22 points was defined in the truss top chord. This arrangement ensured covering the entire top plane of 

the structure while making it coincident to the structure´s nodes, in both vertical and lateral directions, 

as Figure 6 shows. so, It also ensured that no local behaviour would affect the results. 

 
Figure 6Measurement points scheme[3] 

However, since the acquisition system was just able to read 12 channels in simultaneous, recordings 

had to be divided in 4 different setups to measure all the points. Hence, 4 accelerometers (Reference 

accelerometers) were fixed at specific locations,whereas the other 8changed in different positions 

(Roving accelerometers).  
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3.2.1. Ambient vibration test 

The first test performed was the ambient vibration, where only the response of the structure to natural 

excitation occurring at that time was recorded. The results were mainly due to lateral wind and some 

human induced vibration. For each setup, two signals were acquired during 10 minutes, with a 

sampling frequency of 200Hz. Figure 9 describes the different configurations of accelerometers, along 

with the different setups for the ambient vibration test. 

 
Figure 7 Typical setup  arrangement for ambient vibration test [4]. 

3.2.2. Forced vibration test 

The forced vibration test used setup arrangements that were identical to the ones used for the ambient 

tests. However, one of the channels was intended to measure the force signals from the transducer in 

the hammer. The test was based on a single input multiple output approach, where for each impact 

location, values of a set of accelerometers were simultaneously acquired. The results can provide a 

row of the frequency response function matrix, information that is enough to get the mode shapes. 

For the input-output test, it was important to obtain the driving point measurement. Such point is 

normally measured in both input and output signals for scaling mode shapes and merging different 

setups together. Nonetheless, for this test, it was not possible to carry out such measurement because it 

would not have been possible to hit the accelerometers locations with the hammer. Therefore, a 

different approach was used, assuring that the impact locations in a given setup would be measuring 

points in other setups and with the use of reference accelerometers, it was possible to estimate the 

driving point measurements. 

Figure 8 shows the different forced vibration test setups. It can be noticed that some setups have more 

than one hammer impact location, with the objective of having more data redundancy. However, 

because of the limitation of time due to the duration of batteries, the possibility of having the 

measurements of a fourth setup with the missing 6 lateral accelerometers was missed. This was not 

critical since enough points were obtained to represent the mode shapes. Likewise, the entire set of 

measurements for ambient vibration. 

 
Figure 8 Typical setup arrangements type for forced vibration test [5] 
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3.3. Post processing of data and results 

3.3.1. Ambient test results 

Taking into account the time domain data presented in Figure 9, it can be seen both transversal and 

vertical acceleration for the node 8. It is possible to notice that transverse acceleration is almost two 

times higher than vertical acceleration. In terms of vibration levels due to natural excitation, 

the maximum vertical acceleration was roughly 0.2 mg, whereas the transversal acceleration did not 

exceed 0.4 mg.   

 
Figure 9 Time domain data record from ambient test for the node 8 [5] 

Figure 10 presents the average normalized spectral density functions from the transversal and vertical 

recordings, respectively. Firstly, the signals were decimated from 200 Hz to 50 Hz, and then the cross 

power density function was estimated using Welch’s averaged modified periodogram method [6] and 

dividing the signal in segments of 2048 points with 50% overlap. A Hanning window was used for 

each segment to avoid distortion such as spectral leakage. 

 
Figure 10 Average normalized spectral density from horizontal (Left) and vertical recordings (Right). 

From the evaluation of both average spectrums, it is clear that some of the modes have more 

transversal components and other more vertical components. , The Stochastic Subspace Identification 

(SSI) method [7, 8] was employed with the aim to estimate the modal parameters from the recorded 

data. 

 
Figure 11 Stabilization diagram from SSI-CVA method [5] 
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Table 1 contains the results of the dynamic test performed on Paradela Bridge of the five first modes. 

The results will serve for further analysis. 

Table 1 Results of ambient dynamic test performed on Paradela Bridge  

Mode Shape

Frequency 

[Hz]

Std. Frequency 

[Hz]

Damping ratio 

[%]

Std. Damping ratio 

[%]
Description

1 4.46 0.08 1.5 0.99 1st lateral

2 9.03 0.11 0.79 0.18 1st vertical

3 9.51 0.05 0.74 0.26 2nd lateral

4 10.77 0.02 1.18 0.12 1st torsion

5 16.25 0.1 1.54 0.38 3rd lateral  

Table 2Experimental mode shapes Paradela Bridge [5] 

Mode 1 Mode 2 Mode 3 

   
f=4.46 Hz ; ξ=1.50 % f=9.03 Hz ; ξ=0.79 % f=9.51 Hz ; ξ=0.74 % 

Mode 4 Mode 5  

  

 

f=10.77 Hz ; ξ=1.18 % f=16.25 Hz ; ξ=1.54 %  

3.3.2. Forced test results 

The results retrieved from the forced vibration test data will be presented in this subsection. A typical 

force measurement (input) can be seen in Figure 12.  

 
 

Figure 12 Forced vibration test on Paradela Bridge (Left) and a typical force measurement (Right)  

Figure 13 presents the records for the reference node 8 due to excitation provided by the hammer 

impacts. Comparing with ambient vibration presented in Figure 9, the difference is clear, the hammer 

provides more excitation to the bridge. After, the frequency response functions were estimated from 

the division of output by input, in frequency domain. Complex modal indicator functions [9] were 

computed, using the horizontal and vertical data domain recordings (see Figure 14) for a better 

identification of the main frequencies.  
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Figure 13Time domain data record from forced test for the node 8 

  

Figure 14Complex Modal Indicator Functions for the horizontal (Left) and vertical recordings (Right). 

 

The peak picking technique [10] was used to estimate the modal parameters. Table 3 presents the 

comparative results between the modal parameters identified from both ambient and forced dynamic 

tests. 

Table 3 Results of both ambient and forced dynamic tests performed on Paradela 

 AVT – SSI FVT – PP   

Mode 

Shapes 

Freq. 

[Hz] 

Damping 

ratio [%] 

Freq. 

[Hz] 

Damping 

ratio [%] 
MAC Description 

Mode 1 4.46 1.50 4.44 1.33 0.63 1
st
 lateral 

Mode 2 9.03 0.79 9.03 0.83 0.96 1
st
 vertical 

Mode 3 9.51 0.74 – – – 2
nd

 lateral 

Mode 4 10.77 1.18 10.94 1.39 0.66 1
st
 torsion 

Mode 5 16.25 1.54 16.14 1.38 0.43 3
rd

 lateral 

Average – 1.15 – 1.23 – – 

 

The results for forced vibration test with the impact hammer were very similar, yet, since the impacts 

were given in vertical to the bridge and also some lateral accelerometers were missed, lateral mode 

shapes were not easily identified from the forced vibration test recordings. That explains the missing 

3rd mode shape and the lower MAC values for the lateral mode shapes. 

Nevertheless, the comparison between such different techniques is good to realize that operational 

modal analysis techniques that use lower and stochastic vibration can achieve very good results. 

4. FINITE ELEMENT MODEL OF PARADELA BRIDGE 

In order to evaluate the global response of the bridge under the likely loads acting on it, two 

mathematical models were built. The first model was built in the commercial software SAP2000 based 

on Finite Element Analysis (FEA) and the second model was constructed in DIANA software, also 

based on FEA. The aim of having two models was firstly to verify experimental results and then to 
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perform several other different analyses to assess the structural integrity of the structure. Bearing in 

mind that a numerical model can never truly represent the actual behaviour of a structure; the ability to 

compare their modal properties with experimental results enabled the validation of models that 

afterwards served for the structural assessment of the bridge through further analyses. 

4.1. Numerical analysis using SAP2000  

A first model was built in the commercial software SAP2000 based on FEA. This model provided an 

initial insight on the behaviour of the bridge (e.g. mode shapes and mode frequencies) that served to 

define the setup’s for the dynamic on-site tests. The FEM shown in Figure 15 comprises 493 frame 

elements and 192 nodes. The mesh used was of finite elements of up to 0.10 m long. Moreover, the 

model included all the structural elements of the bridge considered in the original calculations and in 

accordance to the on-site survey. The non-structural elements were assumed as either point dead loads 

or uniform distributed dead loads. The SAP2000 model calculates the mass for modal analysis by 

dividing the self-weight of the structural elements and the imposed dead loads over the g value. 

 

Figure 15 SAP2000 model Paradela Bridge [3] 

Table 4 contains the input data used to build the FE model. However, values werevaried when 

validating the model to match as far as possible with experimental results. The objective was to obtain 

a valid and representative model which could fairly represent the actual behaviour of the Paradela 

Bridge for further analysis. 

Table 4 Input data for the FE model [3] 

Material properties (Steel before 1906)  Boundary conditions 

Density 7850kg/m
3
  Bridgesupports: Left = Pinned, Right = Roller and 

fy 225 MPa   Stiffness spring  k = 101296kN/m 

ν 0.3  Floorbeams Fixed 

E 210 GPa  Stringers Pinned 

   Horizontal bracing Pinned 

   Vertical bracing Pinned 

   Crossbracing Pinned 

 

The calibration of numerical models consisted in comparing the results of the modal analysis 

performed by SAP2000, and the results of the dynamic tests carried out on-site. Therefore, a thorough 

sensitivity analysis was conducted to calibrate and validate the numerical model. Mode shapes and 

their correspondent mode frequencies were identified and compared. The analysis was based on the 

premise of changing the mesh size, mechanical properties of the materials, support conditions of the 

whole bridge, boundary conditions of bar elements, and several combinations of them until a 

difference of up to 10% in the results would be reached [3]. 

Another mean utilised to calibrate the SAP2000 model with experimental results was via the modal 

assurance criteria. The modal assurance criteria (MAC) index is a widely used method to compare 

numeric and experimental data.  The method correlates two displacement vectors of a mode shape in 

order to determine a confidence factor between zero and one. For each mode shape a vector of nodal 

displacements can be expressed.  
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Table 5 Sensitivity analysis SAP2000 FEM model 

 
Experimental Numerical 

  
Mode shape Frequency [Hz] Frequency [Hz] Error [%] MAC 

1
st
 Lateral 4.46 4.57 2.80 0.98 

1
st
 Vertical 9.03 8.57 4.80 0.97 

2
nd

 Lateral 9.51 9.16 8.40 0.06 

1
st
 Torsion 10.77 11.77 8.40 0.99 

3
rd

 Lateral 16.25 12.45 5.20 0.08 

 

The results of the sensitivity analysis are shown in Table 5. Noteworthy is the fact that after the 

5
th
 mode the results diverge and the mode shapes do not seem to match. This may be due to FEM 

model using DIANA 

4.2. FEM model using DIANA 

Once the SAP2000 model of the bridge had been updated providing results that are reasonably close to 

the experimental data, a second model was built in DIANA FEA software. The purpose was to verify 

the results of the experimental test and SAP2000. Likewise, the DIANA model was used to perform 

non linear analyses that provided an insight on the ultimate capacity of the bridge.  

Unlike SAP2000, DIANA can perform nonlinear analysis, either of geometrical or material nature. 

Therefore, DIANA software was used in order to perform a full material nonlinear analysis. As shown 

before, the dominant modes of the SAP2000 model matched experimental frequencies reasonably 

well. However, MAC values calculated were not considered accurate enough. 

It is believed that limitations of the experimental tests and data acquisition errors were the cause. Thus, 

results obtained from the analysis in DIANA may help to sustain such theory. The updated SAP2000 

model enabled to build the model in DIANA with the confidence to obtain good results without 

changing too many parameters. The main parameters of the DIANA model are shown in Table 6. 

Table 6 Input data DIANA model [3] 

Material = Steel from before 1906 Bridge supports: Left = Pinned, Right = Roller and

Density = 7,850 kg/m3 spring  k = 101,296 kN/m

Ft = 225 MPa Floor beams = Fixed

ν = 0.3 Stringers = Fixed

E = 210 GPa Horizontal bracing = Fixed

Vertical bracing = Fixed

Cross bracing = Fixed

Boundary conditionsMaterial properties

 
 

The finite element used in Diana was CL18B, a 3-Dimensional Curved Bernoulli Beam Element. 

Likewise a mesh size of 698 bar elements and 493 nodes was defined as shown in Figure 16. The mass 

that corresponds to the self-weight of the bridge and non-structural elements was considered for modal 

analysis purposes. It was defined in the nodes of the truss. Likewise, the mass served as a parameter to 

change during the sensitivity analysis of the DIANA model. 
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Figure 16 DIANA FEM model of Paradela Bridge [3] 

Worth mentioning is that the SAP2000 model was quite useful to read off the mechanical properties of 

sections and define then the input data in DIANA software. Furthermore, in order to calibrate the 

DIANA model, modal analysis results were used in a similar way made for the SAP2000 model. 

For the DIANA model, variations in material properties or boundary conditions of members did not 

seem to significantly improve the convergence. Therefore, different mass values were tried to calibrate 

and match with previous results obtained. Additionally, different values of the spring constant k at the 

rolling support were tried. Since the two types of software used have different means to input the data, 

some contrivances were resorted such as the way to introduce the loads and masses equivalent to non-

structural elements. At the end, an error of up to 10% between the results obtained by DIANA and 

SAP2000 was achieved, which for the overall purpose was deemed.  

The results of the sensitivity analysis are shown in Table 7. Noteworthy is the fact that after the 5th 

mode the results diverge and the mode shapes do not seem to match. This may be due to limitations of 

the experimental test to capture higher modes.  

Table 7 Sensitivity analysis of DIANA FEM model [3] 

 
Experimental Numerical 

  
Mode Frequency (Hz) Mode shape Frequency (Hz) Mode shape Error MAC 

1 4.46 1
st
 Lateral 4.81 1

st
 Lateral 8.20% 0.87 

2 9.03 1
st
 Vertical 8.63 1

st
 Vertical 4.10% 0.97 

3 9.51 2
nd

 Lateral 10.21 2
nd

 Lateral 2.10% <0.50 

4 10.77 1
st
 Torsion 13.20 1

st
 Torsion 2.20% 0.93 

5 16.25 3
rd

 Lateral 15.27 3
rd

 Lateral 29.10% <0.50 

 

Table 7 contains the values obtained with the sensitivity analysis. It can be observed that the values 

resemble the ones obtained with the experimental tests. A variation on the mass of the elements on the 

top of the model enabled the convergence of the results. Furthermore, MAC values for the higher 

modes were also close to one. This validates what was encountered before by the SAP2000 model. 

4.3. SAP2000 versus DIANA model 

Table 8 contains the values obtained by the two FEM models constructed to evaluate the dynamic 

properties of Paradela Bridge. As shown, mode shapes and mode frequencies are not the same in both 

models and in results from the experimental test. However, MAC values for modes 3 and 5 show no 

correlation with experimental results. Nevertheless, the same mode shapes of numerical models 

possess well correlated MAC values when compared to each other. Seemingly, the models are 

accurately predicting those mode shapes. Thus, limitations in the number of degrees of freedom (DOF) 

measurements during the test experimental test and data acquisition are believed responsible. 

However, for the main purposes of the project, results ensured the representativeness of the numerical 

models and more advanced analysis could be performed. 
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Table 8 Comparison of DIANA Vs SAP2000 results [3] 

 

Mode Frequency (Hz) Mode shape Frequency (Hz) Mode shape Error MAC

1 4.81 1st Lateral 4.57 1st Lateral 5.00% 0.94

2 8.63 1st Vertical 8.57 1st Vertical 0.70% 1

3 10.21 2nd Lateral 9.16 2nd Lateral 10.30% 0.96

4 13.2 1st Torsion 11.77 1st Torsion 10.80% 0.95

5 15.27 3rd Lateral 12.45 3rd Lateral 18.50% 0.97

DIANA SAP2000

 

5. CONCLUSION 

The study of Paradela Bridge is important since it represents many other similar structures built at that 

time all over the country. Dynamic identification tests were successfully conducted and the limitations 

and setbacks of the procedures were presented. The results helped to validate numerical models built 

in FEM software SAP2000 and DIANA.  

The simplicity of Paradela Bridge combined with its current unused state presented an opportunity to 

better understand the behaviour of a typical structural form of the 19
th
 century.  Several structures like 

Paradela Bridge still exist and operate nowadays; therefore, the understanding of the structure’s 

performance under a variety of loading conditions can be useful in the assessment and retrofitting of 

similar structures. 
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