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ABSTRACT Signal source number detection is an essential issue for the direction of arrival (DOA)
estimation in satellite communication systems. The performances of conventional and deep-learning-based
signal source number detection methods will deteriorate when the signal-to-noise ratio is low or coherent
signals exist. This paper proposes a DOA detection network (DTN) combined with the root weighted
subspace fitting (root-WSF) method to tackle this challenge. The DTN uses the constructed deep neural
networks (DNN) to denoise the received signals and captures the nonlinear mapping relationship between
the received signals and the number of signal sources. The received signals in the complex-valued domain are
directly treated as DTN’s input, and the label of DTN is the one-hot encoding of the source number. It solves
the issue that the classifier cannot well-handle the coherent signals and extends the values of discrete features
to Euclidean space. Accordingly, the trained DTN can detect the signal source numbers with an average
detection accuracy of 96.6%, and the root-WSF algorithm is applied as the rear stage of DOA estimation.
Compared with the traditional DOA methods, the proposed DTN incorporated with the root-WSF algorithm
features superior robustness, high DOA estimation accuracy, and enhanced resolution.

INDEX TERMS Deep neural network (DNN), direction of arrival (DOA), DOA detection network (DTN),
root weighted subspace fitting (root-WSF), satellite communication system.

I. INTRODUCTION
With the development of satellite communication systems,
radio spectrum resources have become scarce [1]. This
causes interference on the earth’s surface as well as in
space, which poses massive threats to regular satellite
communications [2], [3]. Hence, the array signal processing
has received even more attention in recent years, and the
direction of arrival (DOA) is one of the essential topics in
the field of array signal processing. Multiple super-resolution
DOA estimation methods have been discussed, such as the
maximum likelihood (ML) [4], multiple signal classification

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

(MUSIC) [5], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [6], weighted subspace fit-
ting (WSF) [7], as well as other performance improved algo-
rithms [8], [9]. They provide bases for anti-interference tech-
nologies by accurately estimating the real-time DOA of the
interference signal. Nevertheless, most super-resolutionDOA
estimation methods require prior knowledge regarding the
number of signal sources. Unfortunately, it is not straightfor-
ward to guarantee this assumption in practice [10]. Therefore,
the detection of signal source numbers is an essential issue for
DOA estimation.

Many scholars have proposed effective methods for detect-
ing the number of signal sources. The most widely used
ones are the Akaike information theory (AIC) and minimum
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TABLE 1. Investigation of previous studies on DOA estimation problems based on neural networks.

FIGURE 1. DOA estimation system model of antenna array in receiver system, in which the DOA detection network (DTN) incorporated with
root-WSF algorithm to estimate DOA values.

description length (MDL) criterion. As stated in [11], the
AIC criterion is not a consistent estimation. Even in the
case of a high number of snapshots, it still has a relatively
significant error probability. Conversely, the MDL criterion
is a consistent estimation with superior performance under a
high signal-to-noise ratio (SNR). However, it performs unsat-
isfactorily in low SNR scenarios compared with AIC [11].
Besides, both methods are highly sensitive to the received
signals and their noise models. The signal source number
cannot be estimated correctly when coherent signals exist in
signal sources.

However, coherent signal sources are ubiquitous in
practice, such as multi-path signal transmission or electro-
magnetic interference intentionally released by the adver-
sary [10]. In the case scenario where the signal sources
are coherent, some coherent sources’ steering vector is not
entirely orthogonal to the noise subspace. Subsequently, the
DOA cannot be correctly estimated by conventional methods,
e.g., MUSIC [5], etc., even if the signal source number is
known. Two types of approaches are proposed to handle
this issue: spatial smoothing based on dimensionality reduc-
tion [12] and WSF without pre-processing [13]. However,
the spatial smoothing operation reduces the array’s effective
aperture [12], and the DOA estimation variance will increase
as the sub-array is smaller than the original array. The WSF
exhibits a more accurate performance to estimate the coher-
ent signal sources. However, it is still mandatory for WSF
to correctly detect the signal source number as a premise.
Otherwise, the performance of WSF will be significantly
deteriorated [13].

In recent years, deep learning has been widely used
in various fields due to its enhanced ability to solve
complicated nonlinear problems [14], [15], [16]. It also

provides an advanced solution for conventional DOA esti-
mation. Several works studying the neural-network-based
DOA estimation [17], [18], [19], [20] are on the premise of
fixed target source numbers, as summarized in Table 1. Com-
pared with the traditional MUSIC and ESPRIT methods, they
lessen the required computational complexity and accomplish
a greater DOA estimation accuracy. However, these stud-
ies are limited to the scenarios with the prior-known signal
source number [17], [18], [19], [20], the larger angular dif-
ferences among signal sources [18], or the same SNR [19].
In practice, the number of signal sources is unknown, and
the priority of DOA estimation is to detect the number
of signal sources accurately. Recently, deep-learning-based
methods for detecting signal source numbers can be found
in [21], [22], and [23], as summarized in Table 1. Compared
with the traditional AIC and MDL methods, the convolu-
tional neural network (CNN) [21] successfully demonstrates
its application prospects. Nonetheless, it is only effective
when the signal sources are independent. In [22], the authors
propose a deep neural network (DNN)-based eigenvalue
classification network (ECNet), which can handle coherent
sources by adopting the forward-backward spatial smooth-
ing technique. The eigenvalues covariance matrix is adopted
as inputs, which is identical to AIC and MDL approaches.
Moreover, the authors in [23] estimate the number of coherent
signals based on the spatial difference smoothing of the array
data. However, by using spatial smoothing, the effective array
apertures are decreased in [22] and [23]. Consequently, the
sub-array is smaller than the original array, and the variance
of the estimator increases.

This paper proposes an improved method for the accu-
rate detection of signal source numbers based on the con-
structed DOA detection network (DTN). Besides, the robust
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root-WSF is incorporated with DTN to estimate DOA angles.
The contributions of this paper are listed as follows:

• A well-trained DTN is used to estimate the signal
source number accurately. The received signals in the
complex-valued domain are directly adopted as input,
and the informative features are denoised and non-
linearly transformed. The label of DTN is the one-hot
encoding of the source number, which solves the prob-
lem that the classifier cannot handle the coherent signals
and extends the values of discrete features to Euclidean
space.

• The performances of the conventional AIC and MDL,
the neural-networks-based CNN and ECNet, and the
proposed DTNmethod are compared. Simulation results
show that this method can effectively detect the numbers
of both non-coherent and coherent signal sources with
high robustness, even under a low SNR scenario.

• On the basis of the proposed DTN, the root-WSF algo-
rithm is incorporated to handle the issue that the array
aperture is to be sacrificed to improve the estimation
accuracy and resolution.

• Validations are performed to evaluate the method’s scal-
ability under sufficient condition variations, including
the number of target sources, angle range, SNRs, and
snapshots. The results show that the proposed DTN has
superior robustness in estimating signal source numbers.

This paper is organized as follows. The received signal
model, root-WSF method, and the DTN algorithm are pre-
sented in Section II. The detailed simulation results, error
analysis, and performance comparisons under different situa-
tions are presented in Section III. Section IV compares the
DOA estimation performances of ESPRIT, MUSIC, root-
MUSIC, and root-WSF, given the correct signal source
number provided by the proposed DTN. Finally, Section V
concludes this paper.

II. MATHEMATICAL FORMULATION
A. SIGNAL MODEL
As shown in Fig. 1, the DOA estimation system comprises
three parts: signal incident, array reception, and parameter
estimation [10]. The number of array elements is assumed
to be equal to the number of channels. Parameter estimation
uses array signal processing technology to extract the spa-
tial incident signal’s characteristic parameters from the data
received by the antenna array. The received data includes
the information on the array signal and the complex spatial
environment characteristics. It also includes error information
such as mutual coupling, channel inconsistency, frequency
band inconsistency, etc. Themathematical model of the signal
received by the antenna array will be described in the follow-
ing subsections.

B. RECEIVED SIGNAL MODEL
It is supposed that K narrow-band signals in the far-field are
incident on a uniform linear array (ULA), and the antenna

array is composed of M elements. The received data can be
expressed in the form of a complex envelope as:

sk (t) = uk (t) ej(ω0t+ϕ(t)), (1)

where uk (t) and ϕ (t) are the amplitude and phase of the
received signal, respectively. Besides, ω0 = 2π f = 2π c

λ
is the frequency of the received signal, where c and λ are the
light speed and wavelength, respectively. When considering
the delay between elements,

sk (t − τ) = uk (t − τ) ej(ω0(t−τ)+ϕ(t−τ)). (2)

Under the scenario with the signal bandwidth BW � f /D,
sk (t) is a narrow-band signal, and D denote the aperture of
the ULA. It exists that{

uk (t − τ) ≈ uk (t)
ϕ (t − τ) ≈ ϕ (t) .

(3)

Hence, Eq. (2) can be re-written as

sk (t − τ) ≈ sk (t) e−jω0τ , (4)

where k = 1, 2, . . . ,K . Then the received signal of the mth

array element can be obtained as:

xm (t) =
K∑
k=1

gmksk (t − τmk)+ nm (t) . (5)

In (5), m = 1, 2, . . . ,M , and gmk is the gain of the mth

element to the k th signal. nm (t) is the white Gaussian noise of
the mth element at the time instant t . Expression τmk denotes
the time delay in relative to the reference element when the
k th signal reaches the mth element, which is obtained by

τmk =
1
c
(pmsinθk) , (6)

where pm is the array element’s position with the origin as the
reference point, and θk is the azimuth angle of the assumed
signal source.

Arranging the signals received byM array elements at time
t into a column vector, X(t) can be given by (7), as shown at
the bottom of the next page. Ideally, assuming that the array
elements are isotropic and there is no channel inconsistency,
mutual coupling, and other factors, the gain in (7) can be
assumed to be 1, and (8), as shown at the bottom of the next
page, can be obtained.

The vector form of (8) can be expressed as

X (t) = AS (t)+ N (t), (9)

where A =
[
a1 (ω0) a2 (ω0) · · · aK (ω0)

]
is the steering

matrix [10], and its steering vector can be written as

ak (ω0) =


e(−jω0τ1k )

e(−jω0τ2k )
...

e(−jω0τMk )

 =

e

(
−j 2π

λ
p1 sin θk

)
e

(
−j 2π

λ
p2 sin θk

)
...

e

(
−j 2π

λ
pM sin θk

)
.

 (10)
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TABLE 2. Procedure of DTN.

If the signal sources are coherent, the mathematical expres-
sion of receive signal is reflected in a complex constant
among coherent signal sources. Assuming there are P coher-
ent sources, it can be obtained that

sp (t) = qps0 (t) , (11)

where p = 1, 2, . . . ,P and P ≤ K . The parameter qp is
the complex constant among coherent signal sources. The
generate source s0 (t) engenders P coherent signal sources
incident on the array. Substituting (11) into (9), a coherent
signal source model is obtained as

Xcoh (t) = A


s1 (t)
s2 (t)
...

sP (t)

+ N (t) = A


q1
q2
...

qP

 s0 (t)+ N (t),

(12)

Xcoh (t) = Aρs0 (t)+ N (t), (13)

where ρ is a P × 1 dimensional vector composed of a series
of complex constants.

C. ROOT-WSF
Root-WSF is the rooting version of weighted subspace fitting
(WSF) [24]. The purpose of this method is to minimize the
cost function

fRoot−WSF (θ) = Tr
(
P⊥a(θ)

)
ÛSWRoot−WSF ÛH

S , (14)

where

P⊥a(θ) = IK − a (θ)
(
a (θ)H a (θ)

)−1
a (θ)H , (15)

WRoot−WSF =

(
V̂S − σ̂ 2I

)
V̂−1S , (16)

σ̂ 2
=

1
M − K

Tr
(
V̂n
)
. (17)

Root-WSF uses the strongest eigenvectors in a diagonal
matrix (V̂S ) and the corresponding eigenvectors in the sig-
nal subspace matrix (ÛS ). [·]H means that each element in
the matrix is conjugated and transposed. P⊥a(θ) denotes the
orthogonal projection matrix of the array steering matrix,
and WRoot−WSF is the asymptotic-optimum weight matrix.
In (16), the expression I is an M × M identity matrix, and
σ̂ 2 indicates the noise variance. In (17), T is a full rank
matrix, and V̂n is eigenvectors in a diagonal noise matrix.
Parameter r is a key problem for the root-WSF algorithm,
which indicates signal source numbers. It can be obtained
by several methods [25], [26], [27] that, when r = K , the
signals are fully non-coherent. However, it is difficult to
detect the signal source number under the scenario r < K ,
where coherent signals exist. Radio frequency interference
(RFI) incidents from the ground to satellites show an upward
trend [28], [29]. Therefore, robust DOA estimation tech-
niques should be considered for array signal processing in
LEOP and low earth orbit (LEO) satellites. The proposed
DTN will show its effectiveness in both scenarios.

D. DOA DETECTION NETWORK (DTN)
To detect the signal source number K , the DTN learns a non-
linear mapping function yj and updates the model’s weight w
and bias b.

yj =
D∑
i=1

wjixi + bj, (18)

where x1, . . . , xD are input variables. The network output zj
is the result of yj after an appropriate activation function f (·).

zj = f
(
yj
)
, (19)

where j = 1, 2, . . . J , and J is the total output quantity.
There are several universal activation functions, such as

ReLU, Sigmoid, tanh, etc. This work uses ReLU as the
activation function, which is written as

fReLU (x) = max (0, x) . (20)

Assuming that the neural network has N layers, the overall
neural network output O can be expressed as

O = f (x,w) = f (N−1)
(
f (N−2)

(
· · · f 1 (x)

))
. (21)


x1 (t)
x2 (t)
...

xM (t)

 =

g11e−jω0τ11 g12e−jω0τ12 · · · g1K e−jω0τ1K

g21e−jω0τ21 g22e−jω0τ22 · · · g2K e−jω0τ2K
...

...
. . .

...

gM1e−jω0τM1 gM2e−jω0τM2 · · · gMK e−jω0τMK



S1 (t)
S2 (t)
...

SK (t)

+

n1 (t)
n2 (t)
...

nM (t)

 . (7)


x1 (t)
x2 (t)
...

xM (t)

 =

e−jω0τ11 e−jω0τ12 · · · e−jω0τ1K

e−jω0τ21 e−jω0τ22 · · · e−jω0τ2K
...

...
. . .

...

e−jω0τM1 e−jω0τM2 · · · e−jω0τMK



S1 (t)
S2 (t)
...

SK (t)

+

n1 (t)
n2 (t)
...

nM (t)

 . (8)
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FIGURE 2. Flow chart of DOA detection network.

Then, the loss function of the neural network is given as

L =
N∑
i=1

∥∥∥ki − k̂i∥∥∥2 , (22)

where ki is the actual number of signal sources, and k̂i is
the estimation number of the DTN. The stochastic gradient
decent (SGD) [30] is adopted to optimize the loss function.
The update process of w can be written as

wt = wt−1 − η∇L (w) , (23)

where η is noted as the learning rate.
Table 2 summarizes the procedure of DTN. The training

data Xtrain and test data Xtest are generated by the received
signal models (9) and (13) under significant condition varia-
tions. The training data Xtrain in the complex-valued domain
is treated as the input of the detection network. The output
layer corresponds to the number of signal sources K . The
test data Xtest is fed into the trained DTN to validate its
performance. As shown in Fig. 2. the labels of DTN are the
one-hot encoding of the source number, i.e., the signal source
number ‘‘1’’ is represented by ‘‘0 0 0 0 1’’, ‘‘2’’ is represented
by ‘‘0 0 0 1 0’’, ‘‘3’’ is represented by ‘‘0 0 1 0 0’’, etc.
It solves the problem that the classifier cannot handle the
coherent signals and extends the values of discrete features to
Euclidean space. To a certain extent, it makes the calculation
of Euclidean distance more reasonable [31].

Furthermore, theDNNhas a powerful denoising capability,
which can be applied to process low SNR signals [32], [33].
Comparing the second layer outputs of DTN [Figs. 3(a3) and
3(b3)] and existing methods [Figs. 4(a3) and 4(b3)], it can
be seen that the denoising capability of the proposed DTN
is superior to that of the existing methods in both real and
imaginary part responses, as the DTN uses the received sig-
nal as input. Conversely, using the covariance matrix loses
information after the networks. The computational complex-
ity of the DTN and its comparison with AIC and MDL
are explained as follows. For AIC and MDL, approximately
O(M3) complex multiplications are needed. This is due to
that they are the methods based on the information crite-
rion, whose computational complexity is mainly correlated
to the eigen decomposition of array output covariance. For
the proposed DTN method, the computational complexity is
determined by the structure of the neural network. For the full
connected structure, the computational complexity of DTN
can bewritten asO(4×(2MH+H2

+H )), whereH represents

FIGURE 3. Performance of the DTN process. (a1/b1) The normalized
real/imaginary part of the DTN’s input (i.e., the received signal). (a2/b2)
The normalized real/imaginary part of DTN’s first hidden layer output.
(a3/b3) The normalized real/imaginary part of DTN’s second hidden layer
output.

FIGURE 4. The performance of existing methods process. (a1/b1) The
normalized real/imaginary part of existing methods’ input (i.e., the
covariance matrix). (a2/b2) The normalized real/imaginary part of
existing methods’ first hidden layer output. (a3/b3) The normalized
real/imaginary part of existing methods’ second hidden layer output.

FIGURE 5. Architecture of a multiple-layered DOA detection network
(DTN). Each hidden layer has 256 nodes.

the number of neurons in the hidden layer. The computational
complexity of DTN is fixed after training, while the com-
putational complexity of traditional methods will increase
with the increase of the number of array elements. Therefore,
for a large antenna array, the proposed DTN method will
outperform the traditional signal number detection methods
in terms of computational complexity.

III. SIMULATION RESULTS AND ANALYSIS
The powerful Pytorch [31] is introduced to design the DTN.
All the simulations are performed in a computer with Intel
Core i9 @2.3 GHz CPU and 32 GB RAM. The number of
elements M in a uniform linear array (ULA) is assumed to
be 10. Signal sources with different numbers (1, 2, . . . , 5)
are randomly located in the angle range [−90◦,+90◦]. The
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FIGURE 6. Training and validation of the DOA detection network.

inter-element spacing distance d is half-wavelength. Each
received signal is a 10 by 200 matrix. The dimension of
the input layer is set as 4000 after processing the received
data. Under the same SNR and snapshots, 10000 samples
per number of targets. A data set with 180, 000 samples is
constituted, where 70% of the samples are randomly selected
as the training data, and the rest 30% are used as the testing
and verification data.

As shown in Fig. 5, the input of the DTN is the received
signal X (t). The architecture of DTN with four hidden layers
is designed, and each hidden layer has 256 nodes. The ReLU
activation function is used at the output of each hidden layer.
The output layer is activated by the softmax function, and
the output is the signal source number K . The batch size
and learning rate are set to be 100 and 0.02, respectively.
A well-trained DTN is obtained by updating the weights
of the network. The change of cross-entropy loss with the
progress of DTN training and validation is shown in Fig. 6.

A. THE DETECTION ACCURACY UNDER DIFFERENT
SNAPSHOTS
The number of snapshots is an essential factor affecting the
signal-source-number detection performance. Figs. 7 and 8
show the non-coherent signal source number detection accu-
racy in correspondence with the number of snapshots when
SNR is 10 dB and −10 dB, respectively. The detection
accuracy of DTN is obtained by averaging 10 tests, and the
detection accuracy box plot of 10 DTN trials is depicted in
Fig. 7(b). It can be seen from Fig. 7(a) that as the number of
snapshots increases, the accuracy of source number detection
is effectively improved. Meanwhile, the detection accuracy
of AIC, MDL, CNN, and the proposed DTN becomes steady
after the number of snapshots is higher than 100. Neverthe-
less, the AIC criterion [34] still has a relatively significant
error probability in the case of a high number of snapshots.
The MDL criterion [35] exhibits a superior performance
under large snapshot numbers, but it performs unsatisfactorily
in low snapshots scenarios compared with CNN [21] and
the proposed DTN. Compared with AIC, MDL, and CNN,
the proposed DTN exhibits the highest robustness of detec-
tion accuracy, even under conditions with small snapshot
numbers.

FIGURE 7. Non-coherent signal sources detection accuracy with different
snapshots number (SNR = 10 dB, and 1,000 testing data are randomly
selected). (a) The comparison between AIC, MDL, CNN and DTN. (b) Box
plot of 10 DTN trials.

Under the condition that SNR is −10 dB, AIC [34] and
MDL [35] almost fail, as shown in Fig. 8(a). Moreover, the
detection accuracy of DTN is higher than CNN [21] as the
label of DTN is the one-hot encoding of the source number.
This extends the values of discrete features to Euclidean
space, making the distance calculation more reasonable.
By comparing Fig. 7(a) and Fig. 8(a), it can also be seen that
the effect of snapshot number is more significant under a
lower SNR value, especially for AIC, MDL, and CNN. This
is because, under low SNR scenarios, the signals are buried
in noises, and more snapshots are required to obtain useful
characteristics. Nevertheless, as the proposed DTN considers
the low SNR and low snapshots scenarios during its training
process, it exhibits more robust performances under various
snapshot conditions [see Fig. 7(a) and Fig. 8(a)].

B. THE DETECTION ACCURACY OF AIC, MDL, CNN, AND
DTN UNDER DIFFERENT SNRs
In this subsection, the SNR varies from −20 dB to 20 dB
with a 5 dB step. The detection accuracy of the proposed
DTN is compared with AIC, MDL, and CNN [21] under
200 snapshots. Besides, the detection accuracy of DTN is
compared with ECNet [22] under 20 snapshots and a SNR
range of [0dB, 20dB], as depicted in the sub-graphs in the
bottom of Fig. 9(a) and Fig. 10(a).

The detection accuracy values of non-coherent signals with
different SNR are shown in Fig. 9(a), where the average
detection accuracy of DTN is calculated by 10 trials. The box
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FIGURE 8. Non-coherent signal sources detection accuracy with different
snapshots number (SNR = −10 dB, and 1,000 testing data are randomly
selected). (a) The comparison between AIC, MDL, CNN and DTN. (b) Box
plot of 10 DTN trials.

plot of the 10 DTN trials is depicted in Fig. 9(b). Compared
with MDL, the AIC still has a significant error probability
even under high SNR values. Then, the MDL performs unsat-
isfactorily under low SNR conditions compared with AIC.
Furthermore, the deep-learning-based DTN, CNN [21], and
ECNet [22] methods outperform those conventional AIC and
MDL methods in low SNR scenarios, where the application
prospects of deep learning in signal source number detection
can be demonstrated. As seen from the sub-graph of Fig. 9(a),
DTN and ECNet [22] methods feature high detection accu-
racy with non-coherent signals. The low SNR (−20 dB –
0 dB) performance of ECNet is still an open issue as no
relevant data is offered [22].

With coherent signal sources, the performances of AIC
and MDL are not included in Fig. 10(a) since they can only
detect the number of non-coherent signal sources. Besides,
CNN [21] observes insufficient coherent signal detection
accuracy even under high SNR scenarios (0.75 under SNR=
20 dB). Compared with the ECNet method [22], the proposed
DTN is more robust for the SNR range of [0 dB, 20 dB].
The absolute coherent signal detection accuracy of DTN
outperforms ECNet for the SNR range of [0 dB, 20 dB],
as it is shown in the sub-graph of Fig. 10(a). Moreover, the
detection accuracy of ECNet deteriorates more significantly
than DTN as the SNR decreases, especially in the range of
[0 dB, 10 dB].

The ECNet [22] adopts eigenvalues as the input, which
is identical to AIC and MDL approaches. In contrast, the

FIGURE 9. Non-coherent signals detection accuracy with different SNR
(snapshots = 200 or 20, and 1,000 testing data are randomly selected).
(a) The comparison between AIC, MDL, CNN, ECNet and the proposed
DTN. (b) Box plot of 10 DTN trials.

proposed DTN uses the received signals as input, where
the received signals are in the complex-valued domain, and
informative features are non-linearly transformed. Besides,
ECNet [22] utilizes spatial smoothing to assist the network in
detecting signal source numbers. The subarrays’ size in [22]
is 5, which is smaller than the original array’s size of 10. This
results in the variance of ECNet’s signal source number being
high than that of the proposed DTN.

C. THE DETECTION ACCURACY PERFORMANCE WITH
DIFFERENT NUMBER OF SIGNAL SOURCES
The detection accuracy performance has an extraordinary sig-
nificance to the application of DTN. The detection accuracy
percentage is simulated when the SNR is 5dB, the number
of snapshots is 200, and the number of signal sources varies
from 1 to 5. The confusion matrix of DTN is depicted in
Fig. 11(a), where there is no overestimation in this situation.
When the number of signal sources is one, the proposed
DTN can detect it with 100% accuracy. Furthermore, the
average detection accuracy of both non-coherent and coher-
ent signal sources can be up to 96.6%. The underestimation
can be explained by the fact that coherent signals shall be
falsely detected as one single signal. It can be seen from
the box plot Fig. 11(b) that the number of correct detection
will slightly decrease as the number of actual incident signals
increases.
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FIGURE 10. Coherent signals detection accuracy with different SNR
(snapshots = 200 or 20, and 1,000 testing data are randomly selected).
(a) The comparison among CNN, ECNet, and the proposed DTN. (b) Box
plot of 10 DTN trials.

IV. DOA ESTIMATION
After the DTN, the number of signal sources can be
obtained. In this section, ESPRIT, MUSIC, root-MUSIC, and
root-WSF are used to estimate DOA values with the prior
knowledge of signal source numbers. The root-mean-square
error (RMSE) [36], [37], [38] is introduced to calculate the
deviation between the estimated angles and actual angles,
which can be expressed as

RMSE =

√√√√ 1
KR

K∑
k=1

R∑
r=1

(
θ̂k,r − θk

)2
, (24)

where K and R represent the number of targets and samples,
respectively. Variable θ̂k,r is the k th estimation angle in the
r th sample, and θk denotes the corresponding k th actual angle.
It means that the better accurate is accomplished as the RMSE
values decrease. The angles (θ̄1, θ̄2) are the average values
after 10 estimates and RMSE are obtained with 10 Monte
Carlo experiments in the follows.

A. NON-COHERENT SIGNAL ESTIMATION
The DOA estimation results of two non-coherent signals inci-
dent on a 10 - element ULA are summarized in Table 3 (SNR
= 10 dB) and Table 4 (SNR = −10 dB), where two groups
of signals are considered. In the first group, the first signal
θ1 arrives from −5◦ in azimuth, while the second signal θ2

FIGURE 11. Number k of the detected signals for various actual signals
number (SNR = 5dB, snapshots = 200, random non-coherent and
coherent signals). (a) The confusion matrix of the detection accuracy.
(b) Box plot 10 trials.

TABLE 3. DOA estimation angles comparison under ESPRIT, MUSIC,
Root-MUSIC, and Root-WSF incorporated with DTN. (SNR = 10 dB, Two
signal sources detected.)

arrives from 5◦ in azimuth. In the second group, the azimuth
angles are 15◦ and 10◦, respectively.
As shown in Table 3, all methods perform well with an

azimuth angle space of 10◦ and 5◦ under the SNR of 10 dB
scenario, where MUSIC has better resolution than ESPRIT,
root-MUSIC, and root-WSF. Nevertheless, under the −10
dB SNR scenario, root-WSF shows even better performance
(RMSE = 0.7609) than MUSIC (RMSE = 1.5811) with an
azimuth angle space of 5◦, as shown in Table 4.

B. COHERENT SIGNAL ESTIMATION
Under the coherent signal scenario, it is assumed that four
narrow-band signals incident from −24◦, −6◦, 18◦, and 50◦

under the Gaussian white noise environment. Signals −6◦

and 18◦ are the multipath reflections of the first signal source
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TABLE 4. DOA estimation angles comparison under ESPRIT, MUSIC,
Root-MUSIC, and Root-WSF incorporated with DTN. (SNR = −10 dB, Two
signal sources detected.)

TABLE 5. DOA estimation angles comparison under ESPRIT, MUSIC,
Root-MUSIC, and Root-WSF incorporated with DTN. (SNR = 10 dB, Four
signal sources detected.)

TABLE 6. DOA estimation angles comparison under ESPRIT, MUSIC,
Root-MUSIC, and Root-WSF incorporated with DTN. (SNR = −10 dB, Four
signal sources detected.)

−24◦, having magnitudes equal to 1/4 and 1/2 of the first
signal source, respectively. Therefore, the former three signal
sources are considered coherent with each other, and the last
one, 50◦, is non-coherent with them.
As shown in Table 5 and Table 6, all methods with the

prior knowledge of signal source numbers can successfully
estimate the independent signal at 50◦. However, ESPRIT
and MUSIC cannot correctly estimate the coherent signals
even when the actual signal numbers are given, because
coherent signal sources’ steering vectors are not entirely
orthogonal to the noise subspace [39]. The root-WSF method
features higher estimation accuracy and resolution than the
root-MUSIC algorithm under SNR = 10 dB and −10 dB
conditions. Therefore, root-WSF is considered to be the most
accurate estimation of theDOAunder the premise of knowing
the number of signal sources.

The estimated angles with root-WSF based on AIC and
DTN are shown in Fig. 12. It can be seen that the root-WSF
based on AIC underestimates the number of signal sources,
causing the root-WSF only gives two estimate angles, i.e.,
−24 and 50. On the other hand, the proposed DTN incor-
porating root-WSF successfully estimates all of the four sig-
nal sources (including three coherent signals) with a high

FIGURE 12. Estimated angles with root-WSF based on AIC and DTN.

resolution. Therefore, using DTN to detect the number of
signal sources accurately is crucial to DOA estimation, and
the proposedDTN incorporating with root-WSFwill improve
the DOA estimation robustness.

V. CONCLUSION
This paper proposes a DOA detection network (DTN) incor-
porated with root-WSF for DOA estimation. The signal
source number is detected by DTN, which can effectively
denoise the received signal and detect the numbers of both
non-coherent and coherent signal sources with high accuracy,
even under a low SNR scenario. The DTN label is a one-hot
encoding of the source number, which solves the problem
that the classifier cannot handle the coherent signals. It also
extends the value of discrete features to Euclidean space,
making the distance calculation more reasonable. The results
show that the proposed DTN has superiority in detecting the
signal source number with an average detection accuracy of
96.6%. Furthermore, the root-WSF is incorporated with DTN
to estimate the signal sources’ DOA, compensating for the
defect that the spatial smoothing method needs to sacrifice
the array aperture to improve the estimation accuracy and res-
olution. The application prospect of DTN incorporating with
root-WSF is successfully demonstrated in the area of DOA
estimation. Although this work is proposed targeting satellite
communication scenarios, it also has the high potential to
be extended to terrestrial communication systems, especially
emerging systems such as 5G Beoynd and 6G networks.
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