

Aalborg Universitet

Straggler- and Adversary-Tolerant Secure Distributed Matrix Multiplication Using
Polynomial Codes

Byrne, Eimear; Gnilke, Oliver W.; Kliewer, Jörg

Published in:
Entropy

DOI (link to publication from Publisher):
10.3390/e25020266

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Byrne, E., Gnilke, O. W., & Kliewer, J. (2023). Straggler- and Adversary-Tolerant Secure Distributed Matrix
Multiplication Using Polynomial Codes. Entropy, 25(2), [266]. https://doi.org/10.3390/e25020266

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.3390/e25020266
https://vbn.aau.dk/en/publications/c89e917a-f9e6-4c79-8804-598deec68392
https://doi.org/10.3390/e25020266

Citation: Byrne, E.; Gnilke, O.W.;

Kliewer, J. Straggler- and

Adversary-Tolerant Secure

Distributed Matrix Multiplication

Using Polynomial Codes. Entropy

2023, 25, 266. https://doi.org/

10.3390/e25020266

Academic Editor: Syed A. Jafar

Received: 1 November 2022

Revised: 16 January 2023

Accepted: 20 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Straggler- and Adversary-Tolerant Secure Distributed Matrix
Multiplication Using Polynomial Codes
Eimear Byrne 1 , Oliver W. Gnilke 2 and Jörg Kliewer 3,*

1 School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin, Ireland
2 Department of Mathematical Sciences, Aalborg University, 9220 Aalborg, Danmark
3 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,

Newark, NJ 07410, USA
* Correspondence: jkliewer@njit.edu; Tel.: +1-973-596-3519

Abstract: Large matrix multiplications commonly take place in large-scale machine-learning appli-
cations. Often, the sheer size of these matrices prevent carrying out the multiplication at a single
server. Therefore, these operations are typically offloaded to a distributed computing platform with a
master server and a large amount of workers in the cloud, operating in parallel. For such distributed
platforms, it has been recently shown that coding over the input data matrices can reduce the compu-
tational delay by introducing a tolerance against straggling workers, i.e., workers for which execution
time significantly lags with respect to the average. In addition to exact recovery, we impose a security
constraint on both matrices to be multiplied. Specifically, we assume that workers can collude and
eavesdrop on the content of these matrices. For this problem, we introduce a new class of polynomial
codes with fewer non-zero coefficients than the degree +1. We provide closed-form expressions for
the recovery threshold and show that our construction improves the recovery threshold of existing
schemes in the literature, in particular for larger matrix dimensions and a moderate to large number
of colluding workers. In the absence of any security constraints, we show that our construction is
optimal in terms of recovery threshold.

Keywords: distributed computation; matrix multiplication; distributed learning; information theo-
retic security; polynomial codes

1. Introduction

Recently, tensor operations have emerged as an important ingredient of many signal
processing and machine learning applications [1]. These operations are typically complex
due to the large size of the associated tensors. Therefore, in the interest of a low execution
time, such computations are often performed in a distributed fashion and outsourced to
a cloud of multiple workers that operate in parallel over the distributed data set. These
workers in many cases consist of commercial off-the-shelf servers that are characterized by
failures and varying execution times. Such straggling servers are handled by state-of-the
art cloud computation platforms via a repetition of the computation task at hand. However,
recent work has shown that encoding the input data may help alleviate the straggler
problem and thus reduce the computation latency, which mainly depends on the amount
of stragglers present in the cloud computing environment; see [2,3]. More generally, it
has been shown that coding can control the trade-off between computational delay and
communication load between workers and master server [3–6]. In addition, the workers in
the cloud may not be trustworthy, so the input and output of the partial computations need
to be protected against unauthorized access. To this end, it has been shown that stochastic
coding can help keep both input and output data secure from eavesdropping and colluding
workers (see, for example, [7–14]).

In this work, we focus on the canonical problem of distributing the multiplication of
two matrices A and B, i.e., C = AB, whose content should be kept secret from a prescribed

Entropy 2023, 25, 266. https://doi.org/10.3390/e25020266 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020266
https://doi.org/10.3390/e25020266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1857-0365
https://orcid.org/0000-0003-1614-7464
https://orcid.org/0000-0003-0942-8006
https://doi.org/10.3390/e25020266
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020266?type=check_update&version=2

Entropy 2023, 25, 266 2 of 19

number of colluding workers in the cloud. Our goal is to minimize the number of workers
from which the partial result must be downloaded, the so-called recovery threshold, to recover
the correct matrix product C.

Coded matrix computation was first addressed in the non-secure case by applying
separate MDS codes to encode the two matrices [3]. In [5], polynomial codes have been
introduced, which improves on the recovery threshold of [3]. The recovery threshold was
further improved by the so-called MatDot and PolyDot codes [15,16] at the expense of a
larger download rate. In particular, PolyDot codes allow a flexible trade-off between the
recovery threshold and the download rate, depending on the application at hand.

In [17,18] two different schemes are presented, an explicit scheme that improves on
the recovery thereshold of PolyDot codes and a construction based on the tensor rank
of matrix multiplication, which is optimal up to a factor of 2. In [19] a new construction
for private and secure matrix multiplication is proposed based on entangled polynomial
codes, which allows for a flexible trade-off between the upload rate and the download
rate (equivalently, the recovery threshold). For small numbers of stragglers [20] constructs
schemes that outperform the entangled polynomial scheme. Recently, several attempts
have been made to design coding schemes to further reduce upload and download rates,
the recovery threshold, and computational complexity for both workers and server (see, for
example, [21–27]). For example, in [21], bivariate polynomial codes were used to reduce
the recovery threshold in specific cases. In [22], the authors considered new schemes for the
private and secure case which outperform [19] for specific parameter regions. The work
in [23] considered distributed storage repair codes, so-called field-trace polynomial codes,
to reduce the download rate for specific partitions of matrices A and B. Very recently,
the authors in [24] proposed a black-box coding scheme based on star products, which
subsumes several existing works as special cases. In [25], a discrete Fourier transform-
based scheme with low upload rates and encoding complexity is proposed. The work
in [26] focused on selecting the evaluation points for the polynomial codes, providing a
better upload rate than [9], but worse than [25].

In the following, we propose a new scheme for secure matrix multiplication, which
provides explicit evaluation points for the polynomial codes, but unlike the work in [26], is
also able to tolerate stragglers. Specifically, we exploit gaps in the underlying polynomial
code. This is motivated by the observation that the recovery threshold can be improved by
selecting the number of evaluation points to be equal to the number of only the non-zero
coefficients in the polynomial [9,19]. In addition, selecting dedicated evaluation points has
the advantage that the condition for security against colluding workers is automatically
satisfied (see, for example, condition C2 in [27]). As such, our approach is able to provide
a constructive scheme with provable security guarantees. Further, our coding scheme
provides an advantage in terms of download rate in some cases, and is both straggler-
tolerant and robust against Byzantine attacks on the workers.

This paper is organized as follows. In Section 2, the problem statement and the
background is highlighted. Section 3 discusses design and properties of our proposed
scheme and provides performance guarantees with respect to the number of helper nodes
needed for recovery, security, straggler tolerance and under Byzantine attacks. Section 4
extends the scheme of Section 4 by introducing gaps into the code polynomials and by
studying its properties. Finally, Section 5 presents numerical results and comparisons with
state-of-the-art schemes from the literature.

2. Problem Statement and Background

Let A and B be a pair of matrices over the finite field Fq, whose product is well defined.
We consider the problem of computing the product C = AB. The computation will be
distributed among a number of helper nodes, each of which will execute a portion of the
total calculation. We also assume that the user wishes to hide the data contained in the
matrices A and B and that up to T honest but curious helper nodes may collude to deduce
information about the contents of A and B. To divide the work among the helper nodes,

Entropy 2023, 25, 266 3 of 19

the matrices A and B are each divided into KM and ML blocks, respectively, of compatible
dimensions, say a × r and r × b. The matrices are also assumed to have independent
and identically distributed uniformly distributed entries from a sufficiently large field of
cardinality q > N, where N denotes the number of servers to be employed (in fact, we will
require q to exceed the degree of a polynomial P(x)Q(x), central to this scheme). Hence,
for given matrix partition of A and B according to

A =

A1,1 · · · A1,M
...

. . .
...

AK,1 · · · AK,M

, B =

 B1,1 · · · B1,L
...

. . .
...

BM,1 · · · BM,L

,

we obtain

C = AB =

C1,1 · · · C1,L
...

. . .
...

CK,1 · · · CK,L

 where Ci,j =
M

∑
m=1

Ai,mBm,j.

The system model is displayed in Figure 1. We consider a distributed computing
system with a master server and N helper nodes or workers. The master server is interested
in computing the product C = AB. In Figure 1, the worker receives matrices A and B and
T random uniformly independent and identically distributed matrices of size Rt ∈ Fa×r

q

and St ∈ Fr×b for t ∈ [T]. To keep the data secure and to leverage possible computational
redundancy at the workers, the server sends encoded versions of the input matrices to the
workers. This security constraint imposes the mutual information condition

I(AT , BT ; A, B) = 0 (1)

between the pair (A, B) and their encodings (AT , BT) for all subsets T ⊂ [N] of maximum
cardinality T. The server generates a polynomial representation of A and Rt by constructing
a polynomial P(x) ∈ Fa×r

q [x]. Likewise, a polynomial representation of B and Qt results
in a polynomial Q(x) ∈ Fr×b

q [x]. The polynomial encodings that the p-th worker receives
comprise the two polynomial evaluations P(αp) and Q(αp), for distinct evaluation points
αp ∈ Fq with p ∈ [N]. It then computes the matrix product P(αp)Q(αp) and sends it back
to the server. The server collects a subset of NR ≤ N outputs from the workers as defined
by the evaluation points in the subset {P(αp)Q(αp)}p∈NR with |NR| = NR. The size of the
smallest possible subset NR for which perfect recovery is obtained, i.e.,

H(AB|{P(αp)Q(αp) : p ∈ NR}) = 0, (2)

where H denoted the entropy function, is defined as the recovery threshold. The server
then interpolates the underlying polynomial such that the correct product C = AB can be
assembled from a combination of the interpolated polynomial coefficients Ci,j (see Section 3
for details).

We further define the upload rate Ru per worker as the sum of the dimensions of
P(αp) and Q(αp), i.e., Ru = (a + b)r field elements of Fq. Likewise, the download rate or
communication load Rd is defined as the total number of field elements to be downloaded
from the workers such that (2) is satisfied, i.e., Rd = abNR.

Entropy 2023, 25, 266 4 of 19

Server

Worker 1 Worker 2 Worker N

<latexit sha1_base64="G4ga90xlg0ddVulO2xXvndIJNSE=">AAAETXicdVNbaxNBFJ421dZ6a/VFEGGxLaSQhqRo9UUo6kMFLyn2Bt0QZmdPkiFzWWbOtgnD+mt81b/isz/ENxFnNytmGzqw7JnvO+fMOd+ciRLBLbZaPxcWa0s3bi6v3Fq9fefuvftr6w9OrE4Ng2OmhTZnEbUguIJj5CjgLDFAZSTgNBq9yfnTCzCWa3WEkwS6kg4U73NG0UO9tUedekhFMqS99nYjOPy/6a1ttJqtYgXzRrs0Nki5Or312pOwQ639lOSZ7ZHuUDaiA3BIfTGZGxfFZmGsWSpBIRPe+bzdSrDrqEHOvNNqmFpIpnHn3lRUgu26aWSw5ZE46GvjP4VBgc5GOCqtncjIe0qKQ3uVy8HruDyjbViU1ExMnM2yMEZqjL601fKKNMx0HaT+xxOs0M769oaRHjcSznC32pqLtB55WaoZ3SW1E19/FSxlq2AFhJHIVrcqgmH/ZddxlaQIik316qciQB3kVx/E3ABDMfEG9RV7yQM2pIYy9ANSSeWQe+Grhxb9JsCqaKHbHDpOFWc6vtL1WOAYDfWgBS80V3mwOwBxAb4WGnyEFP6R/qycrb/lA+4v5r0fV7V9ra+R81QM/XCkjQsbYX4PbjNk3LBQjsConb3mnkx3ZjdBGKVCAG5mYSPXtcycF3FuqBrAqzDfR/2uO3t39Dn4kA+T9zOg4JJpKamKXemSudlw91qLOMv8g2pffT7zxslus73XfH74bGO/Xj6tFfKYPCV10iYvyD45IB1yTBj5Qr6Sb+R77UftV+137c/UdXGhjHlIKmtp+S95Unu9</latexit>P(↵
1),Q(↵

1)

<latexit sha1_base64="mhrr3v7LWo9t9f0D7JQM6tfbMD8=">AAAETXicdVNbaxNBFJ421dZ6a/VFEGGxLaSQhqRo9UUo6kMFLyn2Bt0QZmdPkiFzWWbOtgnD+mt81b/isz/ENxFnNytmGzqw7JnvO+fMOd+ciRLBLbZaPxcWa0s3bi6v3Fq9fefuvftr6w9OrE4Ng2OmhTZnEbUguIJj5CjgLDFAZSTgNBq9yfnTCzCWa3WEkwS6kg4U73NG0UO9tUedekhFMqS93e1GcPh/01vbaDVbxQrmjXZpbJBydXrrtSdhh1r7Kckz2yPdoWxEB+CQ+mIyNy6KzcJYs1SCQia883m7lWDXUYOceafVMLWQTOPOvamoBNt108hgyyNx0NfGfwqDAp2NcFRaO5GR95QUh/Yql4PXcXlG27AoqZmYOJtlYYzUGH1pq+UVaZjpOkj9jydYoZ317Q0jPW4knOFutTUXaT3yslQzuktqJ77+KljKVsEKCCORrW5VBMP+y67jKkkRFJvq1U9FgDrIrz6IuQGGYuIN6iv2kgdsSA1l6Aekksoh98JXDy36TYBV0UK3OXScKs50fKXrscAxGupBC15orvJgdwDiAnwtNPgIKfwj/Vk5W3/LB9xfzHs/rmr7Wl8j56kY+uFIGxc2wvwe3GbIuGGhHIFRO3vNPZnuzG6CMEqFANzMwkaua5k5L+LcUDWAV2G+j/pdd/bu6HPwIR8m72dAwSXTUlIVu9Ilc7Ph7rUWcZb5B9W++nzmjZPdZnuv+fzw2cZ+vXxaK+QxeUrqpE1ekH1yQDrkmDDyhXwl38j32o/ar9rv2p+p6+JCGfOQVNbS8l+BAXu/</latexit>P
(↵

2),Q
(↵

2)

<latexit sha1_base64="RMJiHOhEdDsECXA1ACD3AkIxujM=">AAAETXicdVNbaxNBFJ421dZ6a/VFEGGxLaSQhqRo9UUo6kMFrSn2Bt0QZmdPkiFzWWZm24Rh/TW+6l/x2R/im4hnNytmGxxY9sz3nXPmnG/ORIng1rVaPxYWa0s3bi6v3Fq9fefuvftr6w9OrU4NgxOmhTbnEbUguIITx52A88QAlZGAs2j0JufPLsFYrtWxmyTQlXSgeJ8z6hDqrT3q1EMqkiHtHW43gqN/m97aRqvZKlYwb7RLY4OUq9Nbrz0JO9Taj0me2R7rDmUjOgDvKBaT+XFRbBbGmqUSlGMCnS/arcR1PTWOM3RaDVMLyTTuAk1FJdiun0YGW4jEQV8b/JQLCnQ2wlNp7URG6CmpG9rrXA7+j8sz2oZ1kpqJibNZFsaOGqOvbLW8Ig0zXQ8p/njiKrS32N4w0uNGwpnbrbbmI61HKEs1o7+idoL1V8FStgpWQC4S2epWRTDXf9n1XCWpA8WmevVTETgd5FcfxNwAc2KCBsWKUfKADamhzOGAVFJ5x1H46qFFvwmwKlroNoeOU8WZjq91PRZu7AxF0AIKzVUe7A9AXALWQoNDSOEviWflbP0tH3C8mPc4rmr7v75GzlMx9MORNj5shPk9+M2QccNCOQKjdvaaezLdmd0EYZQKAW4zCxu5rmXmvIgLQ9UAXoX5Pup3/fm740/Bh3yY0M+AgiumpaQq9qVL5mfD/Wst4izDB9W+/nzmjdPdZnuv+fzo2cZ+vXxaK+QxeUrqpE1ekH1yQDrkhDDymXwhX8m32vfaz9qv2u+p6+JCGfOQVNbS8h9YNHv3</latexit> P(↵
N)

,Q(↵N
)

<latexit sha1_base64="Wrjk1iZ0khjhknlkzuQsbeCRE9s=">AAAEUXicdVNLbxMxEHabAKXl0cIRkFa0lVIpjZIKChekCjgUiUcq+pK6UeT1ThIrfqzs2TaRtRd+DVf4K5z4KdzwbhaRbVRLqx1/38x45vM4SgS32G7/Xlqu1W/dvrNyd3Xt3v0HD9c3Hp1anRoGJ0wLbc4jakFwBSfIUcB5YoDKSMBZNH6X82eXYCzX6hinCfQkHSo+4Iyih/rrT7uNkIpkRPudnZDFGoOj/0B/fbPdahcrWDQ6pbFJytXtb9SehV1q7Zckz26PdZeyMR2CQ+oLytykKDgLY81SCQqZ8M4XnXaCPUcNcuadVsPUQjKLu/CmohJsz80ig22PxMFAG/8pDAp0PsJRae1URt5TUhzZ61wO3sTlGW3ToqRmauJsnoUJUmP0la2WV6Rhpucg9T+eYIV21rc3ivSkmXCGe9XWXKT12MtSzeiuqJ36+qtgKVsFKyCMRLa6XREMB697jqskRVBsptcgFQHqIL/+IOYGGIqpN6iv2EsesBE1lKEfkkoqh9wLXz206DcBVkUL3RbQSao40/G1ricCJ2ioBy14obnKg90hiEvwtdDgM6Twj/Rn5WzjPR9yfzEf/ciqnRt9jVykYhiEY21c2Azze3BbIeOGhXIMRu3ut/Zluju/CcIoFQJwKwubua5l5ryIC0PVEN6E+T4a9Nz5h+Ovwad8mLyfAQVXTEtJVexKl8zNh7u3WsRZ5h9U5/rzWTRO91qd/dbLoxebB43yaa2QJ+Q5aZAOeUUOyCHpkhPCyDfynfwgP2u/an/qpL48c11eKmMek8qqr/0FC4R7wQ==</latexit>P(↵
1) ·Q(↵

1)

<latexit sha1_base64="B6mLYWVNIcbvGbvc1lGXYSdPyM4=">AAAEUXicdVNLbxMxEHabAKXl0cIRkFa0lVIpjZIKChekCjgUiUcq+pK6UeT1ThIrfqzs2TaRtRd+DVf4K5z4KdzwbhaRbVRLqx1/38x45vM4SgS32G7/Xlqu1W/dvrNyd3Xt3v0HD9c3Hp1anRoGJ0wLbc4jakFwBSfIUcB5YoDKSMBZNH6X82eXYCzX6hinCfQkHSo+4Iyih/rrT7uNkIpkRPt7OyGLNQZH/4H++ma71S5WsGh0SmOTlKvb36g9C7vU2i9Jnt0e6y5lYzoEh9QXlLlJUXAWxpqlEhQy4Z0vOu0Ee44a5Mw7rYaphWQWd+FNRSXYnptFBtseiYOBNv5TGBTofISj0tqpjLynpDiy17kcvInLM9qmRUnN1MTZPAsTpMboK1str0jDTM9B6n88wQrtrG9vFOlJM+EM96qtuUjrsZelmtFdUTv19VfBUrYKVkAYiWx1uyIYDl73HFdJiqDYTK9BKgLUQX79QcwNMBRTb1BfsZc8YCNqKEM/JJVUDrkXvnpo0W8CrIoWui2gk1RxpuNrXU8ETtBQD1rwQnOVB7tDEJfga6HBZ0jhH+nPytnGez7k/mI++pFVOzf6GrlIxTAIx9q4sBnm9+C2QsYNC+UYjNrdb+3LdHd+E4RRKgTgVhY2c13LzHkRF4aqIbwJ83006LnzD8dfg0/5MHk/AwqumJaSqtiVLpmbD3dvtYizzD+ozvXns2ic7rU6+62XRy82Dxrl01ohT8hz0iAd8oockEPSJSeEkW/kO/lBftZ+1f7USX155rq8VMY8JpVVX/sLEzd7ww==</latexit>P
(↵

2)·Q
(↵

2)

<latexit sha1_base64="FG8DRInD30UnsdnxcZrQEebjQQQ=">AAAEUXicdVNLbxMxEHabAKXl0cIRkFa0lVIpjZIKChekCjgUCUoq+pK6UeT1ThIrfqzs2TaRtRd+DVf4K5z4KdzwbhaRbYSl1Y6/b2Y883kcJYJbbLd/LS3X6rdu31m5u7p27/6Dh+sbj86sTg2DU6aFNhcRtSC4glPkKOAiMUBlJOA8Gr/L+fMrMJZrdYLTBHqSDhUfcEbRQ/31p91GSEUyov2jnZDFGoPjf0B/fbPdahcrWDQ6pbFJytXtb9SehV1q7eckz25PdJeyMR2CQ+oLytykKDgLY81SCQqZ8M6XnXaCPUcNcuadVsPUQjKLu/SmohJsz80ig22PxMFAG/8pDAp0PsJRae1URt5TUhzZm1wO/o/LM9qmRUnN1MTZPAsTpMboa1str0jDTM9B6n88wQrtrG9vFOlJM+EM96qtuUjrsZelmtFdUzv19VfBUrYKVkAYiWx1uyIYDl73HFdJiqDYTK9BKgLUQX79QcwNMBRTb1BfsZc8YCNqKEM/JJVUDrkXvnpo0W8CrIoWui2gk1RxpuMbXU8ETtBQD1rwQnOVB7tDEFfga6HBEaTwl/Rn5WzjPR9yfzEf/ciqnf/6GrlIxTAIx9q4sBnm9+C2QsYNC+UYjNrdb+3LdHd+E4RRKgTgVhY2c13LzHkRl4aqIbwJ83006LmLDydfgk/5MHk/AwqumZaSqtiVLpmbD3dvtYizzD+ozs3ns2ic7bU6+62Xxy82Dxrl01ohT8hz0iAd8oockEPSJaeEka/kG/lOftR+1n7XSX155rq8VMY8JpVVX/sD6st7+w==</latexit> P(↵
N)

·Q(↵N
)

<latexit sha1_base64="dePFOExoneo4e67LwFhR/7Byu/o=">AAAEOHicdVPbattAEN1EvaTpLWkfS0E0CaTgGDuEtC+BNOlDCr24NE4CkQmr1dhevBexu0psFn1DX9tf6Z/0rW+lr/2CjmQVrJgsCM2eMzM7c3Y2TgW3rtX6ubAY3Lp95+7SveX7Dx4+eryy+uTE6sww6DIttDmLqQXBFXQddwLOUgNUxgJO49FhwZ9egrFcq2M3SaEn6UDxPmfUIdQ93HsTHlysrLWarXKF80a7MtZItToXq8HzqEOt/ZQWSeyx7lA2ogPwjuK5uR+XdeVRolkmQTkm0Pm83Updz1PjOEOn5SizkE7jztFUVILt+WlkuIFIEva1wU+5sERnIzyV1k5kjJ6SuqG9zhXgTVyR0Task9RMTJLPsjB21Bh9ZevllWmY6XnI8MdTV6O9xfaGsR43Us7cdr01H2s9QlnqGf0VtROsvw5WstWwEnKxyJc3aoK5/uue5yrNHCg21aufidDpsLjlMOEGmBMTNChWjJKHbEgNZQ5noZbKO47C1w8t+02B1dFStzl0nCnOdHKt67FwY2coghZQaK6KYH8E4hKwFhp+hAz+k3hWwW6+5QOOF/MeJ1O9vNHXyHkqgX400sZHjai4B78eMW5YJEdg1NZuc1dmW7ObMIozIcCt51Gj0LXKXBRxbqgawF5U7ON+z5+9O/4SfiiGCf0MKLhiWkqqEl+55H423B9okeQ5Pqj29eczb5xsN9u7zZ3PO2v7jeppLZFn5AXZJG3yiuyTI9IhXcIIJ1/JN/I9+BH8Cn4Hf6auiwtVzFNSW8Hff2mSdYA=</latexit>

C = AB
<latexit sha1_base64="5f0w62oW2f/UYflBYUwugcI977s=">AAAERnicdVPbattAEN3EaZumt6R9LAXRJJCCYuwQ0r4U0stDCr24rXOByJjVauws3ovYXcU2iz6lr+2v9Bf6E30rfe1IVsGKyYLQ7DkzszNnZ+NUcOtarV9Ly42VGzdvrd5eu3P33v0H6xsPT6zODINjpoU2ZzG1ILiCY8edgLPUAJWxgNN49KbgTy/BWK5V101T6Ek6VHzAGXUI9dc3XoXBl347jBLtbGF2++ubrWarXMGi0a6MTVKtTn+j8STqUGs/pUVK29UdykZ0CN5RrCL3k7LKHE9gmQTlmEDn83YrdT1PjeMMndaizEI6iztHU1EJtudnkcE2Ikkw0AY/5YISnY/wVFo7lTF6Suou7FWuAK/jiow2tE5SMzVJPs/CxFFj9NjWyyvTMNPzkOGPp65Ge4vtXcR6Eqacub16az7WeoSy1DP6MbVTrL8OVrLVsBJyscjXtmuCucGLnucqzRwoNtNrkInA6aC48yDhBpgTUzQoVoySB+yCGsocTkYtlXccha8fWvabAqujpW4L6CRTnOnkStcT4SbOUAQtoNBcFcH+CMQlYC00+AgZ/CfxrILdecuHHC/mPc6penatr5GLVAKDaKSNj8KouAe/FTFuWCRHYNTuQfNAZrvzmyCKMyHAbeVRWOhaZS6KODdUDeFlVOzjQc+fvet+DT4Uw4R+BhSMmZaSqsRXLrmfD/evtUjyHB9U++rzWTRO9prtg+b+5/3Nw7B6WqvkMXlKdkibPCeH5Ih0yDFhZEy+ke/kR+Nn43fjT+PvzHV5qYp5RGprhfwD5O15CQ==</latexit>

A,R1, . . . ,RT
<latexit sha1_base64="F1qNO9NZ3upzePhOOvA2kFvb3n8=">AAAERnicdVPbattAEN3EaZumt6R9LAXRJJCCYuwQ0r4UQtqHFHpxiXOByJjVauws3ovYXcU2iz6lr+2v9Bf6E30rfe1IVsGKyYLQ7DkzszNnZ+NUcOtarV9Ly42VO3fvrd5fe/Dw0eMn6xtPz6zODINTpoU2FzG1ILiCU8edgIvUAJWxgPN49K7gz6/BWK5V101T6Ek6VHzAGXUI9dc3jsLgpN8Oo0Q7W5jd/vpmq9kqV7BotCtjk1Sr099ovIg61NovaZHSdnWHshEdgncUq8j9pKwyxxNYJkE5JtD5st1KXc9T4zhDp7Uos5DO4i7RVFSC7flZZLCNSBIMtMFPuaBE5yM8ldZOZYyekrore5MrwNu4IqMNrZPUTE2Sz7MwcdQYPbb18so0zPQ8ZPjjqavR3mJ7V7GehClnbq/emo+1HqEs9Yx+TO0U66+DlWw1rIRcLPK17ZpgbvCm57lKMweKzfQaZCJwOijuPEi4AebEFA2KFaPkAbuihjKHk1FL5R1H4euHlv2mwOpoqdsCOskUZzq50fVEuIkzFEELKDRXRbA/BnENWAsNPkMG/0k8q2B33vMhx4v5iHOqXt3qa+QilcAgGmnjozAq7sFvRYwbFskRGLV70DyQ2e78JojiTAhwW3kUFrpWmYsiLg1VQ3gbFft40PMXH7onwadimNDPgIIx01JSlfjKJffz4f5IiyTP8UG1bz6fReNsr9k+aO5/3d88DKuntUqek5dkh7TJa3JIjkmHnBJGxuQb+U5+NH42fjf+NP7OXJeXqphnpLZWyD/wfHkM</latexit>

B,S1, . . . ,ST

Figure 1. System model for secure matrix multiplication.

Notation. For the remainder, we fix A, B, C to be matrices over Fq such that C = AB,
and we fix K, M, L, a, b, r to be the integers as defined above. We define [n] := {1, . . . , n} for
any positive integer n. For each k ∈ [K], ` ∈ [L], and m ∈ [M], we write Ak,m, Bm,`, and Ck,`
to denote the (k, m), (m, `), and (k, `) blocks of A, B, and C, respectively. The transpose of a
matrix Z is denoted by Zt.

3. Proposed Scheme

The scheme we propose uses a similar approach to the schemes in [9,19,27]. We will
begin with the choices for exponents in P(x) and Q(x) and show that the desired blocks
of C appear as coefficients of the product PQ. We discuss the maximum possible degree
of PQ since it gives us an upper bound on the necessary evaluations, and hence workers,
needed to interpolate PQ. In Section 3.3, we give explicit criteria for choices of evaluation
points and prove that the scheme protects against collusion of up to T servers. Section 3.4
discusses the option to query additional servers to provide resilience against stragglers and
Byzantine servers.

Section 4 uses ideas from the GASP scheme [9] to reduce the recovery threshold by
examining how many coefficients in the product are already known to be zero.

3.1. Choice of Exponents and Maximal Degree

We propose the following scheme to outsource the computation among the worker
servers. The model will incorporate methods to secure the privacy of the data held by the
matrices A, B, and C.

Let D := M + 2. For the given A and B, we define the polynomials:

P̄(x) :=
K

∑
k=1

xD(k−1)
M

∑
m=1

xm Ak,m and Q̄(x) :=
L

∑
`=1

xDK(`−1)
M

∑
m=1

xM+1−mBm,`.

We now define polynomials

P(x) := P̄(x) + R(x) and Q(x) :=Q̄(x) + S(x),

where and R(x), S(x) are a pair of matrix polynomials:

R(x) :=
T

∑
t=1

xD(t−1)Rt and S(x) :=
T

∑
t=1

xD(t−1)St,

whose coefficients are a × r and r × b matrices over Fq, respectively, chosen uniformly
at random.

In the next theorem, we show that the desired matrices Ck,` appear as coefficients of
the product PQ and can hence be retrieved by inspection of this product.

Theorem 1. For each pair (k, `) ∈ [K] × [L], the block Ck,` arising in the product C = AB
appears as the coefficient of xD((k−1)+K(`−1))+M+1 in the product PQ.

Entropy 2023, 25, 266 5 of 19

Proof. We calculate the product

PQ =P̄Q̄ + P̄S + RQ̄ + RS

=
K

∑
k=1

L

∑
`=1

xD((k−1)+K(`−1))
M

∑
m=1

M

∑
m′=1

Ak,mBm′ ,`xM+1+m−m′

+
K

∑
k=1

T

∑
t′=1

xD(k+t′−2)
M

∑
m=1

Ak,mSt′x
m

+
L

∑
`=1

T

∑
t=1

xD(K(l−1)+(t−1))
M

∑
m′=1

RtBm′ ,`xM+1−m′

+
T

∑
t=1

T

∑
t′=1

RtSt′x
D(t+t′−2).

Consider the exponents modulo D. The first term in the sum of terms above is the
product P̄Q̄. Any of the exponents of x in this term are equal to D− 1 ≡ M + 1 mod D
if and only if m = m′, in which case its corresponding coefficient is Ck,`. In particular,
the matrix block Ck,` appears in the product P̄Q̄ as the coefficient of xD((k−1)+K(`−1))+M+1.

We claim that no other exponent of x in PQ− P̄Q̄ is equal to M+ 1 mod D, from which
the result will follow. Observe that the exponents in the second and third term of the prod-
uct (i.e. those of P̄S + RQ̄) are all between 1 and M modulo D, while every exponent of x
in the fourth term, which is RS, is a multiple of D.

In order to retrieve the polynomial PQ, we may evaluate P and Q at a number of
distinct values α1, . . . , αN+1 in F×q . The values P(αi) and Q(αi) are found at a cost of zero
non-scalar operations. Define

V(α1, . . . , αN+1) :=

1 α1 α2

1 · · · αN
1

1 α2 α2
2 · · · αN

2
...

. . .
...

1 αN α2
N · · · αN

N
1 αN+1 α2

N+1 · · · αN
N+1

.

The (i, j)-entries of the coefficients of PQ ∈ Fa×b
q [x] can be retrieved by computing

the product

V(α1, . . . , αN+1)
−1((P(α1)Q(α1))i,j, . . . , (P(αN+1)Q(αN+1))i,j)

t,

if the degree of PQ is at most N. Since this computation involves only Fq-linear compu-
tations, the total non-scalar cost is the total cost of performing the N + 1 matrix products
P(αi)Q(αi). In the distributed computation scheme as shown in Figure 1, the server up-
loads each pair of evaluations P(αi), Q(αi) to the i-th worker node, which then computes
the product P(αi)Q(αi) and returns it to the server.

In this approach to reconstructing PQ, we require the participation of N + 1 worker
nodes, where N is the degree of PQ. For this reason, we study this degree. Since

deg(PQ) ≤ max(deg(P̄Q̄), deg(P̄S), deg(RQ̄)deg(RS)),

we have the following result, wherein each of the values N1(K, L, M; T) to N4(K, L, M; T)
correspond to the maximum possible degrees of P̄Q̄, P̄S, RQ̄, and RS, respectively. We
write N(A, B; K, L, M; T) to denote the maximum possible degree of the polynomial PQ, as
the A, B, R, S range over all possible matrices of the stated sizes.

Proposition 1. The degree of PQ is upper bounded by N(A, B; K, L, M; T), where

Entropy 2023, 25, 266 6 of 19

N(A, B; K, L, M; T) = max

N1(K, L, M; T) := D(KL− 1) + 2M (3)

N2(K, L, M; T) := D(K + T − 2) + M (4)

N3(K, L, M; T) := D(K(L− 1) + T − 1) + M (5)

N4(K, L, M; T) := 2D(T − 1) (6)

Proposition 2. The following are equivalent.

1. T > K,
2. N3(K, L, M; T) > N1(K, L, M; T),
3. N4(K, L, M; T) > N2(K, L, M; T).

Proof. First note that T > K ⇔ T − K ≥ 1 and that 1 = dM
D e > M

D . Since T − K is an
integer, we thus have that the following inequalities are equivalent to T > K:

T − K >
M
D

,

D(T − K) > M,

D(K(L− 1) + T − 1) + M > D(KL− 1) + 2M.

This shows that N3(K, L, M; T) > N1(K, L, M; T) if and only if T > K. Similarly, using
the 2nd and 3rd inequalities just above, we have

T > K ⇔ DT > DK + M,

⇔ 2D(T − 1) > D(T + K− 2) + M,

from which we see that N4(K, L, M; T) > N2(K, L, M; T) if and only if T > K.

Proposition 3. The following are equivalent.

1. T > K(L− 1) + 1,
2. N4(K, L, M; T) > N3(K, L, M; T),
3. N2(K, L, M; T) > N1(K, L, M; T).

Proof. We have the following inequalities:

T > K(L− 1) + 1⇔ T − K(L− 1)− 1 ≥ 1 >
M
D

,

⇔ D(T − K(L− 1)− 1) > M,

⇔ D(2T − 2) > D(K(L− 1) + T − 1) + M,

from which we deduce that N4(K, L, M; T) > N3(K, L, M; T). We now show that N2(K, L,
M; T) > N1(K, L, M; T). We have:

T > K(L− 1) + 1⇔ D(T − K(L− 1)− 1) > M,

⇔ D(K + T − 2) + M > D(KL− 1) + 2M.

Entropy 2023, 25, 266 7 of 19

We tabulate (see Table 1) the value of N(K, L, M; T) based on the observations of
Propositions 2 and 3.

Table 1. Summary table of maximal degree of PQ.

T > K(L − 1) + 1 T ≤ K(L − 1) + 1

T > K 2D(T − 1) (6) D(K(L− 1) + T − 1) + M (5)
T ≤ K D(K + T − 2) + M (4) D(KL− 1) + 2M (3)

3.2. AB versus Bt At

We compare the recovery threshold cost of calculating Bt At rather than AB. It can
be shown that it is always better to calculate AB whenever K ≥ L. That is, we show that
N(A, B; K, L, M; T) ≤ N(Bt, At; L, K, M; T) for K ≥ L. We consider all possible cases for the
maximal degree in the following two theorems and remarks.

Theorem 2. 1. Let T > K, L. Suppose that T < K(L− 1) + 1 and T < L(K− 1) + 1.
We have that

N(A, B; K, L, M; T) = N3(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T),

if and only if L < K.
2. Let K ≥ T > L. Suppose that T < K(L− 1) + 1 and T < L(K− 1) + 1. We have that

N(A, B; K, L, M; T) = N1(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T).

3. Let T > L, K and suppose that L(K− 1) + 1 ≥ T > K(L− 1) + 1. We have that

N(A, B; K, L, M; T) = N4(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T).

4. Let T > K ≥ L and suppose that T > L(K− 1) + 1. We have that

N(A, B; K, L, M; T) = N4(K, L, M; T) = N4(L, K, M; T) = N(Bt, At; L, K, M; T).

5. Let T ≤ L ≤ K and suppose that T ≤ K(L− 1) + 1. We have that

N(A, B; K, L, M; T) = N1(K, L, M; T) = N1(L, K, M; T) = N(Bt, At; L, K, M; T).

Proof. 1. Since T > K, and T < K(L− 1) + 1 by Propositions 2 and 3 we have that

N3(K, L, M; T) > N4(K, L, M; T) > N2(K, L, M; T), N1(K, L, M; T)

and so N(A, B; K, L, M; T) = N3(K, L, M; T).
Similarly, since T > L, and T < L(K − 1) + 1, we have that N(Bt, At; L, K, M; T) =
N3(L, K, M; T). Clearly, L < K if and only if:

N3(K, L, M; T) = D(K(L− 1) + T − 1) + M

< D(L(K− 1) + T − 1) + M = N3(L, K, M; T).

2. By Propositions 2 and 3, the assumptions K ≥ T and T < K(L − 1) + 1 imply
that N(A, B; K, L, M; T) = N1(K, L, M; T), while the assumptions T > L and T <
L(K− 1) + 1 yield that N(Bt, At; K, L, M; T) = N3(L, K, M; T).
Clearly, since T > L, we have M < D(T − L) and

N1(K, L, M; T) = D(KL− 1) + 2M < D(L(K− 1) + T − 1) + M = N3(L, K, M; T).

Entropy 2023, 25, 266 8 of 19

3. From the given assumptions, by Propositions 2 and 3, we have N(A, B; K, L, M; T) =
N4(K, L, M; T) and N(Bt, At; L, K, M; T) = N3(L, K, M; T). Since L(K − 1) + 1 ≥ T,
as in the proof of Proposition 3, we have

N4(K, L, M; T) = 2D(T − 1) = N4(L, K, M; T) ≤ N3(L, K, M; T).

4. For the given assumptions the statement follows immediately from Propositions 2
and 3.

5. From the given assumptions, by Propositions 2 and 3, we have N(A, B; K, L, M; T) =
N1(K, L, M; T) and N(Bt, At; L, K, M; T) = N1(L, K, M; T). The rest follows immedi-
ately from N1(K, L, M; T) = D(KL− 1) + 2M = D(LK− 1) + 2M = N1(L, K, M; T).

Remark 1. Clearly, if T ≤ K and T > K(L− 1) + 1 then L = 1. In this case, from Propositions 3
and 2, we have that N(A, B; K, 1, M; T) = N2(K, 1, M; T).

Theorem 3. Let T ≤ K and T > K(L− 1) + 1.

(i) Assume T > L and T ≤ L(K − 1) + 1 then N(A, B; K, L, M; T) = N2(K, 1, M; T) =
N3(1, K, M; T) = N(Bt, At; L, K, M; T).

(ii) Assume T = 1 ≤ L and T ≤ L(K− 1) + 1 then N(A, B; K, L, M; T) = N2(K, 1, M; 1) <
N1(1, K, M; 1) = N(Bt, At; L, K, M; T).

Proof. (i) Since L = 1 we have that
N2(K, 1, M; T) = D(K + T − 2) + M = D(L(K− 1) + T − 1) + M = N3(1, K, M; T)
and so the result follows.

(ii) We see that
N2(K, 1, M; 1) = D(K− 1) + M < D(K− 1) + 2M = N1(1, K, M; 1)

Remark 2. The remaining two cases lead to a contradiction and can hence never occur. Let T ≤ K
and T > K(L− 1) + 1 and T > L(K− 1) + 1. By Remark 1, we have that L = 1 and we obtain
the contradiction T ≤ K < T.

3.3. T-Collusion

Each query is masked with a polynomial of the form ∑T−1
i=0 xiDRi, where Ri is chosen

uniformly at random. A query is private in the case of T servers colluding if and only if
the matrix

M(x1, . . . , xT) :=

1 · · · 1

xD
1 · · · xD

T
...

. . .
...

xD(T−1)
1 · · · xD(T−1)

T

has full rank for any subset of T evaluation points. This is the same as condition C2 in [27].
Because of the very specific set of exponents used, we can give a more explicit condition
for the invertibility of this matrix.

Proposition 4. The matrix M(x1, . . . , xT) is invertible if and only if the elements xD
1 , . . . , xD

T
are distinct.

Proof. M(x1, . . . , xT) is a Vandermonde matrix with entries xD
1 , . . . , xD

T .

Proposition 5. A set of elements of Fq such that their Dth powers are pairwise different has size at
most N = q−1

gcd(q−1,D)
+ 1.

Entropy 2023, 25, 266 9 of 19

Proof. Fix a generator γ of F∗q . Then the image of the map x 7→ xD from Fq to Fq is given
by 0 together with all powers γDi where 0 ≤ i < q− 1.

Corollary 1. Let T < q. If gcd(q− 1, D) = 1, then the scheme in Section 3 is secure against
T-collusion for any choice of evaluation points.

3.4. Stragglers and Byzantine Servers

Considering the scheme as described in the previous section, we see that the responses
are the coordinates of a codeword of a Reed–Solomon code. The polynomial that needs to
be interpolated has degree at most N = N(K, L, M; T), and hence N + 1 evaluation points
suffice for reconstruction. Any N + 1 evaluation points are admissible and hence we have
the following theorem.

Theorem 4. The scheme in Section 3 is straggler resistant against S stragglers if N + 1 + S helper
nodes are used.

Proof. The responses can be considered as a codeword in an [N + 1 + S, N + 1, S + 1] RS
code, with S erasures. Since S is smaller than the minimum distance of the code, the full
codeword and hence the interpolating polynomial can be recovered.

Similarly, we can use additional helper nodes to account for possible Byzantine servers
whose responses are incorrect.

Theorem 5. The scheme in Section 3 is resistant against Byzantine attacks of up to B helper nodes
if N + 1 + 2B helper nodes are used.

Proof. The responses can be considered as a codeword in an [N + 1 + 2B, N + 1, 2B + 1]
RS code, with B errors. Since 2B is smaller than the minimum distance of the code, the full
codeword and hence the interpolating polynomial can be recovered.

Combining both theorems give us the following corollary.

Corollary 2. The scheme in Section 3 is resistant against S stragglers and B Byzantine helper
nodes if N + 1 + S + 2B helper nodes are used.

4. Gaps in the Polynomial

The upper bound on the recovery threshold given by the maximum degree of the
product PQ can actually be improved if we choose instead to use the fact that we need
only as many servers as non-zero coefficients. Similar to considerations in [9], as a basic
observation of linear algebra, we note that only as many evaluation points as there are
possible non-zero coordinates are required to retrieve the required matrix coefficients of PQ.
Let PQ have degree r− 1 and suppose that q ≥ r + 1. Let α1, . . . , αr be distinct elements of
F×q . Suppose that the zero coefficients of PQ are indexed by I and let i = r− |I|. There
exist j1, . . . , ji ∈ {1, . . . , r} such that the i× i matrix V, found by deleting the columns of
V(αj1 , . . . , αji) indexed by I , is invertible. Then, each (s, t)-entry of the unknown coefficients
of the polynomial PQ ∈ Fa×b

q [x] can be retrieved by computing the product

V−1((P(αj)Q(αj))s,t : j ∈ [r]\I)t.

Entropy 2023, 25, 266 10 of 19

Theorem 6. Let M ≥ 2, D = M + 2. Let

P̄(x) :=
K

∑
k=1

xD(k−1)
M

∑
m=1

xm Ak,m, R(x) :=
T

∑
t=1

xD(t−1)Rt,

Q̄(x) :=
L

∑
`=1

xDK(`−1)
M

∑
m=1

xM−m+1Bm,`, S(x) :=
T

∑
t=1

xD(t−1)St.

The number N of non-zero terms in the product PQ satisfies

N ≤

N1(K, L, M; T) + 1 if M > 2, T ≤ K, L ≥ 2 or L = 1, T = 1;
3LK + K− T + LT + 1 if M = 2, T ≤ K, L ≥ 2;
((L− 1)K + T)M + 2LK + 1 if K + 1 ≤ T ≤ bLK/2c+ 1, L ≥ 2;
((L− 1)K + T)M + LK + 2T − 1 if T > bLK/2c+ 1, L ≥ 2;
(K + T − 1)M + 2K + 1 if 2 ≤ T ≤ bK/2c+ 1, L = 1;
(K + T − 1)M + K + 2T − 1 if T > bK/2c+ 1, L = 1.

Proof. We have P(x) = P̄(x) + R(x) and Q(x) = Q̄(x) + S(x). Recall that P̄(x) and R(x)
have disjoint support, as do Q̄(x) and S(x). From Theorem 1, for each each k ∈ [K], ` ∈ [L],
the matrix

Ck` = Ak,1B1,` + · · ·+ Ak,MBM,`

is the coefficient of xh in P̄Q̄ for

h = (k− 1)D + (`− 1)KD + M + 1 = (k + (`− 1)K)D− 1.

Clearly, each such coefficient h ≡ M + 1 mod D. The degrees of terms arising in the
product PQ are given by

(i + zK)D + j + y + 2, (7)

(i + t)D + j + 1, (8)

(u + zK)D + y + 1, (9)

(u + t)D. (10)

for i ∈ {0, ..., K − 1}, z ∈ {0, ..., L− 1}, j, y ∈ {0, ..., M − 1} and u, t ∈ {0, ..., T − 1}. The
sequence (7) corresponds to terms that appear in the product P̄Q̄. By inspection, we see that
no element θ in any of the sequences (8)–(10) satisfies θ ≡ −1 mod D: in (8) this would
require j = M and in (9) this would require y = M, contradicting our choices of j, y. The
total number of distinct terms to be computed is the number of distinct integers appearing
in the union T of the elements of the sequences (7)–(10). Let U0 denote the set of integers
appearing in (7). Observe that U0 = {2, . . . , (LK + 1)D− 4}, unless M = 2, in which case
U0 = {j : 2 ≤ j ≤ 4LK, j 6≡ 1 mod 4}. Consider the set

U := {0, 1, 2, . . . , (LK + 1)D− 4}.

We make the following observations with respect to U .

• If M > 2, then U = U0 ∪ {0, 1} ⊂ T ,
• U contains the elements of (8) ⇐⇒ T ≤ (L− 1)K + 1,
• U contains the elements of (9) ⇐⇒ T ≤ K,
• U contains the elements of (10) ⇐⇒ T ≤ bLK/2c+ 1.

Consider the following sets.

U1 := {αD + i : 0 ≤ α ≤ K + T − 2, 1 ≤ i ≤ M}, |U1| = (K + T − 1)M;

U2 := {βD + j : 0 ≤ β ≤ T − 1 + (L− 1)K, 1 ≤ j ≤ M}, |U2| = ((L− 1)K + T)M;

U3 := {γD : 0 ≤ γ ≤ 2T − 2}, |U3| = 2T − 1.

Entropy 2023, 25, 266 11 of 19

Clearly, U1 comprises the elements of the sequence (8) and the members of U3 are
exactly those of the sequence (10). For T ≥ K + 1, we have

{u + xK : 0 ≤ u ≤ T − 1, 0 ≤ x ≤ L− 1} = {β : 0 ≤ β ≤ T − 1 + (L− 1)K},

in which case U2 is exactly the set of elements of (9). It follows that U1 ∪ U2 ∪ U3 ⊆ U if
and only if T ≤ min{(L− 1)K + 1, K, bLK/2c+ 1}. This minimum is K if L ≥ 2 and is 1
if L = 1. Furthermore, U3 is disjoint from U1 and from U2. If L ≥ 2 or if L = K = 1, then
U1 ⊂ U2, while if L = 1, then U2 ⊂ U1.

Suppose first that M > 2. We thus have that U = T if L ≥ 2 and T ≤ K, or if
L = T = 1; in either of these cases, PQ has at most

|T | = |U | = (LK + 1)D− 3 = (LK− 1)D + 2M + 1 = N1(K, L, M; T) + 1

non-zero terms. We summarize these observations as follows.

T =

U if L ≥ 2 and T ≤ K, or if L = T = 1;
U ∪ U1 ∪ U3 if L = 1
U ∪ U2 ∪ U3 if L ≥ 2 or if L = K = 1.

Furthermore,

U ∩ U3 = {γD : 0 ≤ γ ≤ min{2T − 2, LK}},
U ∩ U2 = {βD + j : 0 ≤ β ≤ min{LK, T − 1 + (L− 1)K}, 1 ≤ j ≤ M}

\{LKD + M− 1, LKD + M},
U ∩ U1 = {αD + i : 0 ≤ α ≤ min{LK, T + K− 2}, 1 ≤ i ≤ M}

\{LKD + M− 1, LKD + M}

Hence |U ∩ U3| = min{2T − 1, LK + 1}. If T ≥ K + 1 then |U ∩ U2| = M(LK + 1)− 2
and so, applying inclusion–exclusion, we see that, if L ≥ 2, then

|T | =

|U | = (LK + 1)D− 3 = (LK + 1)(M + 2)− 3 if K ≥ T;
|U ∪ U2| = ((L− 1)K + T)M + 2LK + 1 if K + 1 ≤ T ≤ bLK/2c+ 1;
|U ∪ U2 ∪ U3| = ((L− 1)K + T)M + LK + 2T − 1 otherwise .

In the case L = 1, we have U2 ⊆ U1, while if T ≤ K then the elements of (9) are
contained in U . Therefore, T = U ∪ U1 ∪ U3 and so for T ≥ 2 we have

|T | =

{
(K + T − 1)M + 2K + 1 if T ≤ bK/2c+ 1;
(K + T − 1)M + K + 2T − 1 otherwise .

Finally, suppose that M = 2. If L = 1 then, since U2 ⊂ U1 we have T = U0 ∪ U1 ∪ U3.
Similar to previous computations, we see |T | takes the same values as in the case for M > 2.
If L ≥ 2 and T ≥ K + 1 then T = U0 ∪U2 ∪U3. Again using similar computations as before,
we see in this case that |T | takes the same values as in the case for M > 2. Suppose that
L ≥ 2 and T ≤ K. In this case, the integers appearing in (9) comprise the set

U ′2 := {4(u + zK) + j : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ L− 1, 1 ≤ j ≤ 2}, |U ′2| = 2TL.

Entropy 2023, 25, 266 12 of 19

We have |U0| = 3KL and moreover,

U0 ∩ U ′2 = {4(u + zK) + 2 : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ L− 1}, |U0 ∩ U ′2| = TL;

U0 ∩ U1 = {4α + 2 : 0 ≤ α ≤ K + T − 2}, |U0 ∩ U1| = K + T − 1;

U0 ∩ U3 = {4(α + 1) : 0 ≤ α ≤ 2T − 3}, |U0 ∩ U3| = 2T − 2;

U1 ∩ U ′2 = {4(u + zK) + j : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ 1, 1 ≤ j ≤ 2}, |U1 ∩ U ′2| = 4T;

U0 ∩ U1 ∩ U ′2 = {4(u + zK) + 2 : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ 1}, |U0 ∩ U1 ∩ U ′2| = 2T.

Therefore, |T | = 3LK + K− T + TL + 1.

Example 1. Let M = 3, K = 3, L = 2, that is:

A =

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

, B =

B1,1 B1,2
B2,1 B2,2
B3,1 B3,2

.

We will compute the product AB using 32 helper nodes, assuming that T = 3 servers may
collude. Choose a pair of polynomials

R(z) = R1 + R6x5 + R11x10 and S(z) = S1 + S6x5 + S11x10,

whose non-zero matrix coefficients are chosen uniformly at random over Fq. We have

P̄(x) = x(A1,1 + A1,2x + A1,3x2) + x6(A2,1 + A2,2x + A2,3x2) + x11(A3,1 + A3,2z + A3,3z2)

Q̄(x) = x(B3,1 + B2,1x + B1,1x2) + x16(B3,2 + B2,2x + B1,2x2).

Define P(x) := P̄(x) + R(x) and Q(x) := Q̄(x) + S(x). In Table 2, we show the exponents
that arise in the product P(x)Q(x). The monomials corresponding to the computed data are
4, 9, 14, 19, 24, 29, shown in blue. The coefficients of x4, x9, x14, x19, x24 and x29 are, respectively,
given by

C1,1 = A1,1B1,1 + A1,2B2,1 + A1,3B3,1,

C1,2 = A1,1B1,2 + A1,2B2,2 + A1,3B3,2,

C2,1 = A2,1B1,1 + A2,2B2,1 + A2,3B3,1,

C2,2 = A2,1B1,2 + A2,2B2,2 + A2,3B3,2,

C3,1 = A3,1B1,1 + A3,2B2,1 + A3,3B3,1,

C3,2 = A3,1B1,2 + A3,2B2,2 + A3,3B3,2.

Note that the total number of non-zero terms in PQ is LKD + M − 1 = 32, as predicted
by Theorem 6. This also corresponds to the case for which PQ has degree N1(K, L, M; T) =
N1(3, 2, 3; 3) = 31, which is consistent with Theorem 2. Therefore, 32 helper nodes are required to
retrieve PQ and hence the coefficients Ck,m. If the matrices have entries over Fq with q = 64, then
since gcd(q− 1, D) = gcd(63, 5) = 1, the user can retrieve the data securely in the presence of 3
colluding workers.

Suppose now that we have T = 6 colluding servers. In this case, we have T = 6 > 4 =
bLK/2c+ 1 and L > 1 and so from Theorem 6, we expect the polynomial PQ to have at most
(LK + T)D − K(M + L) − 1 = 44 non-zero coefficients. These exponents are shown in the
corresponding degree table for our scheme (see Table 3). In this case, to protect against collusion by
6 workers, we require a total of 44 helpers. While the degree of PQ in this case is 50 (see Table 1),
the coefficients corresponding to the exponents E = {34, 39, 44, 46, 47, 48, 49} are zero, and hence
known a priori to the user. Let α be a root of x6 + x4 + x3 + x + 1 ∈ F2[x], so that α generates F×64.

Entropy 2023, 25, 266 13 of 19

Let V be the 44× 44 matrix obtained from V(αi : i ∈ [63]) by deleting the columns and rows indexed
by E ∪ {51, . . . , 62}. It is readily checked (e.g., as here, using MAGMA [28]) that the determinant
of V is α11 and in particular is non-zero. Therefore, we can solve the system to find the unknown
coefficients of PQ via the computation V−1(P(αij)Q(αij) : i, j ∈ [63]\(E ∪ {51, . . . , 62}))t.

Table 2. Exponents of P(x)Q(x) for K = 3, L = 2, M = 3, T = 3. The monomial exponents which
correspond to the computed data are shown in blue. The grey background marks noise exponents.

0 1 2 3 5 16 17 18 10
0 0 1 2 3 5 16 17 18 10
1 1 2 3 4 6 17 18 19 11
2 2 1 4 5 7 18 19 20 12
3 3 4 5 6 8 19 20 21 13
5 5 6 7 8 10 21 22 23 15
6 6 7 8 9 11 22 23 24 16
7 7 8 9 10 12 23 24 25 17
8 8 9 10 11 13 24 25 26 18

10 10 11 12 13 15 26 27 28 20
11 11 12 13 14 16 27 28 29 21
12 2 13 14 15 17 28 29 30 22
13 3 14 15 16 18 29 30 31 23

Table 3. Exponents of P(x)Q(x) for K = 3, L = 2, M = 3, T = 6. The monomial exponents which
correspond to the computed data are shown in blue. The grey background marks noise exponents.

0 1 2 3 5 16 17 18 10 15 20 25
0 0 1 2 3 5 16 17 18 10 15 20 25
1 1 2 3 4 6 17 18 19 11 16 21 26
2 2 3 4 5 7 18 19 20 12 17 22 27
3 3 4 5 6 8 19 20 21 13 18 23 28
5 5 6 7 8 10 21 22 23 15 20 25 30
6 6 7 8 9 11 22 23 24 16 21 26 31
7 7 8 9 10 12 23 24 25 17 22 27 32
8 8 9 10 11 13 24 25 26 18 23 28 33

10 10 11 12 13 15 26 27 28 20 25 30 35
11 11 12 13 14 16 27 28 29 21 26 31 36
12 2 13 14 15 17 28 29 30 22 27 32 37
13 3 14 15 16 18 29 30 31 23 28 33 38
15 15 16 17 18 20 31 32 33 25 30 35 40
20 20 21 22 23 25 36 37 38 30 35 40 45
25 25 26 27 28 30 41 42 43 35 40 45 50

We remark that for the case of no collusion, Theorem 6 does not yield an optimal
scheme. The proposition below outlines a modified scheme with a lower recovery threshold
if secrecy is not a consideration.

Proposition 6. Define the polynomials:

P̃(x) :=
K

∑
k=1

x(k−1)M
M

∑
m=1

xm Ak,m,

Q̃(x) :=
L

∑
`=1

x(K+`−1)M
M

∑
m=1

xM+1−mBm,`.

The following hold:

1. For each (i, j) ∈ [K]× [L], Cij is the coefficient of zM(i+j+K−1)+1 in P̃Q̃.
2. The number N of non-zero terms in the product P̃Q̃ satisfies

N ≤ KLM + M− 1.

Entropy 2023, 25, 266 14 of 19

Proof. For each (i, j) ∈ [K]× [L], define the following:

• (cij) := (M(K + i + j− 1) + 1),
• BM(cij) := {cij −M + 1, . . . , cij + M− 1} = {cij + u : −(M− 1) ≤ u ≤ M− 1}.

We have

P̃Q̃ =
K

∑
k=1

L

∑
`=1

M

∑
m=1

M

∑
m′=1

xM(K+`+k−1)+1+m−m′Ak,mBm′ ,`.

The distinct monomials arising in the product P̃Q̃ are those indexed by the distinct
elements of ∪(i,j)∈[K]×[L]BM(cij). It is straightforward to check that for each (i, j) ∈ [K]× [L],
the integer cij is not contained in Bm(cut) for any (u, t) 6= (i, j) and hence the required
coefficients Cij that appear in the product P̃Q̃, which are indexed by the cij, can be uniquely
retrieved. We compute the number of workers required by this scheme. We have

V :=

∣∣∣∣∣∣ ⋃
(i,j)∈[K]×[L]

BM(cij)

∣∣∣∣∣∣
= KL(2M− 1)− ∑

(i,j) 6=(u,t)

∣∣BM(cij) ∩ BM(cst)
∣∣

= KL(2M− 1)− (KL− 1)(M− 1) = KLM + M− 1.

The recovery threshold of this scheme takes the same value as the recovery threshold
of the poly-entangled scheme of Theorem 1 [18].

5. Results and Comparison with the State-of-the-Art

We provide some comparison plots that highlight parameter regions of interest.
In Figure 2, we compare the two variants of our own scheme. The recovery threshold when
considering the maximal degree of the resulting product polynomial is shown alongside
the count of possibly non-zero coefficients. We see that significant gains can be achieved,
especially in the higher collusion number region.

1 2 3 4 5 6 7 8 9
T

10

20

30

40

50

60

70

80

90

Se
rv

er
s

Recovery Threshold for M = 2, L = 3
Max Degree
Non-Zero Coefficients

K=1
K=3
K=5
K=7

Figure 2. Comparison of maximal degree with non-zero coefficient.

In Figure 3, we compare our (non-zero coefficient) scheme with the SGPD scheme
presented in [19]. For K > 1, we see that, except for very low values of T, our new scheme

Entropy 2023, 25, 266 15 of 19

outperforms the SGPD scheme. This comparison of the recovery threshold for the two
schemes is well justified since they use the same division of the matrices and will have
identical upload and download costs per server.

1 2 3 4 5 6 7 8 9
T

20

40

60

80

100

120
Se

rv
er

s

Threshold for M = 3, L = 3
New Scheme
SGPD

K=1
K=2
K=3
K=4
K=5
K=6

Figure 3. Comparison with [19].

The comparison in Figure 4 with the entangled codes scheme [17] and a newer scheme
using roots of unity [26] shows that our new codes have lower recovery threshold for low
number of colluding servers. Calculating the actual number of servers needed for the
entangled scheme requires knowledge of the tensor rank of matrix multiplication. These
ranks, or their best known upper bounds, are taken from [29,30]. It should be noted that the
scheme in [26] requires that either ((L + 1)(K + T)− 1) | q or (KML + LT + KM + T) | q
where q is the field size. The requirements for our scheme outlined in Proposition 5 and
Corollary 1 (i.e., that gcd(q− 1, D) = 1, q > N) are much less restrictive.

2 4 6 8 10
T

40

60

80

100

120

140

Se
rv

er
s

Recovery Threshold for M = 4, L = 3
Non-Zero Coefficients
Entangled Scheme
Root of Unity Scheme

K=2
K=3
K=4
K=5
K=6

2 4 6 8 10
T

40

60

80

100

120

Se
rv

er
s

Recovery Threshold for M = 5, L = 2
Non-Zero Coefficients
Entangled Scheme
Root of Unity Scheme

K=2
K=3
K=4
K=5
K=6

Figure 4. Comparison with [17,26] for the cases M = 4, L = 3 and M = 5, L = 2.

The comparison with the GASP scheme is less straightforward since the partitioning
in GASP has a fixed value of M = 1. The plot in Figure 5 shows the recovery thresholds
for the GASP scheme with partitioning K = L = 3M as well as the recovery thresholds of
our scheme for K = L = 3 and varying M from 1 to 5. We compare here with the maximal
degree of our scheme, not the non-zero coefficients, to show that the variant of our scheme
that is able to mitigate stragglers and Byzantine servers achieve much lower recovery
thresholds. Fixing K and L to be the same value across this comparison means that the

Entropy 2023, 25, 266 16 of 19

download cost per server is the same for all our schemes and the K = L = 3 GASP scheme.
Note that in the M = 1 case, we have identical partition and hence upload cost per server
as the K = L = 3 GASP scheme, while for M = 2, we have identical upload cost with the
K = L = 6 GASP scheme, and M = 5 corresponds to the K = L = 15 GASP scheme. We can
see that the grid partitioning allows for a much lower recovery threshold when the upload
cost is fixed. The outer partitioning of the GASP scheme allows for low download cost
per server that makes up for the higher recovery threshold. Explicitly, the outer partition
into KM and LM blocks allows for a download rate of NGASP(

ab
M2), where NGASP is the

recovery threshold for the GASP scheme. In contrast, the scheme presented in this paper
will have a download rate of Nab if we partition into K×M and M× L blocks.

2 4 6 8 10 12 14
T

0

50

100

150

200

250

300

350

Se
rv

er
s

Recovery Threshold
Max Degree K=3, L=3
GASPr K=3M, L=3M

M=1
M=2
M=3
M=4
M=5

Figure 5. Comparison of the maximal degree with the GASPr scheme from [10].

It should be noted though that our construction allows to explicitly control the field
size needed. In contrast, the GASP scheme might have to choose its evaluations points from
an extension field Theorem 1 [9] if the base field is fixed by the entries of the matrices A and
B, or just requires a very large base field. This would greatly increase the computational
cost and the rates at all steps of the scheme. For example, for K = 3, L = 3, T = 3, GASPr
uses N = 22 servers and the exponents for the randomness in one of the polynomials are
9, 10, 12. Then, there are no suitable evaluation points for q = 23, 25, 27, 29, 31, 32, 37, 41, 43
and so for these values of q, an extension field is required.

Furthermore, the scheme presented in this paper can be used in situations where
stragglers or Byzantine servers are expected as described in Corollary 2.

Complexity

We summarize the cost of Fq-arithmetic operations and transmission of Fq elements
associated with this scheme, using N servers. We refer the reader to ([25], Table 1) and
([26], Table 1) to view the complexity of other schemes in the literature (note that the costs
defined in [25] are normalized). There are various trade-offs in costs depending on the
partitioning chosen (the proposed scheme is completely flexible in this respect), ability to
handle stragglers and Byzantine servers, and constraints on the field size q.

We remark that additions in general are much less costly than Fq-multiplications in
terms of space and time: for example, if q = 2`, then an addition has space complexity
(number of AND and XOR gates) O(`) and costs 1 clock in time, while multiplication has
space complexity O(`2) and time complexity O(log2(`)) [31,32].

Entropy 2023, 25, 266 17 of 19

The encoding complexity of our scheme comes at the cost of evaluating the pair
of polynomials P(x) and Q(x) each at N distinct elements of Fq. This is equivalent to
performing Nr(a + b) (scalar) polynomial evaluations in Fq. Given α ∈ Fq, the (i, j)-entry
of P(α) is an evaluation of an Fq-polynomial with KM + T coefficients, while the (i, j)-entry
of Q(α) is an evaluation of an Fq-polynomial with KL + T coefficients. The decoding
complexity is the cost of interpolating the polynomial PQ ∈ Fa×b

q [x] using N evaluation
points, when PQ has at most N unknown coefficients.

The cost of either polynomial evaluation at N points or interpolation of a polynomial
of degree at most N − 1 has complexity O(N log2 Nlog log N). Therefore, we have the
following statement.

Proposition 7.

1. The encoding phase of the scheme presented in Section 3, using N servers, has complexity
O((a + b)rN log2 Nlog log N).

2. The decoding phase of the scheme presented in Section 3, using N servers, has complexity
O(abN log2 Nlog log N).

3. The total upload cost of the scheme presented in Section 3, using N servers, is r(a + b)N.
4. The total download cost of the scheme presented in Section 3, using N servers, is abN.

6. Conclusions

In this work, we addressed the problem of secure distributed matrix multiplication for
C = AB in terms of designing polynomial codes for this setting. In particular, we assumed
that A and B contain confidential data, which must be kept secure from colluding workers.
Similar to some previous work also employing polynomial codes for distributed matrix
multiplication, we proposed to deliberately leave gaps in the polynomial coefficients for
certain degrees and provided a new code construction which is able to exploit these gaps
to lower the recovery threshold. For this construction, we also presented new closed-form
expressions for the recovery threshold as a function of the number of colluding workers
and the specific number of submatrices that the matrices A and B are partitioned into
during encoding. Further, in the absence of any security constraints, we showed that our
construction is optimal in terms of recovery threshold. Our proposed scheme improves
on the recovery threshold of existing schemes from the literature in particular for large
dimensions of A and a larger number of colluding workers, in some cases, even by a
large margin.

Author Contributions: Writing—original draft, E.B., O.W.G., and J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by U.S. National Science Foundation grants 1815322,
1908756, 2107370 in addition to the UCD Seed Funding- Horizon Scanning scheme (grant no. 54584).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Janzamin, M.; Sedghi, H.; Anandkumar, A. Beating the perils of non-convexity: Guaranteed training of neural networks using

tensor methods. arXiv 2015, arXiv:1506.08473.
2. Joshi, G.; Soljanin, E.; Wornell, G. Efficient redundancy techniques for latency reduction in cloud systems. ACM Trans. Model.

Perform. Eval. Comput. Syst. (TOMPECS) 2017, 2, 12:1–12:30. [CrossRef]
3. Lee, K.; Suh, C.; Ramchandran, K. High-dimensional coded matrix multiplication. In Proceedings of the IEEE International

Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2418–2422.
4. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding Up Distributed Machine Learning Using Codes.

IEEE Trans. Inf. Theory 2018, 64, 1514–1529. [CrossRef]

http://doi.org/10.1145/3055281
http://dx.doi.org/10.1109/TIT.2017.2736066

Entropy 2023, 25, 266 18 of 19

5. Yu, Q.; Maddah-Ali, M.; Avestimehr, S. Polynomial codes: An optimal design for high-dimensional coded matrix multiplica-
tion. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 4403–4413.

6. Li, S.; Maddah-Ali, M.A.; Yu, Q.; Avestimehr, A.S. A fundamental tradeoff between computation and communication in
distributed computing. IEEE Trans. Inform. Theory 2017, 64, 109–128. [CrossRef]

7. Aliasgari, M.; Simeone, O.; Kliewer, J. Distributed and Private Coded Matrix Computation with Flexible Communication Load.
arXiv 2019, arXiv:1901.07705.

8. Yang, H.; Lee, J. Secure Distributed Computing With Straggling Servers Using Polynomial Codes. IEEE Trans. Inf. Forensics Secur.
2019, 14, 141–150. [CrossRef]

9. D’Oliveira, R.G.L.; El Rouayheb, S.; Karpuk, D. GASP Codes for Secure Distributed Matrix Multiplication. IEEE Trans. Inf. Theory
2020, 66, 4038–4050. [CrossRef]

10. D’Oliveira, R.G.L.; El Rouayheb, S.; Heinlein, D.; Karpuk, D. Degree Tables for Secure Distributed Matrix Multiplication. IEEE J.
Sel. Areas Inf. Theory 2021, 2, 907–918. [CrossRef]

11. Yu, Q.; Raviv, N.; So, J.; Avestimehr, A.S. Lagrange Coded Computing: Optimal Design for Resiliency, Security and Privacy. arXiv
2018, arXiv:1806.00939.

12. Kakar, J.; Ebadifar, S.; Sezgin, A. On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication. IEEE
Access 2019, 7, 45783–45799. [CrossRef]

13. Chang, W.T.; Tandon, R. On the capacity of secure distributed matrix multiplication. In Proceedings of the 2018 IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

14. Chang, W.T.; Tandon, R. On the Upload versus Download Cost for Secure and Private Matrix Multiplication. In Proceedings of
the 2019 IEEE Information Theory Workshop (ITW), Gotland, Sweden, 25–28 August 2019; pp. 1–5.

15. Dutta, S.; Bai, Z.; Jeong, H.; Low, T.M.; Grover, P. A unified coded deep neural network training strategy based on generalized
PolyDot codes. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22
June 2018; pp. 1585–1589.

16. Dutta, S.; Fahim, M.; Haddadpour, F.; Jeong, H.; Cadambe, V.; Grover, P. On the Optimal Recovery Threshold of Coded Matrix
Multiplication. IEEE Trans. Inf. Theory 2020, 66, 278–301. [CrossRef]

17. Yu, Q.; Avestimehr, A.S. Entangled Polynomial Codes for Secure, Private, and Batch Distributed Matrix Multiplication: Breaking
the “Cubic” Barrier. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA,
USA, 21–26 June 2020; pp. 245–250.

18. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and
Optimal Coding. IEEE Trans. Inf. Theory 2020, 66, 1920–1933. [CrossRef]

19. Aliasgari, M.; Simeone, O.; Kliewer, J. Private and Secure Distributed Matrix Multiplication With Flexible Communication Load.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2722–2734. [CrossRef]

20. Wang, H.-P.; Duursma, I. Parity-Checked Strassen Algorithm. arXiv 2020, arXiv:2011.15082.
21. Hasirciolu, B.; Gomez-Vilardebo, J.; Gunduz, D. Bivariate Polynomial Codes for Secure Distributed Matrix Multiplication. IEEE J.

Sel. Areas Commun. 2022, 40, 955–967. [CrossRef]
22. Li, J.; Hollanti, C. Private and Secure Distributed Matrix Multiplication Schemes for Replicated or MDS-Coded Servers. IEEE

Trans. Inf. Forensics Secur. 2022, 17, 659–669. [CrossRef]
23. Machado, R.A.; D'Oliveira, R.G.L.; Rouayheb, S.E.; Heinlein, D. Field Trace Polynomial Codes for Secure Distributed Matrix

Multiplication. In Proceedings of the 2021 XVII International Symposium “Problems of Redundancy in Information and Control
Systems” (REDUNDANCY), Prague, Czech Republic, 23–25 November 2021.

24. Makkonen, O.; Hollanti, C. General Framework for Linear Secure Distributed Matrix Multiplication with Byzantine Servers.
arXiv 2022, arXiv:2205.07052.

25. Mital, N.; Ling, C.; Gündüz, D. Secure Distributed Matrix Computation With Discrete Fourier Transform. IEEE Trans. Inf. Theory
2022, 68, 4666–4680. [CrossRef]

26. Machado, R.A.; Manganiello, F. Root of Unity for Secure Distributed Matrix Multiplication: Grid Partition Case. arXiv 2022,
arXiv:2206.01559.

27. Zhu, J.; Li, S. A Systematic Approach towards Efficient Private Matrix Multiplication. IEEE J. Sel. Areas Inf. Theory 2022,
3, 257–274. [CrossRef]

28. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265.
29. Sedoglavic, A. Yet Another Catalogue of Fast Matrix Multiplication Algorithms. Available online: https://fmm.univ-lille.fr/

(accessed on 28 October 2022).
30. Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Ruiz, F.J.; Schrittwieser, J.; Swirszcz,

G.; et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 2022, 610, 47–53. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/TIT.2017.2756959
http://dx.doi.org/10.1109/TIFS.2018.2846601
http://dx.doi.org/10.1109/TIT.2020.2975021
http://dx.doi.org/10.1109/JSAIT.2021.3102882
http://dx.doi.org/10.1109/ACCESS.2019.2908024
http://dx.doi.org/10.1109/TIT.2019.2929328
http://dx.doi.org/10.1109/TIT.2019.2963864
http://dx.doi.org/10.1109/TIFS.2020.2972166
http://dx.doi.org/10.1109/JSAC.2022.3142355
http://dx.doi.org/10.1109/TIFS.2022.3147638
http://dx.doi.org/10.1109/TIT.2022.3158868
http://dx.doi.org/10.1109/JSAIT.2022.3181144
https://fmm.univ-lille.fr/
http://dx.doi.org/10.1038/s41586-022-05172-4
http://www.ncbi.nlm.nih.gov/pubmed/36198780

Entropy 2023, 25, 266 19 of 19

31. Elia, M.; Leone, M. On the inherent space complexity of fast parallel multipliers for GF(2/sup m/). IEEE Trans. Comput. 2002,
51, 346–351. [CrossRef]

32. Elia, M.; Rosenthal, J.; Schipani, D. Polynomial evaluation over finite fields: New algorithms and complexity bounds. Appl.
Algebra Eng. Commun. Comput. 2012, 23, 129–141. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/12.990131
http://dx.doi.org/10.1007/s00200-011-0160-6

	Introduction
	Problem Statement and Background
	Proposed Scheme
	Choice of Exponents and Maximal Degree
	AB versus BtAt
	T-Collusion
	Stragglers and Byzantine Servers

	Gaps in the Polynomial
	Results and Comparison with the State-of-the-Art
	Conclusions
	References

