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Abstract: This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-
source inverter. The proposed control implements a model predictive control structure to achieve the
maximum obtainable power from the collected PV source. The power delivered to the grid is managed
to compensate for the reactive power and, as needed, to ensure the grid’s stability. A predictive power
model for a quasi Z-source inverter is developed in which the proposed control can operate with a
fixed switching frequency without a weighting factor. The simplified space vector modulation uses
the three appropriate switching vectors that are selected and applied using precalculated switching
times during each switching period, in which the required switching vectors are determined only
from one sector in the space vector diagram, taking all of the information of the other sectors, which
leads to reducing the computational burden. Simulation results and comparative study are used
to confirm the proposed control performance for the grid-tied quasi Z-source inverter capable of
tracking and generating the maximum power from PV with fast-tracking dynamics, ensuring the ac
voltage desired, and better tracking of the active and reactive power reference with the lowest power
ripple. The grid current harmonics were tested and conformed to the IEEE-519 standard. Additionally,
the proposed simplified PDPC is experimentally validated using the Hardware-in-the-Loop emulator
and the C2000TM-microcontroller-LaunchPadXL TMS320F28379D kit, establishing the usability and
good result of our proposed control approach in terms of requirements.

Keywords: distributed generation; model predictive control; photovoltaic source; space vector
modulation; switching frequency; switching times; hardware-in-the-loop (HIL)

1. Introduction

The global installed photovoltaic (PV) power capacity is increasing nearly exponen-
tially as costs fall and solar energy technology improves. According to the International
Energy Agency (IEA), solar PV generation will exceed 1000 TWh in 2021 by a register of
179 TWh (up 22%) and in 2030, solar PV generation will have increased to a level of around
7400 TWh annually [1]. PV cells, on the other hand, generate lower direct current (dc)
voltage when compared to the high-voltage alternating current (ac) grid, necessitating
the utilization of a power electronics converter for step-up by dc/dc or dc/ac conver-
sion, which requires the maximum power point tracking (MPPT) technique for optimum
functioning [2,3].

In addition, it generally necessitates the use of several power converter stages. Many
familiar PV inverter topologies were two staged with an energy storage element, such as
a dc-link capacitor [4,5]. Conventional PV energy extracting systems need a dc/dc stage
for boosting and a dc/ac converter for inversion quality [5]. The two-staged system’s
efficiency and dynamic behavior are decreased due to changes in the external environment
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and grid disturbances. Furthermore, the inverter needs to provide a smart-grid interface
and improve inverter capabilities. As a result, the ideal distributed generation (DG) re-
quires the power electronics interface (PEI) of the conversion stage for a highly efficient,
comprehensive, and suitable controller for grid integration.

Various strategies for PV single-stage grid integration have been explored, in which
the inverter achieves the tracking of the optimum power, voltage boosting, and inversion
capabilities [6,7]. The Z-source inverter (ZSI) and quasi Z-source inverter (qZSI) have
been studied widely for PV applications due to their capacity to buck or boost the dc
input voltage by connecting an impedance network between the power generator and
the inverter port [8]. The ZSI/qZSI can offer a more challenging, efficient, reliable, and
competitively priced approach with a single-stage conversion and a lower number of active
switching devices [9]. Due to these characteristics, RES can use ZSI/qZSI to overcome
the drawbacks of voltage source inverter (VSI) topologies [10]. Recently suggested qZSI
got some new appealing advantages that make them more beneficial for PV systems [11].
The qZSI has a continuous input current, which eliminates electromagnetic interference
and leakage/ground current flow while enhancing PV lifetime and energy production [12].
Moreover, the voltage between one of the two capacitors in the impedance network is lesser
than the voltage across to the other capacitor, allowing for lower rating capacitors, which
can decrease the cost, in contrast to the situation in ZSI [13,14].

The control strategy is essential since it heavily influences the performance of the grid-
connected inverter and thus enhances the grid power quality. As a result, grid- connected
control research has focused on controlling strategy [5,15]. Various qZSI control methods,
particularly linear and nonlinear control concepts, have been presented in the literature
in a synchronous, stationary, or natural frame [16]. Furthermore, the performance of the
aforementioned control methods is highly dependent on the quality of the inner current loop
due to the proportional-integral (PI) controller, which requires a decoupling that appears
to be complex. Moreover, the PI controller cannot obtain an error-free adjustment [17],
as well as the bandwidth of the phase-locked loop (PLL) for synchronization [18]. Direct
power control (DPC) is mainly investigated due to its simplicity of application, low current
distortion levels, and dynamic performance [19]. A traditional DPC structure typically
employs a power hysteresis comparator and a switching vector table to choose a voltage
vector. The active and reactive powers are directly controlled without using an inner
current control circuit or a pulse width modulation (PWM) block [20]. The implementation
of hysteresis comparators for power control generates high-power ripples and variable
switching frequency, which increase the power losses and produces an unexpected wide
band gap harmonic spectrum range, which implies that designing a line filter is difficult.
Model predictive control (MPC) has become a popular technique for power converters in the
last decade due to its simplicity, flexibility, and ease of adding control limitations [21–25].

The decoupling between the active and reactive power predictive control is presented
in [26]. However, this method requires the addition of three weighting factors to the cost
function, which can lead to an increase in the output power ripple. In [27], the improvement
of the MPPT algorithm in the model predictive can enhance the output current quality,
however, the model is more complex. Model predictive control of dual-mode operations
for the Z-Source inverter is proposed in [28] and presented when the algorithm works in
the double function, however, the switching frequency is not fixed. The authors of [29]
proposed the model predictive power control without weighting factors for reducing the
computational burden, though the power ripple is still significant.

Nevertheless, despite these benefits of the traditional MPC, three significant limita-
tions are reducing its effectiveness [19–23]. The first drawback is the variable switching
frequency, which causes a huge current ripple and complicates designing filters. The
second shortcoming is the complication of the weighting factor selection, which generally
depends on a trial-and-error procedure with thorough theory instructions [30,31]. The last
disadvantage is that the traditional MPC searches for the best vector using continuous
optimization, making it much more computationally costly.
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To overcome the mentioned issues with the traditional MPC, the combination of MPC
and instantaneous power theory results in a new DPC family known as predictive direct
power control (PDPC). Compared to the DPC, the PDPC assures optimal vector selection
depending on the power ripple minimization concept using cost function minimization [32].
Furthermore, the predictive power control with space vector modulation (PDPC-SVM) is
applied to alleviate the variable frequency of PDPC, as described in [33]. Furthermore, it
has a high capability in harmonic current mitigation, power factor correction, and active
power injection. Moreover, it works at low switching frequencies [34].

For the qZSI, the shoot-through (ST) action should be achieved by simultaneously turn-
ing on the upper and lower switches in the same leg of the qZSI. Space vector modulation
(ZSVM) and sinusoidal pulse width modulation (ZPWM) are two categories of modulation
techniques for the qZSI [35,36]. The ST action is embedded into the original zero states
in the ZPWM. For example, for the maximum boost control (MBC) [8], is accomplished
by comparing the ST reference with the carrier signal. Every switching cycle contains
only one ST vector, which increases the inductor current ripples. For the ZSVM, such as
the ZSVM with a six ST duration (ZSVM6) strategy [37], the ST time is generally equally
distributed and then implanted into the switching moment, while the active states remain
untouched. The divide of the ST time reduces each charge/discharge interval, resulting
in smaller inductor current ripples. The ZSVM techniques can be further divided into the
following categories [35]: ZSVM based on the ST duration divided by one time, two times,
four times, and six times, namely ZSVM1, ZSVM2, ZSVM4, and ZSVM6, respectively. In
order to reduce the complexity and the computation time, the simplified ZSVM6 for the
qZSI was proposed by using only one sector in the voltage space vector to calculate all of
the switching sequence for the ZSVM strategy.

This paper proposes a simplified PDPC with a reduced computational burden for
grid-tied qZSI without a cost function calculation. This control strategy provides a simple
and effective method to select the optimal vector for generating the switching state with a
low computational burden. In order to control the active and reactive power injected into
the grid, a simplified ZSVM technique is provided for eliminating the weighting factor
calculation, where the ST duty ratio is generated based on the PI linear controller, which
is fed by an MPPT unit for optimal operation. With the proposed simplified PDPC, not
only can the grid-tied qZSI achieve a lower grid current/power ripple, the computation
time is also significantly decreased. The rest of this paper is organized as follows. The
mathematical model of the qZSI is given in Section 2, while Section 3 discusses the qZSI
control structure. The proposed simplified PDPC algorithm, besides the ZSVM of qZSI, is
disclosed in detail in Section 4. Section 5 provides illustrations of the simulation results and
comparative study. In Section 6, the HIL simulation is applied to demonstrate the benefits
of the proposed simplified PDPC technique. Finally, Section 7 presents the conclusion.

2. Grid-Tied qZSI Mathematical Modeling

The topology of the grid-tied qZSI is depicted in Figure 1, in which a quasi Z-source
network is directly coupled to the traditional VSI. There are three different switching states
for each phase of the grid-tied qZSI: the P state, the O state, and the Z state. The switching
mode is described as

SX =


P :
[

SX1 , SX2
]
= [1, 0]

O :
[

SX1 , SX2
]
= [0, 1]

Z :
[

SX1 , SX2
]
= [1, 1]

, X = a, b, c (1)

where SX1 and SX2 represent the upper and lower switch’s phase X positions, respectively,
the Z state symbolizes the ST state, whereas one indicates switching on the switch, while
zero means switching it off. The standard grid-connected PV system based on a quasi
Z-source network (qZSN) is illustrated in Figure 1. The qZSN contains two inductors L1,
L2, two capacitors C1, C2, a diode D1, where L1 = L2 and C1 = C2.
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Figure 1. Typical configuration of a grid-connected three-phase qZSI.

The corresponding circuits to both the ST state and active one are shown in Figure 2a,b,
and it is obvious that there are two operating modes. The first is the ST state, in which the
dc power and capacitors charge the inductors simultaneously, and the diode is switched
off due to negative voltage, as illustrated in Figure 2a. According to Figure 2b, the second
is the active mode, when the loads and capacitors are charged by dc power and inductors,
where the diode is in forward conduction. In this approach, the inserted ST duty ratio value
could be utilized to regulate the charging and discharging of the inductors and capacitors,
boosting the dc-side voltage without needing an extra boost circuit.
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Referring to [38], depending on the qZSI state space average concept, the average
capacitor voltages VC1 and VC2 can be obtained, respectively, as

VC1 =
1− Dsh
1− 2Dsh

VPV , VC2 =
Dsh

1− 2Dsh
VPV (2)

The peak dc-link voltage is given by

VDC = VC1 + VC2 =
1

1− 2Dsh
VPV = B.VPV (3)

where B is the boost factor, Dsh = Tsh/TSw is the ST duty ratio, Tsh is the total ST duration,
and TSw is the switching period.

Therefore, the peak output ac voltage of the qZSI can be calculated by

VAC = B.M.
VPV

2
(4)

where M represents the modulation ratio.
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3. Description of Simplified PDPC Approach

The principal main responsibilities of the control method to the system, as seen in
Figure 1, are to integrate the qZSI into the grid and guarantee that the PV system is
functioning in MPP. It mainly consists of instantaneous power control, model predictive
controller, MPPT control, shoot-through segment ZSVM strategy, and PI regulator. The
control structure comprises two parts. The primary is the dc circuit control in the PV source,
where the MPPT is applied. In addition, the MPPT unit can generate.

The second part is ac part control, which is based on the control of the injected active
and reactive power at the desired value, the proposed simplified PDPC computes the
qZSI average voltage vector Vαβ using a predictive control algorithm at each sample time.
Therefore, the inputs in the predictive control algorithm are the instantaneous active and
reactive power, their reference values, and the grid voltage vector eαβ (see Figure 3).
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To operate with a constant switching frequency and low computational time, the
ZSVM approach with a simplified algorithm is used to synthesize the average voltage
vector Vαβ at the output of the qZSI.

3.1. DC Side Control

In order to generate the ST duration, as shown in Figure 4, the perturb and observe
method (P&O) is used to achieve the MPPT. The searched maximum power point voltage
VMPP is compared with the measured PV array voltage, and the PV voltage closed-loop
regulation employs the PI controller to determine the appropriate variety of the ST duty
ratio for a PV voltage reference adjustment by:

D = kP(V∗PV −VPV) + kI

t∫
0

(V∗PV −VPV)dt (5)

While the integral and proportional parameters, respectively, are denoted by kP and kI.
The PV voltage tracking inaccuracy is according to:

E = V∗PV −VPV (6)

Usually, the transfer function of the PI controller is:

GPI =
D
E

=
kP p + kI

p
(7)
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The gains kP and kI of the PI regulator are determined using the Bode plot approach.
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3.2. Mathematical Modeling of the PDP

Any prediction system is related to forecasting the control variables to be employed
in the sampling period to achieve the desired effectiveness. First, the active and reactive
powers will be the controllable variables in the presented prediction model. Both active
and reactive power equations in a stationary reference system (α, β), with a balanced
three-phase system, are described as follows:[

P
q

]
=

[
eα eβ

eβ − eα

][
iα

iβ

]
(8)

When the TS is supposed to be small in relation to the power-source voltage period,
the components of e are considered to be constant across the TS (e(k + 1) = e(k)).

Finally, the variation in active and reactive powers during two sequential sampling
times can be interpreted as follows:[

P(k + 1)− P(k)
q(k + 1) − q(k)

]
=

[
eα(k) eβ(k)
eβ(k)− eα(k)

][
iα(k + 1)− iα(k)
iβ(k + 1)− iβ(k)

]
(9)

Figure 1 shows that the qZSI is connected to the grid via an RL filter. The system’s
function at the point of common coupling (PCC) is defined as:

Vabc = Riabc + L
diabc

dt
+ eabc (10)

where Vabc is the output qZSI voltage, iabc is the current injected into the grid through the
RL filter, and eabc is the PCC voltage. Clarke’s transformation of Equation (10) gives:

L
d
dt

[
iα(t)
iβ(t)

]
=

[
eα(t)
eβ(t)

]
−
[

Vα

Vβ

]
− R

[
iα(t)
iβ(t)

]
(11)

By neglecting the effect of the resistance Rf, the discretization of Equation (11) is
given as: [

iα(k + 1)− iα(k)
iβ(k + 1)− iβ(k)

]
=

TS
L f

([
eα(k)
eβ(k)

]
−
[

Vα(k)
Vβ(k)

])
(12)

By replacing Equation (12) in Equation (11), the variation of active and reactive power
in one TS is obtained as follows:[

P(k + 1)− P(k)
q(k + 1) − q(k)

]
=

TS
L f

[
eα(k) eβ(k)

eβ(k)− eα(k)

]([
eα(k)
eβ(k)

]
−
[

Vα(k)
Vβ(k)

])
(13)
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Based on the control objective of PDPC by forcing the active and reactive power to be
equal to their reference values at the next sampling instant. Thus,[

P(k + 1)
q(k + 1)

]
=

[
P∗(k + 1)
q∗(k + 1)

]
(14)

By substituting Equation (13) in Equation (14), the Vα and Vβ reference voltage vectors
are calculated as:[

Vα(k)
Vβ(k)

]
=

[
eα(k)
eβ(k)

]
−

L f

TS‖eαβ‖2

[
eα(k) eβ(k)

eβ(k)− eα(k)

](
P∗(k + 1)− P(k)
q∗(k + 1)− q(k)

)
(15)

To operate at the unity power factor in the grid-tied qZSI, the reactive power reference
is equal to zero (q* = 0). As shown in Figure 3, the active power reference (P*) is achieved
by multiplying iPV with VPV. Utilizing the linear approximation shown in Figure 5, the
predicted value of P*(k + 1) is given as follows.[

P∗(k + 1)
q∗(k + 1)

]
=

[
2P∗(k)− P∗(k− 1)

q∗(k)

]
(16)
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Figure 5. Predictive value estimation of reference active power.

By using Equations (15) and (16), the average control vector to be applied during the
sampling period is obtained by the following Equation:[

Vα(k)
Vβ(k)

]
=

[
eα(k)
e

β
(k)

]
+

L f

TS‖eαβ ‖2

[
eα(k) eβ(k)

eβ(k)− eα(k)

](
∆P∗(k) + εp(k)

εq(k)

)
(17)

The actual active and reactive power measuring errors are εp(k) and εq(k), respectively,
where ∆P*(k) represents the actual variation in active power reference level given by:

∆P∗(k) = P∗(k)− P∗(k− 1) (18)

Since the qZSI is supplied by PV panels, the MPPT makes the PV panels deliver
their maximum available power repeatedly. The reference power injected into the grid P*
presents the power harvested from the PV panels. The following section describes this
modulation technique in more detail.

4. The Simplified Space Vector Modulation

According to Figure 6, the hexagon is divided into six sectors using eight space vectors
in the traditional SVM method for the three-phase, two-level VSI. In addition to an extra
ST zero state, the SVM approach for the qZSI includes all the vectors from the standard
SVM strategy. The inverter operation is not affected by the ST time of the qZSI since it will
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be a section during the zero vector of the traditional SVM approach. The switching time of
the sequences in the SVM procedure for the qZSI can be achieved as:

T1 = M.TSw sin[π/3− θ + (i− 1)π/3]
T2 = M.TSw sin[θ − (i− 1)π/3]
T0 = TSw − T1 − T2

(19)

where i = 1, 2, . . . , 6 denotes the ith sector, Tsw signifies the switching period, T1 and
T2 represent the durations in time between two neighboring active vectors Vi and Vi+1,
respectively, T0 signifies the time interval of the zero vector, which includes the zero vector
V0, and the ST vector Vsh. Vref denotes the oriented angle of the voltage reference vector
the modulation index is defined as M =

√
3Vre f /VDC.
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Figure 6. Voltage space vector for ZSVM.

The simplified SVM for the three-phase multilevel inverter was published in [39] to
reduce the complexity and the computation time, using only one sector in the voltage space
vector to calculate all the switching sequences. The novel simplified ZSVM is proposed to
control the grid-tied-qZSI with a low computational time and reduce the hardware and
software complexity.

To realize the proposed ZSVM strategy, there are six main steps as the following:

1. New voltage reference vector calculation;
2. Sector number identification;
3. Duration times calculation;
4. Pulses generation with ST state insertion.

4.1. Calculations of the New Reference Voltage Vector

To simplify the calculation, the proposed ZSVM algorithm generates a new reference
voltage vector Uref = [Ua, Ub, Uc]t that turns in the first sector and collects all details from
the original reference voltage vector Vref = [Va, Vb, Vc]t in the other sectors.

In Figure 7, Vref rotates counterclockwise and traverses all sectors of the space vector
plan. As a result, the triangle in the first sector is repeated in the remaining sectors.

This similarity is based on the ability to shift the phase directions of the switching
states during the first sector to conclude all the switching states for the other sectors. Hence,
even if the proposed Uref is only created to rotate in the first sector, the direction of its
rotation is also determined by the location of Vref.
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Assuming that Uref maintains the same triangle order as Vref in all sectors, its rotation
must be in the following direction (see Figure 7):

â Vref is in an odd sector (1, 3, and 5) if rotated counterclockwise;
â Vref is in an even sector (2, 4, and 6) if rotated clockwise.

With straightforward instructions, Uref can be generated in the abc frame. Table 1
summarizes the selection of the abc components of Uref, which depends on Vref components
and the number of sectors.

Table 1. Selection of the proposed Uref elements.

S1 S2 S3 S4 S5 S6

Ua Va Vb Vb Vc Vc Va
Ub Vb Va Vc Vb Va Vc
Uc Vc Vc Va Va Vb Vb

In the abc coordinates scheme, Figure 8 depicts the components of the old reference
Vref and proposed Uref.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 
Figure 8. Components of Vref and Uref in abc coordinates. 

4.2. Identification of the Sector Number 
The sector number containing Vref is required to construct Uref. As a result, Table 2 

defines the selected strategy based on an easy comparison of the elements of Uref in abc 
coordinates. 

Table 2. Identification of a sector number. 

Condition Sector Number 
Va > Vb > Vc 1 
Va > Vc > Vb 6 
Vb > Va > Vc 2 
Vb > Vc > Va 3 
Vc > Vb > Va 4 
Vc > Va > Vb 5 

4.3. Calculation of Duration Time 
To calculate the on-duration time intervals of each switching vector, the average 

value principle is used and is obtained as follows: 

1 1 2 2 0 0

1 2 0

ref Sw

Sw

V t V t V t V T
t t t T
 + + =
 + + =

 (20)

where t1, t2, and t0 are the corresponding on-duration time interval for the three switching 
vectors next to the reference voltage vector, V1, V2, and V0, respectively. Equation (20) is 
then converted into αβ coordinates as follows: 

1 2 0 1

1 2 0 2

01 1 1

ref

ref

sw

V V V t V
V V V t V

t T

α α α α

β β β β

     
     =     
          

 (21)

Finally, the on duration can be calculated using Equation (21) based on the voltage 
reference in αβ coordinates generated by the PDPC. 

  

Vref

t

Uref

t

Va Vb Vc

Vmax

-Vmax

Umax

-Umax

Ua

Ub

Uc

S1 S2 S3 S4 S5S6S5
Figure 8. Components of Vref and Uref in abc coordinates.



Sustainability 2023, 15, 4153 10 of 20

4.2. Identification of the Sector Number

The sector number containing Vref is required to construct Uref. As a result, Table 2
defines the selected strategy based on an easy comparison of the elements of Uref in
abc coordinates.

Table 2. Identification of a sector number.

Condition Sector Number

Va > Vb > Vc 1
Va > Vc > Vb 6
Vb > Va > Vc 2
Vb > Vc > Va 3
Vc > Vb > Va 4
Vc > Va > Vb 5

4.3. Calculation of Duration Time

To calculate the on-duration time intervals of each switching vector, the average value
principle is used and is obtained as follows:{

V1t1 + V2t2 + V0t0 = Vre f TSw
t1 + t2 + t0 = TSw

(20)

where t1, t2, and t0 are the corresponding on-duration time interval for the three switching
vectors next to the reference voltage vector, V1, V2, and V0, respectively. Equation (20) is
then converted into αβ coordinates as follows:V1α V2α V0α

V1β V2β V0β

1 1 1

t1
t2
t0

 =

Vαre f
Vβre f
Tsw

 (21)

Finally, the on duration can be calculated using Equation (21) based on the voltage
reference in αβ coordinates generated by the PDPC.

4.4. Pulses Generation

The switching operation of the qZSI using the ZSVM includes one additional ST, zero
vectors, and six active voltage vectors. To create the ST state for the ZSVM of qZSI, one of
the three-phase legs, a, b, and c, are in a short circuit each switching period. The preferred
total ST duration is divided into six time during each switching period. One-phase ST
reduces switching losses across the whole switching period by assuming that only one
bridge leg can be altered at a time. Figure 6 shows the corresponding voltage space vectors
of the qZSI in an αβ projection. The switching sequences of the proposed ZSVM6 algorithm
in the first sector are detailed in Figure 9 to facilitate switching state selection. Thus, for
each sector, the qZSI reference voltage vector becomes:

Vre f = V1
T1

TSw
+ V2

T2

TSw
+ V0

T0

TSw
+ Vsh

Tsh
TSw

(22)

Therefore, the reference voltage is generated using the three adjacent switching vectors.
The main objective is to reduce the harmonic content of the output voltage/current by
arranging the switching transitions. Table 3 summarizes the adopted interchanging between
phases a, b, and c in all sectors.
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Table 3. Interchanging switching states in all sectors.

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

a, b, c b, a, c b, c, a c, b, a c, a, b a, c, b

Lastly, Figure 10 shows the flow diagram of the proposed simplified ZSVM6 algorithm
for the grid-tied qZSI. The proposed simplified PDPC generates the voltage vector reference
Vα and Vβ, and utilized Table 2 to create the new Uref for reducing the calculation. The
indentation of the sector number is necessary to calculate the vector duration. And to
generalize in all sectors, Table 3 illustrates that.
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5. Simulation Results

MATLAB/Simulink is used to simulate the model of the three-phase grid-tied qZSI
fed by a PV power system to evaluate the performance of the simplified PDPC method and
control structure, as shown in Figure 1. The PV panel’s parameters under the standard test
conditions (STC) are shown in Table 4. To achieve the required ac voltage level, four PV
panels were interconnected in a series in each PV string. The electrical system parameters
are listed in Table 5. The results are presented in Figures 11–19 and have been validated for
the abovementioned criteria.

The system’s operation under the dynamic response can be tested under different
meteorological conditions. The studied conditions are 1000 W/m2, 800 W/m2, and 500
W/m2, respectively.

As seen in Figure 11, the MPPT operated by P&O precisely follows the theoretical
reference. It tracks the maximum voltage with excellent stability and low oscillation.
Despite the quick change in irradiation, the panels maintain their maximum output voltage
(around 185 V). As seen in Figures 12 and 13, the suggested simplified PDPC can effectively
adjust to step variations in the power references, and the maximum output power of the
PV source was transferred to the grid with a small active power ripple. As a result, in
Figure 14, maintaining reactive power near zero and ensuring that the qZSI is unaffected
by changes in active power, allowing the converter to operate at the unity power factor.

Table 4. Photovoltaic module parameters.

Parameter Value

Maximum power 150 W
Open circuit voltage 22.5 V
Short circuit current 8.75 A

The voltage at the MPP 18.25 V
Currently at the MPP 8.22 A

∆V (P&O) 0.5 V
Sampling frequency (P&O) 100 Hz

Table 5. System specifications.

Circuit Parameters Value

qZS network C1,2, L1,2 1 mF, 4 mH
Internal resistance rc, RL 0.19 Ω, 0.1 Ω
Filter inductance Lf, Rf 4 mH, 0.1 Ω

Switching frequency fSw 10 kHz
Sampling time Ts 10−6 s
Input PV voltage 180–185 V
Line frequency f 50 Hz

ac output voltage RMS 110 V
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waveform since, in the ST state, the dc-link voltage is zero, while in the active state, the
peak dc-link voltage value around 250 V. As shown in Figure 15, the VC1 was continuously
followed at 220 V during the transient situation, exhibiting the dynamic functionality
and efficiency of the proposed control. Figure 17 shows the inductive current waveform
during the irradiation changes. It can be seen that the iL1 decreases from 20 A to 15 A
at 0.4 s and decreases from 15 A to 8 A at 0.6 s. However, we can observe the double
frequency comment in the inductive current curve duo to the used one leg for the qZSI for
ST state. Therefore, the dynamic performance of the qZSI was unaffected by the inductive
current ripples.

The Va and ia, as presented in Figure 18, are in phase, and the output currents are
nearly sinusoidal and fluctuate smoothly. During the irradiation changes, where it can be
quickly adjusted without causing overshoot or undershoot currents.

Figure 19 illustrates the grid-tied qZSI’s test results in a 1000 W/m2 steady state, where
the current injected into the grid is 20 A RMS with 3.4 kW power. The THD of the injected
grid current is 0.2%, which conforms to grid standards IEEE-519 [28]. The waveforms and
measurements show that the proposed simplified PDPC is feasible and demonstrates good
reference-tracking capabilities.

Table 6 presents a comparative investigation based on the complexity of the model,
the output active power ripple, and the line current THD between the proposed simplified
PDPC and recently published control schemes [26–29]. The comparison is conducted on
the same application, such as grid-connected mode. This comparison demonstrates that
the proposed control methods efficiently enhance the line current quality with the Lower
ripple in the injected active power.

Table 6. Comparison results between different control strategies.

Reference Control Used Modulation Switching Frequency Complexity Power Ripple THD %
dc Side ac Side

[26]
Model Predictive
Current Control

With phase lock loop
No need

Variable
Average of

22 kHz
High Medium 3.20%

[27] Model predictive control No need
Variable

Average of
9 kHz

High Low 1.92%

[28] Model predictive control No need Variable High Low 2.48%

[29] Dead-beat
control

Model
Predictive Power Control

Optimal Sector
Selection Method Constant Medium Medium 2.27%

Proposed Method PI controller Model Predictive Power
Control

Simplified
space vector modulation

Constant
10 kHz Low Low 0.20%

6. HIL Validation Results

A hardware-in-the-loop (HIL) emulator was applied to evaluate and confirm our
proposed control scheme for a three-phase grid-tied qZSI. The fundamental elements and
signal channels of the HIL simulator for the proposed approach are shown in Figure 20.

In a usual HIL emulator, the three-phase grid-tied qZSI and its various PV irradiation
are simulated and conducted on the personal computer (i.e., Host-PC) as a concept in
MATLAB. However, the control strategies are carried out in an external target microcon-
troller kit (in our research, the C2000TM microcontroller-LaunchPadXL TMS320F28379D
kit). The HIL emulator necessitates collaboration between the Host-PC and the target
LAUNCHXL-F28379D, accomplished through a virtual serial COM port [40,41]. In this
case, the Host-PC sends measured signals (or input characteristics) such as Vpv, eabc, and
iabc to the LAUNCHXL-F28379D kit. After receiving these signals from the target kit, the
proposed control strategy designates the switching state for the next switching period. At
last, the switching sequences are delivered to the Host-PC to control the qZSI switches and
will be repeated at each sampling time Ts.
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Figure 20. HIL simulator schematic for the proposed system.

After configuring the devices and the Host-PC, as explained in [41], the HIL simulation
is used to evaluate the effectiveness of the proposedaa control strategies in controlling the
PV output voltage Vpv, the active output P, and reactive powers q. The system’s operation
under the dynamic response can be tested under different meteorological conditions. The
studied conditions are 1000 W/m2 and 800 W/m2, respectively.

Figures 21 and 22 show the active and reactive powers, and it can be seen that both
injected powers track the reference under various solar irradiation.

In Figure 24, the output currents are almost sinusoidal and smoothly fluctuate. More-
over, it can quickly change during irradiation variations without producing overshoot
or undershoot currents. Finally, the challenges among simulation and HIL findings are
insignificant, demonstrating that the proposed simplified PDPC for grid-tied qZSI is suc-
cessful in terms of implementations.

It is shown in Figure 23 that maintaining a dc-link peak voltage value through all the
changing in the solar irradiation is due to adjusting the ST duty cycle.
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7. Conclusions

This paper proposed a simplified PDPC with a fixed switching frequency for grid-tied
qZSI. The suggested control strategy integrates the PDPC approach with the ZSVM block
to function at fixed and low switching frequencies, improve system performance, and
maintain the durability of its hardware devices. In addition, the simplified ZSVM is based
only on the first sector calculation. It uses reference vector identification, ON-duration times
calculation, and pluses generation with the ST state insertion. Consequently, it reduces the
calculation time while increasing accuracy. The voltage reference vectors are also computed
without the need for linear controllers. A PI controller adjusts the dc link voltage and the
traditional P&O algorithm for generating VMPP voltage reference. Finally, the simplified
PDPC generates the voltage vector and switching pulses for the qZSI, resulting in the
smallest difference between predictive and reference values. The proposed simplified
PDPC not only realizes the control of photovoltaic source voltage but also the optimal
control of active and reactive powers on the ac side of the qZSI. The obtained results, and
comparative evaluation, prove the effectiveness and feasibility of the proposed simplified
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PDPC in terms of reached grid ac voltage, active and reactive power regulation, and output
current quality improvements. The HIL emulator was used to prove its feasibility on a DSP
kit and illustrate its performance under varied irradiation levels.

Author Contributions: Conceptualization, A.A.; methodology, A.A., A.B., A.L. and A.B.; software,
A.A.; validation, A.A., A.B. and A.L.; formal analysis, A.B.; investigation, A.A. and A.B.; resources,
A.A.; data curation, A.A.; writing—original draft preparation, A.A.; writing—review and editing,
A.B., L.Z., M.B. and A.L.; visualization, A.B., A.L. and B.R.; supervision, L.Z. and M.B.; project
administration, L.Z.; funding acquisition, A.B. and M.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

MPPT Maximum power point tracking
ZSI Z-source inverter
qZSI Quasi Z-source inverter
VSI Voltage source inverter
PI Proportional integral controller
PLL Phase-locked loop
DPC Direct power controller
PWM Pulse width modulation
MPC Model predictive control
PDPC Predictive direct power control
SVM Space vector modulation
MPC Maximum boost control
ZSVM6 Space vector modulation six ST duration
SX1, SX2 States for the upper and lower switch in phase (a, b, c)
L1, L2 C1, C2 Inductors and capacitors for qZSI (H)
VC1, VC2 Capacitor voltage across C1, C2 (V)
Dsh Shoot though duty cycle
B Boost factor
Tsh Total ST duration (s)
TSW Switching period (s)
V*

pv, Vpv Measured and reference PV output voltage reference (V)
ipv Output PV current (A)
P&O Perturb and observe method
VMPP Searched maximum power point voltage (V)
Kp, kI Proportional and integral constants
E Error of output PV voltage control loop
GPI Transfer function of the PI controller
p Laplace operator
R Resistance of the filter (Ω)
L Inductance of the filter (H)
ea, eb, ec Source voltage of phase a, b, c respectively (V)
Va, Vb, Vc Output inverter voltage of phase a, b, c respectively (V)
TS Sampling period (s)
P*, q* Reference active and reactive power (w)
rc, RL Internal resistance (Ω)
f Line frequency (Hz)
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