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Abstract

Birnbaum-Saunders distributions have increasingly been used in environmental sciences
applications. A major concern is the adjustment of extreme quantiles. Environmental
data have often tails in the Gumbel domain which corresponds to a null tail index and
does not allow us to distinguish the different tail weights that might exist between distri-
butions within this domain. Exponential-tail distributions form an important subgroup
with the peculiarity of including a parameter that specifies the “penultimate” tail be-
havior. In particular, we analyze the penultimate tail behavior of Birnbaum-Saunders
distributions. We find examples with “heavier” tails than the classical one that can
better accommodate environmental data highly concentrated on the right tail. This is
illustrated with an application.

Keywords: Exponential-tail models · Extreme value theory · Penultimate
approximation.

Mathematics Subject Classification: Primary 60G70 · Secondary 60E05.

1. Introduction

Problems arising in many practical applications have been leading to a major develop-
ment in the construction of flexible parametric models. Distributions commonly used for
modeling environmental data are the so-called life distributions, usually positively skewed,
unimodal, and having two parameters (see, for instance, Marshall and Olkin, 2007). An
example of a life distribution that has been largely studied and applied is the Birnbaum-
Saunders (BS) model, which was originated from a problem of material fatigue (Birnbaum
and Saunders, 1969). More precisely, the BS distribution relates the total time until the
failure to some type of cumulative damage normally distributed. Among many attractive
properties, we highlight its relationship with the normal distribution. A random variable
(r.v.) having the BS distribution can be represented by another r.v. used as basis. There-
fore, by considering different distributions for the basis variable (under diverse arguments)
we obtain more classes of models. Even though several generalizations of the BS distribu-
tion have been proposed in literature (see Dı́az-Garćıa and Leiva 2005, Leiva et al. 2010,
Vilca et al. 2006, 2010, 2011, among others), these models are still inadequate to fit data
that are largely concentrated on the left/right tail of the distribution. Recently, Ferreira
et al. (2012) proposed the EVBS (EVBS∗) model, generated from extreme value models,
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which introduces a tail parameter that allow us to better accommodate the high (low)
extreme values. Extreme value models correspond to the limiting class of a suitable lin-
ear normalization of maxima (minima). However, there might exist penultimate limiting
distributions that better approximate the extreme values (Fisher and Tippet, 1928). This
is particularly evident in the Gumbel domain of attraction. Exponential-tail models (ET)
include several life distributions and are a wide class in the Gumbel domain. The main
purpose of this work is to analyze the penultimate tail behavior of this latter class, so as
to achieve such distinction. We focus the particular case of BS models and thus contribute
to the identification of models that may be better profiled for environmental data highly
concentrated on the right tail.
This paper is organized as follows. In Section 2, we present some basic notions concerning

extreme value theory and BS models, with particular emphasis on EVBS distributions. In
Section 3, we devote to the analysis of the “penultimate” tail behavior of ET distributions.
We study, in particular, the case of BS models. We see that, for instance, the EVBS model
generated from Gumbel (Ferreira et al., 2012) has “heavier” tail than the classical BS,
and hence it can better accommodate data within the domain of ET distributions that
presents observations much concentrated on the right tail. An illustration is provided at
the end (Section 4) with an application to real data.

2. Background

In this section we give some preliminary aspects and results of extreme value theory,
the classical BS model and some generalizations commonly denoted BS-type models. In
particular, we give a brief characterization of the EVBS/EVBS∗ models.

2.1 Extremal Domains of Attraction

The distinguishing feature of an extreme value analysis is the development of models and
techniques to describe a process at unusual or even unobserved levels. The central result in
classical extreme value theory (EVT) states that, for an i.i.d. sequence, {Xn}n≥1, having
common cumulative distribution function (c.d.f.) F , if there are real constants an > 0 and
bn such that,

P (max(X1, ..., Xn) ≤ anx+ bn) = Fn(anx+ bn) −→
n→∞

Gγ(x) , (1)

for some non-degenerate function Gγ , then it must be the generalized extreme value func-
tion (GEV) given by

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R, (2)

(G0(x) = exp(−e−x)) and we say that F belongs to the domain of attraction of Gγ , in
short, F ∈ D(Gγ). The parameter γ, known as the tail index, is a shape parameter that
determines the tail behavior of F , being so a crucial issue in EVT. More precisely, if γ > 0,
we are in the domain of attraction Fréchet corresponding to a heavy tail, γ < 0 indicates
the Weibull domain of attraction of light tails and γ = 0 means a Gumbel domain of
attraction and an exponential tail. We can rewrite a result similar to the one given in (1)
for minima, with a limiting c.d.f. GEV function for minima (GEV∗) expressed as

G∗
γ(x) = 1−Gγ(−x) (3)
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and say that F belongs to the min-domain of attraction of G∗
γ , in short F ∈ Dm(G

∗
γ). This

is due to the relation min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}, and hence, in practice,
we need to treat only one of the cases, usually the maxima.
Despite the importance of the limiting result in (1), however, as Fisher and Tippett

(1928) remarked, if one approximates the distribution of the successive maxima of normal
samples not by the limit distribution, which is Gumbel, but by a sequence of other extreme
value distributions converging to the limit distribution, the approximation is asymptoti-
cally improved. They called penultimate distributions to this sequence of approximating
extreme value distributions. This issue have been latter developed by Anderson (1976),
Cohen (1982), Gomes (1984, 1993), Canto e Castro (1992), de Haan and Gomes (1999) and
Kaufmann (2000). The penultimate tail analysis is particularly important in the Gumbel
domain. Observe that the Gumbel domain only comprises distributions having null tail
index, i.e., γ = 0, and a way to distinguish between them in high quantiles is to look at the
penultimate tail behavior. ET models are a wide class in the Gumbel domain that allow
us such distinction, as will be seen in Section 3.

2.2 Birnbaum-Saunders distributions

An r.v. T with classical BS distribution, denoted by T ∼ BS(α, β), is characterized by its
shape and scale parameters α > 0 and β > 0, respectively. BS and standard normal r.v.’s,
denoted respectively by T and Z, are related by

T = β
(
αZ/2 +

√
{αZ/2}2 + 1

)2
and Z =

(√
T/β −

√
β/T

)
/α. (4)

The probability density function (p.d.f.) and c.d.f. of T are, respectively, given by

f
T
(t) = ϕ

(
a(t)

)
a′(t) and F

T
(t) = Φ

(
(a(t)

)
, t > 0, (5)

where ϕ and Φ are the standard normal p.d.f. and c.d.f., respectively,

a(t) ≡ at = (
√

t/β −
√

β/t)/α and a′(t) ≡ At = t−3/2(t+ β)/(2α
√

β),

where a′(t) = d a(t)/dt is the derivative of a(t) with respect to t. The quantile function
(q.f.) of T is expressed as

t(q) ≡ tq = F−1
T

(
q
)
= β

(
α ξq/2 +

√
{α ξq/2}2 + 1

)2
, 0 < q < 1, (6)

where F−1
T

(t) := inf{x : F (x) ≥ t} is the generalized inverse function of the c.d.f. of T and
ξq is the qth quantile of the r.v. Z ∼ N(0, 1).
If we switch the standard normal assumption of Z by any other distribution with

c.d.f. and p.d.f. F
Z

and f
Z
, respectively, we obtain the general class of BS-type distri-

butions earlier mentioned, for an associated r.v. T and whose c.d.f. and p.d.f. are, respec-
tively, given by

F
T
(t) = F

Z

(
a(t)

)
and f

T
(t) = f

Z

(
a(t)

)
a′(t), t > 0. (7)

For instance, if Z follows a standard symmetric distribution in the real number set, we
then find the GBS distribution, i.e., T ∼ GBS(α, β; g), where g is the kernel of the p.d.f. of
Z given by f

Z
(z) = c g(z2), with z ∈ R and c being a normalization constant (Dı́az-

Garćıa and Leiva, 2005). Classical and generalized versions of the BS distribution were
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implemented in the packages bs and gbs of the R software and are available in http://

CRAN.R-project.org (see Leiva et al. 2006 and Barros et al. 2009). Among other aspects,
these packages include functions for computing probabilities, generating random numbers,
estimating parameters and goodness-of-fit analysis.

2.3 EVBS and EVBS∗ models: properties, extremal domains of attraction
and inference

EVBS and EVBS∗ are BS-type models generated from the extreme value distributions,
respectively, GEV and GEV∗. More precisely, if Z follows a GEV distribution given in (2),
we have the EVBS distribution, T ∼ EVBS(α, β, γ), where γ is the tail index indicating the
domain of attraction of maxima, i.e., the type of the right-tail. Analogously, if Z follows
a GEV∗ distribution given in (3), then T ∼ EVBS∗(α, β, γ) and γ is the tail index of the
left-tail (Ferreira et al., 2012). Both EVBS and EVBS∗ models have been analyzed in detail
in Ferreira et al. (2012) and Gomes et al. (2012). Some interesting properties concerning
scale and inverse operations were proved. Specifically, if T ∼ EVBS(α, β, γ), then c T ∼
EVBS(α, c β, γ) and 1/T ∼ EVBS∗(α, 1/β, γ), with similar results for EVBS∗. It was also
shown that, if Z ∈ D(Gγ), then T belongs to the domain of attraction Fréchet(2γ) or
Weibull(γ), whenever γ > 0 or γ < 0, respectively. On the other hand, if Z ∈ D(G∗

γ), then
T belongs to the min-domain of attraction Fréchet(−2γ) or Weibull(γ), whenever γ > 0 or
γ < 0, respectively. In what concerns the Gumbel domain of attraction, it was shown that,
in several cases, T belongs to this domain whenever Z belongs too, either for maximum
or minimum domains. Moments are highly influenced by the tail heaviness. For example,
a GEV(γ) distribution with γ > 1 do not even have the first moment. This issue was
analyzed in Gomes et al. (2012), concerning EVBS and EVBS∗ models. More precisely,

it was proved that the rth moment of T exists if E[Zk+l
(
{αZ}2 + 4

)(k−l)/2
] < ∞, with

k = 0, . . . , r and l = 0, . . . , k, and we have

E[T r] = δr
∑r

k=0

(
r
k

)∑k
l=0

(
k
l

)
2kE[(αZ/2)k+l{(αZ/2)2 + 1}(k−l)/2].

Inference aspects for EVBS distributions were addressed in Ferreira et al. (2012). The
estimation was based on maximum-likelihood and, as the system of likelihood equations
does not allow to derive explicit estimation formulas for the parameters, a numerical
procedure was considered. An R package named evbs to analyze data from EVBS models
was developed, and its “in progress” version is already available through the authors. This
package contains, among other useful functions for EVBS models, the maximum likelihood
(ML) estimation methodology implemented in Ferreira et al. (2012).

3. ET distributions and penultimate tail behavior of BS models

We say that F is an ET model if

1− F (x) ∼ exp(−H(x)), x ≥ x0 ≥ 0, θ > 0, (8)

where f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1, and

H(x) = x1/θl(x) or H−1(x) = xθl∗(x), (9)

with H−1 denoting the generalized inverse of H and functions l and l∗ are slowly
varying at infinity (i.e., l(tx)/l(t) → 1 as t → ∞ for all x > 0 and the same holds
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for l∗). Functions H and H−1 are called regularly varying with indexes, 1/θ and θ,
respectively. The class in (8) includes the Weibull-type models (see Gardes and Girard,
2008) and forms an important subgroup within the Gumbel class (γ = 0), where the
tail behavior can then be specified using coefficient θ. More precisely, the parameter
θ, here called the ET-coefficient, governs the tail behavior of F , with larger values
indicating heavier tails. Examples of ET models include normal (θ = 1/2), Laplace,
Gumbel, logistic (θ = 1) and Weibull with the shape parameter γ (θ = 1/γ), among others.

In the following, based on a result given in Gomes (1984), we prove that ET models
present Fréchet or Weibull penultimate tail behavior whenever θ > 1 or θ < 1, respectively.
We remark that the case θ = 1 cannot be treated in a unified way, since we can find
penultimate tail indexes with different rates of convergence (Gomes, 1993). Therefore, we
ssume that θ ̸= 1 all over this section. Furthermore, we also assume that, as x → ∞,

xl′(x)
l(x) → 0, x2l′′(x)

l(x) → 0, x3l′′′(x)
l(x) → 0. (10)

Note that, if l(x) is monotone for x ≥ x0 > 0, then xl′(x)/l(x) → 0, as x → ∞. The
other conditions in (10) are also satisfied by the most common models.

Consider

k(x) := [− log(− log(F (x)))]′.

Observe that

− log(F (x)) = (1− F (x))(1 +O(1− F (x)))

and, considering (8) and (10), we have

k(x) = H ′(x)(1 + o(1)). (11)

Analogously, we derive

k′(x) = H ′′(x)(1 + o(1)) and k′′(x) = H ′′′(x)(1 + o(1)). (12)

Consider H(x) given in (9). We have

H ′(x) = xθ
−1−1l(x)

(
θ−1 + xl′(x)

l(x)

)
H ′′(x) = xθ

−1−2l(x)
(
θ−1(θ−1 − 1) + 2θ−1 xl

′(x)
l(x) + x2l′′(x)

l(x)

)
H ′′′(x) = xθ

−1−3l(x)
(
θ−1(θ−1 − 1)(θ−1 − 2) + 3θ−1(θ−1 − 1)xl

′(x)
l(x) + 3θ−1 x

2l′′(x)
l(x) + x3l′′′(x)

l(x)

)
.

By (10), (11) and (12), we have that

xk(x) = θ−1xθ
−1

l(x)(1 + o(1))
x2k′(x) = xk(x)(θ−1 − 1)
x3k′′(x) = xk(x)(θ−1 − 2)(θ−1 − 1).

(13)
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Now consider xF := sup{x : F (x) < 1} and

φ(t) = (1/k)′(t) = −k′(t)/(k(t))2.

Based on condition,

lim
t→xF

φ′(t)

k(t)(φ(t))2
= c < ∞, (14)

Gomes (1984) derives bounds for

(Fn(anx+ bn)−Gγn
(x))/γ2n, (15)

with an = 1/k(bn) and

bn = H−1(log(n)),

where

γ(t) = φ(H−1(t)) = − k′(H−1(t))

k2(H−1(t))

and the penultimate tail index is given by

γn = γ(log(n)) = −k′(bn)/k
2(bn). (16)

Proposition 3.1 ET models satisfying (8)-(10) such that θ ̸= 1, present Fréchet and
Weibull penultimate tail behavior, if θ > 1 and if θ < 1, respectively.

Proof First, observe that xF = +∞,

φ′(t) = −k′′(t)k(t)− 2(k′(t))2

(k(t))3

and

φ′(t)

k(t)(φ(t))2
= 2− k′′(t)k(t)

(k′(t))2
.

By (13), we obtain

lim
t→xF

k′′(t)k(t)

(k′(t))2
= lim

t→xF

t3k′′(t)tk(t)

(t2k′(t))2
= lim

t→xF

(θ−2 − 3θ−1 + 2 + o(1))(1 + o(1))

(θ−1 − 1 + o(1))2
=

(θ−1 − 2)(θ−1 − 1)

(θ−1 − 1)2

and hence

lim
t→xF

φ′(t)

k(t)(φ(t))2
=

1

1− θ
.
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Thus, condition (14) holds (θ ̸= 1). Also, by (13), the penultimate tail index, γn, in (16)
satisfies

γn = − b2nk
′(bn)

(bnk(bn))2
∼ θ − 1

log(n)
.

Therefore, we obtain γn > 0 and γn < 0 if, respectively, θ > 1 and θ < 1.

Moreover, the rate of convergence, γ2n, in (15) is of order (log(n))−2.

A BS model of ET-type, i.e., with cdf satisfying (8) and (9), is generated also from an
ET-type r.v.Z in (4). Next results allow us to relate the penultimate tail behavior of Z
and T .

Proposition 3.2 If the r.v.Z in (4) follows an ET model with ET-coefficient θ, then the
r.v.T in (4) has ET distribution with ET-coefficient 2θ.

Proof Observe that

1− FT (t) = 1− FZ(at) = exp(−H(at)),

where H(at) ∼ (
√

t/β/α)1/θℓ(
√

t/β/α) = t1/(2θ)ℓ∗(t), and ℓ∗(t) = (α
√
β)−1/θℓ(

√
t/β/α)

is a slowly varying function.

Corollary 3.3 If the r.v.Z in (4) follows an ET model with ET-coefficient θ, then the
r.v.T in (4) has ET distribution with Fréchet and Weibull penultimate tail behavior if
θ > 1/2 and if θ < 1/2, respectively.

Table 1 presents examples of BS models with the respective ET-coefficients. Observe
that the classical BS presents the lightest tail, whilst the EVBS model with γ = 0, the
EVBS∗ model with γ = −γ∗ > −2, as well as the GBS models with logistic and Laplace
kernels, belong penultimately to the Fréchet domain.

Table 1. BS models with the respective distribution of the r.v.Z in (4) and the corresponding ET-coefficient θ.

Z T

N(0,1); θ = 1/2 BS(α, β); θ = 1

Logistic/Laplace kernel g (fZ(x) = g(x2)); θ = 1 GBS(α, β; g); θ = 2

Gumbel; θ = 1 EVBS(α, β, γ = 0); θ = 2

Weibull (γ∗); θ = 1/γ∗ EVBS∗(α, β, γ∗); θ = 2/γ∗

4. An illustration with environmental data

The BS model is appropriated for describing phenomena involving accumulation of some
type, as is the case of environmental contamination. We present a real data set from
environmental contamination in Chile.
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4.1 The data set and an exploratory data analysis

The data correspond to hourly sulfur dioxide (SO2) concentrations (in ppb = ppm ×
1,000) observed at one monitoring station located at Providencia zone of Santiago during
March in 2002. Table 2 presents a descriptive summary of these data and Figure 1 (left) the
respective histogram. This table and histogram indicate a positively skewed distribution.
Figure 1 (right) displays the original boxplot, which is constructed for symmetric data, and
the adjusted boxplot for asymmetric distributions (for details about the adjusted boxplot,
see Hubert and Vandervieren 2008, and function adjbox of the R package robustbase).
The original boxplot shows several atypical observations lying on the right-tail of the
distribution of the data. However, when we produce the adjusted boxplot for asymmetric
distributions, there are still atypical observations on the right-tail.

Table 2. descriptive statistics for air data (in ppm × 1,000).

Median Mean SD CV CS CK Range Min. Max. n
2.000 2.765 2.284 82.609% 2.089 6.220 18 1 19 744

air data
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Figure 1. histogram (left) and indicated boxplot (right) for air data.

4.2 Testing the Gumbel domain of attraction

In order to evaluate if the data belongs to the Gumbel domain of attraction, we carried out
a test for the extreme value condition. More precisely, we tested H0: F ∈ D(Gγ≥0) (details
about this test can be seen in Dietrich et al., 2002). Figure 2 (left) presents the sample
path of the test statistic as a function of the k largest order statistics. The horizontal line
is the critical value above which we reject H0. Thus, we do not reject the null hypothesis
for 1 . k . 75, which is a reasonable value in EV theory to keep it. The hypothesis of a
heavy-tail of the Fréchet domain of attraction is removed by Figure 2 (right), corresponding
to the sample path of the tail index moments estimator (Dekkers et al., 1989) which is
stable around the value zero. Therefore, we have positively skewed data presenting atypical
observations on the right-tail but still in the Gumbel domain of attraction. In other words,
we are looking for a model within this domain but with a somewhat “heavier” tail, like a
penultimate Fréchet behavior. Thus, besides the BS model, we are going to fit to our data
the EVBS(α, β, γ = 0) model, i.e., the EVBS model based on Gumbel domain which, as
already stated, should better accommodate the observations concentrated on the right-tail.
For comparison, we also consider the GBS model based on logistic and Laplace kernels.

4.3 Estimation and model checking

Our estimation procedure is based on the maximum likelihood (ML) method. This topic is
developed in Ferreira et al. (2012) and Barros et al. (2009), concerning the EVBS model and
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Figure 2. sample path of the extreme value condition test, where the horizontal line is the critical value above which
we reject F ∈ D(Gγ), with γ ≥ 0 (left) and sample path of the indicated tail index moments estimator (right), for
air data.

the GBS model, respectively. In particular, the respective R packages, evbs (“in progress”
version available upon request through the authors) and gbs (available in http://CRAN.R-
project.org/) were used. Table 3 shows the ML estimates along with the values of the usual
information criteria: Akaike (AIC), Schwarz’s Bayesian (BIC) and Hannan-Quinn (HQIC)
used for model selection. The lower values of AIC, BIC and HQIC in the EVBS model

Table 3. ML estimates and information criteria in the indicated models for air data.
Distribution α̂ β̂ −ℓ AIC BIC HQIC

EVBS(α, β, γ = 0) 0.585 1.569 1303.555 1.755 1.761 1.757

BS(α, β) 0.718 2.205 1336.933 1.800 1.806 1.802

GBS(α, β; g)(g-logistic kernel) 0.423 2.123 1355.376 1.824 1.831 1.827

GBS(α, β; g)(g-laplace kernel) 0.584 2.000 1388.753 1.869 1.875 1.872

indicate that this is the best of all models, followed by the classical BS model. In addition,
Figure 3 confirms this: the solid line corresponding to the EVBS model is always closer
to the data than the dotted line corresponding to the classical BS model. Furthermore, a
good coherence between the EVBS model and air data is evidenced both by the histogram
(left) as by the empirical and theoretical c.d.f.’s (right).

air data
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Figure 3. [left] histogram with estimated EVBS(α̂, β̂, γ = 0) density (solid line) and estimated classical BS(α̂, β̂)

density (dotted line); [right] empirical c.d.f. plots with the estimated EVBS(α̂, β̂, γ = 0) c.d.f. (solid line) and

estimated classical BS(α̂, β̂) c.d.f. (dotted line), for air data.

4.4 Inference on high levels

In the presence of outlying observations, the classical BS may do not do the best job,
mainly in the modeling of the large values. This is a very important issue, for instance,
in establishing administrative tolerable limiting values in environmental contamination.
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Considering that the administrative target to abate air pollution usually belongs to the
[98−99.9] percentile range (Leiva et al., 2008), it is very important to fit well the distribu-
tion in this range of higher concentrations. In computing these quantiles for the adjusted
BS model (see Table 3), and using formula (6), we obtain [8.6392−14.9330]. Observe that,
if this model was adopted to set the administrative target, the values above 15 presented
in the box-plot of Figure 1 could not be detected and thus could lead to a wrong decision.
Now, if we consider the EVBS distribution generated from Gumbel, which has shown to
be a more suitable model for our data, we obtain [11.09119−28.67016] covering all the ob-
served high values. In addition, if we want to infer the probability of exceeding an unusual
(but possible) high level, say 30 ppb (see again Leiva et al., 2008), using the cdf formulas
in (5) and (7), we will have, respectively, a practically impossible event in the BS model
and an estimate of 0.0008 in the EVBS case.

5. Concluding Remarks

Here, we have analyzed the tail behavior of ET distributions and contribute to the
study of Birnbaum-Saunders distributions, mainly devoted to environmental phenomena.
As already mentioned, the major difficulty within this context concerns the modeling
of the tails. Therefore, we think that the extreme value theory has a role to play in
Birnbaum-Saunders world, of which ET models are just a part. In the future, we intend
to analyze other type of distributions linking extreme value and Birnbaum-Saunders theo-
ries, specially concerning the Gumbel domain, the most typical case of environmental data.

Acknowledgements

The author was financed by FEDER Funds through “Programa Operacional Factores de
Competitividade - COMPETE”, by Portuguese Funds through FCT - “Fundação para a
Ciência e a Tecnologia”, within the Project Est-C/MAT/UI0013/2011 and by the research
projects PTDC/MAT/101736/2008 and PTDC/MAT/112770/2009. The author wish to
thanks the referees for the valuable contributions to the final form of this paper and
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