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The optimization of the feeding trajectories in fed-batch fermentation processes is a complex problem
that has gained attention given its significant economical impact. A number of bio-inspired algorithms
have approached this task with considerable success, but systematic and statistically significant com-
parisons of the different alternatives are still lacking. In this paper, the performance of different meta-
heuristics, such as Evolutionary Algorithms (EAs), Differential Evolution (DE) and Particle Swarm
Optimization (PSO) is compared, resorting to several case studies taken from literature and conducting
a thorough statistical validation of the results. DE obtains the best overall performance, showing a con-
sistent ability to find good solutions and presenting a good convergence speed, with the DE/rand vari-
ants being the ones with the best performance. A freely available computational application, OptFerm,
is described that provides an interface allowing users to apply the proposed methods to their own
models and data.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In addition to the considerable number of valuable products
that have long been produced using fermentation techniques, such
as recombinant proteins and antibiotics, Biotechnology has been
replacing traditional manufacturing processes in many areas that
were until recently dominated by the chemical industry. When
compared with conventional production methods, biotechnologi-
cal processes have relatively low energy requirements and envi-
ronmental costs, as well as decreased waste generation
associated with the possibility of creating biodegradable products
and of using renewable raw materials.

Industrial or White Biotechnology can be defined as the use of
cells or enzymes for the production of commodity and specialty
chemicals. The share of biotechnological processes in the produc-
tion of various chemical processes is currently raising and this
trend is expected to continue. In this new reality, rational fermen-
tation optimization approaches gain a novel fundamental impor-
tance since, when compared with pharmaceutical processes, the
margins in industrial biotechnological processes are much lower
and competitiveness depends more on product price than on pat-
ent protection. In fact, for such processes, an increase in productiv-
ity or efficiency can have a direct and strong impact in profitability.

Under this scope, several optimization strategies can be delin-
eated, depending on the defined purposes. The process engineer
point of view aims at optimizing the fermentation process by
exploiting the maximum capabilities of an already selected micro-
organism and by manipulating environmental and operational
variables, therefore using potentially similar tools, but with a dif-
ferent perspective when compared with optimization strategies
that envisage the design of improved strains (Patil, Rocha, Forster,
& Nielsen, 2005). The challenge consists in controlling a bioprocess
at its optimal state in order to reach its maximum productivity
with the lowest possible cost.

In recent years, the efforts devoted to the application of process
engineering approaches to optimize biotechnological production
processes have focused on the dynamic optimization (open-loop
optimal control) of fed-batch bioreactors. This optimization has
traditionally been done on the substrate feed rate as key manipu-
lated variable.

For that purpose, the optimization strategies described in the
literature include both analytical and numerical methods. It has
been shown that for relatively simple bioreactor systems, which
are expressed by differential equations models, the optimization
problem can be solved analytically by applying the Pontryagin’s
Minimum Principle (PMP). However, in the majority of the cases
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reported, determination of the optimal feed rate profile is a prob-
lem of singular control, because the control variable (feed rate) of-
ten appears linearly in the system of differential equations (Shin &
Lim, 2006).

Thus, this approach fails to provide a complete solution
(Shukla & Pushpavanam, 1998; Tartakovsky, Ulitzur, & Sheintuch,
1995). Nevertheless, in several studies, singular control theory
was used to solve the analytical control problem (Lee & Ramirez,
1994; Levisauskas et al., 2003; Modak, Lim, & Tayeb, 1986; Park &
Ramirez, 1988), while an unified methodology was proposed by
Smets, Claes, November, Bastin, and Impe (2004), the so-called
optimal adaptive control strategy, where a theoretically realizable
optimum is obtained using the PMP and an adaptive controller is
derived based on those results to correct on-line deviations
caused by model inaccuracies. However, the analytical approach
becomes too complex when the number of state and control vari-
ables increases. Moreover, those methods can only be applied to
differential equation models and do not satisfy for alternative biore-
actor modeling methods such as neural networks or fuzzy models.

Here, numerical methods are required. These can be divided
into deterministic (usually local) and stochastic (usually global)
methods (Banga, Moles, & Alonso, 2003). Popular techniques that
follow the first approach are gradient-based local methods like
Sequential Quadratic Programming that are applied to the
non-linear programming problem obtained after Control Vector
Parameterization (Bapat, Sohoni, Moses, & Wangikar, 2006). The
main disadvantages of these methods are the computational cost,
as well as premature convergence for local optima, especially if
the optimization is started far away from the global solution.

Because of those limitations, some promising approaches
regarding methods for bioprocess optimization rely on the use of
stochastic metaheuristic algorithms, namely those belonging to
the class of Evolutionary Computation (EC). With these methods,
although global optimality cannot be guaranteed, good solutions
are normally obtained in relatively modest computational times.
Popular tools like Genetic and Evolutionary Algorithms (EAs), to-
gether with other approaches like Evolution Strategies and Differ-
ential Evolution (DE) belong to this class.

Several applications of EC algorithms to bioprocesses can be
found in the literature. For example, Roubos, van Straten, and
van Boxtel (1999) compared the performance of a class of EAs with
first order gradient algorithms and with dynamic programming.
The results show a good and often superior performance of EAs
in comparison with other methods. These approaches were applied
to hybridoma cells and to recombinant protein production with
E. coli. A very similar work (for hybridoma cells) can be found in
Nguang, Chen, and Chen (2001).

Integrated methods based on EAs for the maximization of cell
mass production in recombinant S. cerevisiae and Aureobasidium
pullulans fed-batch cultures are described in Na, Chang, Chung,
and Lim (2002) and Ronen, Shabtai, and Guterman (2002), respec-
tively. In Sarkar and Modak (2003) and Sarkar and Modak (2004),
the authors use EAs for the determination of the correct switching
structure, as well as the feed rate in the singular intervals obtained
by applying the optimal control theory in several case-studies.

Artificial Neural Networks (ANNs), as an alternative modeling
scheme, have been used by Zuo and Wu (2000) and Chen, Nguang,
Chen, and Li (2004) to represent bioprocesses that are optimized
with EAs. A different approach was used by Franco-Lara and
Weuster-Botz (2005), in which the feeding profile is represented
by means of ANNs that are optimized by EAs. Following a similar
approach a hybrid combination of ANNs and DE was presented in
Dragoi, Curteanu, Galaction, and Cascaval (2013) with the aim of
optimizing the oxygen transfer coefficient in aerobic fermentation
processes.
Other stochastic nature-inspired methods have also been ap-
plied in the optimization of fed-batch fermentations. In Kookos
(2004), the authors used Simulated Annealing to optimize the feed-
ing profile in ethanol and penicillin production, while Jayaraman,
Kulkarni, Gupta, Rajesh, and Kusumaker (2001) used the Ant Algo-
rithm for the optimization of the first case study and of protein
production in E. coli.

Some authors claim that, when compared with EAs, DE is a
more appropriate solution for those applications (Banga et al.,
2003). In Ros et al. (2013), the authors have compared several sto-
chastic optimization methods in the estimation of the kinetic
parameters of an alcoholic fermentation model, and concluded that
DE had the best performance, even suggesting their integration in
hybrid search procedures.

Among the few works reported, DE has been applied to the
optimization of the fed-batch fermentation of Zymomous mobilis
(Chiou & Wang, 1999), bacteriocin production with lactic acid
bacteria (Moonchai, Madlhoo, Jariyachavalit, & Shimizu, 2005),
ethanol production in Saccharomyces cerevisiae (Wang & Cheng,
1999) and multiple bioprocesses (Kapadi & Gudi, 2004). However,
the performance of the different EC and other nature-inspired
algorithms has scarcely been compared in an effective way. More-
over, most of the studies described in the literature are based on
only one run of the algorithms which, for stochastic methods, is
not appropriate.

Therefore, in this work, a more thorough comparison is
proposed, that involves several bio-inspired algorithms (from
the classes of EAs, DE and Particle Swarm Optimization – PSO)
and that goes through an appropriate process of statistical vali-
dation of the results. Four case studies were used to compare
the performance of the different algorithms, two of them
encompassing two distinct feed variables. Each algorithm was al-
lowed to run for a given number of function evaluations and the
comparison among the methods was based on their final result
and also on the convergence speed of the algorithms, i.e. on
the computational time required to obtain a high-quality solu-
tion. For every algorithm, 30 runs were conducted for each case
study to achieve statistical significance and appropriate
statistical tests were performed. The results obtained are clearly
favorable to the DE/rand variants, that outperform both EAs and
PSO.

As a complement to this work, a computational application
with an user friendly interface was developed and is made avail-
able for the community. This allows users to validate the pro-
posed algorithms and apply them to their own models. The
framework is also fully modular allowing interested researchers
to develop their own algorithms or to improve the application
with other functionalities.
2. Case studies: fed-batch fermentation processes

In fed-batch fermentations there is an addition of certain nutri-
ents along the process, allowing the achievement of higher product
concentrations. During this process the system’s states change con-
siderably, from initially low to high biomass and product concen-
trations. This dynamic behavior motivates the development of
optimization methods to find the optimal input feeding trajectories
in order to improve the process performance. For the proper simu-
lation of the process, a white box mathematical model is typically
developed, based on differential equations that represent the mass
balances of the relevant state variables.

The selected four case studies cover a wide range of industrial
applications and organisms. These are detailed in the following
sections.



2188 M. Rocha et al. / Expert Systems with Applications 41 (2014) 2186–2195
2.1. Case study I

In previous work by the authors, a fed-batch recombinant E. coli
fermentation process was optimized by EAs (Rocha & Ferreira,
2002; Rocha, Neves, Rocha, & Ferreira, 2004). This was considered
as the first case study in this work. During the aerobic growth of
the bacterium, with glucose as the only added substrate, the micro-
organism can follow three main different metabolic pathways:

� Oxidative growth on glucose:
k1Sþ k5O!
l1 X þ k8C ð1Þ
� Fermentative growth on glucose:
k2Sþ k6O!
l2 X þ k9C þ k3A ð2Þ
� Oxidative growth on acetic acid:
k4Aþ k7O�!
l3 X þ k10C ð3Þ
where S, O, X, C, A represent glucose, dissolved oxygen, biomass,
dissolved carbon dioxide and acetate components, respectively.
In the sequel, the same symbols are used to represent the state
variables’ concentrations (g/kg); l1 to l3 (h�1) are time variant
specific growth rates that nonlinearly depend on the state vari-
ables, and ki are constant yield coefficients.

The associated dynamical model can be described by the fol-
lowing equations:

dX
dt
¼ ðl1 þ l2 þ l3ÞX � DX ð4Þ

dS
dt
¼ ð�k1l1 � k2l2ÞX þ

Fin;SSin

W
� DS ð5Þ

dA
dt
¼ ðk3l2 � k4l3ÞX � DA ð6Þ

dO
dt
¼ ð�k5l1 � k6l2 � k7l3ÞX þ OTR� DO ð7Þ

dC
dt
¼ ðk8l1 þ k9l2 þ k10l3ÞX � CTR� DC ð8Þ

dW
dt
’ Fin;S ð9Þ

where D = Fin,S/W is the dilution rate (h�1), Fin,S the substrate feeding
rate (kg/h), W the fermentation weight (kg), Sin is the substrate con-
centration in the feeding solution, OTR the oxygen transfer rate and
CTR the carbon dioxide transfer rate (g/kg h).

The kinetic behavior, expressed in the rates l1 to l3, was given
by specific functions of the state variables, that are out of the scope
of the present work but can be found in Rocha (2003). The purpose
of the optimization is to determine the feeding rate profile (Fin,S(t))
that maximizes the productivity of the process, defined as the units
of product (recombinant protein) formed per unit of time. In this
case, this is usually related with the final biomass obtained, when
the duration of the process is pre-defined. Thus, a performance in-
dex (PI) is defined by the following expression:

PI ¼ Xðtf ÞWðtf Þ � Xð0ÞWð0Þ
tf

ð10Þ

The relevant state variables are initialized with the following
values: X(0) = 5, S(0) = 0, A(0) = 0, W(0) = 3. Due to limitations in
the feeding pump capacity, the value of Fin,S(t) must be in the range
[0.0;0.4]. Furthermore, the following constraint is defined over the
value of W:W(t) 6 5. The final time (tf) is set to 25 (h).

2.2. Case study II

This process is a fed-batch bioreactor for the production of eth-
anol by Saccharomyces cerevisiae, firstly studied by Chen and
Hwang (1990). The aim is to find the substrate feed rate profile that
maximizes the final amount of ethanol. The model equations are
the following:

dx1

dt
¼ g1x1 � u

x1

x4
ð11Þ

dx2

dt
¼ �10g1x1 þ u

150� x2

x4
ð12Þ

dx3

dt
¼ g2x1 � u

x3

x4
ð13Þ

dx4

dt
¼ u ð14Þ

where x1, x2 and x3 are the cell mass, substrate and ethanol concen-
trations (g/L), x4 the volume of the reactor (L) and u the feeding rate
(L/h).

On the other hand, the kinetic variables g1 and g2 (h�1) are given
by:

g1 ¼
0:408
1þ x3

16

� � x2

ð0:22þ x2Þ
ð15Þ

g2 ¼
1

1þ x3
71:5

� � x2

ð0:44þ x2Þ
ð16Þ

The performance index (PI) is given by:

PI ¼ x3ðtf Þx4ðtf Þ ð17Þ

The final time is set to tf = 54 (h), and the initial values for the
state variables are the following: x1(0) = 1, x2(0) = 150, x3(0) = 0
and x4(0) = 10. Additionally, there are physical constraints over
the variables, namely: 0 6 x4(t) 6 200 and 0 6 u(t) 6 12.
2.3. Case study III

This case study consists in a hybridoma reactor for the produc-
tion of monoclonal antibodies, described by the equations (Roubos
et al., 1999):

dXv

dt
¼ ðl� kdÞXv �

F1 þ F2

V
Xv ð18Þ

dGlc
dt
¼ F1

V
Glcin �

F1 þ F2

V
Glc � qGlcXv ð19Þ

dGln
dt
¼ F2

V
Glnin �

F1 þ F2

V
Gln� qGlnXv ð20Þ

dLac
dt
¼ qLacXv �

F1 þ F2

V
Lac ð21Þ

dAmm
dt

¼ qAmmXv �
F1 þ F2

V
Amm ð22Þ

dMab
dt
¼ qMabXv �

F1 þ F2

V
Mab ð23Þ

dV
dt
¼ ðF1 þ F2Þ ð24Þ

where the state variables Xv, Glc, Gln, Lac, Amm, Mab are the concen-
trations of viable cells (cells/L) and of glucose, glutamine, lactate,
ammonia and monoclonal antibodies (g/L), respectively; Glcin and
Glnin are glucose and glutamine concentrations in the feeding solu-
tions, and V is the culture volume (L). The control variables F1 and F2

(L/h) are the volumetric feed rates. The complete kinetic expres-
sions for l, kd, qGlc, qGln, qLac, qAmm and qMab are given in Roubos
et al. (1999).

The target of the optimization process, in this case, is to increase
the total amount of monoclonal antibodies produced. So, the PI is
given by:

PI ¼
Z tf

0
qMabXvðtÞVðtÞ ð26Þ
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Initialization values for the state variables are the following:
Xv = 2.0 � 108, Glc = 25, Gln = 4, Lac = 0, Amm = 0, Mab = 0, V = 0.8.
tf is 10 (days) and the value of V(t) is constrained by V(t) 6 Vmax.

2.4. Case study IV

This process was proposed by Lee and Ramirez (1994) inte-
grated in the development of optimal control policies for induced
foreign protein production in bacteria.

dx1

dt
¼ u1 þ u2 ð27Þ

dx2

dt
¼ lx2 �

u1 þ u2

x1
x2 ð28Þ

dx3

dt
¼ u1

x1
Cnf �

u1 þ u2

x1
x3 � lY�1x2 ð29Þ

dx4

dt
¼ Rfpx2 �

u1 þ u2

x1
x4 ð30Þ

dx5

dt
¼ u2

x1Cif
� u1 þ u2

x1
x5 ð31Þ

dx6

dt
¼ �k1x6 ð32Þ

dx7

dt
¼ k2ð1� x7Þ ð33Þ

where x1 to x7 are the state variables representing the reactor vol-
ume (L), cell, substrate, foreign protein and inducer concentrations
(g/L), inducer shock and recovery factors on the cell growth rate,
respectively. The two control variables (u1 and u2) are the glucose
and inducer feed rates (L/h). The additional variables Y, Cnf and Cif

represent the growth yield coefficient, nutrient concentration and
inducer concentration on the corresponding feeds (the values of
0.51, 100 and 4.0 were used).

The process kinetics is given by:

RR ¼
0:22

0:22þ x5
ð35Þ

l ¼ 0:407x3

0:108þ x3 þ
x2

3
14815:8

ðx6 þ x7RRÞ ð36Þ

Rfp ¼
0:095x3

0:0108þ x3 þ
x2

3
14815:8

0:0005þ x5

0:022þ x5
ð37Þ

k1 ¼ k2 ¼
0:09x5

0:034þ x5
ð38Þ

The PI is defined as:

PI ¼ x4ðtf Þx1ðtf Þ � Q
Z tf

0
u2ðtÞdt ð39Þ

where Q is the ratio of the cost of the inducer to the value of the
protein product. The initial conditions for x1 to x7 are defined as:
1,0.1,40,0,0,1,0, Q = 5 and tf = 15 (h).

3. Algorithms

In this section, the algorithms used for the optimization are de-
scribed. First, some general comments about solution representa-
tion and evaluation are given. Then, the different algorithms used
are described in detail.

3.1. Solution representation and evaluation

The optimization task addressed in this work aims at finding
the best trajectory of some input variables (feeding), that yield
the maximum performance index, defined in each specific case.
Case studies I and II have only one input variable, while in case
studies III and IV there are two variables to optimize.

A solution to the problem will consist of a set of V real-valued
vectors of equal length L + 1, where V is the number of input vari-
ables. Each vector encodes an input variable as a temporal se-
quence of values, defined as a piecewise linear function, with L
segments. Feeding values are provided only at L + 1 equally spaced
points while the remaining values are linearly interpolated. The
size of a solution will therefore be given by V � (L + 1), since the
V vectors are joined sequentially to create a solution. The value
of parameter L needs to be set before the optimization process. Lar-
ger values of L increase the search space, thus making the problem
harder, while augmenting the flexibility of the possible feeding
profiles.

The evaluation process, for each solution, is achieved by run-
ning a numerical simulation of the defined model, given as input
the feeding values. The numerical simulation is performed using
ODEToJava, a package implementing ordinary differential equation
(ODE) solvers. In this work, a linearly implicit/explicit (IMEX) Run-
ge–Kutta scheme is used, that is suitable for stiff problems (Ascher,
Ruuth, & Spiteri, 1997). For any solution, the fitness value is then
calculated after the simulation, taking the calculated values of
the state variables, according to the PI defined for each case. The
overall process of decoding and evaluating a solution is exempli-
fied in Fig. 1.

3.2. Differential Evolution

Differential Evolution (DE) is a population-based approach to
function optimization that generates trial individuals by calculat-
ing vector differences between other randomly selected members
of the population. Given a function f : Rn ! R to be minimised, a
DE algorithm starts by randomly generating a population of
p n-dimensional vectors. These vectors (or individuals) will evolve
over the course of the algorithm’s run until a termination
criterion is met. The simplest termination condition, used in this
work, is defined by setting a fixed maximum number of function
evaluations.

There are several variants of DE that vary according to the
scheme used in creating new candidate solutions. The following
is an outline of the structure of the DE algorithm used in this work
(Storn & Price, 1996) that is common to all variants. The scheme
used for the computation of the candidate solutions, that defines
each variant, will been shown separately below.

1. Initialize the population.
2. Evaluate the population.
3. Generate a new population where for each individual

~xi; i ¼ 1 . . . p in parallel the following steps occur:
(i) Generate a trial vector ~ti according to one of the possible

schemes (see below).
(ii) Generate a candidate individual by performing crossover

between~ti and ~xi, with probability CR at each position (at
least one position of the trial vector must be used).

(iii) Evaluate the candidate.
(iv) Replace the current individual by the candidate if the can-

didate is at least as good.
4. Loop to 3 unless the termination criterion is met.

Various schemes are currently in use for creating candidate
solutions in DE (Storn, 1996). Four schemes are considered in this
paper. These are shown below along with the corresponding trial
vector generation formula:



Fig. 1. An illustration of the process of decoding and evaluating a solution (1) where the number of input variables is V = 2 (i.e. there are two feeds), each curve has length
L = 4 (i.e., it has 4 line segments) and the final time is tf = 10. The first L + 1 values of the solution correspond to the first input variable (Feed 1) while the remaining ones
correspond to the second input variable (Feed 2). The feed values are used by a numerical simulation (2) and its corresponding performance index is used to evaluate the
solution’s fitness (3).
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DE/rand/1 ~ti ¼~xr1 þ Zð~xr2 �~xr3 Þ
DE/rand/2 ~ti ¼~xr1 þ Zð~xr2 þ~xr3 �~xr4 �~xr5 Þ
DE/best/1 ~ti ¼~xbest þ Zð~xr2 �~xr3 Þ
DE/best/2 ~ti ¼~xbest þ Zð~xr2 þ~xr3 �~xr4 �~xr5 Þ

where the variables ~xrj
; 1 6 j 6 5 represent distinct randomly

selected individuals that are different from the current individual
~xi and ~xbest is the best individual in the population. The
parameter Z is usually set between 0 and 2 and denotes the
scale of the difference vectors – a difference vector is the differ-
ence between two individuals (e.g. ~xr2 �~xr3 ). The schemes vary
in the anchor – the solution to which the difference vectors
are added – that can be a random individual or the best individ-
ual in the population. The number of difference vectors is an-
other parameter.

DE is by nature a greedy algorithm, since a new solution is only
accepted if it is at least as good as the one it replaces in the popu-
lation. The DE/best schemes are even greedier since they use the
best individual in the population as the anchor, while the DE/rand
schemes use a randomly selected individual in the population. The
number of difference vectors used is related to the randomness of
the scheme: a larger value means the degree of randomness is
increased.
3.3. Real-valued evolutionary algorithm

Evolutionary Algorithms (EAs) (Michalewicz, 1996) are also
population based algorithms that evolve solutions to a given prob-
lem encoded in an individual. A real-valued EA was considered in
this work, since it provided good results in previous work in this
task (Rocha et al., 2004; Rocha, Rocha, & Ferreira, 2005). In this
case, the chromosomes are vectors of real numbers as in DE.
The overall structure of the EA is given by:

1. Initialize time (t = 0), generate and evaluate the initial popula-
tion (P0).

2. While the termination criterion is not met:
(i) Select from Pt individuals for reproduction.

(ii) Apply the genetic operators to breed the offspring and eval-
uate them.

(iii) Insert the offspring into the next population (Pt+1).
(iv) Select the survivors from Pt to be kept in Pt+1.
(v) Increase current time (t = t + 1).

Regarding the reproduction step, this EA uses the following
mutation and crossover operators to create new solutions (Mich-
alewicz, 1996):

� Random Mutation, which replaces one value at a given random
position i by a new randomly generated value within [mini, -
maxi], the range of values allowed for position i;
� Gaussian Mutation, which adds to a given value at a random

position i a value taken from a Gaussian distribution, with a
zero mean and a standard deviation given by maxi�mini

4 (i.e., small
perturbations will be preferred over larger ones);
� Two-Point crossover, a standard Genetic Algorithm operator;
� Arithmetical crossover, where each value in the offspring will be

a linear combination of the values in the ancestors’
chromosomes.

Both mutation operators are applied to a variable number of
positions in the vector (a value that is randomly set between 1
and 10 in each application). In previous work, the best result was
obtained using an alternative that contemplates the use of all ge-
netic operators described above (Rocha et al., 2004). All operators
are used with equal probabilities to breed the offspring.



Table 1
Encoding used in the presentation of p-values of the pairwise t-tests comparing
results from algorithms A1 and A2.

p-Value Condition Symbol

p 6 0.001 mean(A1) > mean(A2) +++
p 6 0.001 mean(A1) < mean(A2) - - -
0.001 < p 6 0.01 mean(A1) > mean(A2) ++
0.001 < p 6 0.01 mean(A1) < mean(A2) - -
0.01 < p 6 0.05 mean(A1) > mean(A2) +
0.01 < p 6 0.05 mean(A1) < mean(A2) -
p P 0.05 O
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The selection procedure is done by converting the fitness value
into a linear ranking in the population, and then applying a roulette
wheel scheme. In each generation, half of the individuals are kept
from the previous generation, and the remaining are bred by the
application of the reproduction operators.

The EAs use a much lower selective pressure than DE or FIPS
(described in the next section) as new solutions can have a worse
quality than the ones that are being replaced. This feature makes
them more suitable to explore the search space, but implies they
are slower to converge.

3.4. Fully Informed Particle Swarm (FIPS)

A particle swarm optimizer (PSO) uses a population of particles,
whose coordinates in the space encode the solutions to the prob-
lem, and that evolve over time by moving through the search
space. Particles imitate their neighbors by approaching their best
positions. In the canonical particle swarm, the two sources of imi-
tation are the individual’s previous best position and the best posi-
tion found by the most successful neighbor.

Due to the fact that in previous studies the FIPS (Mendes, Ken-
nedy, & Neves, 2004) clearly outperformed the canonical particle
swarm, this method will be used. In this case, each particle is de-
fined by: PðiÞt ¼ hxt ;v t ; pt ; eti, where xt 2 Rd is the current position
in the search space; pt 2 Rd is the position visited by the particle
in the past that had the best function evaluation; v t 2 Rd is a vector
that represents the direction in which the particle is moving, it is
called the ‘velocity’; et is the evaluation of pt under the function
f : Rd ! R being optimized, i.e. et = f(pt). Particles are connected
to others in the population via a predefined topology. This can be
represented by the adjacency matrix of a directed graph
M = (mij), where mij = 1 if there is an edge from particle i to particle
j and mij = 0 otherwise.

In FIPS, each particle moves in the direction of the stochastic
barycenter of the previous best position of all the neighboring par-
ticles (excluding the particle itself). As in the canonical particle
swarm, the neighbors of a particle are the ones that share a vertex
in the graph that represents the topology. The following is an out-
line of a generic PSO:

1. Set the iteration counter, t = 0.
2. Initialize each xðiÞ0 and v ðiÞ0 randomly. Set pðiÞ0 ¼ xðiÞ0 .
3. Evaluate each particle and set eðiÞ0 ¼ f ðpðiÞ0 Þ.
4. Let t = t + 1 and generate a new population, where each particle

i is moved to a new position in the search space according to:

(i) v ðiÞt ¼ velocity updateðv ðiÞt�1Þ.
(ii) xðiÞt ¼ xðiÞt�1 þ v ðiÞt .

(iii) Evaluate the new position, e ¼ f ðxðiÞt Þ.
(iv) If the new position is better than the previous best, update

the particle’s previous best position. i.e if e < eðiÞt�1 then let
pðiÞt ¼ xðiÞt and eðiÞt ¼ e else let pðiÞt ¼ pðiÞt�1 and eðiÞt ¼ eðiÞt�1.

(v) Loop to 4 until the termination criterion is met.

Clerc et al. (2002) introduced the use of a factor called the ‘con-
striction factor’, symbolized by v, into the velocity update equa-
tion. The velocity update equation for FIPS is then given by:

velocity updateðv ðiÞt Þ¼vðv ðiÞt�1þ
X

j2NðiÞ
Uð0;1Þ� u

jNðiÞj�ðp
ðjÞ
t�1�xðiÞt�1ÞÞ

ð40Þ

where U is the generator of pseudo-random numbers following the
uniform distribution, u = 4.1, v = 0.729, N(i) is the neighborhood
(the set of the particles) of particle i. In this study, the population
is organized according to the von Neumann topology (Kennedy &
Mendes, 2002), where each particle is connected to four others, in
a torus configuration.

4. Experiments and results

In this section, a number of experiments and their respective re-
sults are presented, aiming at the evaluation of the different algo-
rithms, in the selected case studies. These results will be discussed
in detail.

4.1. Methodology

The results reported in this text are the means of 30 runs and
are presented with 95% confidence intervals. Additionally, the
use of t-tests Goulden, 1956 for two-sample comparisons was
adopted. Given that multiple pairwise comparisons were per-
formed, the authors used the Holm correction for the p-values
(Holm, 1979).

In order to improve the readability of the analysis, a symbolic
encoding of the p-values resulting from the t-tests was used. To al-
low a straightforward comparison between the algorithms, differ-
ent symbols are used to report whether the mean of algorithm A1
is greater than the mean of A2 or vice versa. The encoding used is
presented in Table 1.

Sometimes statistical tests cannot find a significant difference
between two algorithms (e.g., because the confidence interval of
one of them is too wide). Nonetheless, we are interested in a reli-
able method: one that consistently yields good results. Thus, an
algorithm with a good average and a narrow confidence interval
is preferred in these cases.

4.2. Parameter settings and test conditions

When solving a real world optimization problem, the main con-
cern is to have a tool that may be applied to the problem with as
few fine-tuning as possible. The main focus of this work will be
in the results and not in a thorough study about the parameteriza-
tion of the algorithms involved. It was not an aim of this work to go
through the cumbersome task of testing the valuation of all the
parameters of these algorithms until a suitable setting for the
problem at hand could be found. Furthermore, this would be quite
difficult to achieve in practice given the computational effort re-
quired. Thus, it was decided to use standard configurations for each
algorithm that were either validated by preliminary experimental
results or suggested by previous studies.

Due to the previous experience of the authors with the real-val-
ued EA, each run was stopped after 200 kFEs (thousands of func-
tion evaluations). In the case of FIPS, the population size was 20
and the other parameters have the usual values given in the liter-
ature. For all DE variants, the population size was set to 20, F was
set to 0.5 and CR to 0.6. In terms of the real-valued EA, the popu-
lation size was set to 200. The value of L was determined, for each



Table 2
Results for case study I: mean and confidence intervals of the PI.

Algorithm PI 50 kFEs PI 100 kFEs PI 200 kFEs

DE/rand/1 9.4726 ± 0.0005 9.4727 ± 0.0005 9.4727 ± 0.0003
DE/rand/2 9.0669 ± 0.0390 9.4074 ± 0.0102 9.4728 ± 0.0001
DE/best/1 5.1580 ± 0.4795 5.2274 ± 0.4470 5.2315 ± 0.4443
DE/best/2 9.4423 ± 0.0626 9.4729 ± 0.0000 9.4729 ± 0.0000
EA 8.4762 ± 0.0731 8.7891 ± 0.0613 9.0037 ± 0.0497
FIPS 9.4716 ± 0.0014 9.4729 ± 0.0000 9.4729 ± 0.0000

Table 3
Pairwise t-test with the Holm p-value adjustment for the algorithms of case study I.

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA FIPS

DE/rand/1 O +++ O +++ O
DE/rand/2 O +++ - - - +++ - - -
DE/best/1 - - - - - - - - - - - - - - -
DE/best/2 O +++ +++ +++ O
EA - - - - - - +++ - - - - - -
FIPS O +++ +++ O +++

Table 4
Results for case study II: mean and confidence intervals of the PI.

Algorithm PI 50 kFEs PI 100 kFEs PI 200 kFEs

DE/rand/1 20386 ± 7 20400 ± 7 20409 ± 6
DE/rand/2 20348 ± 8 20366 ± 6 20382 ± 6
DE/best/1 19702 ± 128 19723 ± 128 19751 ± 134
DE/best/2 20229 ± 86 20263 ± 80 20281 ± 84
EA 20119 ± 48 20280 ± 35 20373 ± 17
FIPS 19821 ± 120 19822 ± 120 19822 ± 120

Table 5
Pairwise t-test with the Holm p-value adjustment for the algorithms of case study II.

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA FIPS

DE/rand/1 +++ +++ O ++ +++
DE/rand/2 - - - +++ O O +++
DE/best/1 - - - - - - - - - - - - O
DE/best/2 O O +++ O +++
EA - - O +++ O +++
FIPS - - - - - - O - - - - - -

Table 6
Results for case study III: mean and confidence intervals of the PI.

Algorithm PI 50 kFEs PI 100 kFEs PI 200 kFEs

DE/rand/1 392.81 ± 3.81 393.93 ± 3.20 394.99 ± 3.13
DE/rand/2 391.66 ± 0.48 394.18 ± 0.33 395.73 ± 0.20
DE/best/1 276.40 ± 10.74 283.50 ± 12.25 289.37 ± 12.82
DE/best/2 372.90 ± 12.44 375.08 ± 12.60 378.67 ± 11.86
EA 374.83 ± 1.67 382.49 ± 0.86 387.62 ± 0.52
FIPS 362.45 ± 15.10 370.66 ± 13.68 375.69 ± 10.79

Table 7
Pairwise t-test with the Holm p-value adjustment for the algorithms of case study III.

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA FIPS

DE/rand/1 O +++ O ++ +
DE/rand/2 O +++ O +++ ++
DE/best/1 - - - - - - - - - - - - - -
DE/best/2 O O ++ O O
EA - - - - - +++ O O
FIPS - - - +++ O O

Table 8
Results for case study IV: mean and confidence intervals of the PI.

Algorithm PI 50 kFEs PI 100 kFEs PI 200 kFEs

DE/rand/1 0.8143 ± 0.0036 0.8147 ± 0.0035 0.8147 ± 0.0035
DE/rand/2 0.8165 ± 0.0000 0.8165 ± 0.0000 0.8165 ± 0.0000
DE/best/1 0.3988 ± 0.1746 0.3988 ± 0.1746 0.3988 ± 0.1746
DE/best/2 0.8101 ± 0.0062 0.8101 ± 0.0062 0.8101 ± 0.0062
EA 0.8158 ± 0.0002 0.8162 ± 0.0001 0.8164 ± 0.0000
FIPS 0.8165 ± 0.0000 0.8165 ± 0.0000 0.8165 ± 0.0000
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case study, based on preliminary results, and was set to the value
of tf in case studies I and II and to the value of 2tf in case studies III
and IV.

4.3. Results

For all case studies, the results will be shown in two distinct ta-
bles. The first one will present the results obtained by each of the
algorithms showing the mean and the 95% confidence intervals for
the PI. These will be shown for three distinct steps of the optimiza-
tion process: when 50, 100 and 200 kFEs were performed by each
algorithm. It was decided to probe PI at these time-steps to esti-
mate the possibility of terminating the runs earlier whilst still
maintaining good quality solutions.

The second set of tables will help to further validate the results,
showing the pairwise t-test results (at 200 kFEs), using the meth-
odology aforementioned. This will help to clarify the statistical dif-
ferences among the algorithms. In these tables, the algorithm that
appears on each row will correspond to A1 on Table 1 and the algo-
rithm given by the column to A2.

Tables 2–7, finally, 8 and 9, present the results obtained by each
of the algorithms on the case studies I–IV, respectively.

4.4. Discussion

Overall, the DE/rand variants are able to obtain the best results
in all case studies, presenting the highest means and showing quite
narrow confidence intervals, alternating as the best algorithm (in
some cases there are other algorithms that show differences that
are not statistically significant).

The DE/best variants do not show such a good behaviour. In-
deed, DE/best/1 is always outperformed by all the other contend-
ers, being stuck in local optima at a very premature stage. On the
other hand, the DE/best/2 alternative behaves much better than
DE/best/1, but still does not compare well with the DE/rand vari-
ants (the exception is case study I).

FIPS has a good behavior in two out of the four case studies (I
and IV), where it is at the level of DE/rand variants. In the remain-
ing ones, the performance is worse, since it gets stuck prematurely
in local optima. Therefore, it does not present a good reliability for
this task, when compared to DE/rand.

Finally, the real-valued EA behaves relatively well in most prob-
lems, although it is consistently outperformed by DE/rand. Never-
theless, it clearly outperforms FIPS and DE/best/2 in two cases (II
and III), that seem to be the most challenging. Case study I seems
to favor the use of greedier algorithms, such as DE/rand and FIPS
and the EA shows here its worst result.

The previous analysis only took into consideration the final re-
sults (at 200 kFEs). Regarding the intermediate results, the DE vari-
ants and FIPS both get good results before 50 kFEs and do not
improve significantly in the remaining time. On the other hand,
the EA converges slower but uses all the available time to improve
the solutions. It is not hard to believe that if more time is available
the solutions could still improve. However, since the problems are
quite demanding in terms of computational resources, methods



Table 9
Pairwise t-test with the Holm p-value adjustment for the algorithms of case study IV.

DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 EA

De/rand/1 O +++ O O O
DE/rand/2 O +++ O +++ O
DE/best/1 - - - - - - - - - - - - - - -
DE/best/2 O O +++ O O
EA O - - - +++ O - - -
FIPS O O +++ O +++
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that converge fast are more interesting and the DE confirms its
merits also in this regard.

To further explore this issue, the average of the best fitness in
the population for each algorithm was plotted against the number
of function evaluations. Fig. 2 presents the typical convergence
curve of the algorithms (in case study III). Similar graphs for the
other case studies are given as additional material.

A global analysis of the results shows that algorithms that are
too greedy (i.e. DE/best/1) have serious problems in this task. The
reason why DE/best/2 is not as easily misled by local optima lies
in the higher degree of randomness. The trade-off between ran-
domness and greediness seems to be near optimal for this task in
the DE/rand variants, that show a good balance between the explo-
ration and exploitation of the search space. The fact that the EA fa-
vors a higher degree of exploration, due to the decreased selective
pressure, limits its convergence speed and impairs its performance.
5. OptFerm, an optimization supporting tool for fermentation
engineering

In this section, the OptFerm application will be presented,
whose main aim is to make available to the community a set of
computational tools that will allow its users to take advantage of
the previously described algorithms for fed-batch fermentation
optimization, together with complementary features at the level
of the fermentation process simulation and parameter fitting. Also,
as an important driver behind the development of this tool, there is
the lack of free computational tools for fermentation engineering.

The OptFerm platform was developed using the Java program-
ming language, with the aim of being a user-friendly, open-source,
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Fig. 2. Convergence of the algorithms for case study III.
extensible and platform-independent tool. It was designed to allow
its users to evaluate and compare several different methods for the
tasks of simulation, optimization and parameter estimation, in the
context of fermentation processes. The goal is to allow users to im-
prove process productivity, achieving better results in reduced
times. The major features of this tool are listed in the following
topics:

Model representation: The model is given by a set of ODEs and a
set of kinetic reactions representing the problem dynamics. All
information related to these dynamic and kinetic equations such
as names, initial values, upper and lower limits of the state vari-
ables and kinetic parameters must be described in the model file.
Moreover, it is necessary to define one or more objective functions
to optimize. After importing the model, users may create new con-
figuration sets where they specify values for the initial state vari-
ables and model parameters whose values may differ from those
that were initially defined in the model. These new configuration
datasets will be added automatically to the OptFerm clipboard,
where they are kept for future use.

Simulation: Users may test several combinations of initial values
for state variables, parameters and experimental or hypothetical
feeding trajectories. In addition, the results obtained in optimiza-
tion and parameter estimation tasks are immediately accessible
in the simulation datasets panel, allowing the user to perform their
analysis in future simulations. The simulation results are presented
in a graph, in which, the user can visualize all (simultaneously) or
each (separately) state variables or kinetic rates. Moreover, it is
possible to perform the comparison between simulated data and
experimental datasets.

Optimization: Three different types of operations can be
performed:

1. the optimization of a feeding trajectory, where the ideal amount
of substrate to be fed into the reactor per time unit is
determined;

2. the optimization of feeding trajectory plus final time, where
besides the determination of the best feeding profile an optimal
duration of the fermentation is also provided;

3. the optimization of feeding trajectory plus initial conditions,
which allows to simultaneously determine the feeding trajec-
tory and the best initial concentrations for each selected state
variable. The visualization of the optimization results is accessi-
ble through a graphical interface, that shows the feed profile
along time in a graph and the obtained vector of feed values
vs time-points. The optimization algorithms available include
the ones with best results, namely DE/rand and EAs.

Parameter estimation: It is possible to the estimate model
parameter values by fitting the simulated data to experimental
data. This operation is performed by minimizing a total cost func-
tion that represents the prediction error between experimental
and simulated data:

TotalCost ¼
Xn

i¼1

1
Np

Xp

j¼1

nðsimÞ
ij � nðexpÞ

ij

�nðexpÞ
ij

 !20
@

1
A ð41Þ

where nðsimÞ
ij represents simulated data and nðexpÞ

ij the experimental
data for the state variable n (n is the number of state variables)
for every point (p is the total of data points). An user may choose
which model parameters to estimate by providing a predefined
interval for some of the parameters, while the remaining parame-
ters remain fixed.

The implementation of OptFerm was performed following a
modular approach, using AIBench (Glez-Peña et al., 2010) (a Mod-
el-View-Control based Java application) as the basis platform.
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Several functions were implemented to provide users with the
aforementioned operations through graphical interfaces. A module
containing specific optimization routines was created for feed opti-
mization and related tasks. This module uses JECoLi (Evangelista,
Maia, & Rocha, 2009) that contains generic optimization routines
based on metaheuristic search algorithms. Some adaptations had
to be made in order to use these algorithms to support feed optimi-
zations (Rocha et al., 2004; Mendes, Rocha, Ferreira, & Rocha,
2006). To perform numerical simulation the ODEToJava package
(Ascher et al., 1997) was integrated into the system. This package
contains several methods such as the explicit Runge–Kutta
scheme and the linearly implicit-explicit Runge–Kutta scheme in
order to address non-stiff and stiff problems for ODEs. The
OptFerm framework is freely available at http://darwin.di.uminho.
pt/optferm.
6. Conclusions and further work

This paper proposes the use of several bio-inspired algorithms,
namely Evolutionary Algorithms (EAs), Differential Evolution (DE)
and Particle Swarm Optimization (PSO) applied to the optimization
of the feeding trajectory in fed-batch fermentation processes. The
main contribution of the work relies on conducting a thorough
and statistically validated comparison between these approaches.
Four distinct case studies are used to compare the algorithms,
using the means and confidence intervals of the objective
functions over 30 runs and statistical tests to validate the results.
Furthermore, the convergence speed of each algorithm was also
evaluated.

The best overall algorithms in these tasks were the DE/rand
variants, that consistently obtained good results in all the case
studies and presented a good convergence speed. If an algorithm
is chosen, the DE/rand/1 would be the one, since it represents
the simpler alternative to implement and obtains good results. FIPS
was a good contender in two of the cases where it found good re-
sults and was as fast as DE/rand. However, it got stuck on local op-
tima in the other two case studies. EA was slower to converge, but
reliable. If you can afford the computational time needed, it finds
good solutions. An explanation of the results can be offered by ana-
lysing the selective pressure of the approaches. The good balance
between exploration and exploitation of the search space shown
by DE/rand algorithms enables them to achieve consistent high
quality results. Greedier schemes are frequently stuck in local op-
tima, while the more conservative approach of the EA slows the
convergence, increasing the computational time needed to reach
good solutions.

A complementary contribution of this work relied in the devel-
opment of OptFerm, a computational framework enabling the
practical application of the methods proposed. This user friendly
open-source software allows its users to use a number of tools
for the simulation, optimization and parameter estimation of fer-
mentation processes, thus bridging a gap existent between optimi-
zation algorithms and its application by Biotechnology researchers
that find in OptFerm a valuable tool for their daily work.

Previous work by the authors (Rocha et al., 2005) developed a
new representation in EAs in order to allow the optimization of a
time trajectory with automatic interpolation. It would be interest-
ing to develop a similar approach within DE and implement this
into OptFerm. Another area of future research is the consideration
of online adaptation, where the model of the process is updated
during the fermentation process. In this case, the good computa-
tional performance of DE is a benefit, if there is the need to re-opti-
mize the feeding trajectories in real-time given values for the state
variables that are measured online from the real fermentation
process.
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