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Abstract

The deployment of efficient measurement solutions to assist network man-
agement tasks without interfering with normal network operation assumes a
prominent role in today’s high-speed networks attending to the huge amounts
of traffic involved. From a myriad of proposals for traffic measurement, sam-
pling techniques are particularly relevant contributing effectively for this pur-
pose as only a subset of the overall traffic volume is handled for processing,
preserving ideally the correct estimation of network statistical behavior.

In this context, this paper proposes MuST - a multiadaptive sampling
technique based on linear prediction, aiming at reducing significantly the
measurement overhead and still assuring that traffic samples reflect the sta-
tistical characteristics of the global network traffic under analysis. Conversely
to current sampling techniques, MuST is a multi and self-adaptive technique
as both the sample size and interval between samples are self-adjustable
parameters according to the ongoing network activity and the accuracy of
prediction achieved.

The tests carried out demonstrate that the proposed sampling technique
is able to achieve accurate network estimations with reduced overhead, using
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throughput as reference parameter. The evaluation results, obtained resort-
ing to real traffic traces representing wired and wireless aggregated traffic
scenarios and actual network services, prove that the simplicity, flexibility
and self-adaptability of the proposed technique can be successfully explored
to improve network measurements efficiency over distinct traffic conditions.
For optimization purposes, this paper also includes a study of the impact of
varying the order of prediction, i.e., of considering different degrees of past
memory in the self-adaptive estimation mechanism. The significance of the
obtained results is demonstrated through statistical benchmarking.

Keywords:
Sampling techniques, Traffic measurements, Linear prediction, Adaptive
sampling

1. Introduction

In today’s Internet, network measurement techniques deal with massive
traffic volumes which, in many cases, have to be processed online to provide
feedback to real-time management and traffic engineering tasks. To operate
properly, these tasks have to rely on an accurate view of the status of the
network and of provided services. Therefore, key aspects to balance when
designing an efficient network measurement solution are the estimation ac-
curacy and the measurement overhead.

Traffic sampling techniques have been extensively used to reduce the im-
pact of performing traffic measurements on operational networks. In these
techniques, a subset of packets is selected and then used to estimate network
parameters, avoiding processing all network traffic [1].

To face the drawbacks of common sampling techniques (deterministic or
random), adaptive sampling techniques have been proposed (see discussion
in Section 2). In Adaptive Sampling techniques the packet selection process
considers the value of a reference parameter (e.g., throughput) observed dur-
ing a measurement period. In this way, the sampling process becomes more
flexible and self-adaptive, i.e., the packet selection criterion may change dy-
namically over the measurement period.

Despite the evolution of adaptive techniques in estimating network per-
formance parameters correctly, their main target has not been on reducing
the overhead associated with data volume involved in the sampling process.
This aspect directly impacts on monitoring costs and efficiency, being par-
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ticularly limitative in high-speed networks handling massive traffic volumes.
The efficiency of a sampling technique may be assessed through a proper
balancing between estimation accuracy and measurement overhead.

In this context, this paper presents a new multiadaptive sampling tech-
nique (MuST) based on linear prediction, which aims to reduce the amount
of data involved in the network measurements without compromising the
estimation accuracy. Therefore, the main objective is to reduce the mea-
surement overhead and still assure that sampled traffic reflects the statistical
characteristics of the global traffic under analysis.

For this purpose, the traffic selection process considers the levels of net-
work activity, being configured to reduce the measurement impact when the
network activity increases or the measurement process tends to overload the
measurement points (MPs). The multiadaptive behavior of the proposed
technique is achieved considering both the interval between samples and the
sample size as adaptive parameters, bounded by proper thresholds to guar-
antee the representativeness of samples in capturing the network behavior.
A proof-of-concept is provided using real traffic traces representing distinct
traffic scenarios. The results demonstrate the effectiveness and versatility of
the present proposal, outperforming conventional sampling techniques.

The remaining of this document is organized as follows: the debate on
representative sampling approaches and the motivation for the present pro-
posal is included in Section 2; the multiadaptive sampling technique, its
design goals, definition and operation are described in Section 3; the proof-
of-concept objectives and methodology are presented in Section 4; the evalu-
ation results are discussed in Section 5; and finally, the conclusions are drawn
in Section 6.

2. Related Work

Existing sampling techniques can be distinguished according to the meth-
odology adopted to select the packets that will integrate a traffic sample.

In Systematic Sampling, a deterministic packet selection function is used,
based on (i) the packet position (count-based); (ii) the packet arrival time
to the measurement point (time-base); or (iii) the packet contents (content-
based). Despite its simplicity, the traffic pattern resulting from deterministic
sampling may still overload measurement points and produce biased samples
[2].
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Random Sampling techniques try to avoid biasing the samples by selecting
packets according to a random function [2]. Nevertheless, these techniques
cannot be deployed to estimate multipoint metrics, such as end-to-end delay,
since the sampling processes on the two measurement points involved are not
correlated and there are no guarantees that samples will be constituted by
the same packets [3].

Adaptive sampling techniques are generally developed for a specific es-
timation parameter, such as packet loss [4] [5] or delay and jitter [6] [7].
A larger group of proposals are aimed at traffic characterization and SLA
monitoring [8] [9] [10] [7]. Common adaptive techniques are usually based
on Fuzzy Logic or Linear Prediction. In adaptive sampling based on fuzzy
logic [11] [12], a controller adjusts the sampling rate based on past similar
experiences, determining the most appropriate action for the current traffic
conditions [13]. This approach requires a long-term database to store the
knowledge and the possible action for each situation.

Linear prediction based techniques [14] [15] try to forecast network be-
havior based on an observed parameter in past samples. In these techniques,
when the prediction is correct, the sampling rate can be reduced, while in-
accurate predictions indicate a change in network activity and, therefore, an
increase in sampling rate is required to determine the new pattern behav-
ior [13]. In this sampling approach just a fixed number of samples is stored
by the measurement point which are then used in the prediction process.
However, if the sampling frequency increases more resources will be required
from the measurement point, precisely in a critical moment of its operation.

As discussed, current sampling techniques have as main objective esti-
mating accurately parameters of interest regarding network status, but not
necessarily the efficiency. The efficiency involves, beyond high accuracy, the
ability to perform measurements with minor interference with the normal
network operation. Therefore, the deployment of sampling techniques able
to identify critical periods in network activity adjusting their dynamics ac-
cordingly, is crucial to reduce resource requirements on network nodes and
to reach efficiency.

The sampling technique proposed in this paper attempts to decrease re-
source consumption related to the processing, storage and transmission of
captured packets during high network activity periods, while maintaining
the accuracy of network statistical behavior estimation. The following sec-
tion details the multiadaptive sampling technique design goals, definition and
operation.
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3. MuST - Multiadaptive Sampling Technique

3.1. Concepts

Traffic sampling techniques share a set of concepts sometimes presented
in an ambiguous way. To avoid misunderstanding, the most common terms
were adopted in accordance with the following definitions (see illustration in
Figure 1):

• Sample: subset of network packets that are selected at the measure-
ment point and are considered in the estimation of network parameters.
These packets are also used by the adaptive measurement algorithms
as input for the estimation of the reference parameter;

• Sample size: time interval in which all incoming packets at the mea-
surement point are selected and captured to compose a sample unit;

• Interval between samples: time interval in which all incoming packets
are ignored for measurement purposes. During this time, the behavior
of the network is not considered for the estimation of parameters and
for the configuration of the adaptive sampling rate;

• Reference parameter: observed value in each sample, e.g., throughput,
used as measurement parameter and input for configuring the sampling
adaptation parameters.

tnt0 t1 t2

SampleSample

Sample sizeSample size Interval between samples

Figure 1: Sampling concepts

3.2. Design Goals

The multiadaptive sampling technique proposed in this work aims to
improve the sampling reactivity and efficiency, considering both the interval
between samples and the sample size as adjustable parameters [16]. In this
way, the present proposal pursues the following design goals:

(i) The adaptive nature of the technique should be driven by simplicity of
implementation and low consumption of resources;
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(ii) The adaptive sampling process should be defined in order to minimize
the impact of sampling on the normal network operation while keeping
high-accuracy levels. Therefore, the technique should gauge the past
and current network activity in order to estimate adequate parameters
to guide the traffic selection process.

The first goal motivates the adoption of a sampling approach based on
linear prediction, as proposed in [13]. In fact, as discussed in the previous sec-
tion, the use of linear prediction leads to lighter solutions when compared to
fuzzy logic adaptive approaches. However, in the adaptive process described
in [13], the underlying processing overhead is still significant as the whole
network traffic is considered for the definition of the reference parameter,
regardless of packets belonging or not to a sample. In MuST, the technique
described in [13] is modified so that only packets belonging to previously
collected samples are taken into account to drive future sampling decisions,
clearly reducing the processing overhead.

To pursue the second goal, an adaptive sampling process is defined to
react autonomously and self-adapt to distinct network loads and traffic char-
acteristics. In this process, the sampling frequency is increased or decreased
whenever there is a noticeable increase or decrease in the network activity
in order to allow detecting new traffic patterns as required. As increasing
the sampling frequency implies higher consumption of resources (processing
and storage), the sample size should be consequently reduced to mitigate
the overhead increase. To guarantee that a representative amount of data
is obtained when capturing the network behavior, the adaptive parameters
need to be properly bounded by thresholds.

The sampling frequency can be adjusted varying the interval between
samples, resorting to a linear prediction function for adapting the sampling
frequency based on [13]. The new predictive function is presented in Equation
1, whereas the set of rules determining the change factor in the interval
between samples are presented in Equation 2 and Table 1. This formulation
is detailed in the following section.

As none of the techniques available so far present features for adjusting
dynamically the sample size, this paper proposes a set of rules for varying the
sample size according to the level of network activity. These rules increase
and decrease the sample size considering the observed network behavior. The
dynamic variation in sample size complies with the criteria presented in Table
2. This will also be detailed below.
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3.3. Multiadaptive Sampling Technique Description

MuST takes into account the last N samples to estimate the future value
of the reference parameter, which is then used to determine the next interval
between samples and the size of the next sample. Thus, for a sampler of order
N , the expected value Xp of the reference parameter for the next collected
sample is defined as

Xp = XN +
∆TN
N − 1

N−1∑
i=1

(∣∣∣∣Xi+1 −Xi]

∆Ti

∣∣∣∣) . (1)

In Equation 1, the variable X represents the values of the reference pa-
rameter of the last N samples, being XN the value of the most recent sample.
A second variable T represents the intervals between samples, where each ∆Ti
is the time elapsed between the end of the sample Xi and the beginning of
the sample Xi+1, i.e., ∆Ti = Ti+1 − Ti for all 1 ≤ i ≤ N and N > 1.

3.3.1. Defining the interval between samples

When a new sample is collected, the corresponding value of the reference
parameter S is compared with the expected value Xp in order to determine
a factor of change m. Depending on the value of m, a set of rules is applied
to define the sampling interval ∆TN+1, which will determine the start of the
next sample. The factor m, obtained comparing Xp and S, is given by

m =

{
Xp

S
ifS 6= 0;

1 otherwise.
(2)

The fraction in Equation 2 returns a value close to 1 when the expected
value Xp is close to the current value of S, corresponding to a correct esti-
mate. In this case, the range of values for m is defined as varying between
mmin = 1− σ and mmax = 1 + σ, i.e.

1− σ < m < 1 + σ

where σ allows to adjust the degree of adaptiveness (or reactivity) in the
estimation process. As in [13], considering a 10% variation in the reference
parameter (representing a variation in the network activity) leads to an ade-
quate regulation in presence of multiple traffic types. Therefore, these values
are set as mmin = 0.9 and mmax = 1.1 .
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If m < mmin the predicted value of the reference parameter was underes-
timated, indicating more network activity than expected. Thus, the interval
between samples is decreased according to m variation to achieve more ac-
curate values in the following predictions.

On the other hand, if m > mmax the value of the reference parameter was
overestimated in the prediction, and the network activity is slowing down. In
this case, the interval between samples is exponentially increased in order to
converge faster to its maximum value, reducing the measurement overhead.

If the value of S is null, representing that no traffic has been captured,
e.g., due to a reduced network load or a temporary link failure, m assumes a
unitary value, which allows to keep the adaptive sampling parameters stable1.
In this case, the current ∆TN is assumed as the next interval between samples.

Table 1 lists the rules used to generate the next sampling interval ∆TN+1.

Table 1: Rules to define the next interval between samples

current m next ∆T

m < mmin ∆TN+1 = m ∆TN
mmin ≤ m ≤ mmax ∆TN+1 = ∆TN

m > mmax ∆TN+1 = 2 ∆TN

An additional threshold is defined to prevent ∆T from increasing indef-
initely, thus guaranteeing a minimum number of samples to obtain repre-
sentative data for new predictions. Similarly, the maximum frequency of
sampling is also limited so that the sampling interval does not tend to zero,
which would result in capturing all traffic. These limits should weight and be
adjusted according to the existing link capacity. In the present study, sim-
ilarly to [13], a minimum and a maximum interval between samples of 0.1s
and 8s, respectively, showed adequate for the traffic scenarios under analysis.

Figure 2 illustrates the evolution of the interval between samples as a
function of a linear variation of the m factor. As shown, the reactivity is
smoother when the network activity increases, i.e., the next ∆T decreases
proportionally to m when m < mmin. Conversely, the reactivity is higher

1Note that, Xp keeps incorporating S becoming null after N samples with S = 0. This
behavior is adequate to resume properly the adaptive process when new traffic is detected.
In practice, network links tend to exhibit load as, at least, control traffic is crossing the
links. Therefore, successive iterations with S = 0 are likely due to link failure, which
would be detected and handled at a higher network management layer.
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in presence of low network activity, i.e., the time interval between samples
varies exponentially when m > mmax.

Figure 2: Evolution of interval between samples according to m variation

3.3.2. Defining the sample size

For adapting the sample size, the factor m is also considered as an indi-
cator of network activity. Table 2 presents the rules used to define the next
sample size, where ∆SN represents the current sample size and ∆SN+1 the
size of the next sample to be collected.

According to Table 2, in moments of increased activity, the sample size is
decreased proportionally to m. This reduction in sample size, associated with
the higher frequency in the sampling process, aims at reducing the overhead
at measurement points. In presence of less network activity, the sample size
is adjusted by a factor k2, with k = 0.15 (see rational in Section 5.3). This
allows to collect more data about the network in less critical periods of its
operation, in sparse sampling events.

Similarly to the definition of the time interval between samples, the vari-
ation of sample sizes is also bounded. The imposed thresholds avoid small
samples, which make difficult estimating parameters statistically, as well as
samples excessively large, closely matching a total traffic capture. These

2The parameter k was firstly introduced and experimentally tested in [7] with the aim
of defining the variation in the time interval between samples based on a set of comparative
statistics between adjacent samples. In the present proposal, the parameter k is considered
as the changing factor in the sample size, being defined to force an overhead reduction.
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Table 2: Rules to define the next sample size

current m next ∆S

m < mmin ∆SN+1 = m ∆SN
mmin ≤ m ≤ mmax ∆SN+1 = ∆SN

m > mmax ∆SN+1 = ∆SN + (k ∆SN)

limits also depend on the existing links capacity, being here considered a
minimum and maximum sample size of 0.1s and 2s, respectively. Figure 3
shows the evolution of the sample size for a linear variation of the m factor.

Figure 3: Evolution of sample size according to m variation

For completeness, the pseudocode of MuST algorithm representing the
overall sampling operation is included in Appendix A.

4. Proof-of-concept

The proof-of-concept aims: (i) to assess MuST ability to capture the
network behavior correctly with reduced overhead; (ii) to compare the per-
formance gain of the strategy facing currently used techniques; and (iii) to
demonstrate the versatility of the proposed strategy, evaluating its effective-
ness in distinct traffic scenarios. The impact of: (i) the factor k, (ii) the order
of prediction and (iii) the network activity on the measurement efficiency are
also evaluated.

The efficiency of sampling techniques is here assessed as a trade-off be-
tween accuracy and overhead. Accuracy is measured by comparing the statis-
tical properties of the time series resulting from the total traffic trace with the

10



corresponding outcome of applying each specific sampling technique. In more
detail, as presented in Table 4, the statistical analysis studies the correct-
ness of throughput evaluation by measuring both the variability of each time
series and the relative mean error resulting from the comparative process.
In [17], accuracy of estimation is further discussed, evaluating the optimal
number of samples necessary to achieve a given accuracy level in the context
of the total load and flow size. The overhead of each sampling technique is
evaluated measuring and comparing the volume of sample data (packets and
bytes) and the number of samples3 involved.

Thus, for testing purposes, a statistical and visual analysis of the refer-
ence parameter evaluated using several sampling techniques is compared to
the values obtained using the total traffic volume. Although the statistical
parameters in use are common in representative research on adaptive sam-
pling, this work extends previous works by cross-checking the sampling re-
sults against the total traffic. Common evaluation approaches only compare
the performance of the proposed techniques to the Systematic techniques [2].

As mentioned, the reference parameter adopted in the tests is network
throughput, which is commonly used for a graphical and statistical represen-
tation of the network activity in real time.

4.1. Evaluation Scenarios

To assess the sampling optimization levels, MuST is compared to the Sys-
tematic Time-based technique [2] and Adaptive Linear Prediction technique
[13]. Systematic Time-based Sampling (ST) is one of the most common sam-
pling technique currently used. In the sampling process the packet selection
follows a deterministic function based on the arrival time at the measure-
ment point, i.e., the sample size and the time between samples are set at the
beginning and remain unchanged along the sampling process. In this work,
as suggested in [13], the operational parameters time between samples and
sample size were set to 0.5s and 0.1s, respectively. In Adaptive Linear Predic-
tion Sampling (LP) the time interval between samples is adjusted based on
the level of network activity using linear prediction, while the sample size is
fixed along the sampling process. Here, the initial interval between samples

3This parameter is relevant because, for each new sample, resources are required to
evaluate the sampling adaptation parameters, namely the new sample size and the in-
terval after which it should start. Thus, the higher the number of samples is, the more
calculations at the measurement point are required.
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Table 3: Traffic Scenarios
Traffic Label Characteristics Duration Available

SIGCOMM08 Captured during the SIGCOMM 2008
conference, including all the participants
communications through IEEE 802.11a
access points.

8 hours CRAWDAD[18]

OC-48 Captured passively in a backbone link
OC48 in a large ISP from the US West
Coast.

5 minutes CAIDA [19]

SIP VoIP Capture of VoIP traffic, using SIP and
G.711 encoding, in a Brazilian university
campus with Fast Ethernet links.

20 hours University of Sergipe,
Brazil

Video streaming Capture of a live stream transmission
of the STS-135 launching mission con-
ducted by NASA on July 8, 2011. The
stream was broadcast in High Definition
720p, through NASA TV channel and
encoded in MPEG-4 using RTP.

15 minutes University of Minho,
Portugal

and sample size were set to 0.2s and 0.1s, respectively. Another configurable
parameter of this technique is the order of prediction, which was set as in
the original specification [13], i.e., N = 2. Although the technique takes into
account the last two samples to decide the next interval between samples,
the measurement point still needs to maintain information about all traffic
since the beginning of its execution. This is needed because the technique
analyzes the evolution of the reference parameter based on the accumulated
amount of data until the end of the sample N , relative to the sample N − 1.

Table 3 illustrates the characteristics of the real traffic traces used in the
tests. These traces were selected to provide a representative range of traffic
scenarios to assess the versatility of MuST. Although the evaluation tests
are based on traffic traces previously captured, the adaptive parameters of
the sampling techniques are configured dynamically during the sampling pro-
cess. Similarly to a real-time operational environment, there is no previous
knowledge of the characteristics of the traffic passing through.

4.2. Statistical analysis

The main goal of the statistical analysis is to determine the equivalence
between the total traffic behavior and the behavior estimated through the
sampling process, evaluating simultaneously the overhead associated with
the data volume selected by the measurement technique. Additionally, the
efficiency of the proposed strategy facing other proposals is also quantified.
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In the analysis, the techniques are compared through the metrics - average
throughput, coefficient of variation (CV), peak-to-average ratio, coefficient
of correlation, relative mean error (RME) - defined in Table 4.

Table 4: Statistical Parameters

O
v
e
rh

e
a
d

Measurement Goal: Evaluate the overhead associated with the number of packets processed,

stored and transmitted by the measurement point where the sampling technique is deployed.

Metric Description Units

N. of Packets Total number of packets captured
during the sampling process for
each sampling technique.

#packets

Data Volume Sum of all packets collected with
each sampling technique. For this
metric, the total length field within
IP header is used.

Mbyte

N. of Samples Total number of samples captured
during the sampling process.

#samples

T
h
ro

u
g
h
p
u
t
E
st
im

a
ti
o
n

Measurement Goal: Evaluate the sampling technique accuracy when estimating throughput.

Metric Description Definition / Units

Throughput Quantifies the volume of traffic
transferred per unit of time (data
rate).

Ratio between the total amount of traf-
fic transmitted and the corresponding
time interval (kbps)

Coefficient
of Variation

Measures the variability of packet
time series. In network measure-
ments, helps to identify and char-
acterize the traffic burstiness.

Ratio between sample standard devia-
tion and throughput.

Peak-to-average
ratio

Complementary descriptive statis-
tics to measure the variability of
the packet time series.

Ratio between the peak and average
throughput in a measurement interval.

Correlation Expresses the correlation between
the sampled traffic and total traf-
fic, studying statistically the rela-
tionship between the correspond-
ing series.

Coefficient of correlation ρ (Pearson
method [20]):

0.7 < ρ ≤ 1, strong correlation
0.3 < ρ ≤ 0.7, moderate correlation

0 ≤ ρ ≤ 0.3, weak correlation

Relative
Mean Error

Assesses the discrepancy between
the mean of the total traffic and
its sampled version. RME =

|Mtotal −Mestimated|
Mtotal

(3)

Mtotal is the average throughput of to-
tal traffic; Mestimated is the average
throughput of the sampled traffic [7].
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5. Evaluation Results

5.1. Overhead reduction

The benchmarking carried out show that MuST leads to a significant
overhead reduction for all traffic types under consideration. Figure 4 illus-
trates the number of packets, the volume of data and the number of samples4

for all traffic scenarios when applying each sampling technique against the
total traffic. Note that, on average, the sampled traffic resulting from MuST
corresponds to 5.8% of total data in the original trace. Table 5 details the
results, quantifying the overhead for each traffic type and sampling technique
under analysis.
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Figure 4: Overhead reduction using ST, LP and MuST

4In this case, the use of scientific notation aims to accommodate the different scales for
the traffic traces considered.
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Table 5: Overhead reduction for all traffic types

Traffic / Parameter Total ST LP MuST

OC-48

Number of packets 6550395 1094002 935066 310427

Data volume (MBytes) 3189.67 533.39 454.92 151.70

Number of samples 500 431 54

SIP VoIP

Number of packets 1172378 188471 190572 51939

Data volume (MBytes) 168.68 27.41 32.27 8.0

Number of samples 105385 53081 12380

SIGCOMM08

Number of packets 4513615 749977 899145 323467

Data volume (MBytes) 2382.92 395.97 511.93 192.82

Number of samples 44511 37104 4534

Video streaming

Number of packets 97248 16303 13705 5606

Data volume (MBytes) 101.76 17.02 14.86 5.83

Number of samples 1090 406 145

Comparing to the systematic technique, the multiadaptive technique re-
duces in 66.2% the number of collected packets, in 63.2% the total volume
of sampled data, and in 88.7% the number of samples used to characterize
all traffic scenarios. Considering all traffic scenarios and taking the adaptive
LP technique as reference, MuST achieves decreases of 66% in the number
of collected packets, of 65.6% in the total data volume, and of 81.1% in the
number of processed samples.

These results clearly attest the performance improvement of applying
MuST technique in measurement points. However, to prove measurement
efficiency the statistical representativeness of the sampled traffic has to be
evaluated, verifying its ability to capture the real traffic behavior. This
evaluation is provided below.

5.2. Throughput estimation

To describe traffic behavior, a visual representation of network through-
put is commonly available in monitoring tools, illustrating the network work-
load during each measurement interval. Figure 5 presents the instantaneous
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throughput measured in 1s time intervals for SIGCOMM08 traffic. As de-
picted, the multiadaptive sampling technique represents closely the total traf-
fic behavior when visually compared.

(a) Total traffic (b) MuST

Figure 5: Throughput for SIGCOMM08 traffic

As regards throughput estimation, Table 6 presents the statistical com-
parison resulting from applying each sampling technique for all traffic traces.
The results show that ST and MuST techniques achieve high-quality repre-
sentations of traffic behavior when comparing average throughput, peak-to-
average ratio, CV and correlation with the corresponding total traffic statis-
tics. The adaptive LP technique tends to overestimate throughput when
using low-rate traffic traces (e.g. VoIP traffic). The best match of this tech-
nique was achieved for OC-48 trace, which represents traffic in a high-speed
link of an ISP.

The correlation analysis of the instantaneous throughput time series (con-
sidering measurement intervals of 1s), obtained comparing each sampling
strategy to the original trace, presents high coefficients of correlation (above
0.81), corroborating statistically the visual comparison illustrated in Figure
5. The accuracy achieved using MuST is ratified when considering the rela-
tive mean error of the estimated average throughput (see Table 6).

For a more detailed analysis, Figure 6 presents the relative error spread for
each sampling technique when applied to the SIGCOMM08 trace. As shown,
for all tested techniques the error distribution is similar, concentrated near
to zero and with a well-bounded tail. The figure also shows that the higher
relative errors result from overestimation, expressed by the positive tail in
the histogram.
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Table 6: Overall estimated behavior
Traffic / Parameter Total ST LP MuST

SIGCOMM08

Throughput 730.95 728.76 1130.27 765.45

RME 0.002 0.54 0.04

Peak-to-average ratio 14.39 15.16 10.05 13.304

CV 1.90 2.07 1.56 2.07

Correlation 0.91 0.91 0.90

SIP VoIP

Throughput 21.85 21.30 50.49 21.49

RME 0.02 1.31 0.01

Peak-to-average ratio 158.40 132.14 58.00 118.57

CV 5.28 5.41 2.90 4.64

Correlation 0.71 0.88 0.80

OC-48

Throughput 87103.35 87390.26 86467.86 87409.52

RME 0.003 0.007 0.003

Peak-to-average ratio 1.40 1.35 1.34 1.19

CV 0.10 0.09 0.10 0.16

Correlation 0.84 0.81 0.82

Video streaming

Throughput 1275.84 1279.17 2998.53 1268.58

RME 0.002 1.35 0.005

Peak-to-average ratio 19.13 19.98 8.41 11.02

CV 3.93 3.96 2.50 3.01

Correlation 0.99 0.98 0.98

Regarding the multiadaptive technique, when analyzing the trade-off be-
tween overhead and accuracy reduction in Tables 5 and 6, it is clear that this
technique promotes a significant improvement compared to the other sam-
pling techniques considered. These results show that, despite the significant
reduction on the traffic volume considered, the MuST ability to capture the
real traffic behavior correctly is not compromised. For several statistical pa-
rameters, the proposed technique outperforms the conventional techniques,
which is even more relevant attending to the significant decrease on measure-
ment overhead.
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Figure 6: Histogram of relative error for SIGCOMM08 traffic

5.3. Studying the impact of k

The following tests aim to assess the impact of k when adapting the
sample size (see rules in Table 2) allowing to evaluate the performance of
MuST for two distinct traffic scenarios: one typically more regular (OC-48)
and other with higher variability (SIGCOMM08). For each traffic type, the
analysis is focused on the cumulative volume of sampled data (in Mbytes),
RME and number of samples, for different values of k. As the results illustrate
(see Figure 7), a k = 0.10 leads to the lowest volume in sampled data,
however, it also causes an increase in RME (one order of magnitude) in
the presence of bursty traffic. As shown in Figure 7 (b), with k = 0.10,
the adaptive behavior of MuST is less sensitive in capturing traffic bursts
(see behavior around 22500s). The results also show that a value of k = 0.15
presents a good compromise between the variables under study (data volume
and RME) for both traffic types, although it does not lead to the smallest
number of samples for the values of k considered. The obtained differences
for the number of samples are, however, not significant, meaning that MuST
is well-behaved for k = 0.15.

5.4. Studying the impact of the order of prediction

Similarly to the study of k presented above, the following experiments
aim at evaluating the impact of varying the order of prediction N on MuST
performance. Figure 8 presents the results comparing the overhead and rel-
ative mean error for OC-48 and SIGCOMM08 traces and distinct values of
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Figure 7: Impact of k on MuST performance: Cumulative data volume (up); Number of
samples (down)

N . Notice that higher values of N correspond to configure the adaptive traf-
fic selection process with more information of past samples, i.e., including
more past memory. Generally, a larger past memory leads to less reactive
mechanisms, and shorter past memory improves the reactivity to short term
traffic fluctuations. The degree of this reactivity may affect the stability of
sampling mechanisms.

According to the obtained results, an increase in N conducts to an over-
head increase regarding the volume of data collected, for all traffic types.
However, for N = 5, it is clear that collecting more data does not lead to
higher accuracy in the throughput estimation (RME); this is particularly vis-
ible in Figure 8 (b). This means that lower reactivity also reduces the ability
to correctly measure bursty traffic. Nevertheless, when taking N = 2, cor-

19



N=2 N=3 N=4 N=5

Order of prediction

N
um

be
r 

of
 s

am
pl

es

0
10

20
30

40
50

60

(a) OC-48

N=2 N=3 N=4 N=5

Order of prediction

N
um

be
r 

of
 s

am
pl

es

0
10

00
20

00
30

00
40

00
50

00
60

00

(b) SIGCOMM08

Figure 8: Impact of N on MuST performance: Cumulative data volume (up); Number of
samples (down)

responding to the smallest overhead regarding the amount of sampled data,
it does not imply a gain in accuracy, as visible for OC-48 traffic. Consider-
ing the number of samples, varying N does not provoke a linear distribution
for all traffic types. This is related to each particular traffic characteris-
tics, which is inline with the adaptive behavior of MuST when facing traffic
fluctuations, described in Section 3.2.

The results in the previous sections were obtained with an order of pre-
diction N = 3, which represents a good compromise between overhead and
accuracy. For the heaviest traffic trace (SIGCOMM08) the results could be
further improved considering N = 2 as the evident overhead reduction does
not penalize RME.

Globally, the values obtained for RME are very low for all traffic scenarios.
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Therefore, depending on the objective or usefulness of throughput estimation,
the value of N can be tuned to achieve an optimal compromise between
overhead and efficiency.

5.5. Studying the impact of the activity period

According to [9], adaptive sampling techniques tend to be less accurate
when the network activity is low. The tests included in this section intent
to assess MuST ability in estimating network throughput correctly irrespec-
tively of the network load period.

When observing Figure 5 it is clear that the time period between 12500s
and 14000s corresponds to a low activity period; conversely, the period be-
tween 23000s and 25000s corresponds to a peak period in network activity.
Therefore, the performance of each sampling technique was evaluated for
these two time intervals in order to verify its versatility in estimating net-
work behavior despite the ongoing network activity.

Table 7: Impact of network activity - SIGCOMM08

Low network load

Parameter Total traffic ST LP MuST

Number of packets 5291 592 257 210

Data volume (MBytes) 1.19 0.15 0.05 0.05

Number of samples 2467 904 305

Throughput (kbps) 236.03 266.33 4.96 298.31

RME 0.12 0.97 0.26

High network load

Parameter Total traffic ST LP MuST

Number of packets 901589 149634 226401 105985

Data volume (MBytes) 661.90 110.09 166.02 78.44

Number os samples 3333 5183 245

Throughput (kbps) 769.81 771.46 1624.14 771.26

RME 0.002 1.1 0.001

The results presented in Table 7 corroborate the results obtained in [9]
as the LP technique clearly underestimates network throughput for low ac-
tivity periods. Moreover, this technique is also inaccurate for high activity
periods, overestimating throughput. Irrespectively of the activity period, ST
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and MuST techniques achieve positive results considering the estimation ac-
curacy. However, the efficiency of MuST is higher as the estimation process
involves less overhead, when considering all the related metrics (number of
samples, number of packets and data volume). For high activity periods the
accuracy-overhead trade-off was even more encouraging.

The above results evince that the proposed MuST technique is a step
forward regarding classic adaptive sampling techniques, being simultaneously
more accurate and versatile than its competitors.

6. Conclusions

Although current traffic measurement sampling techniques aim at esti-
mating network parameters correctly, they do not address efficiency as a
major concern. Beyond high accuracy, sampling techniques need to be sen-
sitive enough to identify critical periods of network activity, adjusting their
dynamics in order to reduce measurement overhead.

In this context, this paper has presented MuST, a multiadaptive traffic
sampling technique able to improve the trade-off between network parameters
estimation overhead and accuracy. By changing both the interval between
samples and the sample size according to the observed network activity, this
technique was able to capture correctly network throughput with very low
overhead, particularly in periods of high activity, in which the network op-
eration is critical.

The performance of this technique was evaluated using the Systematic
Time-based and Adaptive Linear Prediction as comparative techniques. Us-
ing real traffic traces representing distinct profiles, the study provides a com-
parative statistical analysis of measurement overhead and estimation accu-
racy, under distinct traffic load scenarios. This analysis has evinced the
effectiveness and flexibility of the present proposal, outperforming the con-
ventional techniques.

To improve sampling efficiency, the impact of the order of prediction on
the results was evaluated. A similar analysis was also carried out for the
configuration parameters of the algorithm, attesting the values adopted as
suitable for the evaluated traffic types.

The obtained results demonstrated that the self-adaptability and simplic-
ity of MuST are important issues for achieving a versatile sampling solution
which can be explored to improve network measurements efficiency over dis-
tinct traffic conditions.
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Appendix A. MuST algorithm

This appendix includes the pseudocode for Algorithm 1 which allows to
predict the reference parameter, and for Algorithm 2 which represents the
overall sampler operation, in which all decisions regarding the new sample size
and interval between samples are made attending to the predicted reference
parameter.

input : X - Reference parameter vector
∆T - Current time interval between samples
T - Times vector

output: forecast - Reference parameter prediction

1 for i← 1 to order − 1 do
2 sum← sum + abs((X[i + 1]−X[i])/T [i]);
3 end
4 forecast← X[order] + ((∆T/(order − 1)) ∗ sum;
5 return (forecast);

Algorithm 1: Pseudocode for the reference parameter predictor
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input : ∆Tcurrent - Initial interval between samples
∆Scurrent - Initial sample size

output: Sampled traffic

1 begin
2 for i← 1 to order do
3 newSample(∆Tcurrent, ∆Scurrent); /* new sample capture */ ;
4 X[i] ← referenceParameter(); /* stores ref. par. of last sample */ ;
5 T [i] ← ∆Tcurrent; /* kept unchanged */

6 end
7 repeat
8 /* Predictor() corresponds to Algorithm 1 */ ;
9 Xp ← Predictor(X, ∆T , T );

10 newSample (∆Tcurrent,∆Scurrent);
11 S ← referenceParameter();
12 m← 1;
13 if S then
14 m← Xp/S
15 end
16 case [m < mmin] /* underestimation */
17 ∆Tnext ← m ∗∆Tcurrent;
18 ∆Snext ← m ∗∆Scurrent;
19 case [mmin ≤ m ≤ mmax] /* correct estimation*/
20 ∆Tnext ← ∆Tcurrent;
21 ∆Snext ← ∆Scurrent;
22 case [m > mmax] /* overestimation */
23 ∆Tnext ← 2 ∗∆Tcurrent; k=0.15;
24 ∆Snext ← (1 + k) ∗∆Scurrent;
25 /* Interval Between Samples thresholds (sec) */
26 if ∆Tnext < MinIBS then
27 ∆Tnext ←MinIBS ;
28 end
29 if ∆Tnext > MaxIBS then
30 ∆Tnext ←MaxIBS;
31 end
32 /* Sampling Size thresholds (sec) */
33 if ∆Snext < MinSS then
34 ∆Snext ←MinSS;
35 end
36 if ∆Snext > MaxSS then
37 ∆Snext ←MaxSS;
38 end
39 ∆Tcurrent ← ∆Tnext; ∆Scurrent ← ∆Snext;
40 updateVectors(∆Tcurrent, S); /* update vectors T and X */

41 until endOfSampling ;

42 end

Algorithm 2: Multiadaptive technique pseudocode
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