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Abstract. Multilocal programming aims to locate all the local solutions
of an optimization problem. A stochastic method based on a multistart
strategy and a derivative-free filter local search for solving general con-
strained optimization problems is presented. The filter methodology is
integrated into a coordinate search paradigm in order to generate a set
of trial approximations that might be acceptable if they improve the
constraint violation or the objective function value relative to the cur-
rent one. Preliminary numerical experiments with a benchmark set of
problems show the effectiveness of the proposed method.
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1 Introduction

Multilocal programming has a wide range of applications in the engineering field
[8,10,18,19] and aims to compute all the global and local/non-global solutions of
constrained nonlinear optimization problems. The goal of most multistart meth-
ods presented in the literature is to locate multiple solutions of bound constrained
optimization problems [1,21,23,24] (see also [15] and the references therein in-
cluded). Multistart may also be used to explore the search space and converge
to a global solution of nonlinear optimization problems [6]. When a multistart
strategy is implemented, a local search procedure is applied to randomly gen-
erated (sampled) points of the search space aiming to converge to the multiple
solutions of the problem. However, the same solutions may be found over and
over again. To avoid convergence to an already computed solution, some multi-
start methods use clustering techniques to define prohibited regions based on the
closeness to the previously located solutions. Sampled points from these prohib-
ited regions are discarded since the local search procedure would converge most
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certainly to an already located solution. MinFinder is an example of a clustering
algorithm that competes with multistart when global and some local minimizers
are required [21,22]. Alternatively, niching, deflecting and stretching techniques
may be combined with global optimization methods, like the simulated anneal-
ing, evolutionary algorithm and the particle swarm optimization, to discover the
global and some specific local minimizers of a problem [17,18,20]. A glowworm
swarm optimization approach has been proposed to converge to multiple optima
of multimodal functions [13].

The purpose of this paper is to present a method based on a multistart
technique and a derivative-free deterministic local search procedure to obtain
multiple solutions of an optimization problem. The novelty here is that a direct
search method and the filter methodology, as outlined in [3,7], are combined
to construct a local search procedure that does not require any derivative in-
formation. The filter methodology is implemented to handle the constraints by
forcing the local search towards the feasible region. Bound, as well as linear and
nonlinear inequality and equality constraints may be treated by the proposed
local search procedure.

Direct search methods are popular because they are straightforward to im-
plement and do not use or approximate derivatives. Like the gradient-based
methods, direct search methods also have their niche. For example, the matura-
tion of simulation-based optimization has led to optimization problems in which
derivative-free methods are mandatory. There are also optimization problems
where derivative-based methods cannot be used since the objective function is
not numerical in nature [11].

The problem to be addressed is of the following type:

min f(x)
subject to gj(x) ≤ 0, j = 1, ...,m

li ≤ xi ≤ ui, i = 1, ..., n
(1)

where, at least one of the functions f, gj : Rn −→ R is nonlinear and F = {x ∈
Rn : g(x) ≤ 0 , l ≤ x ≤ u} is the feasible region. Problems with general equality
constraints can be reformulated in the above form by introducing h(x) = 0 as
an inequality constraint |h(x)| − τ ≤ 0, where τ is a small positive relaxation
parameter. This kind of problems may have many global and local optimal so-
lutions and so, it is important to develop a methodology that is able to explore
the entire search space and find all the minimizers guaranteeing, in some way,
that convergence to a previously found minimizer is avoided.

This paper is organized as follows. In Section 2, the algorithm based on the
multistart strategy and on the filter methodology is presented. In Section 3,
we report the results of our numerical experiments with a set of benchmark
problems. In the last section, conclusions are summarized and recommendations
for future work are given.
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2 Multistart Coordinate Search Filter Method

The methodology used to compute all the optimal solutions of problem (1),
hereafter called MCSFilter method, is a multistart algorithm coupled with a
clustering technique to avoid the convergence to previously detected solutions.
The exploration feature of the method is carried out by a multistart strategy that
aims at generating points randomly spread all over the search space. Exploitation
of promising regions is made by a simple local search approach. In contrast to
the line search BFGS method presented in [24], the local search proposal, a
crucial procedure inside a multistart paradigm, relies on a direct search method,
known as coordinate search (CS) method [11], that does not use any analytical
or numerical derivative information.

Since the goal of the local search is to converge to a solution of a constrained
optimization problem, starting from a sampled approximation, progress towards
an optimal solution is measured by a filter set methodology, as outlined in [7],
which is integrated into the local search procedure. The filter methodology ap-
pears naturally from the observation that an optimal solution of the problem (1)
minimizes both constraint violation and objective function [3,4,7,9]. Thus, the
proposed CS method is combined with a (line search) filter method that aims at
generating trial iterates that might be acceptable if they improve the constraint
violation or the objective function relative to the current iterate.

2.1 The Multistart Strategy

Multistart is a stochastic algorithm that repeatedly applies a local search to
sampled points (randomly generated inside [l, u]) xi = li + λ(ui − li) for i =
1, . . . , n, where λ is a random number uniformly distributed in [0, 1], aiming to
converge to the solutions of a multimodal problem. When a multistart strategy is
applied to converge to the multiple solutions, some or all of the minimizers may
be found over and over again. To avoid convergence to a previously computed
solution, a clustering technique based on computing the regions of attraction of
previously identified minimizers is to be integrated in the algorithm. The region
of attraction of a local minimizer, yi, associated with a local search procedure
L, is defined as:

Ai ≡ {x ∈ [l, u] : L(x) = yi} , (2)

where L(x) is the minimizer obtained when the local search procedure L starts at
point x. The ultimate goal of a multistart algorithm is to invoke the local search
procedure N times, where N is the number of solutions of (1). If a sampled point
x ∈ [l, u] belongs to a region of attraction Aj then the minimizer yj would be
obtained when L is started from x. Ideally, the local search procedure is to be
applied only to a sampled point that does not belong to any of the regions of
attraction of already computed minimizers, or equivalently to the union of those
regions of attraction, since they do not overlap. However, computing the region
of attraction Ai of a minimizer yi is not an easy task. Alternatively, a stochastic
procedure may be used to estimate the probability, p, that a sampled point



4 F.P. Fernandes, M.F.P. Costa, E.M.G.P. Fernandes

will not belong to the union of the regions of attraction of already computed
minimizers, i.e.,

p = Prob[x /∈ ∪ki=1Ai] =

k∏
i=1

Prob[x /∈ Ai] ≈ Prob[x /∈ An]

where An is the region of attraction of the nearest to x minimizer yn (see details
in [24]). The value of p may be approximated using Prob[x /∈ B(yn, Rn)], where
B(y,R) represents a sphere centered at y with radius R.

Let the maximum attractive radius of the minimizer yi be defined by:

Ri = max
j

{∥∥∥x(j)
i − yi

∥∥∥} , (3)

where x
(j)
i is one of the sampled points that led to the minimizer yi. Given x, let

di = ∥x− yi∥ be the distance of x to yi. If di < Ri then x is likely to be inside
the region of attraction of yi. However, if the direction from x to yi is ascent
then x is likely to be outside the region of attraction of yi and the local search
procedure is to be implemented started from x, since a new minimum could be
computed with high probability. Thus, using these arguments, similarly to [24],
the probability that x /∈ Ai is herein estimated by:

Prob(x /∈ Ai) =

{
1, if z ≥ 1 or the direction from x to yi is ascent
ϱ ϕ(z, r), otherwise

(4)
where ϱ ∈ [0, 1] is a fixed parameter, z = di/Ri ∈ (0, 1), r is the number of times
yi has been recovered so far and ϕ(z, r) ∈ (0, 1) is taken as

ϕ(z, r) = z exp(−r2(z − 1)2), where limz→0 ϕ(z, r)→ 0, limz→1 ϕ(z, r)→ 1,
limr→∞ ϕ(z, r)→ 0.

In this derivative-free approach, the direction from x to yi is considered
ascent when f(x+β(yi−x))−f(x) > 0 for a small β > 0. In the gradient-based
approach [24], ϱ is a function that depends on the directional derivative of f
along the direction from x to yi.

Figure 1 illustrates the behavior of the multistart method when converging
to four minimizers. The point represented by a ⋆ (in black) is the first sampled
point that converges to a minimizer. The points represented by ⋄ (in full blue)
lie outside the region of attraction and thus the local search procedure is ap-
plied to be able to converge to a minimizer. For example, the global minimizer
(leftmost and bottom of the figure) has been recovered seven times. The other
points (represented by ◦) are sampled points inside the region of attraction of a
minimizer. They have been discarded, i.e., the local search has not been applied
to them.

Algorithm 1 shows the multistart algorithm. Although this type of methods is
simple, they would not be effective if a bad stopping rule is used. The main goal
of a stopping rule is to make the algorithm to stop when all minimizers have
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Fig. 1. Illustration of the multistart method

been located with certainty. Further, it should not require a large number of
local searches to decide that all minimizers have been found (see [14]). A simple

stopping rule uses the estimate of the fraction of uncovered space P (k) = k(k+1)
t(t−1) ,

where k is the number of recovered minimizers after having performed t local
search procedures. The multistart algorithm then stops if P (k) ≤ ϵ, for a small
ϵ > 0.

2.2 The Coordinate Search Filter Procedure

The coordinate search filter (CSFilter) method, combining a derivative-free para-
digm with the filter methodology, is proposed as the local search procedure L,
to compute a minimizer y starting from a sampled point x ∈ [l, u]. Briefly, a
minimizer y of the constrained optimization problem (1) is to be computed,
starting from x. The basic idea behind this approach is to interpret (1) as a bi-
objective optimization problem aiming to minimize both the objective function
f(x) and a nonnegative continuous aggregate constraint violation function θ(x)
defined by

θ(x) = ∥g(x)+∥2 + ∥(l − x)+∥2 + ∥(x− u)+∥2 (5)

where v+ = max{0, v}. Therefore, the proposed CSFilter approach computes an
approximate minimizer, y, to the bi-objective optimization problem

min
x

(θ(x), f(x)) . (6)

The filter technique incorporates the concept of nondominance, present in the
field of multi-objective optimization, to build a filter that is able to accept trial
approximations if they improve the constraint violation or objective function
value. A filter F is a finite set of points y, corresponding to pairs (θ(y), f(y)),
none of which is dominated by any of the others. A point y is said to dominate
a point y′ if only if θ(y) ≤ θ(y′) and f(y) ≤ f(y′).
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Algorithm 1 Multistart algorithm

Require: Parameter values; set Y ∗ = ∅†, k = 1, t = 1;
1: Randomly generate x ∈ [l, u]; compute Amin = mini=1,...,n{ui − li};
2: Compute y1 = L(x), R1 = ∥x− y1∥; set r1 = 1, Y ∗ = Y ∗ ∪ y1;
3: repeat
4: Randomly generate x ∈ [l, u];
5: Set o = argminj=1,...,k dj ≡ ∥x− yj∥;
6: if do < Ro then
7: if the direction from x to yo is ascent then
8: Set p = 1;
9: else
10: Compute p = ϱϕ( do

Ro
, ro);

11: end if
12: else
13: Set p = 1;
14: end if
15: if ζ‡ < p then
16: Compute y = L(x); set t = t+ 1;
17: if ∥y − yj∥ > γ∗Amin, for all j = 1, . . . , k§ then
18: Set k = k + 1, yk = y, rk = 1, Y ∗ = Y ∗ ∪ yk; compute Rk = ∥x− yk∥;
19: else
20: Set Rl = max{Rl, ∥x− yl∥}♮; rl = rl + 1;
21: end if
22: else
23: Set Ro = max{Ro, ∥x− yo∥}; ro = ro + 1;
24: end if
25: until the stopping rule is satisfied

—————————————————-
† - Y ∗ is the set containing the computed minimizers.
‡ - ζ is a uniformly distributed number in (0, 1).
§ - y /∈ Y ∗.
♮ - ∥y − yl∥ ≤ γ∗Amin.

A rough outline of a coordinate search filter is as follows. At the beginning
of the optimization, the filter is initialized to F = {(θ, f) : θ ≥ θmax}, where
θmax > 0 is an upper bound on the acceptable constraint violation.

Let D⊕ denote de set of 2n coordinate directions, defined as the positive and
negative unit coordinate vectors, D⊕ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}. The
search begins with a central point, the current approximation x̃, as well as 2n
trial approximations yic = x̃ + αdi, for di ∈ D⊕, where α > 0 is a step size.
The constraint violation value and the objective function value of all 2n + 1
points are computed. If some trial approximations improve over x̃, reducing θ or
f by a certain amount (see (7) and (8) below), and are acceptable by the filter,
then the best of these non-dominated trial approximations, ybestc , is selected,
and the filter is updated (adding the corresponding entries to the filter and
removing any dominated entries). Then, this best approximation becomes the
new central point in the next iteration, x̃← ybestc . If, on the other hand, all trial
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approximations yic are dominated by the current filter, then all yic are rejected,
and a restoration phase is invoked.

To avoid the acceptance of a point yic, or the corresponding pair
(
θ(yic), f(y

i
c)
)
,

that is arbitrary close to the boundary of F , the trial yic is considered to improve
over x̃ if one of the conditions

θ(yic) ≤ (1− γθ) θ(x̃) or f(yic) ≤ f(x̃)− γf θ(x̃) (7)

holds, for fixed constants γθ, γf ∈ (0, 1).
However, the filter alone cannot ensure convergence to optimal points. For

example, if a sequence of trial points satisfies θ(yic) ≤ (1− γθ) θ(x̃) then it could
converge to an arbitrary feasible point. Therefore, when x̃ is nearly feasible,
θ(x̃) ≤ θmin for a small positive θmin, the trial approximation yic has to satisfy
only the condition

f(yic) ≤ f(x̃)− γf θ(x̃) (8)

instead of (7), in order to be acceptable.
The best non-dominated trial approximation is selected as follows. The best

point ybestc of a set Y = {yic : yic = x̃ + αdi, di ∈ D⊕} is the point that satisfies
one of two following conditions:

– if there are some feasible points in Y , ybestc is the point that has the less
objective function value among the feasible points:

θ
(
ybestc

)
= 0 and f

(
ybestc

)
< f

(
yic
)
for all yic ∈ Y such that θ

(
yic
)
= 0;

(9)
– otherwise, ybestc is the point that has less constraint violation among the

non-dominated infeasible points

0 < θ
(
ybestc

)
< θ

(
yic
)
and yic /∈ F . (10)

We remark that the filter is updated whenever the trial approximations yic verify
conditions (7) or (8) and are non-dominated.

When it is not possible to find a non-dominated best trial approximation,
and before declaring the iteration unsuccessful, a restoration phase is invoked.
In this phase, the most nearly feasible point in the filter, xinf

F , is recuperated
and the search along the 2n coordinate directions is carried out about it to
find the set Y = {yic : yic = xinf

F + αdi, di ∈ D⊕}. If a non-dominated best trial
approximation is found, this point becomes the central point of the next iteration
and the iteration is successful. Otherwise, the iteration is unsuccessful, the search
returns back to the current x̃, the step size is reduced, for instance α = α/2, and
new 2n trial approximations yic are generated about it. If a best non-dominated
trial approximation is still not found, the step size reduction is repeated since
another unsuccessful iteration has occurred. When α falls below αmin, a small
positive tolerance, the search terminates since first-order convergence has been
attained [11]. At each unsuccessful iteration, the CSFilter algorithm reduces the
step size and tries again the coordinate search about the current point x̃.
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Thus, to judge the success of the CSFilter algorithm, the below presented
conditions are applied

α ≤ αmin

θ(ybestc ) < 0.01 θmin∣∣f(ybestc )− f(y)
∣∣ < 10−6 |f(y)|+ 10−8,

(11)

where 0 < αmin << 1 and y is the previous current point. The proposed algo-
rithm for the local procedure is presented in Algorithm 2.

Algorithm 2 CSFilter algorithm

Require: x (sampled in the Multistart algorithm) and parameter values; set x̃ = x,
xinf
F = x, y = x̃;

1: Initialize the filter;

2: Set α = min{1, 0.05
∑n

i=1 ui−li
n

};
3: repeat
4: Compute the trial approximations yi

c = x̃+ αdi, for all di ∈ D⊕;
5: repeat
6: Check acceptability of trial points yi

c using (7) and (8);
7: if there are some yi

c acceptable by the filter then
8: Update the filter;
9: Choose ybest

c using (9) or (10);
10: Set y = x̃, x̃ = ybest

c ; update xinf
F if appropriate;

11: else
12: Compute the trial approximations yi

c = xinf
F + αdi, for all di ∈ D⊕;

13: Check acceptability of trial points yi
c using (7) and (8);

14: if there are some yi
c acceptable by the filter then

15: Update the filter;
16: Choose ybest

c using (9) or (10);
17: Set y = x̃, x̃ = ybest

c ; update xinf
F if appropriate;

18: else
19: Set α = α/2;
20: end if
21: end if
22: until new trial ybest

c is acceptable
23: until the conditions (11) are satisfied

3 Numerical Results

To analyze the performance of the MCSFilter algorithm, a set of 30 test problems
is used (see Table 1). The set contains bound constrained problems, inequality
and equality constrained problems, multimodal objective functions, with one
global and some local, more than one global, and a unimodal optimization prob-
lem. Table 1 reports the acronym of the tested problems, under ‘Prob.’, references
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with details of the models and the known number of solutions, ‘Min’. Two min-
imization problems, CB6+1 and BP+1, are herein defined from two well-known
problems by adding one constraint: CB6+1 comes from CB6 with the constraint
(x1+1)2+(x2−1)2 ≤ 2.25; BP+1 comes from BP with the additional constraint
(x1 − 5)2 + 2(x2 − 10)2 ≤ 100. Problem g8 is a maximization problem that was
rewritten as a minimization problem. g11 has an equality constraint which was
transformed into an inequality constraint using τ = 10−5.

Table 1. Problem, reference and known number of solutions.

Prob. Min Prob. Min Prob. Min

ADJ [8] 3 SHK10 [2,14,16] 10 P5 [5] 4
CB6 [2,8,14] 6 2Dt [14,18] 4 CB6+1 4
BP [2,14,18] 3 3Dt [14,18] 8 BP+1 3
GP [2,8,14] 4 4Dt [14,18] 16 g8 [9,12,18] ≥ 2
H3 [2,8,14] 3 5Dt [14,18] 32 g9 [9,18] 1
H6 [2,8,14] 2 6Dt [14,18] 64 g11 [9] 2
MMO [18] 4 8Dt [14,18] 256 EX. 2.2 [10] 2
SBT [16] 760 10Dt [14,18] 1024 EX. 3.3 [10] 2
SHK5 [14,16] 5 P2 [5] 4 EX. 6.17 [10] 4
SHK7 [14,16] 7 P3 [5] 5 EX. 1 [19] 2

The MCSFilter method was coded in MatLab and the results were obtained
in a PC with an Intel Core i7-2600 CPU (3.4GHz) and 8 GB of memory. In the
CSFilter method, we set after an empirical study: γθ = γf = 10−5, αmin = 10−5,
θmin = 10−3, θmax = 103 max{1, 1.25θ(xin)}, where xin is the initial point in
the local search. We also set ϱ = 0.5, β = 0.001, γ∗ = 0.1 and ϵ = 0.1 in the
stopping rule of the multistart algorithm. Each problem was solved 10 times and
the average values are reported.

Table 2 contains the results obtained when solving the bound constrained
problems, where the columns show:

– the average number of computed minimizers, ‘Minav’;
– the average number of function evaluations, ‘nfeav’;
– the average time (in seconds) ‘Tav’.

For comparative purposes, Table 2 also reports:

(i) in columns 5–7, the results presented in [18], relative to the problems BP
and nDt with n = 2, 4, 6, 8, 10;

(ii) in columns 8–9, the results presented in [14], relative to the problems CB6,
BP, GP, H3, H6, SHK5, SHK7, SHK10 and nDt with n = 4, 5, 6.

The algorithm presented in [18] implements a function stretching technique com-
bined with a simulated annealing approach, known as SSA method. We observe
that the MCSFilter algorithm has a good performance and is able to find almost
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Table 2. Numerical results obtained with bound constrained problems.

MCSFilter algorithm results in [18] results in [14]

Prob. (n) Minav nfeav Tav Minav nfeav Tav Minav nfeav

ADJ (2) 2.5 5768 27.970 - - - - -

CB6 (2) 6† 1869.1 0.262 - - - 6 5642

BP (2) 3† 1571.1 0.221 3 2442 0.45 3 2173

GP (2) 4† 13374.9 2.021 - - - 4 5906
H3 (3) 2.9 2104.3 0.313 - - - 3 3348
H6 (6) 2 6559.2 0.840 - - - 2 3919

MMO (2) 4† 1328.3 0.200 - - - - -
SBT (2) 25.2 9276.2 5.738 - - - - -
SHK5 (4) 4.6 6240.3 0.782 - - - 5 8720
SHK7 (4) 6.4 8335.2 1.036 - - - 7 11742
SHK10 (4) 8.6 10312.6 1.293 - - - 10 16020

2Dt (2) 4† 1372.6 0.193 2 1067 0.17 - -

3Dt (3) 8† 3984.4 0.521 - - - - -

4Dt (4) 16† 11718.5 1.471 2 3159 0.29 16 17373
5Dt (5) 31.9 32881.7 4.373 - - - 32 37639
6Dt (6) 63.8 102490.3 16.105 2 10900 0.75 64 81893
8Dt (8) 254.3 659571.6 368.674 1 36326 2.28 - -
10Dt (10) 1016 3863756 18563 1 58838 3.71 - -
† - All the minimizers were computed in all runs.

- Not available.

all the local minimizers of the problems with acceptable number of function
evaluations. In terms of time needed to find all the solutions, the worst cases
are observed with the problems 8Dt and 10Dt. An average of 1.45 seconds and
2593.7 function evaluations are required to compute each solution of problem
8Dt, and an average of 18.3 seconds, with an average of 3802.9 function evalu-
ations, to compute each solution in 10Dt. We remark that the global minimum
has been always identified in all runs and in all problems of Table 2. We observe
from the comparison with the results of [14] that MCSFilter is slightly more
efficient although the multistart method implemented in [14] seems to retrieve
a greater number of minimizers.

When a comparison is made with the number of solutions reported in [18],
we find that for problems 2Dt and 4Dt, our method finds all the minimizers
while SSA identifies only two in each problems. The average number of func-
tion evaluations and time to locate each minimizer required by the MCSFilter
algorithm for problems 6Dt and 8Dt are smaller than those of the SSA method.
Furthermore, MCSFilter finds almost all the minimizers, while SSA finds only
two and one respectively. For problem BP, both methods obtained the same
number of minimizers, although MCSFilter requires a smaller number of func-
tion evaluations and time than SSA. Results for the problem MMO, with 50 and
100 variables are presented in [18], with 4 and 6 found minimizers respectively.
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Their results were obtained after 1000000 function evaluations. For compara-
tive purposes, we implemented this condition to stop the MCSFilter algorithm
and obtain the following results: Minav=48, when n = 50, and Minav=14, when
n = 100. In both cases MCSFilter method finds more minimizers than SSA.
A total of 100000 function evaluations were used by SSA (in [18]) to find one
minimizer of problem 10Dt. Using the same condition to stop MCSFilter, we
obtain Minav=85.3. We note that the problems of the set nDt have 2n minimiz-
ers, where n is the number of variables. We may conclude that the MCSFilter
method consistently finds more minimizers.

Table 3. Results obtained with inequality and equality constrained problems.

MCSFilter algorithm other results

Prob. (n,m) Minav nfeav Tav Minav nfeav Tav

P2 (2,1) 3.9 10127.6 7.986 [5] 3.8 9752.5 51.6
P3 (2,2) 4.6 28065.4 24.242 [5] 3.1 13417.4 69.9
P5 (2,1) 4 1858.5 0.527 [5] 4 7630.1 8.8
CB6+1 (2,1) 3.4 12319.1 40.626
BP+1 (2,1) 3 4128.9 2.525

g8 (2,2) 3.3 7427.3 23.288 [6] 1‡ 4999 -

[9] 1‡ 56476 -
[18] 5 67753 -

g9 (7,4) 1.4† 5767.7 0.737 [6] 1‡ 38099 -

[9] 1‡ 324569 -
[18] 1 183806 -

g11 (2,1) 2 84983.3 191.629 [6] 1‡ 139622 -

[9] 1‡ 23722 -
EX. 2.2 (2,2) 2 2469.2 2.315
EX. 3.3 (2,1) 1.7 6435.9 9.403
EX. 6.17 (2,3) 3.7 53292.5 141.114

EX. 1 (2,1) 2.1† 65133.0 593.220
†

Some cases of premature convergence have been observed, thus identifying

a new minimizer.
‡

Only one global minimizer was required to be found.

- Not available.

Table 3 lists the results obtained with inequality and equality constrained
problems. A comparison is made with the results reported:

(i) in [5,6], where a multistart method coupled with a stochastic approach to
derive approximate descent directions and a filter technique is used;

(ii) in [9], which implements a filter simulated annealing method;
(iii) in [18], which implements the SSA method with a penalty function tecnhique.

We may conclude that the presented MCSFilter has a good performance since
the average number of function evaluations required to locate each minimizer is
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smaller than those of the other methods in comparison. We also observe that
MCSFilter is able to consistently find almost all minimizers with reduced time.

4 Conclusions

We present a multistart algorithm based on a derivative-free filter method to
solve multilocal programming problems. The method is based on a multistart
strategy which relies on the concept of regions of attraction in order to avoid
convergence to previously found local minimizers. The proposal for the local
procedure is a coordinate search combined with a filter method to generate
a sequence of approximate solutions that improve either the constraint viola-
tion or the objective function relative to the previous approximation. A set of
benchmark problems was used to test the algorithm and the results are very
promising. One problematic issue of the proposed MCSFilter method is related
to the large number of search directions in the set D⊕. For large dimensional
problems, the computational effort in terms of number of function evaluations
and consequently CPU time greatly increases with n. We have observed that the
proposed method consistently locates all or almost all minimizers of a problem.
To improve the effectiveness of the algorithm, a stopping rule that balances the
number of estimated minimizers with local search calls is to be devised in the
future.
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