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Abstract. Nonlinear optimization problems introduce the possibility of
multiple local optima. The task of global optimization is to find a point
where the objective function obtains its most extreme value while sat-
isfying the constraints. Some methods try to make the solution feasible
by using penalty function methods, but the performance is not always
satisfactory since the selection of the penalty parameters for the prob-
lem at hand is not a straightforward issue. Differential evolution has
shown to be very efficient when solving global optimization problems
with simple bounds. In this paper, we propose a modified constrained
differential evolution based on different constraints handling techniques,
namely, feasibility and dominance rules, stochastic ranking and global
competitive ranking and compare their performances on a benchmark
set of problems. A comparison with other solution methods available in
literature is also provided. The convergence behavior of the algorithm to
handle discrete and integer variables is analyzed using four well-known
mixed-integer engineering design problems. It is shown that our method
is rather effective when solving nonlinear optimization problems.

Keywords: Nonlinear programming, Global optimization, Constraints
handling, Differential evolution

1 Introduction

Problems involving global optimization over continuous spaces are ubiquitous
throughout the scientific community. Many real world problems are formulated
as mathematical programming problems involving continuous variables with lin-
ear/nonlinear objective function and constraints. The constraints can be of in-
equality and/or equality type. Generally, the constrained nonlinear optimization
problems are formulated as follows:

minimize f(x)
subject to gk(x) ≤ 0 k = 1, 2, . . . ,m1

hl(x) = 0 l = 1, 2, . . . ,m2

lbj ≤ xj ≤ ubj j = 1, 2, . . . , n,

(1)

where f, gk, hl : R
n −→ R with feasible set F = {x ∈ R

n : g(x) ≤ 0,h(x) = 0
and lb ≤ x ≤ ub}. f , gk, hl may be differentiable and the information about
derivatives may or may not be provided.
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Problem (1) involving global optimization (here a minimization problem) of
a multivariate function with constraints is widespread in the mathematical mod-
eling of real world systems. Many problems can be described only by nonlinear
relationships, which introduce the possibility of multiple local minima. The task
of global optimization is to find a point where the objective function obtains its
most extreme value, the global minimum, while satisfying the constraints.

Several deterministic and stochastic solution methods with different con-
straints handling techniques have been proposed to solve (1). Unlike the stochas-
tic methods, the outcome of a deterministic algorithm does not depend on pseudo
random variables. In general, its performance depends heavily on the structure
of the problem since the design relies on the mathematical attributes of the op-
timization problem. Compared with deterministic methods, the implementation
of stochastic algorithms is often easier. To handle the constraints of the prob-
lem, some methods try to make the solution feasible by repairing the infeasible
one or penalizing an infeasible solution with a penalty function. However, to
find the appropriate penalty parameter is not an easy task. Deb [6] proposed an
efficient constraints handling technique for genetic algorithm based on the fea-
sibility and dominance rules. The author used a penalty function that does not
require any penalty parameter. Barbosa and Lemonge [2] proposed a parameter-
less adaptive penalty scheme for genetic algorithm. In the very recent paper the
authors proposed this adaptive penalty scheme for differential evolution [23].
Hedar and Fukushima [12] proposed a simulated annealing method that uses
the filter method [10] rather than the penalty function method to handle the
constraints. Runarsson and Yao proposed a stochastic ranking [21] and a global
competitive ranking [22] techniques for constrained nonlinear optimization prob-
lems based on evolution strategy. The authors presented a new view on the usual
penalty function methods in terms of the dominance of penalty and objective
functions. Dong et al. [8] proposed a swarm optimization based on the constraint
fitness priority-based ranking technique. Zahara and Hu [28] proposed a hybrid
of Nelder-Mead simplex method and a particle swarm optimization based on
this technique [8]. Rocha and Fernandes proposed a electromagnetism-like al-
gorithm based on the feasibility and dominance rules [18] and the self-adaptive
penalties [19]. Rocha et al. [20] used an augmented Lagrangian method coupled
with an artificial fish swarm algorithm for global optimization. Coello Coello [4]
proposed constraints handling using an evolutionary multiobjective optimiza-
tion technique. Coello Coello and Cortés [5] proposed hybridizing of a genetic
algorithm with an artificial immune system that uses genotypic-based distances
to move from infeasible solution to feasible one. Another constraints handling
technique is the multilevel Pareto ranking based on the constraints matrix [16,
17]. Ray and Tai [16] proposed an evolutionary algorithm with a multilevel pair-
ing strategy and Ray and Liew [17] proposed a society and civilization algorithm
based on the simulation of social behavior.

Differential evolution (DE) proposed by Storn and Price [24] is a population-
based heuristic approach that is very efficient to solve global optimization prob-
lems with simple bounds. DE performance depends on the amplification factor



of differential variation and crossover control parameter. Hence adaptive con-
trol parameters have been implemented in DE in order to obtain a competitive
algorithm. Further, to improve solution accuracy, techniques that are able to ex-
ploit locally certain regions, detected in the search space as promising, are also
required. When the solutions ought to be restricted to a set of inequality and
equality constraints, an efficient constraints handling technique is also required
in the solution method. In this paper, we propose a modified constrained differ-
ential evolution algorithm (herein denoted as mCDE) that uses the self-adaptive
control parameters [3], a mixture of modified mutations, and also includes the
inversion operation, a modified selection and the elitism to be able to progress
efficiently towards global solutions of problems (1).

The organization of this paper is as follows. Firstly, we describe the con-
straints handling techniques in Section 2 and then the modified constrained dif-
ferential evolution is outlined in Section 3. Section 4 describes the experimental
results and finally we draw the conclusions of this study in Section 5.

2 Constraints Handling Techniques

Stochastic methods have been primary developed for the global optimization of
unconstrained problems. Extensions to the constrained problems then appear
with the modification of some solution procedures. To deal with a constrained
problem, a widely used approach is based on penalty functions where a penalty
term is added to the objective function in order to penalize the constraint vi-
olation. This enable us to transform a constrained problem into a sequence of
unconstrained subproblems. The penalty function method can be applied to any
type of constraints, but the performance of penalty-type method is not always
satisfactory because of choosing an appropriate penalty parameter. For this rea-
son alternative constraints handling techniques have been proposed in the last
decades. Three different techniques, usually used in population-based methods
have been implemented and extensively tested in our proposed mCDE algo-
rithm: a) the feasibility and dominance rules, b) the stochastic ranking, and c)
the global competitive ranking. They are briefly described below. In a population-
based solution method with N candidate solutions xi, i = 1, 2, . . . , N at each
generation, a common measure of infeasibility of an individual point xi is the
average measure of constraint violation given by

ζ(xi) =
1

m

(

m1
∑

k=1

max{0, gk(xi)}+

m2
∑

l=1

|hl(xi)|

)

,

where m = m1 + m2 and ζ(xi) is a non-negative real-valued function, with
ζ(xi) = 0 if the point xi is feasible.

2.1 Feasibility and Dominance Rules

Deb [6] proposed a constraints handling technique for population-based solu-
tion methods based on a set of rules that uses feasibility and dominance (FD)



principles, as follows. First, the constraint violation ζ is calculated for all the
individuals in a population. Then the objective function f is evaluated only
for feasible individuals. Two individual points are compared at a time, and the
following criteria are always enforced:

a) any feasible point is preferred to any infeasible point;
b) between two feasible points, one having better objective function is preferred;
c) between two infeasible points, one having smaller constraint violation is pre-

ferred.

In this case, the fitness of each individual point xi is calculated as follows

ΦFD(xi) =

{

f(xi) if xi is feasible
fmax,f + ζ(xi) otherwise,

(2)

where fmax,f is the objective function of the worst feasible solution in the pop-
ulation. When all individuals are infeasible then its value is set to zero. This
fitness function is used to choose the best individual point in a population.

2.2 Stochastic Ranking

Runarsson and Yao [21] first proposed the stochastic ranking (SR) for the con-
strained nonlinear optimization problems. This is a bubble-sort-like algorithm to
give ranks to individuals in a population stochastically. In this ranking method,
two adjacent individual points are compared and given ranks and swapped. The
algorithm is halt if there is no swap. Individuals are ranked primarily based on
their constraint violations. The objective function values are then considered if:
i) individuals are feasible, or ii) a uniform random number between 0 and 1 is
less than or equal to Pf . The probability Pf is used only for comparisons of the
objective function in the infeasible region of the search space. Such ranking en-
sures that good feasible solutions as well as promising infeasible ones are ranked
in the top of the population.

In our implementation of the stochastic ranking method in the modified
constrained differential evolution, each individual point xi is evaluated according
to the fitness function

ΦSR(xi) =
Ii − 1

N − 1
, (3)

where Ii represents the rank of point xi. From (3), the fitness of an individual
point having the highest rank will be 0 and that with the lowest rank will be 1.
The best individual point in a population has the lowest fitness value.

2.3 Global Competitive Ranking

Runarsson and Yao [22] proposed another constraints handling technique in
order to strike the right balance between the objective function and the con-
straint violation. This method is called global competitive ranking (GR), where



an individual point is ranked by comparing it against all other members in the
population.

In this ranking process, after calculating f and ζ for all the individuals, f and
ζ are sorted separately in ascending order (since we consider the minimization
problem) and given ranks. Special consideration is given to the tied individuals. In
case of tied individuals the same higher rank will be given. For example, in these
eight individuals, already in ascending order, 〈6, (5, 8), 1, (2, 4, 7), 3〉 (individuals
in parentheses have same value) the corresponding ranks are I(6) = 1, I(5) =
I(8) = 2, I(1) = 4, I(2) = I(4) = I(7) = 5, I(3) = 8. After giving ranks to all
the individuals based on the objective function f and the constraint violation ζ,
separately, the fitness function of each individual point xi is calculated by

ΦGR(xi) = Pf

Ii,f − 1

N − 1
+ (1− Pf )

Ii,ζ − 1

N − 1
, (4)

where Ii,f and Ii,ζ are the ranks of point xi based on the objective function
and the constraint violation, respectively. Pf indicates the probability that the
fitness is calculated based on the rank of objective function. It is clear from the
above that Pf can be used easily to bias the calculation of fitness according to
the objective function or the constraint violation. The probability should take
a value 0.0 < Pf < 0.5 in order to guarantee that a feasible solution may be
found. From (4), the fitness of an individual point is a value between 0 and 1,
and the best individual point in a population has the lowest fitness value.

3 Modified Constrained Differential Evolution

The population-based differential evolution algorithm [24] has become popular
and has been used in many practical cases, mainly because it has demonstrated
good convergence properties and is easy to understand. DE is a floating point
encoding that creates a new candidate point by adding the weighted difference
between two individuals to a third one in the population. This operation is
called mutation. The mutant point’s components are then mixed with the com-
ponents of target point to yield the trial point. This mixing of components is
referred to as crossover. In selection, a trial point replaces a target point for
the next generation only if it is considered an equal or better point. In uncon-
strained optimization, the selection operation relies on the objective function.
DE has three control parameters: amplification factor of differential variation F ,
crossover control parameter Cr, and population size N .

It is not an easy task to set the appropriate control parameters since these
depend on the nature and size of the optimization problems. Hence, the adaptive
control parameters ought to be implemented. Brest et al. [3] proposed the self-
adaptive control parameters for DE when solving global optimization problems
with simple bounds. In most original DE, three points are chosen randomly for
mutation and the base point is then chosen at random within the three. This
has an exploratory effect but it slows down the convergence of DE. Kaelo and
Ali [14] proposed a modified mutation for differential evolution.



The herein presented modified constrained differential evolution algorithm -
mCDE - for constrained nonlinear optimization problems (1) includes:

1) the self-adaptive control parameters F and Cr, as proposed by Brest et al.;
2) a modified mutation that mixes the modification proposed by Kaelo and Ali

with the cyclical use of the overall best point as the base point;
3) the inversion operation;
4) a modified selection that is based on the fitness of individuals;
5) the elitism.

The modification in mutation allows mCDE to keep the exploration as well as
enhance the exploitation around the overall best point. In modified selection of
mCDE, we implement and test the three different techniques described so far for
calculating the fitness of individuals that are capable to handle the constraints of
problems (1). The modified constrained differential evolution is outlined below.

The target point of mCDE, at iteration/generation z, is defined by xi,z =
(xi1,z, xi2,z, . . . , xin,z), where n is the number of variables of the optimization
problem and i = 1, 2, . . . , N . The initial population is chosen randomly and
should cover the entire component spaces.

Self-adaptive control parameters: In mCDE, we use the self-adaptive control
parameters for F and Cr, as proposed by Brest et al. [3] by generating a different
set (Fi, Cri) for each point xi in the population. The new control parameters
for the next generation Fi,z+1 and Cri,z+1 are calculated by

Fi,z+1 =

{

Fl + λ1 × Fu if λ2 < τ1
Fi,z otherwise

Cri,z+1 =

{

λ3 if λ4 < τ2
Cri,z otherwise,

where λk ∼ U[0, 1], k = 1, . . . , 4 and 0 < τ1, τ2 < 1 represent the probabilities
to adjust parameters Fi and Cri, respectively, and 0 < Fl < Fu < 1, so the
new Fi,z+1 takes a value from (0, 1) in a random manner. The new Cri,z+1

takes a value from [0, 1]. Fi,z+1 and Cri,z+1 are obtained before the mutation is
performed. So, they influence the mutation, crossover and selection operations
of the new point xi,z+1.

Modified mutation: In mCDE, this is a mixture of two different types of
mutation operations. We use the mutation proposed in [14]. After choosing three
points randomly, the best point among three based on the fitness function is
selected for the base point and the remaining two points are used as differential
variation, i.e., for each target point xi,z, a mutant point is created according to

vi,z+1 = xr3,z + Fi,z+1(xr1,z − xr2,z), (5)

where r1, r2, r3 are randomly chosen from the set {1, 2, . . . , N}, mutually dif-
ferent and different from the running index i and r3 is the index with the best
fitness (among the three points). This modification has a local effect when the
points in the population form a cluster around the global minimizer.



Furthermore, at every B generations, the best point found so far is used as
the base point and two randomly chosen points are used as differential variation,
i.e.,

vi,z+1 = xbest + Fi,z+1(xr1,z − xr2,z). (6)

This modified mutation allows mCDE to maintain its exploratory feature as well
as at the same time to exploit the region around the best individual point in the
population expediting the convergence.

Crossover: In order to increase the diversity of the mutant points’ components,
crossover is introduced. To this end, the crossover point ui,z+1 is formed, where

uij,z+1 =

{

vij,z+1 if (rj ≤ Cri,z+1) or j = si
xij,z if (rj > Cri,z+1) and j 6= si.

(7)

In (7), rj ∼ U[0, 1] performs the mixing of jth component of points, si is ran-
domly chosen from the set {1, 2, . . . , n} and ensures that ui,z+1 gets at least one
component from vi,z+1.

Inversion: Since in mCDE, a point has n-dimensional real components, inver-
sion [13] can easily be applicable. With the inversion probability (pinv ∈ [0, 1]),
two positions are chosen on the point ui, the point is cut at those positions, and
the cut segment is reversed and reinserted back into the point to create the trial
point u′

i. In practice, mCDE with the inversion has been shown to give better
results than those obtained without the inversion. An illustrative example of
inversion is shown in Figure 1.

| |

ui,z+1 = ui1,z+1 ui2,z+1 ui3,z+1 ui4,z+1 ui5,z+1 ui6,z+1 ui7,z+1 ui8,z+1

⇓
| |

u
′

i,z+1 = ui1,z+1 ui2,z+1 ui6,z+1 ui5,z+1 ui4,z+1 ui3,z+1 ui7,z+1 ui8,z+1

Fig. 1. Inversion used in mCDE

Bounds check: When creating the mutant point and when the inversion op-
eration is performed, some components can be created outside the bound con-
straints. So, in mCDE after inversion the bounds of each component should be
checked with the following projection of bounds:

u′

ij,z+1 =







lj if u′

ij,z+1 < lj
uj if u′

ij,z+1 > uj

u′

ij,z+1 otherwise.

Modified selection: In original DE, the target and the trial points are com-
pared based on their corresponding objective function value to decide which
point becomes a member of next generation, that is if the trial point’s objective



function is less than or equal to the that of target point, then the trial point will
be the target point for the next generation.

In this paper, for constrained nonlinear optimization problems, we propose a
modified selection based on one of the fitness functions of individuals discussed
so far (Section 2). When using the stochastic ranking technique, all the target
points at generation z and trial points at generation z + 1 are ranked together
and their corresponding fitness ΦSR are calculated. Then the modified selection
is performed, i.e., the trial and the target points are compared to decide which
will be the new target points for the next generation based on their calculated
fitness by the following way

xi,z+1 =

{

u′

i,z+1 if ΦSR(u
′

i,z+1) ≤ ΦSR(xi,z)
xi,z otherwise.

A similar procedure is performed when the global competitive ranking tech-
nique is implemented. After performing selection in mCDE, the best point is
chosen in the current generation based on the lowest fitness of the target points.

On the other hand, when using the feasibility and dominance rules, the trial
and the target points are compared based on the three feasibility and dominance
principles to decide which will be the new target points for the next generation.
After performing selection, the fitness function ΦFD for all the target points are
calculated, and the best point based on the lowest fitness function in the current
generation is chosen. We remark that this point is the overall best point in the
entire generations so far.

Elitism: The elitism is also performed to keep the best point found so far in
the entire generations. The elitism aims at preserving in the entire generations
the individual point that, with the constraint violation 0 or smaller than others,
has the smallest objective function. This is required when either the stochastic
ranking or the global competitive ranking is used to calculate fitness of individ-
uals. We remark that in these two techniques, fitness values of individuals are
calculated at every generation based on their corresponding ranks. Thus, the fit-
ness of best individual point (based on the objective function and the constraint
violation) may not be the lowest one.

Termination criterion: Let Gmax be the maximum number of generations.
If fbest is the best objective function value found so far and fopt is the
known optimal value, then our proposed mCDE algorithm terminates if z >
Gmax or |fbest − fopt| ≤ η, for a small positive number η.

mCDE algorithm: The algorithm of the herein proposed modified constrained
differential evolution for constrained nonlinear optimization problems is de-
scribed in Algorithm 1.

4 Experimental Results

We code mCDE in C with AMPL [11] interfacing and compile with Microsoft
Visual Studio 9.0 compiler in a PC having 2.5 GHz Intel Core 2 Duo processor



Algorithm 1 mCDE algorithm

Require: N , Gmax, B, Pf , Fl, Fu, τ1, τ2, pinv, and η.
1: Set z = 1. Randomly initialize Fi,1, Cri,1 and the population xi,1 ∀i = 1, . . . , N .
2: Calculate the fitness Φ(xi,1), for all i, and perform elitism to choose fbest and xbest.
3: while the termination criterion is not met do
4: for i = 1 to N do

5: Compute the control parameters Fi,z+1 and Cri,z+1.
6: if MOD(z + 1, B) = 0 then

7: Compute the mutant point vi,z+1 using (6).
8: else

9: Compute the mutant point vi,z+1 using (5).
10: end if

11: Perform the crossover to make point ui,z+1.
12: if γ ∼ U[0, 1] ≤ pinv then

13: Perform inversion to make the trial point u′

i,z+1.
14: end if

15: Check the bounds of the trial point.
16: end for

17: Calculate the fitness Φ(xi,z), Φ(u
′

i,z+1), for all i.
18: Perform modified selection.
19: Perform elitism to choose fbest and xbest. Set z = z + 1.
20: end while

and 4 GB RAM. We set N = min(100, 10n), B = 10, Pf = 0.45, τ1 = τ2 = 0.1,
Fl = 0.1, Fu = 0.9, pinv = 0.05 and η = 10−6. We consider 13 benchmark con-
strained nonlinear optimization problems [21]. Their characteristics are outlined
in Table 1. For these problems, we consider an individual point as a feasible one
if ζ(x) ≤ δ, where δ is a very small positive number. Here we set δ = 10−8.

Table 1. Characteristics of the test problems

Prob. Type of f fopt n m1 m2 m

g01 quadratic -15.0000 13 9 0 9
g02 general -0.8036 20 2 0 2
g03 polynomial -1.0005 10 0 1 1
g04 quadratic -30665.5387 5 6 0 6
g05 cubic 5126.4967 4 2 3 5
g06 cubic -6961.8139 2 2 0 2
g07 quadratic 24.3062 10 8 0 8
g08 general -0.0958 2 2 0 2
g09 general 680.6301 7 4 0 4
g10 linear 7049.2480 8 6 0 6
g11 quadratic 0.7499 2 0 1 1
g12 quadratic -1.0000 3 1 0 1
g13 general 0.0539 5 0 3 3



At first, we compare the three different variants of mCDE: a) mCDE FD
(based on feasibility and dominance rules), b) mCDE SR (based on stochastic

ranking) and c) mCDE GR (based on global competitive ranking) using the per-
formance profiles as described in [7]. A comparison with other solution methods
available in literature is also included. To be able to fairly compare the variants
mCDE SR and mCDE GR with the variant mCDE FD, after the modified selec-
tion step of the algorithm, the fitness function was recalculated using (2) so that
the best and the worst target points in the population are identified according
to the objective function and constraint violation.

4.1 Comparison by Performance Profiles

We ran the three variants of mCDE for 30 times and recorded the results. We
used different Gmax for the 13 problems, but used the same value for all the vari-
ants in comparison. The performance profiles proposed by Dolan and Moré [7] are
the graphical representation of the performance ratio of different solvers/variants
when solving a set of test problems. The profiles plot the cumulative distribu-
tion function of the performance ratio obtained from an appropriate performance
metric.

Let P be the set of test problems and S be the set of all variants of mCDE in
comparison. In our comparative study, the metric, m(p,s), found by variant s ∈ S
on problem p ∈ P, measures the average improvement of the objective function
values, based on a relative scaled distance to the optimal objective function value
fopt [1], defined by

m(p,s) =
favg(p,s) − fopt

fw − fopt
, (8)

where favg(p,s) is the average of the best solutions obtained by the variant s on
problem p after 30 runs and fw is the worst objective function value of problem
p after 30 runs among all variants. The performance ratio is thus defined by

r(p,s) =







1 +m(p,s) − q if q ≤ 10−5

m(p,s)

q
otherwise,

where q = min{m(p,s) : s ∈ S}.
The fraction of problems for which variant s has a performance ratio r(p,s)

within a factor τ ∈ R, is given by ρs(τ) = (nPτ
)/(nP ), where nPτ

is the number
of problems in P with r(p,s) ≤ τ and nP is the total number of problems in P.
ρs(τ) is the probability (for s ∈ S) that the performance ratio r(p,s) is within a
factor τ of the best possible ratio.

Figure 2 shows the profiles of the performance metric in (8). If we are only
interested in knowing which variant is the most efficient, in the sense that it
reaches the best solutions mostly, we compare the values of ρs(1), for s ∈ S, and
find the highest value which is the probability that the variant will win over the
remaining ones. However, to assess the robustness of variants, we compare the
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Fig. 2. Performance profile based on the average improvement of function values

values of ρs(τ) for large values of τ . The variant with the largest probability is
the most robust one. In this figure it is shown that the variant mCDE GR wins
over the other two variants. Hence, the comparison with other solution methods
available in literature uses the variant mCDE GR, hereafter denoted by mCDE.

4.2 Comparison With Other Methods

We also compare mCDE with the stochastic ranking, SRES, presented in [21] and
the global competitive ranking, GRES, presented in [22]. The authors proposed
these techniques based on a (30, 200) evolution strategy. An adaptive penalty
scheme for constraints handling with dynamic use of variants of differential evo-
lution (DUVDE) [23] is also used in this comparison. According to [21, 22], we
set Gmax = 1750 for all problems except problem g12, where Gmax = 175. Here,
we aim to get a solution within 0.001% of the known optimal solution fopt.

Tables 2 and 3 show the experimental results of the 13 problems, where
‘fbest’ is the best of the objective function values obtained among 30 runs, ‘favg’
is the average of the best objective function values and ‘stdf ’ means the standard
deviation of objective function values among 30 runs. The results from SRES,
GRES and DUVDE are taken from their corresponding literatures. In mCDE, we
use the population size N dependent on the dimension of the test problem and
in DUVDE the authors used the population size 50 and the maximum number
of generations 3684 for all the test problems. Problems g12 and g13 were not
considered with DUVDE. From Tables 2 and 3 we may conclude that for most of
the problems, and with respect to all measures of comparison, mCDE performs
rather well when compare with SRES, GRES and DUVDE.

4.3 Solving Mixed-Integer Design Problems

We now consider four engineering design problems to show the effectiveness of
our proposed method when solving problems with discrete, integer and con-



Table 2. Experimental results from SRES and GRES

Prob.
SRES GRES

fbest favg stdf fbest favg stdf

g01 -15.0000 -15.0000 0.00E+00 -15.0000 – 0.00E+00
g02 -0.8035 -0.7820 2.00E-02 -0.8035 – 1.70E-02
g03 -1.0000 -1.0000 1.90E-04 -1.0000 – 2.60E-05
g04 -30665.5390 -30665.5390 2.00E-05 -30665.5390 – 5.40E-01
g05 5126.4970 5128.8810 3.50E+00 5126.4970 – 1.10E+00
g06 -6961.8140 -6875.9400 1.60E+02 -6943.5600 – 2.90E+02
g07 24.3070 24.3740 6.60E-02 24.3080 – 1.10E-01
g08 -0.0958 -0.0958 2.60E-17 -0.0958 – 2.60E-17
g09 680.6300 680.6560 3.40E-02 680.6310 – 5.80E-02
g10 7054.3160 7559.1920 5.30E+02 * – *
g11 0.7500 0.7500 8.00E-05 0.7500 – 7.20E-05
g12 -1.0000 -1.0000 0.00E+00 -1.0000 – 0.00E+00
g13 0.0539 0.0675 3.10E-02 0.0539 – 1.30E-04

(–) not available; (*) not solved

Table 3. Experimental results from DUVDE and mCDE

Prob.
DUVDE mCDE

fbest favg stdf fbest favg stdf

g01 -15.0000 -12.5000 2.37E+00 -15.0000 -15.0000 1.16E-06
g02 -0.8036 -0.7688 3.57E-02 -0.8036 -0.8007 4.95E-03
g03 -1.0000 -0.2015 3.45E-01 -1.0000 -1.0000 3.90E-05
g04 -30665.5000 -30665.5000 0.00E+00 -30665.5387 -30665.5387 2.38E-05
g05 5126.4965 5126.4965 0.00E+00 5126.4978 5126.4979 1.83E-04
g06 -6961.8000 -6961.8000 0.00E+00 -6961.8161 -6950.5609 6.16E+01
g07 24.3060 30.4040 2.16E+01 24.2316 24.2317 7.44E-05
g08 -0.0958 -0.0958 0.00E+00 -0.0958 -0.0958 2.71E-06
g09 680.6300 680.6300 3.00E-05 680.6301 680.6301 1.38E-06
g10 7049.2500 7351.1700 5.26E+02 7049.2533 7053.3441 6.99E+00
g11 0.7500 0.9875 5.59E-02 0.7500 0.7506 3.11E-03
g12 † † † -1.0000 -1.0000 2.33E-06
g13 † † † 0.0539 0.0539 3.53E-17

(†) not considered

tinuous variables. Engineering problems with mixed-integer design variables are
quite common. Therefore, the convergence behavior of our proposed mCDE when
handling discrete and integer variables is to be provided.

For discrete variables, we randomly generate values from an appropriate dis-
crete set in the two procedures: initialization and mutation.

For integer variables, a simple heuristic that relies on the rounding off to the
nearest integer at evaluation stages is implemented.

We considered four well-known engineering design problems. Since the opti-
mal solutions of the considered problems are unknown, we used only Gmax for



the termination criterion and δ = 0. For each problem 30 independent runs were
carried out.

Spring Design

This is a real world optimization problem involving discrete, integer and contin-
uous design variables. The objective is to minimize the volume of a compression
spring under static loading. The design problem has three variables and eight
inequality constraints [15], where x1, the wire diameter, is taken from a set of
discrete values and x3, the number of coils, is integer. We set Gmax = 500.
We compare the obtained results from our mCDE with DE [15] and ranking
selection-based particle swarm optimization, RPSO [26]. The comparative re-
sults are shown in Table 4.

Table 4. Comparative results of spring design problem

Method x1 x2 x3 fbest Gmax

DE 0.283 1.223 9 2.65856 650
RPSO 0.283 1.223 9 2.65856 750
mCDE 0.283 1.223 9 2.65856 500

Pressure Vessel Design

The design of a cylindrical pressure vessel with both ends capped with a hemi-
spherical head is to minimize the total cost of fabrication [5, 25]. The problem
has four design variables and four inequality constraints. This is a mixed vari-
ables problem where x1, the shell thickness, and x2, the head thickness, are
discrete of integer multiples of 0.0625 inch., and other two are continuous. We
set Gmax = 1000. The comparative results from mCDE with hybrid genetic al-
gorithm, HGA [5] and cost-effective particle swarm optimization, CPSO [25] are
shown in Table 5.

Table 5. Comparative results of pressure vessel design problem

Method x1 x2 x3 x4 fbest Gmax

HGA 0.8125 0.4375 42.0870 176.7791 6061.123 5000
CPSO 0.8125 0.4375 42.0984 176.6366 6059.714 10000
mCDE 0.8125 0.4375 42.0984 176.6366 6059.714 1000

Speed Reducer Design

The weight of the speed reducer is to be minimized subject to the constraints
on bending stress of the gear teeth, surface stress, transverse deflections of the
shafts and stress in the shafts as described in [5, 25]. There are seven variables
and 11 inequality constraints. This is a mixed variables problem, where x3 is
integer (number of teeth) and the others are continuous. We set Gmax = 500.
The comparative results among mCDE, HGA and CPSO are shown in Table 6.



Table 6. Comparative results of speed reducer design problem

Method x1 x2 x3 x4 x5 x6 x7 fbest Gmax

HGA 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.342 5000
CPSO 3.5 0.7 17 7.3 7.8000 3.3502 5.2867 2996.348 10000
mCDE 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.342 500

Stepped Cantilever Beam Design

The design variables of a stepped cantilever beam are the widths and depths
of rectangular cross-sections. The objective of this problem is to minimize the
volume of the beam under static loading [27]. This is a mixed-integer design
problem having 10 variables and 11 constraints, where x1 and x2 are integer,
x3 to x6 are discrete and the remaining are continuous. We set Gmax = 1000.
The comparative results from our mCDE with genetic algorithm, GA [9], and
linearization techniques method [27] are shown in Table 7.

Table 7. Comparative results of stepped cantilever beam design problem

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 fbest Gmax

GA 3 60 3.1 55 2.6 50 2.2700 45.2500 1.7500 35.0000 64447.00 –
in [27] 3 60 3.1 55 2.6 50 2.2045 44.0907 1.7498 34.9960 63892.56 –
mCDE 3 60 3.1 55 2.6 50 2.2055 44.0855 1.7502 34.9924 63897.45 1000

(–) not available

From the Tables 4 - 7, it is found that mCDE is competitive with other
solution methods when solving engineering design problems.

From the above discussion it is clear that the herein presented modified
constrained differential evolution algorithm, based on global competitive ranking
for constraints handling, is rather effective when converging to global solutions.

5 Conclusions

In this paper, to make the DE methodology more efficient to handle the con-
straints, a modified constrained differential evolution algorithm (mCDE) is pro-
posed. The modifications focus on the self-adaptive control parameters, a mod-
ified mutation, a modified selection and the elitism. Inversion has also been
implemented in the proposed mCDE.

The modifications that mostly influence the efficiency of the algorithm are
the following: a) the mixed modified mutation, aiming at exploring both the
entire search space (when using the mutation as in [14]) and the neighborhood
of the best point found so far (when using the best point as the base point
cyclically); b) the modified selection, to handle the constraints effectively, that
uses a fitness function based on the global competitive ranking technique. In this
technique, fitness of all target and trial points are calculated all together after



giving them ranks based on the objective function and the constraint violation
separately, for competing in modified selection to decide which points win for the
next generation. This technique seems to have stricken the right balance between
the objective function and the constraint violation for obtaining a global solution
while satisfying the constraints.

To test the effectiveness of our mCDE, 13 benchmark constrained nonlin-
ear optimization problems have been considered. These problems have also been
solved with the stochastic ranking and the feasibility and dominance rules tech-
niques and a comparison has been carried out based on their performance pro-
files. We could observe that the performance of the mCDE with the global com-
petitive ranking is relatively better than the other two in comparison. The nu-
merical experiments also show that mCDE is rather competitive when compared
with the other solution methods available in literature. Further, it is also found
that the mCDE is competitive with other known heuristics when solving mixed-
integer engineering design problems.
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