
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

REAL-TIME AURALISATION SYSTEM FOR VIRTUAL MICROPHONE POSITIONING

Tom Barker

DETI� , IEETA:

Universidade de Aveiro
Aveiro, Portugal

tommysb@gmail.com

Guilherme Campos

DETI� , IEETA:

Universidade de Aveiro
Aveiro, Portugal

guilherme.campos@ua.pt

Paulo Dias

DETI� , IEETA:

Universidade de Aveiro
Aveiro, Portugal

paulo.dias@ua.pt

José Vieira

DETI� , IEETA:

Universidade de Aveiro
Aveiro, Portugal

jnvieira@ua.pt

Catarina Mendonça

CCG; , Algoritmi Centre
Universidade do Minho

Guimarães, Portugal
catarina.mendonca@ccg.pt

Jorge Santos

EPsi,§ , CCG; , Algoritmi Centre
Universidade do Minho

Guimarães, Portugal
jorge.a.santos@psi.uminho.ptr

ABSTRACT

A computer application was developed to simulate the process of
microphone positioning in sound recording applications. A dense,
regular grid of impulse responses pre-recorded on the region of
the room under study allowed the sound captured by a virtual mi-
crophone to be auralised through real-time convolution with an
anechoic stream representing the sound source.

Convolution was performed using a block-based variation on
the overlap-add method where the summation of many small sub-
convolutions produced each block of output data samples. As the
applied RIR filter varied on successive audio output blocks, a short
cross fade was applied to avoid glitches in the audio.

The maximum possible length of impulse response applied
was governed by the size of audio processing block (hence la-
tency) employed by the program. Larger blocks allowed a lower
processing time per sample. At 23.2ms latency (1024 samples at
44.1kHz), it was possible to apply 9 second impulse responses on
a standard laptop computer.

1. INTRODUCTION

A recording engineer can choose where to place the microphone
relative to a sound source to achieve different recording effects.
Each possible position will impart a different characteristic on the
recorded audio; for example, the ratio of direct to reverberant sound
(clarity) and the frequency response (equalisation), two major fac-
tors in indoor sound recording quality, can be largely controlled by

�Department of Electronics, Telecomunications and Informatics
: Institute of Electronics and Telematics Engineering of Aveiro
; Centre for Computer Graphics
§ School of Psychology

skillful microphone positioning. The FORTIUS project [1] inves-
tigates the subjective, empirical microphone positioning criteria
used by recording engineers and how they correlate to the objec-
tive characteristics of the sound field, envisaging the development
of an intelligent robotic microphone positioning system. Given
the location of the sound source, the room acoustic effects for
each recording position are completely described by the respective
room impulse response (RIR); any objective acoustic parameter
can be extracted from it. Convolving this RIR with an anechoic
recording of the sound source, it is possible to auralise the audio
stream that would be captured by a microphone at that position.
Therefore, objective characterisation of the sound field amounts to
obtaining a dense grid of RIR in the region of interest. Since room
impulse responses can be accurately and efficiently measured in
situ, with one popular method being the logarithmic sine-sweep
technique proposed by [2], a 2-axis position control platform (fig-
ure 1) was adapted and programmed to perform this task automat-
ically.

Developing a virtual microphone positioning tool based on the
pre-recorded RIR, i.e. a computer application with a graphical user
interface (GUI) which allows the user to move the virtual micro-
phone within the representation of the RIR-grid region and au-
ralise the output in real time, is invaluable for the FORTIUS inves-
tigation, as it can immensely facilitate subjective positioning data
collection and systematic evaluation tests. The main challenge,
addressed in this paper, is convolving the source anechoic audio
stream with the corresponding impulse response to obtain the mi-
crophone output in real time, with seamless transitions between
RIR as the microphone position is changed.

DAFX-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55627359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tommysb@gmail.com
http://www.det.ua.pt/
guilherme.campos@ua.pt
http://www.det.ua.pt/
paulo.dias@ua.pt
mailto:jnvieira@ua.pt
mailto:catarina.mendonca@ccg.pt
 www.ccg.pt
mailto: jorge.a.santos@psi.uminho.ptr

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

2. AURALISATION PROCESSING

Figure 1: Mechanical platform used for recording a 2-dimensional
grid of room impulse responses.

The grid of recordings was used as the primary source mate-
rial for the virtualisation software described. Convolution between
an audio stream and any of the measured RIRs allows the user to
simulate the positioning of a microphone at points within the grid.

The IRs used in the auralisation were measured sequentially
using logarithmic chirps, [2] over an 8x10 grid spaced at 10cm.
These recordings were later synchronised in time as described in
[3]. The anechoic audio source material used was from a library
of recordings held at the Universidade de Aveiro.

The convolution method employed was based on the overlap-
add method, [4] where blocks of data for output are produced ef-
ficiently by retaining a portion of the previous output calculation.
An adaptation of the traditional overlap-add method takes account
of the variation of the filter applied on each block of output data.
Long RIRs (>3s at 44.1kHz) are efficiently processed so that for
each block of output data, redundant sample calculations are re-
duced. The filter may change on successive output block calcu-
lations, so retaining samples for the overlap-add method is only
useful in calculating samples to cross-fade into new data blocks.

Real-time binaural audio spatialisation using head-related trans-
fer functions (HRTFs) presents a similar problem and requires sim-
ilar convolution and cross-fading procedures. There is, however a
significant difference in terms of the length of the IR kernel; RIRs,
used in this case, are a few seconds long, while HRTFs, used in
binaural audio spatialisation, are in the ms range (normally 128
samples at 44.1 kHz), allowing short DFTs of incoming data to
be used directly in convolution. The RIR convolution procedure
addressed in this paper is therefore much more complex and real-
time operation becomes a comparably non-trivial challenge.

2.1. Convolution for Auralisation

For fixed microphone and source positions, auralisation is pro-
duced by convolution between an incoming audio stream, xrns
and the RIR filter hrns:

yrns � xrns � hrns (1)

For signals longer than a few samples, it is almost always more
efficient to perform convolution in the frequency domain. The Dis-
crete Fourier Transform (DFT) turns the otherwise computation-
ally expensive time-domain convolution operations into simple dot
products between discrete frequency spectra:

yrns � iDFT pXpfq �Hpfqq (2)
Moreover, since the RIR data are pre-recorded, the correspond-

ing DFTs can also be pre-calculated, saving time in the production
of convolution output. The use of long RIRs requires the DFT of
a large number of previous samples. These are obtained in small
portions using shorter length DFTs, but retention of the frequency-
domain data allows efficient reuse in calculating successive output
data. Figure (2) highlights how calculated data can be reused to
improve throughput for the real-time application described.

DFT

DFT

� iDFT

h[n]

x[n]

H[f]

X[f]

Y[f] y[n]

pre-calculated

retained in buffer to
prevent re-calculation

Figure 2: Block diagram indicating where efficiencies useful in
increasing real-time throughput can be achieved.

The overlap-add (OA) method[4] of convolution allows for
output yrns to be produced in segments, so that immediate output
can be produced without requiring the complete set of data (as is
the case with streaming audio input). Using OA, only the samples
required for immediate audio output are calculated at each stage.

2.2. Auralisation with changing microphone position

In this application, the RIR changes according to the position of
the microphone, tracked in real time. This means that the output
signal for auralisation, y, must be divided into blocks for process-
ing. The overlap-add method accommodates this requirement very
well. The blocks must be relatively short, since their length deter-
mines the response time of the system. It must be emphasized,
however, that regardless of block length, input signal samples as
far back as the RIR length must be correctly integrated into the
output sum. The nearest neighbour recorded impulse response is
chosen in each instance. The key to real-time auralisation under
these conditions is to perform the minimal number of calculations
necessary to obtain the current output block data. A method of
convolution was employed to ensure just that. The use of long
DFTs is avoided by transforming the incoming data in small blocks
of 128 to 4096 samples. Summation of multiple (frequency do-
main) convolutions between pairs of data blocks allows a single
block of output data to be produced efficiently. Due to its linear
nature, a single iDFT can be used to transform the summation of
many frequency-domain block convolution pairs; the result is the
same as would be achieved through summation in the time domain,
which would require an iDFT for each block pair. Division of the
convolution into blocks also ensures that all DFTs are performed
on block sizes which are close to powers of 2; transforms of this
size are generally carried out more efficiently.

In the general case, a different RIR is applied to each succes-
sive block of input data, since the user may have moved to a new

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

virtual position. This would make storing data for use with the next
block calculation redundant. However, these retained data are used
to generate the samples for cross-fading, increasing efficiency by
re-use of prior calculation. The crossfade is a requirement to avoid
artefacts produced by sudden transitions between RIR filters.

Each output block is generated using the OA method, through
the summation of the latter and former halves of the output of con-
volutions. Since the filter being applied potentially changes for
each block of output data, both portions of the overlapping region
must be calculated for each output block.

2.3. Convolution Method

Incoming blocks of audio data, length N, are padded with zeros
to the length 2N-1. They then undergo the DFT and are stored
in a circular buffer. The length of the RIRs being used influences
the size of the buffer. An RIR length L requires a storage buffer
of (L/N)+1 blocks of data. RIR data is transformed into the fre-
quency domain offline. For each block of output (length N) pro-
duced, only the DFT of incoming data and iDFT of each half of
the overlap add convolution need be calculated in addition to the
dot-product multiplications. Since only N output samples are re-
quired for each output block, these data are calculated through the
summation of many short sub-convolutions as shown in figure (3).

2.3.1. Convolution using real data

Any sample in the output stream is computed by the convolution
between the RIR filter h, (length L) and the input stream, x. The
value of each output sample is described by the standard convo-
lution sum. Since h is real valued and causal, each output sam-
ple value is calculated from a summation involving the previous
L input samples and all non-zero samples of the RIR. RIR sample
values before time t � 0 are zero-valued and do not contribute
to the output sum. For this application, the convolution sum can
therefore be written as:

yrns �
L�1̧

k�0

xrkshrn� ks (3)

2.3.2. Block Based Convolution Notation

To explain how blocks of samples are combined within the con-
volution scheme, a notation for separate regions of samples is de-
fined. Sample indices are such that the first sample in time is xr0s
and hr0s in the incoming audio stream and any RIR respectively.

Dividing both input xrns and RIR streams hrns into blocks of
length N, the mth blocks, xBm and hBm (where m ¡� 0), are
defined as:

xBm � xrmN ; pm� 1qN � 1s (4)

hBm � hrmN ; pm� 1qN � 1s (5)

For example, with N � 512, the third block of the input
stream (m � 2) is xr1024; 1535s.

A block of output for the static RIR case (no change in mi-
crophone position) is calculated as the overlap-add of two inter-
mediate outputs. Each intermediate output is produced through
summation of convolutions between blocks as described:

yB1
n
�

NB�1¸
l�0

xBrls
� hBrn�ls

(6)

where
NB � L{N (7)

It is assumed that L is an integer multiple of N , and this can be
achieved through zero padding where necessary.

2.3.3. Output generation from block convolution

Convolution is performed in the frequency domain (figure 2), and
summation of block convolutions occurs before transformation back
to the time domain. An output of length 2N�1 is produced. Sum-
mation (equation 9) of the first N � 1 samples with the last N � 1
samples of the previous block calculation (yB1

pn�1q
shown in fig-

ure (3)) produces N � 1 valid output samples (sample N requires
no summation). Due to the use of frequency domain convolution
one DFT and two iDFTs of length (2N�1q are required per output
block.

From (3) and (6) each sample in yB1
n

is :

yB1
nrks

�
NB�1¸
l�0

L�1̧

k�0

xBrlsrkshBrn�lsrm�ks (8)

In the non-static RIR case (change in microphone position),
the previous N�1 samples are calculated using the previous stored
input data and the current RIR data leading to the expression:

yBn rns �

"
yB1

pn�1q
rn�N s � yB1

n
rns 0 � n N � 1

yB1
n
rns n � N � 1

(9)
Still, samples

yB1
n
rN ; 2N � 1s (10)

calculated with the previous RIR, should be retained for the cross-
fade procedure described in the following section.

In the case of the static RIR, with the same filter applied to all
output blocks, equation (8) is all that is required to generate correct
output.

2.4. Calculation of the Crossfade

2.4.1. Creating Crossfade Data

In order to reduce audible glitches as different filters are applied to
successive blocks of audio data, a crossfade must be applied. Con-
volution of the current block of input data and the previous RIR
is faded with the convolution with the current block and current
RIR (figure 4). The overhead of creating one block of crossfade
data is roughly an additional 50% of the previous block, since half
of the calculation was already performed in the previous time pe-
riod, as per equation (10). Calculating an entire block of data for
crossfading allowed experimentation with crossfade length. Note
that:

• The shorter the processing block length, N, the less distance
the user’s cursor can move between block outputs, since the
position is polled more regularly. Less extreme variations
of RIR will occur, since RIRs close to the current one will
be selected on subsequent output.

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

L

xBmxBpm�2qxBpm�L{N�1q

N

xBpm�1q

h0 h1 hpL{N�1qh2

Input stream, xrms

h0 h1 hpL{N�1qh2RIR, hrms

xBpm�L{Nq

�
°pL{Nq�1

l�0 xBpm�lq
� hBplq

Intermediate output

Intermediate output

� y1Bpn�1q

� y1Bpnq

2N � 1

RIR, hrms

y1Bpn�1q

Sum convolution between
pairs of blocks to produce:

�
°L{N

l�1 xBpm�lq
� hBpl�1q

y1Bpnq

Sum convolution between
pairs of blocks to produce:

Samples rN ; 2N � 1s
retained for generation
of crossfade block data.

Output block yBn produced from
summation of intermediate outputs yBn Output Block
y1Bpnq

and y1Bpn�1q
as per equation (9).

yBn rns �

"
yB1

pn�1q
rn�N s � yB1

n
rns 0 � n N � 1

yB1
n
rns n � N � 1

t

Figure 3: Diagrammatic representation of how blocks of the input stream x and an RIR, h, are combined to produce a block of output
data. In this example, lengthphq � 4N . All convolutions are performed in the frequency domain. Block pairs indicated with arrows are
convolved, and added to a cumulative output sum, y1Bn

or y1Bpn�1q. Blocks y1Bn
and y1Bpn�1q are overlap-add combined to produce yBn

as per equation (9).

• The longer the crossfade, the less sudden the transition be-
tween output blocks.

• During the crossfade, output is only unrealistic when the
RIRs applied on successive blocks are different.

With these points in mind, it was found that keeping the crossfade
proportional to block length was the best option. A linear fade of
10% of the block length was applied.

At each output block instance, two blocks of data are available
for output. They consist of the current input block, xBn convolved
with both the current and previous RIRs y1 and y2, to produce two
blocks of output y1Bpnq

and y2Bpnq
respectively, (figure 4).

2.5. Algorithm Pseudocode

Pseudocode describing the generation of the program output is di-
vided into two sections: Set Up and Iterative Processing. In the
set up, preprocessing is carried out to initialise all data for efficient
frequency domain convolution. During the iterative processing,
the convolution method of producing valid output data for each
block of input data is described.

2.5.1. Set Up

At the initialisation of the program, the environment is set up to
reduce processing times when incoming audio data is processed.
Buffers are initialised and RIR audio data is partitioned into blocks
and transformed into the frequency domain. The set up procedure
is as follows:

• Determine length of RIRs to be convolved pLq, and block
size pNq. Define number of blocks as NB � ceilpL{Nq.

• Allocate circular buffer for NB � 1 blocks of incoming
data, length 2N � 1

• Read data from RIR files block by block. Transform into
frequency domain, stored in NB buffers 2N � 1 long.

2.5.2. Iterative Processing

The following code is continually looped:

• Get cursor position and determine corresponding RIR.

• Read block of incoming audio data

• Perform DFT on incoming data and store latest block in
circular buffer

• Reset all output arrays to zero

• To generate crossfade block data:

• Generate the data for the crossfade block y1Bpnq
using pre-

vious RIR position data y1B1
pn�1q

• For (K = NB; K++)

– Read the K’th most recent block of complex data from
the circular buffer

– Perform sample-by-sample multiplication with com-
plex RIR data block (K) and sum result into output
array Y1B1

n
.

• iDFT Y1B1
n

and sum with y2B1
pnq

rN ; 2N�1s from previous
block calculation to produce crossfade block.

• To generate current output block data:

• For (K = NB; K++)

– To generate Y2B1
n

– Read the K’th most recent block of complex data from
the circular buffer

DAFX-4

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

x � h11Bpn�1q

x � h11Bpnq

y1Bpnq y1Bpn�1q

x � h11Bpn�1q

x � h12Bpnq

x � h12Bpn�1q

y2Bpn�1q y2Bpn�2q

x � h12Bpn�2q

t

(OA) =overlap-add
(OA)

(OA)

(OA)

(OA)

Output blocks

Output blocks

Figure 4: Crossfade Calculation Scheme. Three sub-blocks cal-
culated with equation (6) are summed to create pairs of output
blocks. Output blocks y1Bpn�1q

and y2Bpn�1q
are crossfaded, so

that change in the applied convolution filter does not produce a
sudden, perceptible transition in the audio output.

– Perform sample-by-sample multiplication with com-
plex RIR data block (K) and sum result into output
array Y2B1

n
.

– To generate Y2B1
pn�1q

– Read the (K+1)’th most recent block of data

– Perform sample-by-sample multiplication with com-
plex RIR data block (K) and sum result into output
array Y2B1

pn�1q
.

• Perform iDFT on output arrays Y2B1
pn�1q

and Y2B1
n

.

• Sum y2B1
pn�1q

and y2B1
pnq

as in (9).

• Retain y2B1
pnq

rN ; 2N �1s for crossfade calculation in next
iteration.

• Store RIR index for calculation of crossfade

3. PROGRAM IMPLEMENTATION

3.1. Implementation Details

The software was written in C++ for a Microsoft Windows envi-
ronment. The audio source to be convolved was a .wav file, read
using the LibSndFile library [5]. Audio output was performed us-
ing PortAudio[6] at a sample rate of 44.1kHz. Convolution was
performed in the frequency domain, and the fftw3 [7] library was
used to perform the DFT and iDFT on incoming blocks of audio
data and output blocks, respectively. A Fast Fourier Transform
(FFT) algorthm is selected by fftw3 at runtime; the fastest method
algorithm is sought within the many available to fftw3. The depth
of the search is user specifiable; the PATIENT flag was used which
results in a fairly thorough but not exhaustive search of available
methods of performing the DFTs.

3.2. User Interface

The user is presented with a small window which represents the 2-
dimensional space in which the RIRs were recorded. The position
of the mouse cursor within the window is monitored. To corre-
spond with the 8x10 grid of RIR recording positions, the window
is divided accordingly into 8x10 regions. The RIR to apply to
the incoming audio stream is chosen based on the position of the
mouse cursor. The nearest neighbour RIR is selected (figure 5).

3.3. Validation Tests

3.3.1. Convolution Validity

The result of convolutions performed using the method described
were compared with frequency domain fast convolutions calcu-
lated in Matlab. Output from the block-based convolution was cal-
culated with a static RIR and stored as a .wav file. Normalised
algorithm output was equal to that produced by direct convolution
in Matlab.

3.3.2. Changing RIR Validity

The calculation of varying RIR output was compared with simi-
lar output computed in Matlab. Within Matlab the same source
file s was convolved with two different RIRs, a and b. These
outputs were divided and concatenated so that the first portion of
a � sr1 : L{2s preceeded b � srL{2 � 1 : Ls. Within the block
based convolution, the RIR used for convolution was a prior to
block L{2�1 and b afterwards. During this test, no crossfade was
applied in either environment. Output with the proposed algorithm
was consistent with that produced directly in Matlab.

3.3.3. Crossfade Valididity

Since separate RIRs can be applied to successive blocks, a small
crossfade was applied. The crossfade was linear, and lasted for
10% of the block duration. The same data a was used for each
RIR, and the crossfade was applied as described. In all cases, the
output was the same as direct convolution a � s.

4. SYSTEM PERFORMANCE

The method exhibits a more or less linear computational increase
with increasing filter length, allowing for greater ease of calcu-
lation of system performance limits. Latencies of powers of 2
between 128 and 2048 samples were tested, and maximum RIR
lengths of between 0.5 and 10 seconds were successfully applied.

The processing time to produce one block of output was anal-
ysed for different RIR lengths. The results were measured as a
portion of the available processing time. At 44.1kHz, a 512 sam-
ple processing block allows 11.6ms to process the output, before
the next block is output. Increasing the block size increases the
available processing time, yet increases system latency, and also
the number of additions and multiplications which must be per-
formed.

4.1. Measurement method

The processing time was measured using functions inside the time.h
C header file. Time taken to perform processing of each block of
output data was measured for each block and averaged over 30s of

DAFX-5

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Grid of recorded IR positions

Loudspeaker at position (P)

Virtual microphone positioning

Room with recorded IRs Simulated Virtual environment

Simulation of sound source

at closest grid-point to cursor
at position (P) being captured

user interface window

Figure 5: How the user interface window allows the user to simulate the position of a microphone relative to a fixed sound source.

output. The computing platform was a laptop running Microsoft
Windows 7 on an Intel Core i3 M370 CPU at 2.4GHz with 3GB
of RAM. Longer RIRs of up to 10 seconds were created by ap-
pending exponentially decaying noise onto the end of shorter RIR
recordings. Shorter RIRs were produced by trimming the captured
RIRs.

4.2. Results

As the length of the RIR to be convolved increased, so did the
processing time, for all block sizes. The absolute processing time
for each block was lower for smaller block sizes, since less sam-
ples need to be calculated. The calculation time per output sample
increased with increasing RIR length, and decreased with block
size.

For longer block lengths, the processing time per block in-
creased, but as a percentage of the available computation time for
that block, decreased. Longer RIRs produced longer computation
times in all cases.

4.3. Analysis

Larger block sizes allow more efficient calculation of output sam-
ples. By shifting priority away from response time, larger chunks
of data can be processed in each step, reducing the overheads pro-
duced when transforming between time and frequency domains.
For large RIRs, the majority of the processing time is spent in mul-
tiplying frequency-domain samples rather than transforming data.
This produces a relatively linear increase in processing time with
increasing RIR length, as the number of complex multiplications
required is directly proportional to the length of the RIR applied.
The increase in per-sample computation time does not exhibit a
monotonic decrease with increasing RIR length though. As larger

Figure 6: The average time taken to process each block of output
data increased with both block size and RIR length

RIRs are used, larger contiguous chunks of memory are used to
store the data being processed, which affects the resources avail-
able to the program. The fftw library does not, by default, produce
deterministic behaviour for the same size transform between dif-
ferent executions of the program. Resources available at runtime
influence the DFT algorithm selected by fftw, and this can vary
for different RIR lengths. Slower DFT algorithms will increase
the per-sample calculation time; hence the curve shapes in figure
(6) and (7). Data movement and allocation requirements also vary

DAFX-6

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Figure 7: The percentage of block time to calculate each sample
of output decreased as processing block size increased. Increasing
RIR size produced longer computation times in all cases.

with RIR length; different compilers and computer architectures
may exhibit slightly different behaviours as a result.

5. CONCLUSIONS

The software allowed for long, varying impulse responses to be
convolved with streams of incoming audio data in real time. The
maximum length of RIR which can be convolved can be profiled
and measured for a given latency. Where the convolution will not
meet the processing deadline, response latency can be increased.

5.1. Future Work

5.1.1. Virtual Reality Auralisation

Potential use of this software is by no means restricted to the FOR-
TIUS project. The main goal is now to adapt it for virtual real-
ity auralisation systems with user position tracking (AcousticAVE
project). Large numbers of simulated RIRs can be generated off-
line using a physical modelling approach; incorporation of head-
related transfer functions as an extension of the model could pro-
vide a convincing feeling of immersion. With constraint of the
user’s position to particular paths, it would be feasible to allow a
large degree of freedom in a physically modelled virtual environ-
ment without the processing requirements of performing physical
modelling in real time.

5.1.2. Increasing Calculation Speed through Parallelisation

Convolution calculation speeds could be increased by use of mod-
ern computer architectures. The algorithm lends itself to paral-
lelisation. For example, setting the block dot products to separate
threads is likely to produce a large increase in speed on multi-core
systems, now commonly used. Processing times could realistically
be almost halved on a simple two-core system. Use of general-
purpose graphics processing units (GPGPU) is also an interesting
possibility.

5.1.3. 3D extension and GUI Refinement

A third (z) positioning axis was already fitted on the platform used
for RIR data collection, to allow automatic recording of 3D RIR
grids. Adapting the program and its GUI accordingly is straight-
forward and will improve its applicability as a training tool for
sound recording technicians. The convolution algorithm at the
core of the processing can remain the same. It is hoped that subjec-
tive feedback about the software can be obtained, especially from
experienced sound recording technicians.

6. ACKNOWLEDGMENTS

This work was funded by the FCT as part of the project ‘Aurali-
sation Models and Applications in Virtual Reality Environments’
(AcousticAVE) reference PTDC/EEA-ELC/112137/2009.

7. REFERENCES

[1] C. Rodrigues, J. Vieira, and G. Campos, “Fortius: Robot para
captação de som,” in Proc. AES Portugal, Lisbon, Portugal,
Dec. 12-13 2008.

[2] A. Farina, “Simultaneous measurement of impulse response
and distortion with a swept-sine technique,” 108th AES Con-
vention, vol. 108, pp. 1–24, 2000.

[3] A. Vieira, J. Vieira, and G. Campos, “Caracterização objec-
tiva e subjectiva de campos sonoros,” in Proc. AES Portugal,
Lisbon, Portugal, Dec. 12-13 2008.

[4] S. W. Smith, The Scientist and Engineer’s Guide to Digital
Signal Processing, vol. 3, California Technical Publishing,
1997.

[5] E. de Castro Lopo, “Libsndfile,” http://www.mega-
nerd.com/libsndfile/.

[6] R. Bencina and P. Burk, “Portaudio - an open source cross
platform audio api,” in International Computer Music Con-
ference Proceedings, 2001, http://www.portaudio.com/.

[7] M. Frigo and S. G. Johnson, “The design and implementation
of fftw3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–
231, 2005.

DAFX-7

	1 Introduction
	2 Auralisation Processing
	2.1 Convolution for Auralisation
	2.2 Auralisation with changing microphone position
	2.3 Convolution Method
	2.3.1 Convolution using real data
	2.3.2 Block Based Convolution Notation
	2.3.3 Output generation from block convolution

	2.4 Calculation of the Crossfade
	2.4.1 Creating Crossfade Data

	2.5 Algorithm Pseudocode
	2.5.1 Set Up
	2.5.2 Iterative Processing

	3 Program Implementation
	3.1 Implementation Details
	3.2 User Interface
	3.3 Validation Tests
	3.3.1 Convolution Validity
	3.3.2 Changing RIR Validity
	3.3.3 Crossfade Valididity

	4 System Performance
	4.1 Measurement method
	4.2 Results
	4.3 Analysis

	5 Conclusions
	5.1 Future Work
	5.1.1 Virtual Reality Auralisation
	5.1.2 Increasing Calculation Speed through Parallelisation
	5.1.3 3D extension and GUI Refinement

	6 Acknowledgments
	7 References

