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 Abstract 1 

We examined the potential long-term impacts of riparian plant diversity loss on   2 

diversity and activity of aquatic microbial decomposers. Microbial assemblages were 3 

obtained in a mixed-forest stream by immersion of mesh bags containing three leaf 4 

species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian 5 

streams. Simulation of species loss was done in microcosms by including a set of all 6 

leaf species, retrieved from the stream, and non-colonized leaves of three, two or one 7 

leaf species. Leaves were renewed every month throughout 6 months, and microbial 8 

inoculum was ensured by a set of colonized leaves from the previous month. Microbial 9 

diversity, leaf mass loss and fungal biomass were assessed at the 2nd and 6th month 10 

after plant species loss. Molecular diversity of fungi and bacteria, as the total number of 11 

operational taxonomic units per leaf diversity treatment, decreased with leaf diversity 12 

loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and 13 

eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality 14 

leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species 15 

identity, mainly after long time of diversity loss. Leaf decomposition of alder decreased 16 

when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures 17 

with oak. Results suggest that effects of leaf diversity on microbial decomposers 18 

depended on leaf species number and also on which species were lost from the system, 19 

especially after longer times. This may have implications for the management of 20 

riparian forests to maintain stream ecosystem functioning. 21 

 22 
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Introduction 1 

Human activities are affecting freshwater ecosystems worldwide leading to irreversible 2 

changes in biotic communities and the processes they support [1, 2]. A key ecological 3 

process in freshwaters is plant-litter decomposition, which is driven by microorganisms 4 

and invertebrate detritivores [3, 4]. Both aquatic fungi and bacteria play a key role in 5 

organic-matter decomposition by converting plant litter into a more nutritious food 6 

source for invertebrate detritivores [5]. Fungi have been recognized as the major 7 

microbial decomposers in streams accounting for more than 90% to the total biomass 8 

production on decomposing leaves [6]. However, the role of bacteria cannot be 9 

neglected because its contribution to plant-litter decomposition increases along time as 10 

smaller-size detritus are being produced [7, 8]. Protozoa (e.g., ciliates) can exert a top-11 

down predation pressure on aquatic bacterial communities [9]; however, its role in 12 

plant-litter decomposition remains practically unexplored (but see [10, 11]).  13 

Due to the importance of plant-litter decomposition and its tractability in field and 14 

microcosm experiments, the scientific community is increasingly using this process to 15 

better understand the relationships between biodiversity and ecosystem functioning in 16 

freshwaters [12, 13]. In fact, several studies have provided evidence of how leaf-litter 17 

decomposition is shaped by the diversity of resources [14] and of consumers (fungi [15-18 

17]; invertebrates [18-20]).  19 

Several studies indicate that composition and diversity of riparian plant species 20 

influence the diversity of aquatic fungi [14, 21]. The quality of plant-litter mixtures can 21 

also influence microbial biomass; for instance, the presence of high quality leaves of 22 

Liriodendron tulipifera in litter mixtures led to an increase of fungal and bacterial 23 

biomasses, while the presence of low quality leaves of Rhododendron maximum led to 24 

an opposite effect [22]. Most studies have focused on composite samples in litter 25 
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mixtures (but see [23]), but examining the effects of litter diversity loss within 1 

individual litter species might help to better understand the contribution of individual 2 

litter species for overall diversity effects on litter decomposition.  3 

Microbes have faster growth rates than other organisms involved in plant-litter 4 

decomposition in streams, such as invertebrate detritivores. Generally, maximum 5 

doubling times of fungi on leaf litter decomposing in streams range from 5 to 50 days 6 

[24]. Therefore, microbes can have several generations throughout plant-litter 7 

decomposition, and may show strong responses to alterations in litter diversity at 8 

relatively short-time scales.  9 

The aim of this study was to examine how aquatic microbial decomposers respond to 10 

riparian plant diversity loss. We used a microcosm approach to monitor the 11 

development of leaf-associated microbial assemblages during 6 months after inducing 12 

the loss of plant species from the system. Microbial assemblages were obtained in a 13 

mixed-forest stream by immersion of a pool of three leaf species (alder, oak and 14 

eucalyptus) commonly found in the riparian corridors of Iberian streams. After 2 and 6 15 

months, we assessed leaf mass loss, fungal biomass, and diversity of fungi, bacteria and 16 

ciliates associated with individual leaf species. We expected that plant-litter mixtures, 17 

containing litter species with different chemical composition, would provide better 18 

resources to support higher microbial diversity and/or activity. We also expected that 19 

any constrain to microbial biomass development or leaf decomposition of lower-quality 20 

leaf species could be overcome by the presence of high quality leaf species in mixtures. 21 

 22 

Methods 23 

Microbial colonization of leaves in a stream 24 
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In October 2009, leaves from alder (Alnus glutinosa (L.) Gaertn.), oak (Quercus robur 1 

L.) and eucalyptus (Eucalyptus globulus Labill.) were collected from trees immediately 2 

before abscission and dried at room temperature. Leaves were soaked in deionised 3 

water, cut into disks, and sets of 12 leaf disks (four disks per plant species) were placed 4 

in fine-mesh bags (0.5-mm diameter pore size). On 28 October 2009, 28 bags 5 

containing leaf species mixtures were immersed in a mixed-forested stream in Portugal, 6 

the Estorãos stream  (8.63800°W, 41.78194°N), to allow microbial colonization. 7 

At the study site, the stream was about 0.5 m deep and 2.5 m wide, the stream bed was 8 

constituted by rocks, pebbles and gravel, and the riparian vegetation was dominated by 9 

A. glutinosa, Q. robur and E. globulus. During leaf colonization, stream water had on 10 

average (±SEM) a temperature of 14 ± 1.0 ºC, a pH of 5.9 ± 0.06, a conductivity of 31 11 

µS cm
-1

 and a redox potential of 51 ± 1.5 mV (Multiline F/set 3 no. 400327; WTW, 12 

Weilheim, Germany). Nutrient concentrations in the stream water were 0.30 ± 0.04 mg 13 

L
-1

 of N-NO3
-
, 0.003 ± 0.000 mg L

-1
 of N-NO2

-
, <0.01 mg L

-1
 of N-NH3 and <0.003 P-14 

PO4
3-

 (HACH kit, programs 351, 371, 385, and 490, respectively; HACH, Loveland, 15 

CO, USA). 16 

 17 

Microcosm setup 18 

After two weeks of stream immersion, mesh bags containing mixtures of alder, oak and 19 

eucalyptus leaves were brought to the laboratory. Simulation of leaf species loss was 20 

done in microcosms (500 mL Erlenmeyer flask with sterile stream water) containing 21 

non-colonized disks of three leaf species (30 disks per species, ome treatment), two leaf 22 

species (45 disks per species, three treatments) or one leaf species (90 disks, three 23 

treatments) enclosed in mesh bags, and 12 leaf disks (four per species) retrieved from 24 

the stream as microbial inoculum. After 30 days, 12 leaf disks of each microcosm with 25 
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treatments of three, two or one leaf species were kept as inoculum, and the remaining 1 

leaf disks were replaced by non-colonized leaf disks keeping leaf species treatments. 2 

This procedure was repeated every 30 days during 6 months. Four replicates were used 3 

per treatment. Microcosms were kept, aseptically, under aeration, with artificial light at 4 

16 ºC, and stream water was renewed every 15 days. After 2 and 6 months, leaf disks 5 

were used to assess leaf mass loss, fungal biomass, and fungal, bacterial and ciliate 6 

diversity by denaturing gradient gel electrophoresis (DGGE), after PCR amplification of 7 

microbial DNA with specific primers targeting each microbial group.  8 

 9 

Leaf mass loss 10 

Leaf disks from all microcosms of each individual leaf species were freeze-dried for 11 

two days and weighed to the nearest 0.01 mg. Mass loss of each leaf species was 12 

expressed as percentage of the respective initial dry mass. 13 

 14 

Fungal biomass 15 

Fungal biomass was estimated from ergosterol concentration associated with 16 

decomposing leaf disks according to Gessner [25]. Briefly, lipids from each individual 17 

leaf species were extracted from sets of 6 leaf disks by heating (80 ºC for 30 minutes) in 18 

8 g L
-1

 KOH-methanol. The lipid extract was purified by solid-phase extraction (Sep-19 

Pak cartridges, Waters, Milford, MA) and ergosterol was quantified by high 20 

performance liquid chromatography (Beckmann Gold System, Brea, CA, USA), at 282 21 

nm, using a LiChrospher RP18 column (250×4 mm, Merck). The system was run 22 

isocratically with methanol as mobile phase (1.4 mL min
-1

, 33 ºC). 23 

 24 

Microbial diversity 25 
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DNA was extracted from 4 freeze-dried disks of each leaf species with a soil DNA 1 

extraction kit (MoBio Laboratories, Solana Beach, California), according to the 2 

manufacturer instructions. The ITS2 region of fungal ribosomal DNA (rDNA) was 3 

amplified with the primer pair ITS3GC and ITS4 [26]; V3 region of 16S bacterial 4 

rDNA was amplified with the primer pair 338GC and 518 [26]; and 18S rDNA of 5 

ciliates was amplified with the primer pair 984GC and 1147 (adapted from [27]). For 6 

PCR of fungal, bacterial and ciliate DNA, 2x of GoTaq® Green Master Mix (Promega), 7 

0.4 µM of the appropriate primers and 1 to 10 µL of DNA (1-10 ng µL
-1

) were used in a 8 

final volume of 25 µL. 9 

PCRs were carried out in a MyCycler Thermal Cycler (BioRad Laboratories, Hercules, 10 

CA, USA). The PCR program for bacteria and fungi was: initial denaturation at 95 ºC 11 

for 2 min; 36 cycles of denaturation at 95 ºC for 30 s; primer annealing at 55 ºC for 30 s 12 

and extension at 72 ºC for 1 min; and final extension at 72 ºC for 5 min [26]. The PCR 13 

program for ciliates was: initial denaturation at 94 ºC for 5 min; 30 cycles of 14 

denaturation at 94 ºC for 45 s; primer annealing at 55 ºC for 60 s and extension at 72 ºC 15 

for 90 s; and final extension at 72 ºC for 7 min [27]. 16 

DGGE analysis was performed using a DCode
TM

 Universal Mutation Detection System 17 

(BioRad Laboratories, Hercules, CA, USA). For fungi, 700 ng of the amplified DNA 18 

products with 380-400 bp were loaded on 8% (w/v) polyacrylamide gel in 1x Tris-19 

acetate-EDTA (TAE 1x) with a denaturing gradient from 30 to 70% (100% denaturant 20 

corresponds to 40% formamide and 7 M urea). For bacteria, 700 ng of the amplified 21 

DNA products with ca. 200 bp were loaded on 8% (w/v) polyacrylamide gel in 1x TAE 22 

with a denaturing gradient from 40 to 75%. For ciliates, 700 ng of the amplified DNA 23 

products with 750-800 bp were loaded on 6% (w/v) polyacrilamide gel in 1x TAE with 24 

a denaturing gradient from 30 to 42.5%. Fungal and bacterial DNA was separated at 55 25 
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V and 56 ºC, while ciliate DNA was separated at 80 V and 60 ºC. All gels were run for 1 

16 h. Gels were stained with 1x of GelStar (Lonza) for 10 min, and gel images captured 2 

under UV light in a gel documentation system (GenoSmart; VWR). 3 

 4 

Nutrient content in leaves 5 

To estimate initial carbon and nitrogen in leaves, samples of alder, oak and eucalyptus 6 

leaves were grounded with a ball mill and ca.100 mg of powdered leaf material was 7 

analyzed in a LECO-CNS 2000, using EDTA as a standard. Analyses were done in 8 

C.A.C.T.I. – Centro de Apoio Científico e Tecnolóxico á Investigación – University of 9 

Vigo, Spain.  10 

Initial quality of leaves as C:N ratio differed between the three leaf types as follows: 11 

alder (13.29 ± 0.26) < oak (19.69 ± 0.71) < eucalyptus (30.51 ± 0.26). 12 

 13 

Statistical analyses 14 

DGGE gels of microbial DNA were aligned and normalized using Gelcompar II 15 

(Applied Maths, Sint-Martens-Latem, Belgium), and each DGGE band was considered 16 

an operational taxonomic unit (OTU).  17 

Linear regressions were used to establish the relationships between leaf species number 18 

and total number of OTUs of each microbial group per leaf treatment. The distribution 19 

of fungi, bacteria and ciliates associated with leaf species identity and number at each 20 

time (2 and 6 months) was analysed by Correspondence Analysis (CA, [28]) 21 

downweighting the contribution of rare species. Data of fungal, bacterial and ciliates 22 

communities’ structure were based on OTUs, as the relative intensity of each band in 23 

DGGE fingerprinting. Data was square root transformed. 24 
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For each leaf type, a three-way nested ANOVA was used to test if leaf species number, 1 

leaf species identity (nested within species number) and time after diversity loss 2 

significantly affected leaf mass loss and fungal biomass [29]. In punctual cases, in 3 

which diversity effects were marginally significant, a two-way nested ANOVA was 4 

done, testing for the effects of leaf species number and identity (nested with leaf species 5 

number) at each time separately. Because the experimental design was unbalanced, we 6 

applied Type III analyses of variance using the Variance Estimation and Precision 7 

(VEPAC) module in Statistica 8.0 (Statsoft, Tulsa, OK, USA). Differences between 8 

treatments were analysed using the Tukey-Krammer´s post-test, which is a modification 9 

of the Tukey´s post-test for unbalanced number of samples [29]. Linear regressions 10 

were used to establish the relationships between leaf species number and fungal 11 

biomass for each leaf species. 12 

Linear regressions were done in Prism 4.0 for Windows (GraphPad software Inc., San 13 

Diego, CA), analyses of variance were done in Statistica 8.0 for Windows (Statsoft, 14 

Inc., Tulsa, OK) and multivariate analyses were done in CANOCO 4.5 for Windows 15 

(Microcomputer Power, Ithaca, NY). 16 

 17 

Results 18 

Effects of plant litter diversity on microbial diversity 19 

Molecular diversity of microbial communities on decomposing leaves showed a total of 20 

41, 64 and 29 operational taxonomic units (OTUs) for fungi, bacteria and ciliates, 21 

respectively (Fig. 1). In a general way, communities of fungi, bacteria and ciliates on 22 

each leaf species differed between single- and mixed-species treatments (Fig. 1 and Fig. 23 

2). The number of fungal OTUs on individual leaf species was higher in mixed-species 24 

treatments than in single species treatments, particularly at the longer time, i.e. after 6 25 
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months of leaf species loss (Fig. 2). Conversely, bacterial diversity on individual leaf 1 

species was generally higher in single-leaf species treatments than in mixed-species 2 

treatments (e.g. 46 OTUs on oak alone versus 35-38 OTUs on mixtures, after long time 3 

of leaf diversity loss). The diversity of ciliates appeared to decrease with time because 4 

lower number of OTUs was found after long time in microcosms (except for oak 5 

leaves). Similarly to that found for bacterial diversity, the number of ciliate OTUs on 6 

individual leaf species was higher in single leaf species treatments than in mixed species 7 

treatments (Fig. 2). 8 

However, when taking into account the total number of OTUs associated with all leaf 9 

species composing a given mixture, positive relationships were found between leaf 10 

species number and fungal or bacterial diversity (linear regression, P=0.0003 and 11 

P=0.024, respectively; Fig. 3). For ciliates, that relationship was not significant (linear 12 

regression, P=0.065). The dependence of microbial diversity on leaf species number 13 

strongly increased from ciliates to bacteria to fungi (slopes were 2.0, 4.2 and 6.0 14 

OTUs/unit of leaf species diversity, respectively). 15 

CA ordination of fungal assemblages according to leaf species number, leaf species 16 

identity and time after leaf diversity loss showed that the 1
st
 factor explained 20.8% of 17 

the total variance in fungal assemblages, and separated assemblages established at short 18 

time from those established at long time (Fig. 4a). The 2
nd

 factor explained 15.2% of the 19 

total variance and distinguished assemblages according to leaf species identity and leaf 20 

species number, mainly separating fungal assemblages on 3 leaf species from the others. 21 

CA ordination of bacterial assemblages showed that the first two factors, explaining 22 

24.5% of the total variance, separated assemblages on oak leaves from the others, and 23 

further discriminated assemblages according to leaf species number and the time after 24 

diversity loss (Fig. 4b). The 1
st
 CA factor of ciliate assemblages explained 19.1% of the 25 
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total variance and separated assemblages by the time after diversity loss, while the 2
nd

 1 

factor explaining 15.1% of the total variance mainly distinguished assemblages 2 

according to leaf species number (Fig. 4c). 3 

 4 

Effects of plant litter diversity on leaf decomposition 5 

Leaf mass loss varied between 26% in microcosms containing eucalyptus mixed with 6 

oak after long time of leaf diversity loss and 43% in microcosms with oak in mixtures 7 

with alder and eucalyptus at short time (Fig. 5). Decomposition of alder leaves was not 8 

affected by leaf species number or time after leaf species loss, but effects of leaf identity 9 

were marginally significant (3-way nested ANOVA, Table 1). However, the effects of 10 

leaf identity on decomposition of alder leaves became stronger after long time of leaf 11 

diversity loss (2-way nested ANOVA, P=0.005, F=11.59). Decomposition of alder 12 

leaves was higher in mixtures with oak than in mixtures with eucalyptus or mixtures 13 

with oak and eucalyptus (Tukey-Kramer´s tests, P=0.024 and P=0.048, respectively). 14 

Decomposition of oak leaves was affected by leaf species number and interaction 15 

between species number and time after leaf species loss (3-way nested ANOVA, Table 16 

1); leaf mass loss was higher in mixtures of 3 species than in treatments with oak alone 17 

(Tukey-Kramer´s test, P=0.040). Mass loss of eucalyptus leaves was affected by time 18 

after leaf diversity loss and marginally affected by leaf identity (3-way nested ANOVA, 19 

Table 1). Similarly to that found for alder leaves, the effects of leaf species identity on 20 

decomposition of eucalyptus leaves became stronger after long time of leaf diversity 21 

loss (2-way nested ANOVA, P=0.011, F=9.12). Mass loss of eucalyptus leaves was 22 

higher when eucalyptus was mixed with alder leaves than with oak leaves (Tukey-23 

Kramer´s test, P=0.046). 24 

 25 
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Effects of plant litter diversity on fungal biomass 1 

Leaf-associated fungal biomass varied between 55 μg ergosterol g
-1

 leaf dry mass, in 2 

alder leaves in mixtures with eucalyptus after long time of leaf diversity loss, and 468 3 

μg ergosterol g
-1

 leaf dry mass in oak leaves in mixtures with alder at the shorter time 4 

(Fig. 5). Fungal biomass on alder leaves was affected by leaf species number (3-way 5 

nested ANOVA, Table 1), with higher values in mixtures with three leaf species than 6 

with two leaf species (Tukey-Kramer´s test, P=0.024). Fungal biomass on oak leaves 7 

was not affected by leaf species number, leaf identity or time after leaf diversity loss (3-8 

way nested ANOVA, Table 1). However, when effects of leaf diversity were analysed at 9 

the longer time after diversity loss, leaf species number affected fungal biomass on oak 10 

leaves (2-way nested ANOVA, P=0.017, F=7.04). Moreover, fungal biomass on oak 11 

leaves decreased linearly with leaf species loss after long time (Linear regression, 12 

F=16.34, P=0.002, r
2
=0.62, not shown). Fungal biomass associated with eucalyptus 13 

leaves was affected by leaf species number and time after leaf diversity loss (3-way 14 

nested ANOVA, Table 1), with overall higher biomass at the longer time (Tukey-15 

Kramer´s test, P=0.006). The loss of leaf species led to a linear decrease in fungal 16 

biomass on eucalyptus leaves, with a stronger relationship at longer time (Linear 17 

regression, F=5.89, P=0.036, r
2
=0.37, at short time; F=15.70, P=0.003, r

2
=0.61, at long 18 

time; not shown). 19 

 20 

Discussion 21 

Our study suggests that changes in plant species diversity of riparian corridors affect 22 

diversity and activity of microbes on decomposing plant litter in streams. The leaf 23 

species (alder, oak and eucalyptus) used in our study provide resources with different 24 

quality due to differences in their leaf C:N ratio. Thus, each leaf species might harbour 25 
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different microbial assemblages that could provide inoculum to the different leaf species 1 

constituting the mixtures. Indeed, molecular diversity (as number of OTUs) of fungi on 2 

individual leaf species tended to be higher in leaf species mixtures. However, this trend 3 

was not observed on bacterial and ciliate diversity, which was higher in single species 4 

treatments. Fungi are reported to have antagonistic interactions with bacteria during leaf 5 

decomposition [30], but fungi have morphological and physiological adaptations that 6 

allow them to colonize plant litter earlier than bacteria [31], which might be 7 

outcompeted by fungi [32]. In addition, a reduction of bacterial diversity by the 8 

presence of fungi may decrease ciliate diversity because ciliates feed on bacteria and 9 

show preference for certain bacterial species [9]. This is consistent with the positive 10 

linear relationship between bacterial and ciliate diversity found in our study (not 11 

shown). 12 

Although microbial assemblages on individual leaf species have shown different 13 

responses to leaf diversity loss, when microbial diversity as overall number of OTUs 14 

per leaf species treatment was considered, a positive relationship was found between 15 

leaf species diversity and the diversity of fungi and bacteria. A positive co-variation of 16 

fungal diversity with riparian plant species diversity was previously documented [14, 17 

21]. Also, the replacement of native mixed forests by monocultures of eucalyptus in 18 

riparian corridors of streams in the Iberian Peninsula decreased the diversity of aquatic 19 

fungi with shifts in community composition [33]. In our study, the decrease in the 20 

number of OTUs per unit of leaf species lost was particularly high for fungi (6 21 

OTUs/unit of leaf species diversity), pointing to a higher dependence of fungi than 22 

bacteria or ciliates on the diversity of plant litter resources. This agrees with the major 23 

role of fungi in early stages of plant-litter decomposition in streams [6, 7]; fungi have an 24 

efficient enzymatic machinery to degrade polysaccharides of plant cell walls, and their 25 
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hyphae have high ability to penetrate substrates [31]. The relationship between fungal 1 

diversity and litter diversity found in our study (6 OTUs decrease per unit of leaf 2 

species lost) was even stronger than reported by others (1.7 fungal species decrease per 3 

unit of leaf species lost [21]). This apparent discrepancy might be related to differences 4 

in the levels of leaf litter diversity investigated (1-3 leaf species in our study versus 7-17 5 

leaf species in Laitung and Chauvet [21]). The positive relationship between the 6 

diversity of resources (litter) and the diversity of consumers (fungi) can be explained by 7 

mechanisms of niche differentiation [34]. We expected that more leaf species would 8 

provide a greater variety of resources that could allow the co-existence of more fungal 9 

species. However, it is conceivable that above a certain leaf diversity level, further 10 

increases in leaf diversity will not provide a proportional increase in nutrient supply or 11 

habitat structures for fungi. Therefore, the dependence of fungal diversity on plant litter 12 

diversity is expected to be stronger at lower leaf diversity levels.  13 

The shifts in the structure of microbial assemblages on decomposing leaves in response 14 

to plant species loss were accompanied by changes in decomposition of oak leaves, but 15 

not of alder or eucalyptus leaves. However, the identity of litter mixture affected leaf 16 

decomposition of alder and eucalyptus leaves, mainly after long time of leaf diversity 17 

loss. Actually, the composition of litter mixtures appears to have a greater role in leaf 18 

decomposition in streams than diversity of litter species [35-37] with the differences in 19 

litter quality explaining the effects of leaf identity on leaf decomposition [38-40]. In our 20 

study, decomposition of eucalyptus leaves (higher C:N ratio, lower quality) tended to be 21 

faster when mixed with alder (lower C:N ratio, higher quality) than with oak leaves 22 

(intermediate C:N ratio), suggesting that microbial assemblages on eucalyptus leaves 23 

might have benefited from the presence of compounds released by high quality leaves to 24 

fulfil their metabolic needs [13]. Conversely, we found a deceleration of decomposition 25 
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of alder leaves by the presence of eucalyptus at the longest time after leaf species loss. 1 

Also, fungal biomass on alder leaves was consistently lower when mixed with 2 

eucalyptus, especially at the longest time. Eucalyptus leaves contain oils and tannic 3 

acids that inhibit the growth of aquatic fungi [41]. Thus, if inhibitory compounds were 4 

leached from eucalyptus leaves to the surrounding environment [13], microbial activity 5 

on other leaf species composing the mixture might also be inhibited. 6 

In our study, the effects of leaf diversity were stronger on fungal biomass and diversity 7 

than on microbially-driven leaf decomposition. Moreover, fungal biomass and diversity 8 

tended to decrease as litter species were lost from the system, especially for oak and 9 

eucalyptus. This may have implications for freshwater invertebrates that preferentially 10 

feed on leaves colonized by microbes [42, 43]. Moreover, fungal diversity correlates 11 

positively with leaf consumption rates by invertebrate shredders [14]. Thus, the effects 12 

of leaf diversity loss on fungal diversity and biomass observed in our study might have 13 

indirect impacts on plant-litter decomposition in streams. 14 

Overall, leaf litter diversity and quality changed the structure of microbial assemblages 15 

and affected leaf decomposition and fungal biomass on individual litter species. Fungal 16 

biomass tended to decrease with leaf species loss, especially for lower quality leaf 17 

species (oak and eucalyptus) after long time of diversity loss. Leaf decomposition was 18 

mainly affected by leaf species identity at the longer time. Microorganisms growing on 19 

low quality leaves appeared to benefit from the presence of other leaf species, as shown 20 

by higher fungal biomasses found in leaf mixtures. Conversely, the presence of 21 

eucalyptus lowered the decomposition of alder leaves at the longer time after leaf 22 

diversity loss. The eucalyptus species used in our study was introduced in the Iberian 23 

Peninsula almost two centuries ago, and nowadays vast areas are covered by 24 

monocultures of this exotic tree [44]. Alterations in diversity and quality of riparian 25 
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vegetation can jeopardize litter inputs into streams with possible bottom-up effects to 1 

the functioning of detritus food-webs [45]. Thus, protecting and/or restoring riparian 2 

vegetation is important to conserve microbial diversity and maintain the functioning of 3 

detritus food-webs in freshwaters. 4 

 5 
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Figure captions 1 

 2 

Fig. 1 DGGE patterns of DNA of fungal, bacterial and ciliate assemblages on individual 3 

leaf species (A, Alnus glutinosa; O, Quercus robur; E, Eucalyptus globulus) from 4 

single- and mixed-leaf species treatments, after short (2 months) and long time (6 5 

months) of leaf diversity loss. M, marker used to align different gels belonging to the 6 

same microbial group 7 

 8 

Fig. 2 Number of OTUs from DGGE analyses of fungal, bacterial and ciliate 9 

assemblages associated with individual leaf species (A, Alnus glutinosa; O, Quercus 10 

robur; E, Eucalyptus globulus) from single- and mixed-leaf species treatments, after 11 

short (2 months) and long time (6 months) of leaf diversity loss 12 

 13 

Fig. 3 Relationship between the number of OTUs of fungi (a), bacteria (b) and ciliates 14 

(c) and leaf species diversity. In mixtures of two and three leaf species, data represent 15 

total number of OTUs per leaf species treatment. Data were fitted to linear regressions. 16 

Fungi, Y=5.98X+7.25, r
2
=0.69, P=0.0003; Bacteria, Y=4.21X+39.50, r

2
=0.36, P=0.024; 17 

Ciliates, Y=1.99X+6.25, r
2
=0.28, P=0.065 18 

 19 

Fig. 4 CA diagrams for ordination of fungal (a), bacterial (b) and ciliate (c) OTUs 20 

according to exposure time (short and long), leaf species number (1sp, 2sp and 3sp) and 21 

identity (alder, oak and eucalyptus) 22 

 23 
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Fig. 5 Percentage of leaf mass loss and fungal biomass from individual leaf species 1 

alone and in mixtures, after short (2 months) and long time (6 months) of leaf diversity 2 

loss. Values are mean + SEM; n=3 for fungal biomass and n=4 for leaf mass loss 3 

4 
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Table 1. Effects of leaf species number (Sp nº), leaf species identity (ID), nested within 1 

leaf species number, and time after leaf diversity loss (T) on leaf mass loss and fungal 2 

biomass. In leaf mixtures, data came from individual leaf species 3 

Parameter Leaf species Factor SS DF F P 

Leaf mass 

loss 

Alder Sp nº 26.7 2 0.47 0.630 

  T  75.8 1 2.67 0.115 

  Sp nº*T  20.5 2 0.36 0.701 

  ID (Sp nº) 117.2 1 4.13 0.053 

  ID (Sp 

nº)*T  

52.1 1 1.84 0.188 

  Error 680.7 24     

 Oak Sp nº 115.0 2 3.77 0.038 

  T  58.1 1 3.81 0.063 

  Sp nº*T  122.7 2 4.02 0.031 

  ID (Sp nº) 8.8 1 0.58 0.455 

  ID (Sp 

nº)*T  

14.0 1 0.91 0.349 

  Error 366.4 24     

 Eucalyptus Sp nº 26.4 2 0.63 0.539 

  T  132.9 1 6.40 0.018 

  Sp nº*T  90.1 2 2.17 0.136 

  ID (Sp nº) 87.4 1 4.21 0.051 

  ID (Sp 

nº)*T  

33.2 1 1.60 0.218 

  Error 498.9 24     

Fungal 

biomass 

Alder Sp nº 39497.4 2 6.75 0.007 

  T  221.1 1 0.08 0.787 

  Sp nº*T  11955.3 2 2.04 0.162 

  ID (Sp nº) 4051.0 1 1.38 0.257 

  ID (Sp 

nº)*T  

3468.7 1 1.19 0.292 

  Error 46814.2 16     

 Oak Sp nº 73834.0 2 3.05 0.076 

  T  94.0 1 0.01 0.931 

  Sp nº*T  6609.0 2 0.27 0.765 

  ID (Sp nº) 18124.0 1 1.50 0.239 

  ID (Sp 

nº)*T  

11212.0 1 0.93 0.350 

  Error 193740.0 16     

 Eucalyptus Sp nº 27038.0 2 10.90 0.001 

  T  10665.5 1 8.60 0.010 

  Sp nº*T  2211.0 2 0.89 0.430 

  ID (Sp nº) 1000.1 1 0.81 0.383 

  ID (Sp 

nº)*T  

34.0 1 0.03 0.871 

  Error 19851.3 16     

 4 


