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Abstract

In this dissertation, the unrelated parallel machine scheduling problem with job splitting
and sequence independent setup times is addressed, implementing a method to solve it in
a recently proposed framework, SearchCol, short for ‘Metaheuristic search by Column
Generation’.

The study of scheduling problems is of high relevance due to its real-world application
in multiple fields, as documented in its vast literature, and also due to its high complexity
derived from the diverse environments, variables, restrictions and the combinations of these
in different systems.

The problem consists in finding a scheduling plan for a set of independent jobs on a
set of unrelated parallel machines, considering jobs and machines release dates, sequence
independent setup times and the job splitting property, with due date related objectives.
The introduction of setup times and job splitting properties in unrelated environments has
not been extensively studied, even though its use can play an important role in scheduling.

A mixed integer programming model is developed featuring the aforementioned prop-
erties, which is then decomposed by machine using the Dantzig-Wolfe decomposition. To
solve the decomposed model a hybrid approach entitled SearchCol is applied, which results
from the interaction between column generation and metaheuristics.

Problem specific heuristics to use in the column generation component of the SearchCol
are also developed and diverse alternatives within the global algorithm are tested. A
problem specific algorithm for one of the main SearchCol components is also suggested.

To evaluate the effectiveness of the model and the proposed algorithms, computational
tests are performed and their solutions analysed for a set of test instances.
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Resumo

O trabalho que se apresenta nesta dissertação, aborda o problema de escalonamento em
máquinas paralelas não relacionadas com dimensionamento de lotes e tempos de prepa-
ração independentes da sequência, recorrendo a uma ferramenta recentemente proposta,
designada por SearchCol, abreviatura de ‘Metaheuristic Search by Column Generation’.

O estudo de problemas de escalonamento revela-se de grande importância devido à sua
aplicação em diferentes áreas, documentado na sua vasta literatura, e também devido à sua
elevada complexidade decorrente das diversas configurações e tipos de máquinas, variáveis
e restrições, bem como as combinações destas nos diversos sistemas.

O problema consiste na determinação de um plano de produção para um conjunto de
tarefas independentes em máquinas paralelas não relacionadas, considerando tempos de
disponibilidade de tarefas e máquinas, tempos de preparação independentes da sequência
e o dimensionamento de lotes. O estudo deste problema com incorporação de tempos
de preparação e da propriedade de dimensionamento de lotes em máquinas paralelas não
relacionadas não é comum na literatura, apesar de se revelar de extrema importância em
problemas de escalonamento.

Um modelo de programação inteira mista é desenvolvido para o problema e é também
efectuada uma decomposição por máquina através da decomposição de Dantzig-Wolfe.
Para resolver o problema, estuda-se uma abordagem híbrida que consiste na interação
entre a técnica de geração de colunas e metaheurísticas, de seu nome SearchCol.

São desenvolvidas heurísticas específicas para o problema, as quais são usadas na com-
ponente de geração de colunas do SearchCol, sendo testadas também diversas alternativas
e ferramentas no contexto do algoritmo global. Além disso, um algoritmo específico para o
problema é também sugerido, para incluir num dos principais componentes do SearchCol.
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Para avaliar o desempenho e qualidade dos modelos e algoritmos propostos, são reali-
zados testes computacionais e analisadas as suas soluções para um conjunto de instâncias
de teste.
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Chapter 1

Introduction

In this dissertation the Unrelated Parallel Machine Scheduling Problem with job split-
ting (UPMSPjs) is approached and an application of the framework SearchCol is presented
to solve the problem, along with problem specific implementations on the same framework.

Scheduling is the process of deciding the allocation in time and sequencing of jobs in
available resources to satisfy demand, under certain constraints, in order to optimize a
given and appropriate criterion.

The interest both of practitioners and researchers in studying scheduling problems exists
for more than 40 years and its importance is well known among the literature, with different
approaches and models developed. As industry’s characteristics and demands evolved,
new and different implementations on models have been proposed, with a huge variety of
problem types and characteristics available today.

Scheduling plays a crucial role in today’s enterprises, as appropriate timing of produc-
tion is mandatory and has important financial impacts. Computational and theoretical
developments have given the possibility to better accommodate the needs of industry and
complex systems can now be modelled to provide better decision making. With these
developments, several realistic features have been introduced around basic concepts of
production’s environment and other characteristics directly related to processing, setup,
sequencing of jobs, lot sizing or job splitting, as well as a wide range of evaluation criteria.

This dissertation approaches the aforementioned problem with a two-fold aim. First,
a new time-indexed formulation of the UPMSPjs is proposed, where jobs are assigned to
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machines and a sequence-independent setup time is incurred whenever a machine switches
jobs. The model features distinct due and release dates for jobs, distinct availability dates
of machines and job splitting. Secondly, a new approach to the problem is presented,
based on a machine scheduling decomposition of the compact model using the Dantzig-
Wolfe decomposition [Dantzig and Wolfe, 1960]. The solution of its linear relaxation is
obtained through Column Generation (CG) and an integer solution is determined through
a hybrid exact-heuristic method, that performs a meta-heuristic search for the optimal
solution on the set of generated columns during CG (SearchCol). Heuristics were also
designed for both CG and perturbations phases of the overall algorithm.

SearchCol is a framework for obtaining approximate solutions to Mixed Integer Program-
ming (MIP) and Combinatorial Optimization (CO) [Alvelos et al., 2013]. The approach
relies on combining CG procedures and Metaheuristic (MH) search to obtain good quality
solutions in efficient amount of time, with the CG providing subproblem solutions (as a
search space) to be used in the search phase by the chosen MH. The SearchCol algo-
rithm applied to machine scheduling exploits the combinatorial optimization structure of
large problems by associating a Subproblem (SP) solution with a decision to assign jobs
to machines.

The main contributions that, we believe, result from this work are stated in the following
paragraphs.

A compact model featuring several and complex system characteristics was developed.
Among these characteristics we emphasize the introduction of: setup times (independent
of job’s sequence); the property of job splitting, allowing a job to get its processing divided
into more than one machine, which allows for a more agile scheduling; and the possibility
to preserve an initial state for each machine, where job’s setup can be transferred from
a previous scheduling to an actual one. Also, to our best knowledge, not much work has
been done for the unrelated parallel machine production environment, when combining the
previous characteristics on a same problem.

A machine scheduling decomposition of the above mentioned model was developed using
Dantzig-Wolfe decomposition [Dantzig and Wolfe, 1960], upon which the SearchCol algo-
rithm was applied to solve the problem. With the decomposition model, the aim was to
develop a faster solving approach which would allow us to obtain better, or at least equal,
lower bounds (than the ones obtained with the compact model), provided by the Linear
Relaxation (LR) of the Restricted Master Problem (RMP) obtained from Dantzig-Wolfe
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decomposition.

The solution’s evaluation method, common in both models, is based on the determi-
nation of the inventory over the planning horizon, which we believe it is an innovation in
the conjuncture of the evaluation methods used for parallel machine scheduling problems.
This is achieved through the Objective Function (OF), in which a penalty is considered
for processing taking place both before or after the due dates of the jobs. Moreover, this
penalty has a weight associated, which can be defined, accordingly, to the situation where
the model is being applied to.

Some specific heuristics were devised for the decomposition model. Although SearchCol
provides exact resolution of the SP, in the context of the problem the development of
specific heuristics brought advantages, especially in the CG phase. Two different heuristics
were developed to solve the SPs, designed around the problem’s characteristics and using
the dual information provided by the RMP.

Moreover, other specific heuristics were also created to build initial solutions, to include
on the first RMP, aiming to speed up the CG process and to guarantee that feasible columns
are present in the RMP before starting the CG process. These columns, representing
machine scheduling of jobs, take into account one, or more, specific characteristics and
constraints of scheduling jobs to machines in an unrelated parallel machines environment.

A third and important step in the SearchCol algorithm is the perturbation phase. Even
though several general methods are implemented in the framework and tested in this work,
a specific perturbator algorithm is suggested to implementation using problem specific
characteristics (as previous heuristics) with three different variants.

The dissertation is organized as follows. In Chapter 2 the scheduling literature is re-
viewed stating the different problems and models in the scheduling category, with informa-
tion on techniques used to solve the problems being studied. A short historical and existing
literature’s revision of hybrid methods to solve optimization problems is also presented.

Chapter 3 presents the scheduling problem being studied, framing it in the different clas-
sifications and properties used for the general problem. Moreover, the evaluation method
being used in this work is introduced in detail. Lastly, an example to better demonstrate
it is also provided.

In Chapter 4 both models are presented. First, the notation to be used along this work
is introduced. The compact model is then presented, explaining the different notation

3



used and the model constraints. The decomposition model, deriving from the previous
compact one, is also presented, defining its Master Problem (MP) and SP models, with an
introduction to the technique being used to solve its Linear Relaxation (LR).

SearchCol framework is introduced in Chapter 5. This chapter is divided in four main
sections: first an introduction to the framework and its overall algorithm, features and
possibilities; then the CG within SearchCol is introduced as well as the developed heuristics
to create the initial solutions and to solve the SP; the Search phase is then described as to
the existing possibilities inside the SearchCol; also, the existing SearchCol Perturbations
as well as a suggestion of specific perturbator types for the problem are detailed in the
chapter’s last section.

Computational tests are presented in Chapter 6. The implementations developed for the
decomposition model are analysed within the use of the general SearchCol algorithm and
its features. The results of the decomposition model are also compared against the results
of the compact model, as SearchCol allows for user implementation of both compact and
decomposition models using the CPLEX libraries for C++ [ILOG, 2010] embedded within
the SearchCol++, the framework of SearchCol built in C++.

Finally, Chapter 7 presents the conclusions and suggests future improvements and di-
rections of research.

4



Chapter 2

Literature Review

In this chapter scheduling notations and definitions are introduced based on the litera-
ture, introducing some review works and overall considerations on the scheduling problems.
Existing research work approaching the different Parallel Machine Scheduling (PMS) en-
vironments are reviewed with a following section dedicated exclusively to literature for the
Unrelated Parallel Machine Scheduling Problem (UPMSP) analysing their approach, if it
is the case, and other similarities to our own problem. Furthermore, hybrid methods to
solve MIP and CO problems are also introduced.

2.1 Scheduling

The study of scheduling problems goes back to the mid-1950s and since then, several
works have been published on the subject [Allahverdi et al., 2008]. Johnson [1954]; Smith
[1956]; Jackson [1955] are considered pioneers for their scientific and systematic analysis
of scheduling problems [Yang, 1999], and first approaches to the PMS problems, according
to Nait et al. [2006] appeared a few years later with the works of McNaughton [1959] and
Hu [1961].
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Scheduling is defined by Pinedo [2002] as:

The allocation of jobs to machines and their sequencing, subject to given con-
straints, in order to optimize one or more performance criteria.

Yang [1999] defined production scheduling as:

The allocation of production resources over time in order to satisfy a pre-set
criterion.

Pinedo [2002] describes the importance of scheduling as a decision-making process in
manufacturing systems, transportation, distribution and other types of services and indus-
tries, providing also theoretical aspects and applications of scheduling.

To better systematize the different problem variations Graham et al. [1979] first intro-
duced a three field α/β/γ classification system, which was adopted by most of later works
and adapted to new circumstances.

The three field classification system reflects various job, machine and scheduling char-
acteristics. Let’s assume n jobs Jj (j = 1...n) have to be processed on m machines
Mi (i = 1...m). The α field specifies the machine environment, which is 1 for the sin-
gle machine case and adopts the following notations for the multiple machines cases:

P - identical parallel machines;

Q - uniform parallel machines;

R - unrelated parallel machines;

O - open shop;

J - job shop;

F - flow shop.

For the shop environment, flexible variants of the last notations are used. In this work,
the focus will be on the PMS environment problem and its literature, as the shop environ-
ment implies that machines do not function in parallel but are dedicated.

6



In the previous notations, for the α field, an extension is made using m, meaning the
number of machines is assumed to be variable; otherwise, a positive integer represents a
constant number of machines.

The β field alludes to processing constraints such as preemption, job splitting, release
dates, setup information and can contain multiple entries or no entries at all.

The γ field refers to the evaluation criterion used, which can be a regular function of
the completion times of the jobs or their due dates, such as:

Cmax - Makespan

Lmax - Maximum lateness
∑
wjCj - Total weighted completion time

∑
Tj - Total tardiness∑
wjTj - Total weighted tardiness

∑
wjUj - Weighted number of tardy jobs

∑
Ej +∑

Tj - Total Earliness-Tardiness (ET)∑
wjEj +∑

wjTj - Total weighted ET

For the case of a non-standard OF the γ field can be noted as γ = X.

This way, for example, in an unrelated PMS problem to minimize total tardiness, with a
variable number of machines and release dates for jobs, one can use the following notation:

Rm/rj/
∑

Tj

In the literature of machine scheduling there has been few attempts at tackling the
problem of optimizing the scheduling and splitting of jobs subject to release dates and
sequence-independent setup times in an unrelated PMS environment. Most research on
this problem has been done for the single machine case [Allahverdi et al., 2008; Zhu and
Heady, 2000]. Shim and Kim [2008] also note the lack of research results when a job
splitting property is applied to a PMS problem.
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According to Nait et al. [2006] the difference between job splitting and preemption
properties, is that in the case of preemption, different machines cannot process the same
job simultaneously, whether with job splitting, jobs can be split into different lots and
processed in different machines at the same time or not.

For both an overview of the state of the art of scheduling problems after 1999 and
a historical perspective see Allahverdi et al. [2008] which follows previous works by Al-
lahverdi et al. [1999] and by Potts and Kovalyov [2000]. A comprehensive survey is done
on scheduling problems involving setup times or costs, classifying them according to the
environment previously referred and to batching and non-batching considerations (a batch
can be defined as a set of jobs to be processed in batches so setup times or costs are unique
to the batch, instead of incurring a setup time/cost for each job). Potts and Kovalyov
[2000] and Potts and Wassenhove [1992] reviewed scheduling, focusing on batching and
lot-sizing decisions and proposing a general model and sub-models cases integrating batch
and lot sizing.

Allahverdi et al. [2008] state:

(...) there are tremendous savings when setup times/costs are used and explic-
itly incorporated in scheduling decisions in various real world industrial/service
environments.

Yang [1999] also surveys scheduling research involving setup times. In this work, impor-
tant definitions and classifications are summarized, involving job, class, sequence depen-
dence and separability setup situations. The review paper from Cheng et al. [2000] also
focus on research done on scheduling with setup times, although considering the flow shop
scheduling environment only.

Pinedo [2002] offers an exhaustive study on the scheduling problem, approaching the
deterministic and stochastic models and numerous variants in each one, providing several
and important definitions and classifications, as well as formulations, examples and possible
approaches to solve the problems.

Other works approach scheduling focusing on more specific details.

Zhu and Heady [2000] summarized the main restrictive assumptions used in the field,
regarding due dates, penalty costs, setups and number of machines.

8



Unlu and Mason [2010] made a comparison in order to identify - for various types of ob-
jective functions and machine environments - promising MIP formulation paradigms based
on the types of variables such as job completion time, assignment and positional, linear
ordering, time indexed and network types. Keha et al. [2009] also tested and compared four
different MIP formulations for the single machine scheduling problem to identify, based on
computational results, the best formulation type for the various problems.

2.2 Parallel Machine Scheduling

A set of resources or machines which are able to execute the same tasks are defined as
Parallel Machines. According to Pinedo [2002] it is not only important in practice (as it
is a common situation in real world) but also theoretically, as it is a generalization of the
single machine case and a special case of the flexible flow shop.

The PMS environment is defined by Unlu and Mason [2010] according to the speed of
processing of the machines for the different jobs: identical machines operate at the same
speed (identical machine environment: Pm); non-identical machines operate at different
speeds but its speed/processing rate is consistent for all machines when processing different
jobs (non-identical machine environment: Qm); unrelated machines can process different
jobs at different speeds from the others, meaning that even though machine Ma can have
a better speed/processing than Mb for job Jj it does not mean it has necessarily a better
rate for any other job, as speed/processing rate is machine and job dependent (unrelated
machine environment: Rm). The unrelated PMS environment is, in fact, a generalization
of the non-identical case as an unrelated set of parallel machines can include a set of non-
identical machines [Pinedo, 2002]. Also, when considering an unrelated PMS environment
certain machines can be defined to have processing times for some jobs close to infinite or
with a large integer number if, in fact, they do not have the ability to process the referred
jobs1.

Although processing characteristics are different, it is useful to study and understand
other PMS environments, especially the most prominent identical parallel machines case,
as existing research work on PMS problems with job splitting properties is sparse. The

1See Logendran and Subur [2004] for a practical application. This procedure could be used in a practical
approach, to understand the needs to produce outdoors or expand production capacity.
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following paragraphs are dedicated to the literature of PMS where job splitting proper-
ties and setup considerations are applied, as well as other important and differentiating
characteristics and approaches. Works approaching the Unrelated PMS environment are
reviewed in the following section.

Most of works on problems with job splitting properties were done for the identical
PMS case. Yalaoui and Chu [2003] considered the problem of identical PMS with job
splitting and sequence dependent setup times to minimize maximum makespan within the
set of all machine scheduling plans. They developed a two-phase heuristic. In the first
phase, they approached it as a single machine problem, transforming it into a Travelling
Salesman Problem (TSP) and assigning jobs to machines using Little’s method [Little
et al., 1963]. Then, they created a feasible schedule for each machine, with the previously
assigned jobs, which is improved taking advantage of the problem’s characteristics. This
method was used by Nait et al. [2006] for the same problem, introducing a heuristic based
on a Linear Programming (LP) formulation to improve the approach of Yalaoui and Chu
[2003]. Xing and Zhang [2000] also studied the job splitting property on an identical PMS
problem with independent setup times to minimize the makespan, discussing cases with
splitting properties and analysing a heuristic for this problem by extrapolating preemption
properties.

The identical PMS case with job splitting properties was also addressed by Shim and
Kim [2008], Park et al. [2012], Sarıçiçek and Çelik [2011] and Kim et al. [2004] with the
objective of minimizing total tardiness.

Shim and Kim [2008] considered the problem with independent setup times, the same
due dates for all jobs and machines available from the beginning of the planning horizon,
using the example of Printed Circuit Boards as an industry with these characteristics.
They further developed a Branch & Bound (B&B) algorithm that directly assigns jobs
or sub-jobs to machines at each iteration and builds partial schedules following a set of
dominance rules. Shim and Kim [2008] stated the existence of very few research results on
the parallel machine scheduling problem with job splitting property.

Kim et al. [2004] approached the problem with sequence independent setup times de-
veloping a heuristic that reschedules an initial schedule, by splitting jobs through rules
to select jobs, sub-jobs and machines. The authors compared the proposed methods to a
modified Apparent Tardiness Cost with Setup (ATCS) heuristic that supports job split-
ting (this modification was done because no algorithm for this problem’s characteristics
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existed).

Park et al. [2012] considered the problem with major/minor sequence dependent setup
times creating a heuristic that accounts for the problem’s properties (job splitting, setup
dependency), embedding it in three existing algorithms and comparing them to the original
ones. The proposed algorithm divides a job into batches and assigns them to machines so
total setup times can be reduced.

Sarıçiçek and Çelik [2011] recognized the difficulty of solving large scale integer pro-
grams, and proposed both a Tabu Search (TS) and Simulated Annealing (SA) meta-
heuristic for the problem with independent setup times and developing a MIP formulation
with positional variables, finding that the SA approach significantly outperforms the TS
in terms both of computational time and deviation from the optimal solution (in terms of
medium and long setup times).

As the majority of the literature does not consider job splitting, it is also important
to analyse existing work on the PMS without this property, considering both similar and
different properties.

Kaplan and Rabadi [2011] presented a practical application of the identical PMS to the
aerial refueling, considering ready times and due date-to-deadline windows to minimize
total weighted tardiness. A MIP formulation is presented and a modified Apparent Tardi-
ness Cost (ATC) method developed by taking ready times and due date-to-deadline time
windows into account, comparing its results to the SA meta-heuristic.

A Greedy Randomized Adaptive Search Procedure (GRASP) approach with path re-
linking to minimize total tardiness was developed by Armentano and de Franca Filho [2007]
for the (less common) uniform PMS problem with job sequence dependent setup times,
performing computational tests and comparing their approach against a TS algorithm on
benchmark instances developed in earlier work.

Chen and Powell [1999a,b] propose decomposition approaches to a general case PMS
problem [Chen and Powell, 1999b] considering machines can be either identical, uniform
or unrelated (denoting this class as PMAC) for a minimization additive OF; and a just-in-
time formulation [Chen and Powell, 1999a] for the identical case to minimize total weighted
earliness and tardiness.

Sourd [2005] handles the single machine scheduling problem within the framework of
what the author calls the assignment model, developing a time-indexed formulation for
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the ET problem with setup considerations and setting forth a set of dominance rules for
the schedules and an adaptation of the B&B procedure is applied. The time-indexed
formulation developed in this work for the processing structure of the model, has similar
structure to the one developed in this dissertation and presented in Chapter 4.

The ET problem was also adressed by Kedad-Sidhoum et al. [2008] who focus on the
creation of upper and lower bounds for the single machine problem extending existing
considerations for the identical PMS, and providing a local search heuristic.

Dunstall and Wirth [2005b] presented heuristic methods for the identical PMS with
family sequence-independent setup times to minimize total weighted completion times,
evaluating them computationally against exact methods. Dunstall and Wirth [2005a] also
approached the same problem comparing the performance of three different rules in a
branching scheme embedded on a B&B algorithm for the weighted completion time that
significantly improves previous results in terms of computational time. For a technical
treatment of B&B algorithms for PMS, as well as an overview of dominance rules see also
Azizoglu and Webster [2003].

Akker et al. [1999, 2006] approaches the PMS developing CG algorithms to minimize
total weighted completion times [Akker et al., 1999] and a non-explicit OF to minimize
some function of the type minimax, such as maximum lateness or maximum cost [Akker
et al., 2006].

Less common OFs to evaluate performance are proposed by Joo and Kim [2012] and
Crauwels et al. [2006]. Joo and Kim [2012] presented a MIP with a linear ordering formu-
lation for the identical PMS problem with ready times, due times and sequence-dependent
setup times to minimize the weighted sum of setup, delay and tardy times. Their main
focus was to present and compare two alternative meta-heuristics from evolution theory:
two versions of a general purpose Genetic Algorithm (GA) heuristic (one with a special
character chromosome that separates jobs assigned to the same machines, and another with
a dispatching rule that assigns jobs to machines according to the completion times of jobs)
and a newly introduced heuristic, Self-Evolution Algorithm (SEA). They found that the
latter produces significantly better results in terms of deviation from the optimal schedul-
ing solution, besides exploring a larger solutions’ space. Crauwels et al. [2006] proposed a
model with sequence independent setup times for jobs not belonging to the same family
that minimizes the number of overloaded periods on a set of identical parallel machines.
In order to construct a feasible schedule, they solved a knapsack problem for each machine
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that transfers jobs from overloaded to underloaded periods for each machine.

The OFs present in the reviewed literature have no resemblance to the one being stud-
ied in this work. Most works rely on evaluating scheduling plans through earliness and/or
tardiness, makespan or other factors related to setup and completion times. In the sur-
vey of Pfund et al. [2004], the authors report that unrelated PMS environments remained
relatively unstudied, noting that there were few solution approaches to minimize due date
related functions, and making aware that research in this area should include the de-
velopment of solution algorithms to minimize due date related criteria, especially when
conflicting objectives need to be optimized.

The use of initial solutions is a common practice. Chen and Wu [2006] generated initial
solutions for an UPMSP by allocating each job to its most efficient machine and sorting
them by Earliest Due Date (EDD) rule; Chen [2009] used a modified ATCS to obtain initial
schedules to improve further on; Kim et al. [2004] and Wang et al. [2013] created initial
solutions based on the PSK heuristic [Koulamas, 1997]; Armentano and de Franca Filho
[2007] constructed initial solutions as their first phase when using a GRASP method;
Logendran et al. [2007] used four different methods to create initial solutions: EDD, Lowest
Weighted Tardiness (LWT), Due Date to Weight Ratio (DDW) rules and a proposed hybrid
critical ratio rule. Logendran and Subur [2004] also used four different methods to create
initial solutions in a problem with job splitting properties: EDD, EDD with consideration
for job splitting, least flexible job and machine, and a modified ATC.

As pointed out by Xing and Zhang [2000] and Zhu and Heady [2000], the NP -hardness
of the problem of scheduling n jobs on m machines with distinct release dates for jobs and
machines, and distinct due dates for jobs, implies that alternatives to exact approaches
must be sought.

2.3 Unrelated Parallel Machine Scheduling

The following paragraphs will focus on research work for the unrelated parallel machines
environment.

A survey of the literature focusing on the UPMSP without side conditions was done by
Pfund et al. [2004]. The authors reviewed the several performance evaluation methods and
compiled existing algorithms for the various OF.
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Logendran and Subur [2004] studied the UPMSP, with job splitting and distinct release
dates for jobs and machines, to minimize total weighted tardiness. The authors present a
MIP model using assignment and positional decision variables. In this work, the splitting
property considers a job can only be split in two parts to prevent higher Work In Progress
(WIP), with a predetermined number of jobs to be split. Also, neither setup times or costs
are explicit, assuming they are included in the processing times (non-separable setup times
or costs). Though the authors study an unrelated case with job splitting, the presented
model constraints force jobs to be processed in the same machine in case a splitting occurs.
To solve the problem, different initial solutions are created based on classic heuristics,
which are then used by a TS based heuristic to find a better solution, comparing then
the initial solutions that provide better results after applying TS. The authors claim
that the use of different strategies to create an initial solution makes no difference in
generating better solutions values for larger dimensions’ problems, though it influences
the computational times. Logendran et al. [2007] studied a similar problem with a similar
approach, considering six different TS algorithms and four different initial solution methods
that act as seeds of the algorithms. This work does not consider the possibility to split
jobs and has setup sequence dependent times properties, as well as distinct release dates,
with the objective of minimizing total weighted tardiness.

Zhu and Heady [2000] developed a MIP for the ET case for the unrelated PMS problem
with sequence dependent setups to provide optimal solutions for small scale problems
regarding future research and validation on industrial-scale heuristics.

Shim and Kim [2006] also considered the problem of scheduling jobs on unrelated PMS to
minimize total tardiness without a job splitting property and without setup considerations,
using a B&B algorithm approach with several developed dominance rules.

Liaw et al. [2003] considered the problem of unrelated PMS to minimize the total
weighted tardiness without setup considerations. They first created upper and lower
bounds, through a two-phase heuristic and an assignment approach respectively, and use
a B&B algorithm with dominance rules to eliminate unpromising partial solutions.

Chen and Wu [2006] presented an heuristic combining the Threshold-Accepting (TA)
method with the TS method and designed improvement procedures to minimize total
tardiness for an UPMSP with auxiliary equipment constraints. The effectiveness of this
approach was compared with an ATCS procedure and a basic SA method, outperforming
both and obtaining optimal solutions for small-sized problems. Chen [2009] combined the

14



SA method, ATCS and designed improvement procedures to minimize total tardiness for
an UPMSP with setup times that are dependent both on job sequence and machine used.

Wang et al. [2013] modeled the PMS problem with job splitting, for both identical and
unrelated cases, to minimize the makespan, approaching it through a hybrid Differential
Evolution (DE) method and creating a new crossover and mutation method in the global
search according to job splitting properties, as well as a specific local search method. The
authors made no considerations or assumptions regarding setup times.

Vallada and Ruiz [2011] proposed a genetic algorithm approach for the UPMSP to
minimize the maximum makespan of a schedule with sequence dependent setup times for
both jobs and machines. They developed a MIP with positional variables and an inter-
machine insertion local search rule that decreases the computational burden of analysing
all candidate solutions by examining the neighbourhood between pairs of machines while
searching for a solution.

Rocha et al. [2008] considered the problem of unrelated PMS, with sequence dependent
setup times for both machines and jobs, in order to minimize the maximum makespan
and the total weighted tardiness (both are added in the same OF). They developed a
B&B algorithm and compared it to two existing MIP models that use positional variables.
The authors derive upper bounds using a GRASP method and calculate lower bounds
separately for each of the components of the OF at each node.

Kim et al. [2002] presented a SA approach for the UPMSP with job sequence dependent
setup times to minimize total maximum tardiness. This SA approach uses six different
techniques to rearrange jobs or items and was compared to a neighbourhood search method,
outperforming it. A particularity in this work is the existence of indexed and already
defined and divided work part of lots or jobs.

Lopes and Carvalho [2007] studied the unrelated PMS problem with sequence dependent
setup times to minimize total weighted tardiness, developing a Branch & Price (B&P) algo-
rithm and proposing a new column generation acceleration method reducing significantly
the number of explored nodes.

Fanjul-Peyro and Ruiz [2012] approached the UPMSP under makespan minimization.
The unrelated environment was also extended to two possible situations. First, a situation
where Not All Machines (NAM) are desirable to process certain jobs, using only a subset
of parallel machines in order to understand if production capacity needs to be increased.
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Secondly, a situation where Not All Jobs (NAJ) are obliged to be processed. Two different
MIP formulations are developed for each situation and three algorithms are developed for
the NAM problem, combining them with CPLEX or between them and comparing the
results with the ones obtained using only CPLEX [ILOG, 2010].

Lee et al. [2013] suggested a TS algorithm to solve the unrelated PMS problem with
sequence and machine dependent setups to minimize total tardiness. The TS approach
was compared to an existing SA algorithm and an iterated greedy algorithm. The pro-
posed method outperformed significantly the SA values of solutions and number of optimal
solutions, and gave quicker solutions than the iterated greedy solution without improving
solution values.

Lin et al. [2011] approached the UPMSP using different heuristics and a GA comparing
its results. In this work, neither setup times nor job splitting properties are considered.
For each developed heuristic, a different performance evaluation criterion was used: mini-
mizing maximum makespan, minimizing total weighted completion times and minimizing
total weighted tardiness. Each developed heuristic was compared against the GA that
outperformed the other heuristics. Rodriguez et al. [2013] also approached the unrelated
environment without setup times and splitting properties to minimize the total weighted
completion times but using an iterated greedy algorithm to solve large-scale size instances.

2.4 Hybrid Methods

The use of hybrid algorithms is of great importance in the optimization fields, where a
large number of problems are difficult and complex to solve by exact methods. To contour
these difficulties, hybrid methods are a serious and main alternative to solve these problems
[Talbi, 2013].

Hybrid approaches can result from the combination of different types of optimization
techniques. Among them, the hybridizations that are useful to study in this work result
from combining decomposition techniques based on Mathematical Programming with MH.

Raidl [2006] classifies hybridization of MH using four properties: the techniques being
hybridized, the level of hybridization (how the original identity of the algorithms is main-
tained), the order of execution (sequential, interleaved or parallel), and the control strategy
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(integrative, if one algorithm is subordinate, or collaborative, if information is exchanged
between them).

Using the classification system of Raidl [2006], SearchCol is classified in Alvelos et al.
[2013] as:

The kind of algorithms that are hybridized define a first differentiation criterion
in that classification scheme. In SearchCol, at least two types of algorithms are
combined: a linear programming algorithm for solving the RMP of CG and
a (hybrid) MH for the search. A problem-specific algorithm for solving the
subproblem is also usual. The second differentiation criterion is the strength of
combination. In SearchCol, CG influences a MH and the reverse is also true. As
the algorithms retain their own identities, there is a low level of hybridization.
Note that this weak coupling is a consequence of the generality of the approach.
The order of execution is interleaved and the combination is collaborative: the
CG and the MH exchange information but none is strongly subordinated to the
other.

A taxonomy of hybrid algorithms to provide common terminology and classifications is
also proposed by Talbi [2013, 2009, 2002]. The book by Talbi [2009] offers a comprehensive
background on design and implementation of MHs with useful information to help solve
complex optimization problems using MH with diverse approaches and techniques. Gen-
dreau and Potvin [2010] compiled the different concepts, implementations and applications
in the optimization fields of a vast number of MHs being a good reference to researchers
who start working in the optimization field and, especially, MHs.

Blum et al. [2011] reviewed the existing techniques using MH in combinatorial optimiza-
tion categorizing the different hybridizations and providing examples and short literature
reviews for each category combining MH with: (meta-)heuristics, constraint programming,
tree search methods, problem relaxation and dynamic programming. The combination of
MH with tree search methods and problem relaxation fall upon the scope of our work.
Search tree methods contain both approximate algorithms such as (meta-)heuristics and
complete techniques and are considered to be one of the most popular hybridization ap-
proaches. According to the authors, the use of a problem relaxation to enhance MH has
turned into a popular approach in recent years, namely the use of linear relaxation in in-
teger problems which has already led to successful algorithmic approaches. The authors
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advise to consider important aspects before developing a hybrid approach regarding the
optimization goal, the existence of possibility to improving existing results using MH ap-
proaches and/or exact techniques, and which type of hybridization is well-suited for the
considered problem. This last consideration is still a barrier due to lack of existing gen-
eral guidelines, though research with hybrid MH is still in its early days with publications
appearing concerning hybrids.

Barnhart et al. [1998] surveyed the different B&P formulations and discussed the issues
of implementing a computational B&P algorithm. B&P can be considered as a hybridiza-
tion of B&B and CG methods which has seen useful applications in scheduling problems.
The authors suggest several reasons to use B&P for huge integer programs, namely, its
better performance when solving the LP relaxation (opposed to the compact formulation),
the poor performance of compact formulations in presence of a symmetric structure, the
possibility of adding important characteristics to the problem in the contextual setting of
subproblems and the master problem, as well as being the only possibility to solve the
problem. Though the decomposition may provide a better LP relaxation, it is wisely noted
that the decomposition should not be applied to obtain faster and shorter solving times
but just to improve the LP bound.

For an overview on decomposition methods, see also the works by Desaulniers et al.
[2005], Desrosiers and Lübbecke [2005] and Wilhelm [2001].

Danna and Le Pape [2005] and Boschetti et al. [2010] proposed frameworks using the
same combination as Searchcol. Danna and Le Pape [2005] combined B&P and local
search in the nodes of the search tree to generate new columns and improve the incumbent
solution. This approach was applied within a Vehicle Routing Problem (VRP) with time
windows. Boschetti et al. [2010] presented three different decomposition techniques, such
as Dantzig-Wolfe, Lagrangean and Benders, and derive a MH framework for each technique
by proposing a general structure algorithm that can be applied to specific problems.

From the reviewed literature of PMS problems and hybrid methods, the work by Angh-
inolfi and Paolucci [2007] stands out as one of the few papers working on the two fields of
research. The authors approach the identical PMS case with the objective of minimizing
total tardiness, by combining TS, SA and Variable Neighbourhood Search (VNS) MHs.
The hybrid MH borrows from the SA approach the idea that randomness in searching for
solutions in a neighbourhood can improve the effectiveness of the algorithm, from TS the
idea of obtaining through a set of rules a list of candidate solutions, and from VNS the
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idea that varying the neighbourhood scope and structure during the search can improve
the quality of the results, independently of the quality of the first solution.
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Chapter 3

Unrelated Parallel Machine
Scheduling Problem with Job
Splitting

In this chapter, a detailed description of the Unrelated Parallel Machine Scheduling
Problem with job splitting (UPMSPjs) is made presenting definitions for the problem with
characterization of jobs and machines’ environment, introducing and explaining the OF
used. Moreover, an example is also presented to illustrate the problem.

3.1 Definition

In this work a variant of the UPMSP is studied, in which a set of jobs needs to be
scheduled in a set of available unrelated parallel machines to meet a given demand, in
order to minimize an OF of processing of jobs before and after its due dates. Any job can
be processed in any machine at any available time, being possible to process the same job
at the same time in one or more than one machine, as long as a setup time is incurred for
each machine or the initial state configuration of the machine is being respected. Moreover,
at any given time period, each machine can only process, at most, one job.

The time periods are considered to be discrete and limited to a set of periods, to be
calculated depending on the problem data (as will be detailed in Chapter 6). For each
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time period, four different machine states are possible: unavailable, idle, being setup or
processing. When unavailable, it means the machine is not yet released from a previous
schedule. The idle status refers to a period of time where the machine is available but no
setup or processing of any given job is incurred.

Solving this problem will result in a set of machine schedules indicating what job to
process and when it will be processed. A machine schedule can be seen as a set of scheduled
periods with a status associated to each period. Also, if the status of a period in a machine
corresponds to setup or processing, a job is also associated to it.

The job splitting property allows a job to be split in multiple lots to be allocated in any
available machine at any period of time.

More detailed definitions of the problem are given in Subsections 3.1.1-3.1.3.

3.1.1 Machines’ Characterization

A set M of m machines is considered, such that M = {M1,M2, ...,Mi, ...,Mm}.

All m machines belong to an unrelated parallel environment and each machine can only
process one job at a time, as long as it has been previously prepared for it.

The main characteristic in the UPMSP when dealing with the machines’ environment
comes from its unrelated property, which refers to the ability of each machine to process
a given job. In the unrelated case, no relation or proportion exists between any machine,
with each machine having its own processing speed for each job (or amount of time needed
to fully process a job).

The problem requires machines to be defined as to its set size (number of machines), its
release date and its initial setup state or pre-programmed job.

3.1.2 Jobs’ Characterization

A set J of j jobs is considered, such that J = {J1, J2, ..., Jj, ..., Jn}.

Each job must be processed to satisfy its demand. This demand is not explicitly given,
being defined by the number of processing periods required to satisfy it. Being an unrelated
machine’s environment, this processing time differs from machine to machine.
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A job to be processed, must have its corresponding machine previously prepared. The
preparation of any given machine occurs by incurring defined setup times, whether in the
actual scheduling plan or as the last preparation for the previous schedule. The introduc-
tion of setup times must respect availability of machines but not availability of certain job
to be processed; thus, setup times can be scheduled to preceding periods of job’s release
but must be scheduled after machine’s release.

The main distinguish feature of the UPMSP under study is its job splitting property
which allows any job to be divided in different lots and processed in more than one machine,
being possible to process it at the same time in different machines. As it is an unrelated
environment, the sum of processing times in different machines does not guarantee a full
processing of the referred job. Therefore, demand is satisfied when the sum of proportions
of processing of a job in all machines is met. Furthermore, for each lot a setup time must
be incurred to be able to process the job. The setup times are sequence independent so
each job has a unique setup time, independently of what job precedes it or which machine
will process it.

A due date is associated to each job, so that by the end of that period the job should
be fully processed and ready, although it is possible to process it after this date, meaning
it will result in tardiness. Also, this due date must be posterior to the job’s release date.

Jobs are classified as to its importance by a given weight, with the biggest weights
corresponding to the jobs with the utmost importance.

The problem requires jobs to be defined as to its set size (number of jobs), availability
or release date, due date, weight, sequence independent setup time and processing times
(one processing time for each machine).

3.1.3 Objective Function

The aim of the OF is to obtain a schedule that minimizes production occurring both
before and after the job’s due date. The OF will penalize early and tardy processing
(related to the due date), with the possibility to define if the penalization should be bigger
for earlier or tardier production, by using a convex combination of a parameter β. Also,
within the set of processing periods before and after the due date, the more distant the
processing is done from the due date the more it penalizes the solution’s value.
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The proposed OF reaches a compromise by combining the main idea behind Earliness-
Tardiness (ET) models, the guarantee that processing happens accordingly to job’s demand
and without early or tardy unwanted production, as it can happen with a time indexed
formulation, when using an OF that accounts only for beginning and/or conclusion dates.

Moreover, this evaluation method motivates processing to be done the closest possible
to the due date, thus avoiding unnecessary WIP (caused, for example, by the job splitting
property).

Figure 3.1 shows a scheduling example from which a calculation for the solution value
can be obtained, using the developed OF.

1 2 3 4 5 6 7 8 9 10

Machine 1 s4 p14 s2 p12

Machine 2 s5 p25 s1 p21 s3 p23

d3, d2d5 d4 d1

Idle
sj , preparing j
pij , processing j in i

Unavailable
dj , due date of j

Figure 3.1: A scheduling example to calculate OF value

The example shows a set of 5 jobs with respective due dates below, scheduled in 2
machines accordingly to its setup and processing times and release dates. All jobs’ weights
are considered to be 1 (to simplify) and the β parameter 0.9. Using this value for β implies
tardy processing has a weight of 0.9 and early processing a weight of 0.1.

Analyzing the job scheduling presented, job 5 is processed in tardy periods as its due
date occurs very early in the set of periods. Job 1 has the best performance, as by having
a processing time of one unit only, is able to process on its due date, so does not incur in
any early or tardy penalization. Remaining jobs have mixed performances.

Considering the example and respective scheduling plan, its OF value can be calculated
the following way:

Z = 0.2 + 0.1 + 0︸ ︷︷ ︸
job 4

+ 0.1 + 0︸ ︷︷ ︸
job 2︸ ︷︷ ︸

machine 1

+ 0.9 + 1.8︸ ︷︷ ︸
job 5

+ 0︸︷︷︸
job 1

+ 0 + 0.9︸ ︷︷ ︸
job 3︸ ︷︷ ︸

machine 2

= 4.0
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3.2 Example

In Figure 3.2 an example is shown representing a set of 4 machines and 20 jobs, its
scheduling in time using some of the definitions and properties previously introduced.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Machine 1 s15 p1 15 s16 p1 16s20p1 20s13 p1 13 s11 p1 1

Machine 2 s15 p2 15s8 p2 8s18p2 18 s14 p2 14s10 p2 10 s19p2 19

Machine 3 s1 p3 1 s5 p3 5s4 p3 4 s7 p3 7s13p3 13 s19 p3 19

Machine 4 p4 3 s2 p4 2 s6 p4 6s17p4 17s9 p4 9 s12 p4 12

d20 d5, d10d15d9 d12d14d17d18

d1d2, d11d3 d4 d6 d7d8 d10d13 d16 d19

Idle
sj , preparing j
pi j , processing j in i
Unavailable
dj , due date of j

Figure 3.2: Scheduling example

The schedule exemplified is comprised of 25 periods of time, which does not represent
the implementation developed in this work. This example shows a feasible solution for the
UPMSPjs, with the job splitting property being applied in jobs 13, 15 and 19 to process
different lots in two different machines, and repeating setup times. The advantages of
splitting processing through different machines are visible in the example.

The due date of job 15 is in a congested interval of periods, so the split of processing
between machine 1 and 2, frees previous time periods to process different jobs and reduces
WIP, which is easily verified by calculating the cost of this processing with and without
job splitting (considering the processing would occur in one machine and in the preceding
periods). The weight of the job is represented by w15.

Z15split = (1 + 0︸ ︷︷ ︸
t10+t11︸ ︷︷ ︸

machine 1

+ 1 + 0)︸ ︷︷ ︸
t10+t11︸ ︷︷ ︸

machine 2

(1− β)w15 = 2 (1− β)w15

Z15 without split = (3 + 2 + 1 + 0)︸ ︷︷ ︸
t8+t9+t10+t11 of machine 1

(1− β)w15 = 6 (1− β)w15

In this example, the splitting of processing results in a cost savings of 2
3 .
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Also, in machine 4, the initial setup state of the machine is preserved, processing without
incurred setup times by using the configuration of the previous schedule.
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Chapter 4

Models

In this chapter the mathematical models for the UPMSPjs are presented. The chapter
is divided in three sections. First the developed notation is introduced. In the following
section the Compact Model is detailed, taking into consideration the definitions presented
in the previous chapters and the notations developed in previous section. In the last section,
the Machine Schedule Decomposition model will be presented, based on the Compact
Model of Section 4.2, using the Dantzig and Wolfe [1960] decomposition technique.

4.1 Notation

In this section, the notation used in this work is introduced, organized by considered
sets and parameters needed for the problem (introduced in the previous Chapter).

Considering the α/β/γ Graham’s notation introduced in Chapter 2, the UPMSPjs is
classified as:

Rm/rj, qi, sj, dj, split/X

The sets considered in this work are represented by:

J - Set of jobs, indexed by j = 1...n
T - Set of discrete, integer time periods, indexed by t = 0...Tmax
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M - Set of machines, indexed by i = 1...m

The parameters have the following notation:

pij - Processing time of job j in machine i, in time units
rj - Release date of job j, the moment in time it becomes available for processing
qi - Release date of machine i, the moment in time after which machine i can process jobs
dj - Due date of job j
wj - Priority or weight of job j
sj - Sequence-independent setup time of job j
z[i] - Vector indicating the programmed job for each machine, at the beginning of the

scheduling horizon
β - Constant between 0 and 1

4.2 Compact Model

The proposed model to the UPMSP is a time indexed based one2. In this model, beside
the processing decision variables, it’s also taken into account setup decision variables and
an extra decision variable associated with the first change in setup status of a machine.
Processing and setup runs comprise integer multiples of the time periods and the deci-
sion variables assign either setup or processing decisions to the available time slots of the
schedule.

The model’s decision variables to be used are:

xijt - Boolean variable assigning integer time slots of the schedule to the production of
job j in machine i at time t, defined as:

xijt =

1 if job j is assigned to machine i at time t

0 otherwise

2In a time-indexed formulation, time is divided into a pre-set of identical periods of a unit length. Note
that this unit length can be adjusted accordingly to the problem’s data.
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yijt - Boolean variable assigning integer time slots of the schedule to the setup of job j in
machine i at time t, defined as:

yijt =

1 if a setup for job j is incurred in machine i at time t

0 otherwise

eit - Boolean variable accounting for the first change in the setup status of machine i at
time t, defined as:

eit =


1 if the setup status of machine i changes from z[i] to j at time t

or in a previous period of time

0 otherwise

The developed model, considering the previous developed notations and constraints is
the following:

MinZ =
m∑
i=1

n∑
j=1

Tmax∑
t>dj

β(t− dj)wjxijt +
m∑
i=1

n∑
j=1

t≤dj∑
t=1

(1− β)(dj − t)wjxijt (4.1)

Subject to:

m∑
i=1

Tmax∑
t>max{rj ,qi}

1
pij
xijt ≥ 1 ∀j (4.2)

t−1∑
k=t−sj

yijk ≥ (xijt − xij(t−1))sj ∀i,∀j : j 6= z[i],∀t : t ≥ 1 (4.3)

sz[i](1− ei(t−1)) +
t−1∑

k=t−sz[i]

yiz[i]k ≥ (xiz[i]t − xiz[i](t−1))sz[i] ∀i, ∀t : t ≥ 1 (4.4)

n∑
j=1:j 6=z[i]

t∑
k=0

(yijk + xijk) ≤ teit ∀i, ∀t : t ≥ max{qi, 1} (4.5)

n∑
j=1

xijt +
n∑
j=1

yijt ≤ 1 ∀i, ∀t : t ≥ 1 (4.6)

xijt = 0 ∀i,∀j,∀t : t ≤ max{rj, qi} (4.7)
yijt = 0 ∀i, ∀j,∀t : t ≤ qi (4.8)
xijt, yijt, eit ∈ {0, 1} (4.9)
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The OF is represented in this model by (4.1). The developed OF is composed of different
characteristics which will be detailed below and it is first introduced in Subsection 3.1.3 of
previous Chapter.

The processing of a given job is penalized according to how distant it occurs from the its
due date. The distance in time between the processing and the due date takes two forms,
depending whether it is before or after, with all processing for each job being summed,
which corresponds, when considering a job j, to:

Tmax∑
t>dj

(t− dj)xijt +
t≤dj∑
t=1

(dj − t)xijt

Weights introduced before (job’s weight and β parameter) are then included. The
parameter β is applied to both terms, so that the sum of the multiplier is equal to 1, for
periods of a machine schedule with equal time distance to the due date of a given job j.
Job’s weight is equally multiplied to both parts of the equation.

Tmax∑
t>dj

β(t− dj)wjxijt +
t≤dj∑
t=1

(1− β)(dj − t)wjxijt

If the objective is to minimize the processing after the due date, the β should be user
defined in the interval ]0.5, 1]. The higher the β, the bigger weight the tardier processing
will have in the OF.

The OF is completed when considering the sum of all machines and jobs with the
minimization of the following expression:

MinZ =
m∑
i=1

n∑
j=1

Tmax∑
t>dj

β(t− dj)wjxijt +
m∑
i=1

n∑
j=1

t≤dj∑
t=1

(1− β)(dj − t)wjxijt

The developed OF penalizes all periods with processing status, except when in the due
date period. If parameter β is defined closer to 1, scheduling will only cause tardiness if
there are not enough available periods before the due date, either because the due date is
in the beginning of the schedule, or because periods before due date are already unavailable
(preparing or processing a different job).

There are several constraint sets that need to be considered in this model. A set of con-
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straints must be defined to guarantee the satisfaction of demand, considering that process-
ing can be executed in any machine with different relations between the speed/processing
and the total demand or needed processing. Constraints (4.2) simply state the sum of the
processing variables for each job must be at least equal to its total processing time (each
job is completely executed and demand is satisfied).

A second set of constraints in this model relates to setup considerations, guaranteeing
not only the mandatory machine setup before any new job is processed, but also the
preservation of an initial setup state inherited from the previous schedule. Constraints
(4.3) ensure that a setup time is incurred whenever a machine starts processing a new job.
Constraint set (4.4) has the same role as (4.3), but considers the case where the incoming
job is the preprogrammed one, and allows for initial setup preservation through the change
of status variable eit. By (4.5), the setup status of a machine changes in time t if the
incoming job is not the preprogrammed one (in which case a setup must be incurred before
any production takes place).

A third set of constraints aims at limiting the status of a machine, if not idle or un-
available, to one of the two active possible states: being setup or processing. By (4.6), it
is ensured that at any given time t, a machine is either processing, being setup for a job,
or idle.

A set of constraints must also be considered to guarantee that the release dates are
respected, so that machines cannot process or be setup before being available and jobs
cannot be processed before being also available. Constraints (4.7) guarantees that no pro-
duction takes place before the maximum between the release dates of job j and machine i.
By (4.8) it is stated that setups cannot take place before machine i is available.

Finally, constraints (4.9) bound the variables of the problem.

The developed Compact Model presented in this section will be solved using the callable
libraries of a general purpose solver, CPLEX ([ILOG, 2010]), through the SearchCol com-
putational framework (to be presented in the Chapter 5).
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4.3 Machine Schedule Decomposition Model

In this section, a Dantzig-Wolfe decomposition is applied to the Compact Model of
Section 4.2, and a Master Problem (MP) and a set of smaller and independent problems
are created - the Subproblems (SPs).

In this work, each SP solution will correspond to a machine scheduling, so each problem
represents a single machine scheduling problem. To decompose the model two different sets
of constraints must be considered: a set of constraints that link the different machines,
and a set of constraints where the machine being considered is the same. Considering a
matrix of the constraints, in order to apply the decomposition, a set of sub-matrices must
be identified and regrouped as connected or coupled constraints (set of constraints that
link the different machines) and another subset of the remaining sub-matrices that are not
coupled are also identified.

Using the previously presented Compact Model, the set of constraints (4.2) is the only
coupling sub-matrix identified, considering a sum of processing in the set of all machines;
whereas, all the other constraints are not linking different machines. The first referred
constraint will remain in the MP, and all the others (constraints (4.3) to (4.9)) will form
the SPs.

The SPs being solved will result in different machine scheduling plans where not all jobs
must be scheduled (no satisfaction demand must be guaranteed) and where allocation of
processing has exactly the same procedure as in the compact model, indicating for that
SP which job and when it shall be processed. Each SP has its own characteristics, as they
depend on machine properties and its job processing times, resulting in a set of different
problems.

For the MP new decision variables will be needed, to represent the extreme points
generated by the SPs. The solution of the MP will represent a convex combination of
these points, in order to guarantee that only one plan is chosen for each machine, with its
MP constraints being respected.

All notation being used has already been introduced, except for the following set, deci-
sion variables and parameters.

A new set must be defined representing the total number of scheduling plans generated
by the SPs:
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Hi - Set of machine i scheduling plans, indexed by h = 1...gi

The new decision variables to be used are the following:

λhi - Weight of scheduling plan h of machine i, defined as:

λhi =

1 if scheduling plan h of machine i is selected

0 otherwise

A new set of parameters to be used must be defined such that:

αhijt - Boolean parameter assigning integer time slots of the scheduling plan h in machine
i to job j, defined as:

αhijt =

1 if job j is processed in machine i at time t on scheduling plan h

0 otherwise

It must be noted that the parameter αhijt is directly related to the previously defined
xijt, though this one is now used in the MP whereas the original one is being used by the
SPs.

4.3.1 Master Problem

With all the notation developed in Subsections 4.1 and 4.3 the following MP can be
defined:

Min
gi∑
h=1

m∑
i=1

n∑
j=1

Tmax∑
t>dj

(
β(t− dj)wjαhijt

)
λhi +

gi∑
h=1

m∑
i=1

n∑
j=1

t≤dj∑
t=1

(
(1− β)(dj − t)wjαhijt

)
λhi

(4.10)

Subject to:

gi∑
h=1

λhi = 1 ∀i (ηi) (4.11)
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gi∑
h=1

m∑
i=1

(
Tmax∑

t>max{rj ,qi}

1
pij
αhijt)λhi ≥ 1 ∀j (Πj) (4.12)

λhi ∈ {0, 1} (4.13)

The OF in (4.10) follows the one used in the compact model, minimizing processing oc-
curring distant from the due date of the jobs in the chosen scheduling plans. A new set
of constraints is introduced. The set of constraints (4.11) are the convexity constraints
of the model, that guarantee that a combination of the SPs is chosen. Constraints (4.12)
derive from the compact model set of constraints that ensure processing and satisfaction’s
demand is met for all jobs (in all chosen plans for all machines). The last set of constraints
(4.13) defines the decision variables domain.

When solving the Restricted Master Problem (RMP), a set of dual variables is obtained:
Πj from (4.12) giving information of whether it is attractive to process job j and from (4.11)
the convexity constraint dual variable ηi.

4.3.2 Subproblem

Using remaining constraints and the dual variables provided by the MP, the following
SPs is formed, for machine i:

MinZSP i =
n∑
j=1

Tmax∑
t>dj ∧ t>max{ri,qi}

(
β(t− dj)wj −

1
pij

Πj

)
xijt +

n∑
j=1

Tmax∑
t≤dj ∧ t>max{ri,qi}

(
(1− β)(dj − t)wj −

1
pij

Πj

)
xijt +

n∑
j=1

Tmax∑
t≤dj ∧ t≤max{ri,qi}

(1− β)(dj − t)wjxijt +

n∑
j=1

Tmax∑
t>dj ∧ t≤max{ri,qi}

β(t− dj)wjxijt − ηi

(4.14)
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Subject to:

t−1∑
k=t−sj

yijk ≥ (xijt − xij(t−1))sj ∀i,∀j : j 6= z[i],∀t : t ≥ 1 (4.15)

sz[i](1− ei(t−1)) +
t−1∑

k=t−sz[i]

yiz[i]k ≥ (xiz[i]t − xiz[i](t−1))sz[i] ∀i, ∀t : t ≥ 1 (4.16)

n∑
j=1:j 6=z[i]

t∑
k=0

(yijk + xijk) ≤ teit ∀i, ∀t : t ≥ max{qi, 1} (4.17)

n∑
j=1

xijt +
n∑
j=1

yijt ≤ 1 ∀i, ∀t : t ≥ 1 (4.18)

xijt = 0 ∀i,∀j,∀t : t ≤ max{rj, qi} (4.19)
yijt = 0 ∀i, ∀j,∀t : t ≤ qi (4.20)
xijt, yijt, eit ∈ {0, 1} (4.21)

In this formulation, each SP corresponds to a machine upon which the reduced cost of
production plans are evaluated at each iteration of the algorithm.

The OF of the SP uses the dual information provided by the MP. This dual information
indicates which jobs are attractive to produce in each SP and each iteration.

The set of constraints has the same meaning as in the case of the Compact model (see
Section 4.2).

The SPs can be solved using any suitable method. In Chapter 5 will be presented a
set of results from using three different approaches to solve the SPs: a general purpose
solver and problem specific heuristics using two different visions of the SPs. The referred
methods are used within the context of CG which is introduced in next Section.

4.3.3 Column Generation

The approach being used to solve the LR of this decomposition model is known as
Column Generation (CG), typically used to solve large LP problems or to obtain good
lower bounds for Integer Programming (IP) problems.

CG is an iterative process where the MP and SPs change information between them.
When in the first iteration, the MP is solved using a reduced form version that contains only
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a meaningful subset of all variables and through relaxation of the integrality constraints.
This reduced form is called the first Restricted Master Problem (RMP), and solving it a
dual optimal solution is obtained. The dual information resulting from the previous RMP,
is then used by the SPs which are solved using the updated dual information. The solutions
resulting from solving the SPs are then sent to the RMP until a new iteration results in a
SP solution of non-negative value, meaning the current solution of the RMP is the optimal
solution of the MP.

Solving the decomposition model using CG results in a linear solution, where one ma-
chine schedule may be composed of partial schedules. The proposed framework in this work
is able to solve the integer problem (find an integer solution) through diverse methods.

These methods, as well as the whole CG process, its implementation and problem specific
heuristics to solve the SPs and to start the CG, are presented in Chapter 5.
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Chapter 5

SearchCol

In this chapter, the SearchCol framework (short for ‘Metaheuristic search by Column
Generation’) is introduced. Several aspects and possibilities of the SearchCol will be pre-
sented, as well as the overallmodus operandi of the global algorithm. After the introduction
of the framework, the chapter will be divided in sections corresponding to each main step of
the SearchCol algorithm. In each step, behind the general considerations, the application
of the algorithm to the UPMSPjs will also be presented, with special focus on the problem
specific implementations developed.

5.1 Introduction

In this section, the basic ideas of the SearchCol will be introduced, showing also how
its three main components interact between them. For a detailed introduction to the
SearchCol framework, see Alvelos [2012] and Alvelos et al. [2013].

Searchcol is an optimization method combining two approaches: CG and MH. Within
the SearchCol, CG is used to find linear solutions to the decomposition model, resulting
from the compact one. As previously mentioned, during the CG process, several SPs are
iteratively solved and its solutions inserted into the RMP (each SP solution of each iteration
of the CG is associated with a column of the RMP). These solutions to the several SPs can
be treated as components of the overall problem solution. The set of solutions provided by
the CG acts as the search space for the chosen searcher (which can be a MH or an exact
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solver), that will return an incumbent (and feasible) integer solution to the overall problem.
SearchCol algorithm iterates by modifying, after the conducted search, the structure of the
decomposition model, namely the constraints present in the RMP, which perturbates the
CG and enables the creation of new problem solutions.

The SearchCol’s UPMSPjs implementation followed the approach provided in Figure
5.1.

Column
Generation

SearchPerturbation

Stop?

End

MIP

MH

yes

no

Figure 5.1: An overview of a SearchCol iteration

The SearchCol’s global algorithm can be divided in three main steps or phases (upon
which this work will focus). These steps can be identified as the CG, the Search and the
Perturbation phases. In each one of these steps, several methods and possible problem
specific implementations are available in the core SearchCol framework.

The algorithm starts by applying the CG using the CG heuristic detailed in Section 5.2.
In this step the decomposition model is solved and an optimal LR solution to the problem is
obtained, which also provides a lower bound to the MIP model. The CG phase is problem
dependent as it demands user implementation of the model (RMP and SPs), and if desired,
problem specific implementations to either build initial solutions or to heuristically solve
the SP. Moreover, a specific algorithm can be implemented to solve the SPs more efficiently.
On the other way, the interaction between the RMP and the SP is already implemented
and can still be parametrized.

In the second phase of the algorithm, the set of previously generated solutions define
a search space, and work as components of the overall solution [Alvelos et al., 2013].

38



This phase is problem independent as the several search tools of the MH search are fully
implemented and can also be parametrized. Two different search algorithms were used in
this work: VNS metaheuristic and MIP. The search phase and the used search components
are presented in Section 5.3.

If SearchCol is parametrized to have more than one iteration, a new phase of the global
algorithm is available. This phase, when running SearchCol in an iterative mode is impor-
tant to avoid the algorithm to become redundant, by solving the same CG and obtaining
the same solutions. In this third step a perturbation to the RMP that will be solved in
the following CG is added. This perturbation is, in fact, a procedure that adds a set of
new constraints to the RMP, so that promising SPs variables are forced to have a (binary)
value, in order to generate new SP solutions and try to improve the value of the previ-
ous incumbent solution. The perturbation phase and its components are presented and
detailed in Section 5.4.

After the perturbation phase, a new CG is run - perturbed CG - which will lead to a
new search phase. Afterwards, if no stopping criteria is met, a new perturbation is ap-
plied and the process iterates again. In SearchCol, the perturbation to be executed can
be problem independent, with several perturbations algorithms available, considering the
incumbent and/or the optimal solution and with deterministic or probabilistic character-
istics. Problem specific perturbations can also be implemented to improve the quality of
the constraints added to the RMP, taking into account problem characteristics.

The stopping criterion in SearchCol can be met using: a time limit, a limited number
of search iterations, a certain improvement on the value of the incumbent solution or a
limited number of total iterations without improvement (a total iteration comprises the
execution of the three referred steps).

A SearchCol iteration results in a node of a tree. If a pure SearchCol approach is
applied, the result from several iterations is a forest composed of several trees where each
tree can be made of nodes with one or more descendants [Alvelos, 2012] as in each iteration
is possible to restart from the root node.

SearchCol manages the methods being used in each iteration and in each phase of the
iteration. This is done considering the different alternatives in the components and type
of nodes obtained from each step.

A SearchCol run can be configured through several general parameters that guide the
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global algorithm, through phase parameters that define how the component behaves, and
through a configurator parameter that guides each SearchCol iteration depending on the
type of node resulting from a previous iteration. This way, different searchers or perturba-
tors can be used depending on the type of nodes obtained.

The computational implementation of the SearchCol is introduced in Chapter 6 with
more detailed information about the available SearchCol configurations and parameters
being used in this work.

5.2 Column Generation

In the UPMSPjs approach to the SearchCol algorithm, the solution method for the
decomposition model relies on solving CG and obtaining then an integer solution based on
the columns of the last RMP. This approach is introduced in this section regarding the
CG itself, the development of initial solutions and the solving of the SPs (whether through
exact methods or with heuristic methods).

In figure 5.2 a representation of the CG is shown.

Initial
Solutions

Restricted
Master

Problem
Duals

SubproblemsAttractive
Columns

Stop?

End

Exact

Heuristicyes

no

Figure 5.2: Column Generation

Before the first generation of columns, initial solutions that act as columns, are inserted
into the first RMP using different problem specific heuristics (see Subsection 5.2.1).
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The CG is then solved using the two possible SearchCol techniques: a general and exact
method, and problem specific heuristics (to be discussed in Subsection 5.2.2 with results
compared in Chapter 6).

The heuristics to solve the SPs differ by using either one SP or all the SPs at each time.
Considering one SP at a time implies SPs are solved independently and an overall feasible
solution is not guaranteed, whether when building solutions within the context of all the
SPs, allows feasible solutions to be obtained for the overall problem.

When solving the SPs, attractive columns are generated and inserted into the RMP until
the optimal solution of the RMP is found, i.e. the optimal solution of the overall linear
problem is found (optimal LR solution). The other way, each time an optimal LR solution
is found for the current RMP, dual information is provided for the SPs that will generate
new and attractive columns, until the optimal solution of the overall linear problem is
found. SearchCol allows SPs to be solved either exactly or with specific heuristics.

5.2.1 Initial Solutions

The introduction of initial solutions provides an upper bound to the optimal solution, as
well as quality and feasible solutions to be inserted in the RMP as columns. Five different
types of initial solutions were designed taking into consideration the characteristics of the
problem, such as due dates, setup times, processing times and weight of the jobs.

Table 5.1: Initial Solutions’ Overview

Type 1 due date rule with sequential processing
Type 2 average processing time rule with processing on most attractive periods of chosen

machine (chosen through number of available periods and processing time ratio)
Type 3 average processing time rule with processing on most attractive periods of chosen

machine (chosen through average weight on objective function of the available periods
and processing time ratio)

Type 4 average processing time rule with processing on most attractive periods of chosen ma-
chine (machine chosen through average weight on objective function of the available
periods and processing time ratio. If processing causes delay, the machine chosen will
be the one where the delay is minimal)

Type 5 due date rule with processing on most attractive periods of chosen machine (chosen
through average weight on objective function of the available periods and processing
time ratio)
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For an overview of the developed types, see Table 5.1.

The created heuristics function in two steps. First, an ordered list of jobs is created
(using different sorting rules for each type of initial solutions), and then each job is allocated
to a certain machine and certain periods of its schedule accordingly to each solution’s type
objective.

An example of each type of initial solution is provided in the following sections using
problem data from Table 5.2, with 2 machines and 5 jobs. The Tmax value indicates the
number of periods used for the example problem.

Table 5.2: Parameters for the Initial Solutions’ Example

Machine i i = 1 i = 2
qi 0 1
z[i] 3 2

Job j j = 1 j = 2 j = 3 j = 4 j = 5
p1j 3 2 2 2 4
p2j 3 3 2 1 1
rj 0 1 3 2 2
dj 1 9 5 4 9
wj 3 2 1 2 3
sj 2 1 2 2 1

β = 0.99 Tmax = 15

Initial Solution - Type 1

In this type of initial solutions, the EDD rule is applied. Jobs will be sorted increasingly
by due date and jobs with the same date are to be sorted by the release date so that jobs
released earlier are placed first in the sorted list.

Applying this rule for single machines is trivial, but for the parallel machines case
other impositions must be made. Release dates for both machines and jobs ought to be
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respected, although if the release date for the first job of each machine is smaller than the
machine’s release date, setup times can be incurred before the job’s release date. Initial
setup configuration is also taken into account.

To do this, jobs are picked (activated) through the ordered list until no job is left to
plan. Initially, a virtual marker is set to each machines at its release date. For the job
under analysis a conclusion time is calculated for every machine. The earliest calculated
time will indicate which machine will process the job. That will then be allocated to that
machine, the marker for the activated machine will be updated and the following job in
the ordered list will be picked and analysed. This process is repeated until no jobs are left
on the order list to be planned.

An algorithmic representation of the heuristic is provided in Algorithm B.1 in Appendix
and a detailed step by step description is given below.

1. Sort jobs increasingly by due date.
(a) For jobs with the same due date, sort subset of jobs non-increasingly by weight

of the job.
(b) For jobs with the same due date and weight, sort subset of jobs increasingly by

release date of the job.
(c) For jobs with the same due date, weight and release date, sort subset of jobs

increasingly by index.

2. From the list of ordered jobs, pick the first job j not yet scheduled.
3. For every machine i, calculate at which period job picked in step 2 will finish pro-

cessing, starting setup (if this job is not the first and already prepared job for the
machine) from the first available period (first period after machine’s release date or
previous processing) and choose machine where processing finishes earlier. If finishing
time is the same, machine with lowest index number is chosen.

4. Process job j from step 2 in machine i from step 3. Go back to step 2 until no job
left to plan.

This type of initial solutions provides a fairly easy and quick method to build a schedul-
ing but, with its sequential planning, though the due date is the first sorting criterion,
it will neglect the same criterion when planning, with job processing occurring fairly dis-
tant from its due date in most cases, whether before or after (in least or most congested
instances, respectively).
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Table 5.3: Type 1 Initial solution’s Sorted list

# Job j dj wj rj

1 1 1 3 0
2 4 4 2 2
3 3 5 1 3
4 5 9 3 2
5 2 9 2 1

The resulting schedule for the type 1 heuristic is demonstrated in Figure 5.3 with the
sorting list given in Table 5.3. This schedule has a solution value of 46.62.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Machine 1 s1 p11 s5 p15

Machine 2 s4 p24 s3 p23 s2 p22

d1 d2, d5d3d4

Figure 5.3: Scheduling example with Initial Solution Type 1

Initial Solution - Type 2

For type 2 and the following types of initial solutions, a different method is used to
allocate jobs to the machine in the available periods so that the due date is not neglected.
That is to say that available periods are inspected to retain the most attractive ones for
the job and machine being analysed. Attractive periods are considered to be the ones
where the job allocation implies the lowest possible weight on the full solution value. The
attractiveness of each period differs from job to job and can be calculated through:

attractivenessjt =

(dj − t)× (1− β) if t ≤ dj

(t− dj)× β if t > dj

The aim in this type of initial solution is to allow the most difficult jobs to be planned
first, considering also its due dates. Difficult jobs are considered to be, in this type, the ones
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with the highest average processing times, and so, the ones which imply bigger solution
values considering all jobs would finish on the due date.

The job splitting property is applied in this type of initial solution, when in the first
sequence of a job processing, the following most attractive period is not following or pre-
ceding the previous processing periods.

An algorithmic representation of the heuristic is provided in Algorithm B.2 in Appendix
and a detailed step by step description is given below.

1. Sort jobs non-increasingly by average processing time of job for all machines.
(a) For jobs with the same average processing time, sort subset of jobs increasingly

by due date.
(b) For jobs with the same average processing time and due date, sort subset of jobs

increasingly by index.

2. From the list of ordered jobs, pick the first job j not yet scheduled.
3. For every machine i, choose machine with the highest ratio of:

available periodsi
processingij

(a) If there is more than one machine with the same value of highest ratio, the
machine with the lowest index will be chosen.

4. Process job j (from step 2) in machine i (from step 3) on the most attractive periods.
5. Repeat the process starting from step 2 until no job is left to schedule.

Table 5.4: Type 2 Initial solution’s Sorted list

# Job j avg_procj dj M1_ratio M2_ratio rj

1 1 3 1 5 4.6(6) 0
2 2 2.5 9 5 6.5 1
3 5 2.5 9 1.75 13 2
4 3 2 5 3.5 5 3
5 4 1.5 4 3.5 8 2

The resulting schedule for the type 2 heuristic is demonstrated in Figure 5.4 with the
sorting list given in Table 5.4. This schedule has a solution value of 42.60.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Machine 1 s1 p11 s2 p12

Machine 2 s5 p25s3 p23 s4 p24

d1 d2, d5d3d4

Figure 5.4: Scheduling example with Initial Solution Type 2

Initial Solution - Type 3

Type 3 of initial solutions follows the same principle of Type 2, except for the way the
machine is chosen to process the already chosen job. The ratio of each machine is now
calculated using the average weight of the available periods on the OF, so machines with
equal available periods and same processing times for a given job, can be differentiated on
the quality of the available periods. Machines where the available periods fall more upon
pre due date periods than post due date periods have a better chance to be chosen.

The job splitting property is applied in this type of initial solution, when in the first
sequence of a job processing, the following most attractive period is not following or pre-
ceding the previous processing periods.

An algorithmic representation of the heuristic is provided in Algorithm B.3 in Appendix
and a detailed step by step description is given below.

1. Sort jobs non-increasingly by average processing time of job for all machines.
(a) For jobs with the same average processing time, sort subset of jobs increasingly

by due date.
(b) For jobs with the same average processing time and due date, sort subset of jobs

increasingly by index.

2. From the list of ordered jobs, pick the first job j not yet scheduled.
3. For every machine i, choose machine with the lowest ratio of:

(average periodweight onOF)i × processingij

with

(average periodweight onOF)i = total weight of available periods onOF
number of available periods
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(a) If there is more than one machine with the same value of lowest ratio, lowest
index machine will be chosen.

4. Process job j (from step 2) in machine i (from step 3) on the most attractive periods.
5. Repeat the process starting from step 2 until no job is left to schedule.

Table 5.5: Type 3 Initial solution’s Sorted list

# Job j avg_procj dj M1_ratio M2_ratio rj

1 1 3 1 20.79 22.28 0
2 2 2.5 9 4.17 4.52 1
3 5 2.5 9 11.90 1.62 2
4 3 2 5 13.01 8.65 3
5 4 1.5 4 14.99 6.93 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Machine 1 s1 p11 s2 p12

Machine 2 s5 p25s3 p23 s4 p24

d1 d2, d5d3d4

Figure 5.5: Scheduling example with Initial Solution Type 3

The resulting schedule is the same as the previous type, as the ratio calculation for this
example results in the same machine allocation for each job. The schedule for the heuristic
is demonstrated in Figure 5.5 with the sorting list given by Table 5.5. This schedule has a
solution value of 42.60.

Initial Solution - Type 4

Type 4 of initial solutions is derived from the previous type 2 and, mainly, type 3.
All criteria in this type are alike type 3, with the difference being that while allocating
processing lots, with job and machine already chosen, if one lot is at a tardy position in
time related to the due date, a new machine is chosen (the machine where the job will
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finish remaining processing earlier) and the remaining proportion of processing (the one
that was to be processed after the due date) is done in the earliest possible periods.

The job splitting property is applied in this type of initial solution, when in the first
sequence of a job processing, the following most attractive period is not following or pre-
ceding the previous processing periods, or in the case it is a period implying tardiness. In
the case it is a period of tardiness, splitting occurs so processing may occur in a machine
different from the one being used in the first sequence.

The job splitting property is applied in this type of initial solution, the first sequence of
a job processing becomes tardy or the following period is unavailable.

An algorithmic representation of the heuristic is provided in Algorithm B.4 in Appendix
and a detailed step by step description is given below.

1. Sort jobs non-increasingly by average processing time of job for all machines.
(a) For jobs with the same average processing time, sort subset of jobs increasingly

by due date.
(b) For jobs with the same average processing time and due date, sort subset of jobs

increasingly by index.

2. From the list of ordered jobs, pick the first job j not yet scheduled.
3. For every machine i, choose machine with the lowest ratio of:

(average periodweight onOF)i × processingij

with

(average periodweight onOF)i = total weight of available periods onOF
number of available periods

(a) If there is more than one machine with the lowest ratio, lowest index machine
will be chosen.

4. Process job j (from step 2) in machine i (from step 3) on the most attractive periods.

(a) If any processing unit of the chosen job and machine is about to be allocated
to a tardy period, the remaining machines are tested and the remaining job’s
processing proportion is processed in the machine where it finishes earlier.

5. Repeat the process starting from step 2 until no job left to schedule.

48



The resulting schedule for the example presented on Table 5.2 on page 42 produces the
same schedule as type 2 and 3. To provide a better demonstration, the following changes
in the input data for job 4 must be considered:

d4 = 7 p14 = 2 p24 = 2 s4 = 1

Table 5.6: Type 4 Initial solution’s Sorted list

# Job j avg_procj dj M1_ratio M2_ratio rj

1 1 3 1 18.02 19.31 0
2 2 2.5 9 4.17 4.52 1
3 5 2.5 9 11.90 1.62 2
4 3 2 5 13.01 9.51 3
5 4 2 7 9.34 8.17 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Machine 1 s1 p11 s2 p12 s4 p14

Machine 2 s5 p25s3 p23 s4 p24

d1 d2, d5d3 d4

Figure 5.6: Scheduling example with Initial Solution Type 4

The scheduling will result in tardiness for jobs 1 and 4. For job 1 the extra step from this
heuristic produces the same result as previous heuristics, but for job 4, machine 2 processes
it idle periods between processing jobs 3 and 5, with following processing being necessarily
tardy. Calculation to check which machine finishes remaining production earlier indicates
both machines will finish at the same time, so machine 1, with the lowest index, is chosen
to process remaining periods. This type of solution is demonstrated in Figure 5.6 with the
sorting list given by Table 5.6. This schedule has a solution value of 34.683.

3This value cannot be compared to the other types’ value as parameters of the job 4 have been changed
for this example.
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Initial Solution - Type 5

Type 5 of initial solutions was built around using the EDD rule from type 1 and the
period allocation of the types 2 and 3 - processing on most attractive periods.

The job splitting property is applied in this type of initial solution, when in the first
sequence of a job processing, the following most attractive period is not following or pre-
ceding the previous processing periods.

An algorithmic representation of the heuristic is provided in Algorithm B.5 in Appendix
and a detailed step by step description is given below.

1. Sort jobs increasingly by due date.

(a) For jobs with the same due date, sort subset of jobs non-increasingly by average
weighted processing time:

w_avg_procj =
wj
∑
i
pij

M

(b) For jobs with the same due date and average weighted processing time, sort
subset of jobs increasingly by index.

2. From the list of ordered jobs, pick the first job j not yet scheduled.
3. For every machine i, choose machine with the lowest ratio of:

(average periodweight onOF)i × processingij

with

(average periodweight onOF)i = total weight of available periods onOF
number of available periods

(a) If there is more than one machine with the lowest ratio, lowest index machine
will be chosen.

4. Process job j from (step 2) in machine i from (step 3) on the most attractive periods.
5. Repeat the process starting from step 2 until no job left to schedule.

The example to demonstrate this type of initial solutions is the original one presented
on Table 5.2 on page 42.
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Table 5.7: Type 5 Initial solution’s Sorted list

# Job j w_avg_procj dj M1_ratio M2_ratio rj

1 1 1 - 20.79 22.28 0
2 4 4 - 12.87 5.03 2
3 3 5 - 10.89 9.90 3
4 5 9 7.5 8.34 2.97 2
5 2 9 5 4.17 11.88 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Machine 1 s1 p11 s2 p12

Machine 2 s4 p24 s3 p23 s5 p25

d1 d2, d5d3d4

Figure 5.7: Scheduling example with Initial Solution Type 5

The resulting schedule is demonstrated in Figure 5.7 with the sorting list given by
Table 5.7. This schedule has a solution value of 34.67.

5.2.2 Subproblems

In SearchCol, as stated previously, it is possible to solve SPs heuristically or exactly.
It is also possible to configure how the RMP and the SPs interact between each other,
specifically in the number of SPs being solved in each iteration and the amount of attractive
columns being added to the RMP.

In each iteration, it is possible to define which columns are being inserted in the RMP: all
attractive columns per iteration, the best column per iteration or one column per iteration.
The last option can only be used if the SPs are not being solved heuristically, and in each
iteration the SP being solved after solving the RMP can either be the same or the next
SP. In the case of inserting the best column, all SPs are being solved and only the best is
considered.

To solve the SPs exactly SearchCol uses a general MIP solver. To solve the SPs heuris-
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tically, two methods are available: Independent and Global SP heuristics. In the next two
subsections, the developed heuristics to solve the SPs are introduced, as well as the meth-
ods they refer to. Results from solving the decomposition model, comparing the strictly
exact approach and the heuristic approaches to solve the SPs, are presented in Chapter 6.

Independent Subproblem Heuristic

SearchCol allows user implementation of a specific problem heuristic to solve the SPs
in some iterations. If the developed heuristic is of the independent type, it can be used in
the following cases:

1. the heuristic is used until it doesn’t generate any attractive columns and then the
exact method is used only once and the process is repeated (the heuristic is used
again);

2. the heuristic is always used (does not assure optimality of CG);

3. the heuristic is used until it doesn’t generate any attractive columns and then the
exact method is used until the end.

An heuristic to solve each SP is defined here. This heuristic is run independently,
as each SP is solved independently of other SPs solutions. To determine which jobs (and
consequently, which periods) are attractive to produce in a new schedule of a given machine,
the heuristic uses, besides the intrinsic problem data, the dual information from the last
RMP. The attractiveness of jobs (and periods) is measured by the ‘cost’ in the OF of
producing the referred jobs in each period, which is calculated using the dual Πj obtained
from the RMP.

The ‘cost’ is directly related to the SP’s OF (see 4.14) and takes the form of Equation 5.1
to calculate the value of a given period for a given job in a given SP. This ‘cost’ is calculated
for all periods of all given jobs in the SP being solved. In this equation, i represents the
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SP being solved and the remaining notation follows the notation developed in Chapter 4.

costijt =



β(t− dj)wj − 1
pij

Πj ∀i,∀j,∀t : t > dj ∧ t > max{ri, qi}

(1− β)(dj − t)wj − 1
pij

Πj ∀i,∀j,∀t : t ≤ dj ∧ t > max{ri, qi}

β(t− dj)wj ∀i,∀j,∀t : t > dj ∧ t ≤ max{ri, qi}

(1− β)(dj − t)wj ∀i,∀j,∀t : t ≤ dj ∧ t ≤ max{ri, qi}

(5.1)

The heuristic consists in:

1. Sort jobs for the machine associated with the current SP:

(a) Increasingly by the most negative ‘cost’ from the set of the job’s periods;
(b) Increasingly by dj

wj×(sj+pij) ;
(c) Increasingly by Index;

2. On sorted list, pick the first job not scheduled and process it:

(a) from the period with the most negative ‘cost’ to the least negative:

i. until job’s processing is complete;
ii. until no available periods to plan;
iii. until a job splitting is needed to complete processing;

3. Repeat step 2 until no more jobs left or no available periods in the scheduling plan.

It must be noted that when in step 2, if conditions 2a.ii) and 2a.iii) are met, the re-
maining processing is not processed in this scheduling plan.

Due to the characteristics of the developed model (in Chapter 4), one disadvantage
when solving the SPs using the dual information, either exactly or through problem specific
heuristics, is the quality of an overall solution (the solution of the RMP), considering all
SPs or the scheduling plans of all the machines. This overall solution, despite its advantages
on obtaining better lower bounds, may have poor quality when forcing a complete solution
(or even be infeasible if no feasible initial solution was inserted in the first RMP). This is
caused by the type of dual information provided by the RMP, as it provides the SPs with
the same dual information (variable πj) for all periods of a given job, with the reduced cost
for each machine (and its associated SP) differing only because of the different processing
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times for the same job on different machines, which may be insufficient for an overall
solution when building the solution of each machine.

This aspect results in the achievement of very similar schedules for different machines
in a given iteration of the CG. Moreover, the most attractive jobs have a high probability
of being schedules in all the machines (in a given iteration of the CG) and other jobs
have a high probability of not being scheduled on any machine. Being so, when building a
machine schedule, it is important to know which machine will process each job. By either
solving the problem exactly or using the previous heuristic, it is impossible to understand
the overall behaviour of the schedule and define the exact amount of jobs to be processed
in each iteration for each machine.

An algorithmic representation of the heuristic is available in the Appendix (Algo-
rithm B.6).

Global Subproblems Heuristic

In order to contour this drawbacks, a new heuristic was developed in the SearchCol
implementation of the UPMSPjs that would be able to solve the overall problem, defining
all SPs solutions at one step in an iteration of the CG and providing the RMP with all
SPs solutions that can be easily seen as an unique solution, as it results in overall feasible
solutions (where all the jobs are scheduled).

As in previous heuristic, the iterations where the heuristic is used can also be configured
and follows the same principle presented on Page 52.

Taking into account the previously presented Independent SP Heuristic to solve the SPs
and Equation 5.1, the following heuristic was developed considering the complete set of
machines (SPs):

1. Sort jobs:

(a) Increasingly by the most negative ‘cost’ from the set of the job’s periods;
(b) Increasingly by due date;
(c) Decreasingly by weight;
(d) Increasingly by index.

2. On sorted list, pick the first job not scheduled.
3. Sort machines:
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(a) Increasingly by ‘cost’ of processing in available periods.
4. Schedule job taking into account the first machine of the sorted list of machines from

step 3, and on first available period with the most negative cost on the OF.
(a) If no available period, change to the next machine on the sorted list;
(b) If no available period and all machines checked, restart from step 3 allowing

processing on periods with non negative cost (only for the job being scheduled).
5. Repeat the process starting from step 2 until all jobs are scheduled.

The ‘cost’ of processing in available periods (referred in Step 3a) is calculated through
the sum of values for the current available periods of the SP’s OF and it is represented in
Equation 5.2 for all periods respecting conditions in Equation 5.3.

costprocessing_j_in_available_t =
Tmax∑

t>dj ∧ t>max{ri,qi}

(
β(t− dj)wj −

1
pij

Πj

)
+

Tmax∑
t≤dj ∧ t>max{ri,qi}

(
(1− β)(dj − t)wj −

1
pij

Πj

)
+

Tmax∑
t≤dj ∧ t≤max{ri,qi}

(1− β)(dj − t)wj +

Tmax∑
t>dj ∧ t≤max{ri,qi}

β(t− dj)wj

(5.2)

n∑
j=1

xijt = 0 ∀t (5.3)

An algorithmic representation of the heuristic is available in the Appendix (Algo-
rithm B.7).

5.3 Search

In the search phase, two different approaches were used within the range of possibilities:
MIP and VNS. Besides the mentioned methods, other approaches are already implemented

55



or being implemented on the SearchCol framework, namely GRASP, Tabu Search, Sim-
ulated Annealing [Alvelos, 2012; Alvelos et al., 2013] and Genetic Algorithms [Barbosa
et al., 2013].

In the next two subsections a brief explanation for the search algorithms is provided,
namely the MIP searcher and VNS and its additional component of Local Search.

5.3.1 MIP Searcher

SearchCol’s search phase was designed to be conducted through (meta)heuristics, though
it is possible to use a MIP solver as a searcher.

When using the MIP searcher, taking into account the last RMP (the one associated
with the optimal solution of the LR of the decomposition model), it is forced the selection
of one column of each SP in order to find a feasible integer solution. However, it is not
guaranteed the achievement of a feasible integer solution unless, as in the case of this work,
feasible initial solutions are inserted in the beginning of the CG.

In a general way, using the MIP searcher it could be said the search phase is solved
by an exact method, though, it is not guaranteed that the columns present in the RMP
associated with the optimal solution of the CG - that is the one that will be used during
the MIP search - are the ones corresponding to the problem’s optimal integer solution.
Thus, the solution provided by the Searcher is the optimal solution within the set of SPs
solutions available from solving the decomposition model.

5.3.2 VNS Searcher

VNS is a MH largely known and studied [Hansen et al., 2010]. The Local Search method
is used in VNS’s SearchCol as a component within the searcher.

A k-neighbourhood is defined as being the solution obtained when changing k or less
SPs from the set of solutions. In our problem, a 1-neighbourhood results from changing
1 machine schedule and a 2-neighbourhood results from changing the schedule of 1 or 2
machines.
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The size of a 1 and 2-neighbourhood can be calculated using, respectively:

S1 =
∑
k∈K

(nk − 1)

S2 =
∑
k1∈K

(nk1 − 1)×
∑

k2∈K:k2>k1

(nk2 − 1)

where nk is the number of SP solutions for SP k.

Besides the value of k, the descent strategy being used can be either by first or best
improvement. If using a first improvement descent strategy, each time a better neigh-
bourhood solution is found, this becomes the current solution. Otherwise, using a best
improvement descent strategy, a search is done for all solutions in the neighbourhood and
if the best of the neighbours is better than the current, it becomes the current solution.

In the SearchCol’s VNS algorithm (see Algorithm 5.1), the current neighbourhood is set
to the first of the hierarchy (k = 1) and local search is applied from an initial solution in
the current neighbourhood of the current solution, by changing the SP solution of k SPs.
When the local optimum is better than the current solution a new iteration starts from
the k = 1 neighbourhood, otherwise a more distant neighbourhood becomes the current
(by incrementing k until a maximum number of SPs is included in the neighbourhood).

The change in the overall solution of k SPs is done randomly: for example, for a solution
s formed by 4 SPs with k = 2, a possible change of s = (1, 2, 1, 2) could be s = (3, 2, 1, 1)
where SP1 and SP4 have their solution changed.

The stopping criterion can be set to a time limit or to one outer iteration without
improvement of the incumbent solution.

Constructors

To start the search, SearchCol’s VNS requires an initial solution to be determined. The
component responsible for creating the initial solutions is the constructor.

This initial solution can based on the CG optimal solution, based on CG history, through
a greedy constructor or randomly defined.

Two methods were used in this work from the range of available constructors: Higher
Weights and Incumbent. For the Higher Weights constructor, the solution is built using
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Algorithm 5.1: SearchCol’s VNS
s = initialsolution()
k = 1
while stopping criterion not met do

if k == kmax then
k = 1

end
s′ = perturbRandomly(s, k)
s′′ = localSearch(s′)
if s′′ better than s then

k = 1
s = s′′

else
if k 6= kmax then

k = k + 1
end

end
end
return s

for each SP the solution associated with the highest value in the optimal solution of the
last solved RMP. For the Incumbent constructor, the solution generated is copied from
the incumbent. In the case of a first iteration in the UPMSPjs SearchCol algorithm, this
incumbent is the first initial solution added to the RMP. For other SearchCol algorithms
not initializing the CG with an heuristic solution, this incumbent is formed by one column
for each SP with null reduced cost.

5.4 Perturbations

A perturbation in SearchCol is a method that inserts into the RMP new constraints not
present in the original decomposition model. The constraints being added, fix SP variables4

to 0 or 1 depending on the method being used or on a problem specific implementation
objective.

SearchCol’s perturbation component offers several standard possibilities using the in-
cumbent solution or the optimal LR solution, or even both by combining the values of each

4Variables xijt in the case of the UPMSPjs.
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and following the chosen method rules. The perturbators (SearchCol’s perturbations com-
ponent) can also have a stochastic component by using some probabilistic method to decide
a certain perturbation. In every node, except for the root node, a set of perturbations is
necessarily present.

In this section the SearchCol perturbators being used are introduced and an implemen-
tation of problem specific perturbators is suggested.

5.4.1 SearchCol perturbators

The use of SearchCol perturbators has two main alternatives for whether the incumbent
solutions are feasible or infeasible. Considering feasible initial solutions are already inserted
when starting the UPMSPjs implementation of the SearchCol algorithm, this subsection
will focus on perturbators for feasible incumbent solutions. Detailed information of both
types of perturbators is available in Alvelos [2012] and Alvelos et al. [2013].

Current SearchCol perturbators can be of the following types:

• Branch

• CombProb

• CombType

• Duals

• Memory

• SP

• ViolsType

In this work, the focus will be on CombProb and CombType perturbators. Both of
the perturbators use the incumbent solution and the optimal LR solution of the current
SearchCol iteration.
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CombProb

In this perturbation a probabilistic combination between the incumbent solution and
the optimal LR solution is used to define the new constraints to be added to the RMP.
First a convex combination between the two solutions is defined, through a user defined
parameter (PARweightX ) to weight both solutions.

xcomb = PARweightX × x+ (1− PARweightX )× xinc

From this combination of values(xcomb), a second parameter (PARThreshold) is used as a
threshold to help round the combination value.

xcomb ≤ PARThreshold → xcomb = 0

xcomb > 1− PARThreshold → xcomb = 1

Finally, two user defined parameters (PARProb10 PARProb11) are applied as probability
reference values to determine whether a variable xcomb with value 1 is fixed to 0 or to 1.

CombType

This perturbator also uses a combination between the incumbent solution and the opti-
mal LR solution, offering four different types of combinations, presented below.

Type=0
i) Variables with value 1 in the optimal LR solution and value 1 in the incumbent solution
are fixed to 1;
ii) Variables with a fractional value in the optimal LR solution and value 0 in the incumbent
solution are fixed to 0.

Type=1
i) Variables with a fractional value in the optimal LR solution and value 0 in the incumbent
solution are fixed to 0.

Type=2
i) Variables with value 0 in the optimal LR solution and value 0 in the incumbent solution
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are fixed to 0;
ii) Variables with a fractional value in the optimal LR solution and value 0 in the incumbent
are fixed to 0;
iii) Variables with value 1 in the optimal LR solution and value 1 in the incumbent solution
are fixed to 1.

Type=3
i) Variables with value 1 in the optimal LR solution and value 1 in the incumbent solution
are fixed to 1;
ii) Variables with value 0 in the optimal LR solution and value 0 in the incumbent solution
are fixed to 0.

Type=4
i) Variables with value 0 in the optimal LR solution and value 1 in the incumbent are fixed
to 0.

As in the previous perturbator, a user defined parameter (PARThreshold) is applied to
round the fractional values in the optimal LR solution.

x ≤ PARThreshold → x = 0

x > 1− PARThreshold → x = 1

In the case of the UPMSP SearchCol implementation, the perturbator CombType will be
tested with Type 0. Results from the tests from this and previous SearchCol perturbators
are available in Chapter 6 on Page 82.

5.4.2 Specific perturbator

In this subsection a specific perturbator is suggested for the problem being studied in
this work, by combining the optimal solution of the last CG and the current incumbent
solution.

Three different types of perturbations are suggested by defining parameters for the
specific perturbator : type 1, type 2 and type 3 (PARpert_spec_type, equal to 1, 2 or 3,
respectively).
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The main idea behind the perturbator ’s implementation is to force new solutions (new
columns that will be generated in the next CG step) to have, for a given job, specific
time periods in a specific machine set to value 1 for the processing variables xijt. This
perturbator will run in each new SearchCol iteration (and while the SearchCol stopping
criterion is not met) keeping previously created perturbations and generating at least one
new perturbation in each new iteration, so the CG does not become redundant.

In the UPMSP taking into account the OF being used, the obvious would be to fix
processing when it is done on the most attractive periods, both in the linear and integer
solution - considering that the attractive periods are the ones that correspond to the due
date of each job. Also, an extension can be made considering that it is impossible to
satisfy all the job’s demand by processing only on job’s due date period, therefore fixing
also the processing variables in the periods just before the due date5 and until processing
is completed, or until no available periods exist that precede the due date. This extension
is what distinguishes the types of perturbators developed.

For type 1 and type 3, the perturbator starts by comparing only the job’s due date
periods and in each new iteration, if a due date period was already fixed, the next attractive
period is also fixed, considering conditions are met in terms of the linear and integer solution
and that demand has not yet been satisfied. The referred conditions are presented next
when detailing each type of specific perturbator.

For type 2, the extension previously referred is considered at the start of the procedure,
so the perturbator will try to fix the maximum variables it is allowed to fix until demand
is satisfied.

As the optimal solution of the last CG will typically contain fractional variables, a
second parameter PARpert_spec_threshold is considered to define the threshold for which a
variable can be rounded 1. Variables xijt in the optimal LR solution are considered to have
value 1 if:

xijt > 1− thresholditeration

For type 1, the thresholditer value starts by being defined by the PARpert_spec_threshold.
In every new iteration, if (and only if) no perturbation is added, this threshold is relaxed

5If more weight is given to processing without delay through β in the OF.
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and the perturbation iteration is repeated. In a future SearchCol iteration, when starting
the perturbator phase again, the relaxation is ignored and the parameter is defined as
configured with PARpert_spec_threshold.

For type 2 and type 3 (type 3 which derives from the previous type 1), a relaxation is
done on the threshold parameter which, in each iteration, is updated6 (see Table 5.8) by
the following equation:

thresholditer = PARpert_spec_threshold + (iter × PARpert_spec_threshold)

Table 5.8: Iteration’s threshold value on perturbators Type 2 and 3

PARpert_spec_threshold = 0.1

thresholditer 1− thresholditer
iter = 1 0.1 0.9

iter = 2 0.2 0.8

iter = 3 0.3 0.7

iter = 4 0.4 0.6

iter = 5 0.5 0.5

It can be said that, generally, at an extreme situation the perturbator, by forcing part
of the solution in each iteration, would reach after a given number of iterations the full
solution - a complete schedule - for the problem. This happens as in each new iteration a
new job is fixed through the perturbations created in past iterations, until no jobs are left
open to schedule. The SearchCol iteration will meet its stopping criteria by either reaching
the total time limit or by being unable to improve the incumbent solution value.

Next, the algorithms for each type of perturbator suggested are detailed step by step.

6thresholditer is set to a maximum of 1.0.
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Type 1

This type of perturbator consists in analysing, comparing and combining all the variables
xijt in a determined interval of the optimal LR solution and the incumbent solution in each
iteration of the problem.

The interval of periods to consider is determined by the number of times the perturbator
was called, increasing the interval’s size in each new iteration.

From the result of the combination of values, restrictions are added to the RMP of the
CG in a future SearchCol iteration, fixing determined variables xijt to value 1 if given
conditions are met.

Type 1 perturbator requires user configuration of the parameter PARpert_spec_threshold to
define the threshold and round to value 1 the variables xijt of the optimal LR solution. In
every iteration the threshold value is used as defined by the parameter, but can be relaxed
if in a given iteration no perturbation is added to the RMP, in order to avoid overall
redundancy.

Consider iteration = 0 to start:

i) Retrieve information of previous perturbations (if they exist);
ii) Set thresholditeration = PARpert_spec_threshold.
iii) Fix to value 1 variables xijt in the interval of periods:

[dj −min {iteration , procij} , dj]

of any of the jobs, if all the following conditions are met:

a) no previous perturbation was added for the same period and machine;
b) the value of the variable xijt is 1 in the optimal LR solution and 1 in the incumbent

solution;
c) all the variables xijt between the due date and the period being analysed have the

value 1 in the optimal LR solution and value 1 in the incumbent solution.
d) the variable is associated to a period greater than the release date of the machine

and of the job;
e) a complete setup can be incurred considering all the perturbations included on that

machine.
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iv) If the number of perturbations created in step iii) is equal to 0, update:

thresholditeration = thresholditeration + PARpert_spec_threshold

and go back to step iii).
v) Update quantity of perturbations added;
vi) Update iteration = iteration+ 1

Type 2

This type of perturbator consists in analysing, comparing and combining all the variables
xijt in a determined interval of the incumbent solution with the average value of the
variables of the optimal LR solution in each SearchCol iteration:

Xaverage_in_interval_of_variables =

t≤dj∑
t≥dj−pij

xijt

dj − pij
∀i, ∀j

The interval considered is stated in the previous formulation and it comprises all periods
preceding the due date of a given job in the length of periods related to the processing
time of a given job in the corresponding machine. This interval, unlike previous type of
specific perturbator remains the same size in every new iteration.

From the result of the comparison and combination of values, restrictions are added to
the RMP of the CG in a future SearchCol iteration, fixing determined variables xijt to
value 1 if given conditions are met.

Type 2 perturbator requires user configuration of the parameter PARpert_spec_threshold

to define the threshold and round to value 1 the variables xijt of the optimal LR solution.
In every new SearchCol iteration the threshold value is updated and relaxed.

For type 2 (consider iteration = 0 to start):

i) Retrieve information of previous perturbations;
ii) Set: thresholditer = PARpert_spec_threshold + (iter × PARpert_spec_threshold).
iii) Fix to 1 variables xijt which correspond to the interval of periods:

[dj − processingij , dj]
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of any of the jobs, if all the following conditions are met:

a) no previous perturbation was added for the same period and machine;
b) all the variables xijt in the considered interval have value 1 in the incumbent solu-

tion.
c) the average value of the variables xijt on the optimal LR solution in the considered

interval of periods is:

Xaverage_in_interval_of_variables >= 1− thresholditeration

d) the variable is associated to a period greater than the release date of the machine
and of the job;

e) a complete setup can be incurred considering all the perturbations included on that
machine;

iv) If the number of perturbations created in step iii) is equal to 0, update:

thresholditeration = thresholditeration + PARpert_spec_threshold

njobs

and go back to step iii).
v) Update quantity of perturbations added;
vi) Update iteration = iteration+ 1

Type 3

This type of perturbator consists in analysing, comparing and combining all the variables
xijt in a determined interval of the optimal LR solution and the incumbent solution in each
iteration of the problem.

The interval of periods to consider is determined by the number of times the perturbator
was called, increasing the interval’s size in each new iteration.

From the result of the combination of values, restrictions are added to the RMP of the
CG in a future SearchCol iteration, fixing determined variables xijt to value 1 if given
conditions are met.

Type 3 perturbator requires user configuration of the parameter PARpert_spec_threshold

to define the threshold and round to value 1 the variables xijt of the optimal LR solution.
In every new SearchCol iteration the threshold value is updated and relaxed.
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Consider iteration = 0 to start:

i) Retrieve information of previous perturbations;

ii) Set:

thresholditer = PARpert_spec_threshold + (iter × PARpert_spec_threshold)

iii) Fix to 1 variables which correspond to the interval of periods:

[dj −min {iteration , procij} , dj]

of any of the jobs, if all the following conditions are met:

a) no previous perturbation was added for the same period and machine;

b) the value of the variable xijt is equal to 1 in the optimal LR solution and 1 in the
incumbent solution;

c) all the variables between the due date and the period being analysed have the value
1 in the solution and value 1 in the incumbent.

d) the variable is associated to a period greater than the release date of the machine
and of the job;

e) a complete setup can be incurred considering all the perturbations included on that
machine;

iv) If the number of perturbations created in step iii) is equal to 0, update:

thresholditeration = thresholditeration + PARpert_spec_threshold

and go back to step iii).

v) Update quantity of perturbations added;

vi) Update iteration = iteration+ 1.
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Chapter 6

Computational Tests

In this chapter, the computational tests’ results obtained from the models and methods
detailed on the previous chapters are analysed.

Firstly, the computational implementation of the SearchCol framework in C++ pro-
gramming language, SearchCol++ [Alvelos, 2012], is introduced and presented. In the
following section, general assumptions and considered test conditions are outlined. The
third section presents and analyses results from solving the Compact Model through its
implementation in SearchCol++ (using the Cplex C++ libraries). After, the decomposi-
tion model’s implementation and its results are introduced: results for each SearchCol’s
step and corresponding specific implementations will be presented, namely, the developed
heuristics to built the initial solutions and the algorithms to solve the SPs. SearchCol
non-specific components were also tested for the Search and Perturbations phases.

6.1 SearchCol++

SearchCol++ is the SearchCol framework implementation using the object oriented
programming language C++.

The implementation of the SearchCol algorithm to the UPMSPjs relied on using a core
class for the decomposition model and an auxiliary class to read the problem instances
data. Through SearchCol++ is also possible to solve the compact model using the CPLEX
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libraries. As in the decomposition model, a core class is also used to implement the compact
model.

The two core classes contain virtual functions to be used by a derived class, specific
to a problem implementation. For the compact class, a function was derived to build the
compact model with all the specific information. The decomposition class required extra
efforts due to extra implementations. The decomposition specific class derives at least, in
a basic implementation, a function to load the decomposition and initialize the SP solver,
a function that computes the modified costs, a function that solves the subproblem, a
function that converts a SP into a column of the RMP and a function that sets the values
of an artificial cost. Moreover, for specific algorithmic implementations the decomposition
specific problem class derived: a function to add initial solutions, a function that solves a
SP heuristically and a function that solves all SPs heuristically.

Each model, compact and decomposition, are built and compiled independently. Al-
though the use of the initial solutions are automatic, as long as they are implemented, the
SPs algorithm to run in each test is chosen through an input file.

The input file is composed of three different types of information: parameters, compo-
nents and configurators. The parameters guide the overall decomposition and SearchCol
algorithms, and help defining the outputs and the stopping criteria being used. The com-
ponents are used to define which method will be used and how it will be used in the
Search (and Construction) phase and the Perturbation phase. The configurators are a
combination of components to be applied in each type of node.

A SearchCol++ run starts by the executable file calling parameters that indicate the test
instance to use, its file type and the input configuration file of all SearchCol components.
A file with results is provided in the end, containing information with results, values, time
spent in components and globally, as well as all the parameters and components being
used.

All information related to SearchCol++ configuration, implementation and structure
is available in Alvelos [2012] and in the software package through HyperText Markup
Language (HTML) documentation of all classes and data structures.

SearchCol++ and problem specific classes implementations were coded using integrated
development environment Microsoft Visual C++ in Microsoft Visual Studio 2010 with
CPLEX 12.2 libraries [ILOG, 2010] for a x64 platform.
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6.2 Testing Conditions and Assumptions

The problem instances were adapted from the work of Lopes and Carvalho [2007] and
are composed of 80 instances classified by number of jobs and machines as can be seen in
Table 6.1. Throughout this work, the computational tests presented result from the whole
set of 80 instances with no subsets tested apart from others.

Table 6.1: Instances’ characteristics

M (machines) 2 2 2 2 4 4 4 4 6 6 6 8 8 8 10 10

J (jobs) 20 30 40 50 30 40 50 60 40 50 70 40 60 80 70 100

In the work of Lopes and Carvalho [2007], the setup times are sequence dependent
whereas in this work they are sequence independent. These test instances embody all
remaining characteristics of the UPMSP being studied, except for the setup times which
were adapted, by calculating the average setup time for all the possible sequences of any
job j.

An important characteristic to consider in these instances is their scheduling system
congestion level (q). For each pair of instances (machines and jobs - in Table 6.1) there
are five different levels of congestions. The authors considered that the larger the value
q, the more congested the system will be and vice versa. This parameter has particular
importance not only because it helps to define the values of the due dates for each instance
(as it can be seen in Lopes and Carvalho [2007]), but also because it causes a greater
number of tardy jobs, as it becomes impossible (in more congested instances) to allocate
all jobs before their respective due date.

In our MIP formulation, using time indexed variables, setup and processing times dura-
tion have impact on solving the problem, since the total number of periods for a scheduling
plan is calculated with basis on processing and setup times. Therefore original processing
times and the adapted setup times were divided by 24 to diminish the periods dimension.

The number of periods for each instance, is calculated by:

Tmax = max

max
j

dj + 1 ,
max
j
rj + max

i

[∑
j

(pij + sj ×m)
]

m

 (6.1)
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The parameter β in the OF of both compact and decomposition models was set to 0.99
for all tests.

All tests were run with a time limit of 0.5 hours (1800 seconds).

The following equation was used to calculate the integrality gap in the decomposition
model:

gap = ZINC − ZLR
ZINC + 1e−10

where ZINC is the value of the incumbent solution and ZLR is the value of the optimal LR
solution.

Solutions are evaluated based on feasibility and infeasibility values. The infeasible com-
ponent of a solution represents the impossibility of finding an overall solution (a set of SP
solutions) that, in this case, is able to fully satisfy all job’s demand. Infeasibility values are
given by the number of violated rows times 1000 plus the amount of violations. For the
proposed decomposition model, the infeasibility values will correspond to jobs not being
completely processed and are given by violation of constraints (4.12) (see Chapter 4):

g∑
h

m∑
i=1

(
Tmax∑

t>max{rj ,qi}

1
pij
αhijt)λhi ≥ 1 ∀j

If, for example, an incumbent solution has 2 jobs with total processing being less than
demand, the number of violated rows will be 2. If for one job only 50% is processed, and
for the other only 25% is processed, this will result in 0.75 of amount of violation. The
total infeasibility value would be 2000.75.

ZINC_infeas = number_violated_rows× 1000 + amount_violation

ZINC_infeas = 2× 1000 + (0.5 + 0.25) = 2000.75

The artificial cost is calculated using Equation 6.2, with the squared number of periods
multiplied by the sum of all job’s weight.

artificial_cost = Tmax
2

n∑
j=1

wj (6.2)
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All the computational tests were run on a PC Intel Core i7 3610QM 2.3GHz and
8 GB RAM under MS Windows 7.

6.3 Compact model results

The results from the compact model implementation in SearchCol++, solved through
the CPLEX callable libraries [ILOG, 2010], are presented in Table 6.2 for all the tested
instances. Values for the LR of the compact model and the integer solutions (optimal or
incumbents) are given (represented by ZLR and ZINC respectively,) as well as its respective
integrality gap (represented by gap), and the time needed in seconds to solve the LR and to
solve the integer problem. The status column will gives information about the optimality
condition, or any given error while running the problem (the status codes are presented
below Table 6.2).

All instances in this Chapter are represented by M-J (M machines and J jobs), or M-J-q
with q representing the congestion level. In Table 6.2 the number of periods calculated,
and used for each instance, is represented by P.

Table 6.2: Compact Model Results

Value Time (sec)
M-J q P ZLR ZINC gap(%) ZLR ZINC Status *
2-20 1 68 0.131 0.18 27.07 0.049 0.7 101
2-30 1 99 0.593 0.69 14.02 0.167 3.5 101
2-40 1 134 0.468 0.59 20.75 0.410 6.7 101
2-50 1 166 0.431 0.56 23.03 0.847 10.0 101
4-30 1 51 0.038 0.06 36.11 0.090 1.1 101
4-40 1 67 0.066 0.07 5.10 0.214 2.2 101
4-50 1 84 0.045 0.08 43.75 0.424 5.4 101
4-60 1 99 0.088 0.17 48.04 0.704 11.1 101
6-40 1 54 0.000 0 0.00 0.220 2.6 101
6-50 1 68 0.070 0.08 12.50 0.443 5.3 101
6-70 1 94 0.010 0.01 0.00 1.165 15.1 101
8-40 1 51 0.000 0 0.00 0.260 3.1 101
8-60 1 76 0.000 0 0.00 0.885 9.5 101

* CPLEX Status:
101 Optimal Integer Solution Found

102 Optimal Solution within the tolerance Found
107 Time Limit Exceeded, Integer solution exists

108 Time Limit Exceeded, No Integer solution
109 Error termination, caused by memory, Integer Solution Exists
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Table 6.2 – from previous page
Value Time (sec)

M-J q P ZLR ZINC gap(%) ZLR ZINC Status *
8-80 1 100 0.000 0 0.00 2.047 28.5 101
10-70 1 85 0.000 0 0.00 1.646 19.1 101
10-100 1 121 0.000 0 0.00 4.986 76.7 101
2-20 2 44 0.383 0.65 41.04 0.041 1.0 101
2-30 2 62 3.009 4.08 26.26 0.119 6.3 101
2-40 2 80 2.025 4.38 53.77 0.283 6.8 101
2-50 2 101 0.847 1.36 37.70 0.610 7.9 101
4-30 2 47 1.745 6.21 71.90 0.140 1.7 101
4-40 2 61 0.553 9.23 94.01 0.317 10.9 101
4-50 2 76 0.317 1.45 78.17 0.671 10.8 101
4-60 2 91 12.193 18.04 32.41 1.165 21.1 101
6-40 2 54 0.036 0.05 28.32 0.376 4.0 101
6-50 2 68 3.262 5.21 37.40 0.797 11.7 101
6-70 2 94 2.610 7.09 63.19 2.267 29.1 101
8-40 2 51 2.741 4.02 31.81 0.454 4.4 101
8-60 2 76 10.293 18.87 45.45 1.593 36.8 101
8-80 2 100 2.970 2.97 0.00 3.845 31.5 101
10-70 2 85 3.099 11 71.83 2.960 44.4 101
10-100 2 121 0.051 0.06 14.20 9.549 88.8 101
2-20 3 44 0.638 14.83 95.70 0.040 2.2 101
2-30 3 62 32.717 170.98 80.86 0.149 1674.4 102
2-40 3 80 3.615 189.17 98.09 0.287 1800.0 107
2-50 3 101 2.630 193.16 98.64 0.657 1800.0 107
4-30 3 47 36.057 94.27 61.75 0.196 134.0 101
4-40 3 61 27.385 90.59 69.77 0.320 1800.0 107
4-50 3 76 1.672 33.93 95.07 0.662 1437.8 109
4-60 3 91 28.121 111.58 74.80 1.175 1800.0 107
6-40 3 54 0.816 19.17 95.74 0.451 124.9 101
6-50 3 68 12.035 77.63 84.50 0.797 1800.0 107
6-70 3 94 10.420 68.58 84.81 2.274 1800.0 107
8-40 3 51 10.308 37.66 72.63 0.463 48.6 101
8-60 3 76 27.947 107.3 73.95 1.869 1639.8 109
8-80 3 100 3.921 20.15 80.54 3.925 1370.2 109
10-70 3 85 32.845 88.34 62.82 3.956 1800.0 107
10-100 3 121 8.552 69.66 87.72 13.156 1800.1 107
2-20 4 44 18.719 88.74 78.91 0.051 8.4 101
2-30 4 62 151.555 367.23 58.73 0.239 1800.0 107
2-40 4 80 126.841 515.83 75.41 0.942 1800.0 107
2-50 4 101 70.497 755.22 90.67 1.908 1800.0 107

* CPLEX Status:
101 Optimal Integer Solution Found

102 Optimal Solution within the tolerance Found
107 Time Limit Exceeded, Integer solution exists

108 Time Limit Exceeded, No Integer solution
109 Error termination, caused by memory, Integer Solution Exists
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Table 6.2 – from previous page
Value Time (sec)

M-J q P ZLR ZINC gap(%) ZLR ZINC Status *
4-30 4 47 86.367 166.38 48.09 0.213 82.9 102
4-40 4 61 68.466 198.32 65.48 0.525 1349.7 102
4-50 4 76 6.448 170.17 96.21 1.241 1800.1 107
4-60 4 91 74.093 416.31 82.20 2.437 1800.0 107
6-40 4 54 29.969 100.35 70.14 0.706 471.2 102
6-50 4 68 76.411 232.79 67.18 1.585 1800.0 107
6-70 4 94 51.050 270.38 81.12 5.124 1800.0 107
8-40 4 51 42.970 94.06 54.32 0.578 124.2 101
8-60 4 76 85.130 224.81 62.13 4.492 1800.1 107
8-80 4 100 27.853 248.1 88.77 12.800 1800.1 107
10-70 4 85 81.840 217.95 62.45 7.489 1800.1 107
10-100 4 121 60.481 ∞ - 37.917 1800.4 108
2-20 5 44 66.129 146.27 54.79 0.058 8.3 101
2-30 5 62 272.444 521.3 47.74 0.291 1800.0 107
2-40 5 80 322.453 764.09 57.80 1.148 1800.0 107
2-50 5 101 350.001 1246.43 71.92 2.995 1800.0 107
4-30 5 47 128.500 231.69 44.54 0.276 140.4 102
4-40 5 61 133.271 290.24 54.08 0.675 1641.2 102
4-50 5 76 67.775 319.44 78.78 1.912 1800.1 107
4-60 5 91 193.831 644.9 69.94 4.061 1800.0 107
6-40 5 54 72.627 163.56 55.60 0.619 354.6 102
6-50 5 68 156.755 347.59 54.90 1.385 1800.0 107
6-70 5 94 141.078 462.42 69.49 6.093 1800.2 107
8-40 5 51 66.956 116.82 42.68 0.555 29.4 101
8-60 5 76 162.005 316.96 48.89 3.250 1800.1 107
8-80 5 100 143.228 471.44 69.62 11.401 1800.2 107
10-70 5 85 157.629 317.82 50.40 6.376 1800.0 107
10-100 5 121 203.640 ∞ - 34.421 1800.8 108

* CPLEX Status:
101 Optimal Integer Solution Found

102 Optimal Solution within the tolerance Found
107 Time Limit Exceeded, Integer solution exists

108 Time Limit Exceeded, No Integer solution
109 Error termination, caused by memory, Integer Solution Exists

As Table 6.3 demonstrates, for 97.5% of the tested instances, CPLEX was able to solve
the problem to optimality and provided at least an integer solution for the remaining ones,
except for two of the bigger tested instances where the time limit was reached before finding
at least one integer solution.

The average gap calculation excludes the two instances where the compact model was
unable to find an integer solution, which explains a shorter average gap for congestion
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levels 4 and 5, when compared to level 3.

The increase in the average total time spent is not directly related to an increase in
number of machines, jobs, periods or congestion level of the instance, but to a combination
of these factors. The average time spent in each congestion level, indicates an accentuated
rising in computational effort from instances of congestion level 2 to 3, which is visible by
comparing computational times one by one, for instances with same number of jobs and
machines.

Table 6.3: Overview of results of the Compact Model

q=1 q=2 q=3 q=4 q=5 Total
Nº Optimal Solution 16 16 5 5 5 47
Nº Integer Solution 0 0 11 10 10 31

Nº No Integer Solution 0 0 0 1 1 2
Average Time Solution (sec.) 12.5 19.8 1302.0 1364.8 1373.5 814.5

Average gap(%) 14.4 45.5 82.3 72.1 58.8 54.2

The number of periods in low congestion levels is typically higher, when comparing to
instances with same characteristics but higher congestion levels. Problem instances with
congestion level equal to 1 (q = 1) have a longer scheduling horizon, as applying the
maximum function between the two values of Equation 6.1 (to calculate the number of
periods), falls upon the maximum due date from the set of jobs J .

6.4 Decomposition model results

In this section, results for the decomposition model are presented and discussed, from
a meaningful selection of executed tests. The selected tests will be presented following the
succession of implementations.

Results from the decomposition model without any specific implementation were highly
unsatisfactory. These tests were run without the introduction of initial solutions and using
the CPLEX to solve the SPs. Despite being able to solve the linear relaxation for the
problem, it failed at finding a feasible integer solution for the set of instances under study.
The results are presented in Table C.1 in the Appendix.
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Though this pure decomposition model solutions are not feasible, the LR values give
good leads for the LR and lower bounds that could be provided by the CG.

In the next subsections, an analysis will be done of the results obtained from the initial
solution’s implementation, from the performance of the subproblem’s heuristics, from the
efficiency of the tested searchers, and finally, from the results obtained using the SearchCol
perturbations.

6.4.1 Initial Solutions Implementation

Information on the typology of the heuristics is detailed in Subsection 5.2.1.

Results from the implementation of the initial solutions are presented in Table 6.4 with
the best initial solution value for each instance (represented by Z) and its corresponding
type.

Table 6.4: Values of Initial Solutions

q = 1 q = 2 q = 3 q = 4 q = 5
M-J Z Type Z Type Z Type Z Type Z Type
2-20 0.28 2 0.82 3 79.64 3 142.52 2 219.39 3
2-30 1.04 4 12.72 5 276.61 3 491.62 3 652.06 2
2-40 1.25 3 13.21 1 324.31 2 706.34 2 1088.14 2, 3
2-50 1.16 2 2.89 4 449.1 2 1059.04 3 1511.43 3
4-30 0.29 4 28.06 5 145.66 2 208.03 2 269.31 2
4-40 0.56 5 37.99 5 141.25 3 267.77 2 372.49 2
4-50 0.47 4 3.05 3 69.03 3 249.78 3 450.45 2
4-60 4.49 3 35.11 3 250.49 5 639.34 3 838.14 2
6-40 0.22 3 2.83 5 77.77 3 153.92 3 214.2 3
6-50 0.41 5 18.45 5 170.91 2 293.36 2 406.14 3
6-70 0.47 4 21.52 5 146.52 5 403.22 3 582.24 2
8-40 0.14 5 16.13 1 83.22 5 120.9 3 162.44 2
8-60 5.2 5 35.02 5 168.3 5 305.11 2 382.29 2
8-80 0.21 5 7.55 5 127.96 5 389.52 3 555.05 3
10-70 0.28 5 27.94 5 174.24 5 350.79 2 433.83 2
10-100 0.39 3 7.62 5 119.85 5 558.28 3 756.97 3

Most lower congestion levels (q = 1...3) have better results using Type 5 of initial
solutions. On the other hand, Type 5 has no better solution for the two highest congestion
levels, which are fairly divided by Type 2 and Type 3. Type 3 of initial solutions is the most
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regular among all congestion levels. Type 1 of initial solutions has the worst performance,
as expected. This is an important remark of the importance of building heuristics OF
oriented.

The instance with 2 jobs, 40 machines and congestion level 5, has the particularity of
having two types with same solution value, not meaning the resulting schedule was the
same for both heuristics.

In Table 6.5 the number of better solutions provided by each type of initial solutions is
summarized, dividing its frequency by congestion level and with totals for each type (each
type is represented by Type 1 through Type 5).

Table 6.5: Distribution of Type of Initial Solutions per Congestion Level

Quantity
q = 1 q = 2 q = 3 q = 4 q = 5 Total

Type 1 0 2 0 0 0 2
Type 2 2 0 4 7 9 22
Type 3 4 3 5 9 6 27
Type 4 4 1 0 0 0 5
Type 5 6 10 7 0 0 23

Type 2 and 3 0 0 0 0 1 1

The time spent adding feasible schedules to the RMP is not substantial, considering
five different types of solutions are added. The values are shown in Table 6.6 in average,
considering all the congestion levels, for all pairs M-J of instances. The highest average
time spent corresponds to the set of instances with 10 machines and 100 jobs in which
almost 5.5 seconds (1.1second/type) are needed to add the initial solutions. These values
for the smaller instances are practically irrelevant.

Table 6.6: Time needed to add Initial Solutions (average in congestion levels)

M-J Time (sec) M-J Time (sec) M-J Time (sec) M-J Time (sec)
2-20 0.013 4-30 0.032 6-40 0.116 8-60 0.677
2-30 0.022 4-40 0.083 6-50 0.254 8-80 1.816
2-40 0.051 4-50 0.174 6-70 0.878 10-70 1.440
2-50 0.118 4-60 0.367 8-40 0.148 10-100 5.408
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All detailed results, with values from all initial solutions types and time spent running
all initial heuristics for all instances are presented in Table C.2 of the Appendix.

6.4.2 Subproblems Resolution

In this work, three approaches are used to solve the SPs. Detailed information for each
one of the methods is available in Subsection 5.2.2 of the previous Chapter.

Table 6.7: Linear Relaxation Values (Compact (C) and CG (D))

q = 1 q = 2 q = 3 q = 4 q = 5
M-J C D C D C D C D C D
2-20 0.13 0.13 0.38 0.40 0.64 0.65 18.72 19.90 66.13 67.60
2-30 0.59 0.59 3.01 3.01 32.72 32.72 151.56 151.56 272.44 272.44
2-40 0.47 0.49 2.02 2.04 3.62 3.62 126.84 129.37 322.45 326.35
2-50 0.43 0.46 0.85 0.85 2.63 2.63 70.50 78.01 350.00 355.09
4-30 0.04 0.05 1.75 1.78 36.06 36.70 86.37 86.78 128.50 129.04
4-40 0.07 0.07 0.55 0.55 27.39 27.39 68.47 70.23 133.271 136.17
4-50 0.05 0.05 0.32 0.34 1.67 1.69 6.45 6.59 67.78 70.92
4-60 0.09 0.10 12.19 12.76 28.12 29.16 74.09 75.94 193.83 198.38
6-40 0.00 0.00 0.04 0.04 0.82 0.88 29.97 30.57 72.63 73.31
6-50 0.07 0.07 3.26 3.27 12.04 13.71 76.41 79.06 156.75 158.73
6-70 0.01 0.01 2.61 2.61 10.42 10.78 51.05 52.02 141.08 144.61
8-40 0.00 0.00 2.74 3.18 10.31 11.53 42.97 46.61 66.96 72.02
8-60 0.00 0.00 10.29 10.53 27.95 29.88 85.13 89.15 162.01 165.99
8-80 0.00 0.00 2.97 2.97 3.92 3.96 27.85 28.96 143.23 144.88
10-70 0.00 0.00 3.10 3.12 32.84 33.04 81.84 82.01 157.63 157.87
10-100 0.00 0.00 0.05 0.06 8.55 12.76 60.48 78.47 203.64 245.76

The values of the LR for comparison between the compact model and the decomposition
model are shown in Table 6.7. The values presented correspond to the resolution of the
SPs using the Global Heuristic, as it is has the better global results.

The lower bounds provided by the CG are generally better than the compact model,
especially for the most congested instances and with higher number of machines. The
instances are divided by congestion level, with the optimal values of the LR of the compact
model (C) and CG from the decomposition model (D) being given for each instance.

The results from both heuristics are completely presented in Tables C.5 and C.6 in
Appendix. A summarized version of these results is shown in Table 6.8 where E, I and G
represent the exact SP resolution, Independent Heuristic and Global Heuristic respectively.
These values were obtained considering the introduction of the initial solutions.
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Table 6.8: Overview of decomposition implementations results

q = 1 q = 2 q = 3 q = 4 q = 5
E I G E I G E I G E I G E I G

Nº of incumbent solutions 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
Nº of better incumbent sol. within E-I-G 0 0 15 0 1 2 0 1 0 0 0 0 0 0 0
Nº of improved initial solutions 0 4 15 0 1 2 0 1 0 0 0 0 0 0 0
Average time spent solving CG (sec) 583 138 271 631 238 396 624 527 632 557 481 538 494 442 505

Analysing the results overview it is possible to identify the Global Heuristic as the
one providing a higher number of better incumbent solutions when comparing to the exact
resolution and independent heuristic. This improvement in the number of better incumbent
solutions has the counterpart of increasing the time needed to solve the CG, with the
average time spent for instances with higher congestion levels, being close to the exact
approach.

When solving the decomposition model using heuristics to solve the SPs, and without
initial solutions, feasible solutions were not found for some instances, though this number of
instances is much smaller than when solving the SPs exactly (see Table C.4 in Appendix).

The solution values without initial solutions for the exact resolution of the SPs are
present in Table C.1 in the Appendix, as they are not fit for comparing with the heuristic
values due to their infeasibility. Decomposition results for the heuristics without the initial
solutions are also presented in the Appendix in Table C.3, with time and values of the
solutions (Exact resolution, Independent Heuristic and Global Heuristic represented by
MIP, I and G respectively).

The computational tests introduced implied the use of a searcher component to solve
the integer problem. The MIP searcher was the chosen searcher, as it guaranteed the best
performance. This will be discussed in the following subsection, where the computational
tests used to analyse the searcher components are introduced.

6.4.3 Searchers

In previous subsections, the searcher component was already being tested through use
of the MIP searcher. Besides MIP, the searcher VNS was also tested to analyse its perfor-
mance when applied to our decomposition model.

Four different configurations of VNS were used regarding the configuration of the local
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search component - VNS1 and VNS12 - and the constructor component.

The VNS was tested using a first descent strategy for local search, where the first
neighbour that improves the current solution is selected (the alternative is the best descent
strategy which selects the best neighbour). The different VNS searchers tested consist
in using two different local search inputs for the type of neighbourhood being used. For
VNS1 the neighbour solution has one modification and for VNS12 the neighbourhood of
one solution is made of solutions with one and two modifications. Furthermore, for each
searcher configuration two different constructors were also used: Higher Weights of CG
(HW) and Incumbent (I) (see Subsection 5.3.2).

Information regarding the four tests are available in the Appendix (see Tables C.7 and
C.8). In Table 6.9 an overview of the results is shown.

Table 6.9: Comparison of used searchers

MIP VNS1HW VNS1I VNS12HW VNS12I
Number of better incumbent solutions 80 72 70 76 76
Number of improved initial solutions 43 37 33 39 40
Average time spent in Searcher (sec) 0.38 204.68 200.48 207.53 200.26

By comparing the MIP and both VNS searchers, MIP provides better results, particu-
larly in the time spent to find an incumbent solution. The value of the incumbent solutions
using MIP are generally better, as for all the 80 tested instances it assures the best incum-
bent solution value. The worst performance in number of better incumbent solutions is
from VNS1. It must be noted that the subset of, for example, 72 and 70 better incumbent
solutions in VNS1 are not necessarily included in the subset of 76 better incumbent solu-
tions in VNS12. The same observations can be made when analysing if the solution value
of each searcher improved the value of the best initial solution.

Between the different configurations of VNS, although the overview does not highlight
it (as it is using average values), VNS1 provides faster search times than VNS12 when
comparing the values for each instance. Furthermore, the value of the incumbent solutions
are similar for either the constructors and the different neighbourhood type used for VNS.
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6.4.4 Perturbators

The perturbators being used are Comb Prob and Comb Type0. For the other compo-
nents, the CG is using the Global SP Heuristic and the search is conducted by the MIP
searcher.

With perturbator Comb Prob being a stochastic component, three runs were made for
each test instance, while for Comb Type0, a deterministic perturbator, only one run was
executed.

In the appendix, in Tables C.9 and C.10, it is provided complete information of these
computational tests. An overview of these results is available in Table 6.10.

Table 6.10: Overview of improvements using perturbators

Comb Type0 Comb Prob
M-J-q Imp. (%) M-J-q Imp. (%) M-J-q Imp. (%) M-J-q Imp. (%)
2-20-1 5.26 2-20-1 5.26 6-40-2 88.69 8-40-3 35.69
4-30-1 45.45 4-30-2 0.11 6-40-3 1.23 8-40-3 35.62
4-30-2 16.71 4-30-2 7.23 6-40-4 1.30 8-40-3 35.68
6-40-2 97.53 4-40-2 0.05 6-50-1 22.22 8-40-4 3.25
6-50-1 44.44 4-40-2 0.05 6-50-1 22.22 8-40-5 23.82
8-40-2 62.80 4-40-3 1.42 6-50-2 32.57 8-40-5 17.11

10-100-1 100.00 4-40-4 2.66 6-50-2 52.57 8-60-1 90.91
4-50-2 9.84 6-50-3 0.56 8-60-2 0.29
4-50-2 0.98 6-50-4 0.34 8-60-3 0.59
4-60-2 0.74 8-40-2 68.38 8-60-5 0.78
6-40-2 94.35 8-40-2 50.15 10-70-4 1.13
6-40-2 94.35 8-40-2 74.83 10-70-4 5.36

Average 53.17 Average 24.51

Despite all 80 instances were tested, the summary shows only the subset of instances
where an improvement was obtained compared to tests not using the perturbators. The
instances where the incumbent solution value improved due to the perturbations are easily
checked, by the number of total SearchCol iterations, as one of the stopping criteria is one
iteration without improvement of the incumbent solution (besides the total time limit).
Therefore, instances with a number of iterations of 2, for example, ran the perturbator
once, solving the CG twice and not being able to improve the incumbent solution value
from the first to its seconds iteration. All values of improvement are measured by comparing
the value of the incumbent solution of the first CG with the last incumbent solution value.
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By analysing the improvements obtained using perturbations, it’s possible to verify the
majority occurs in low congested instances. The Prob perturbator is the only one able
to improve higher congestion level instances, improving also a larger number of instances.
Considering also the best improvement for each instance using the Prob perturbator and
comparing its level of improvements against the Comb Type 0 perturbator, the last one is
able to provide bigger improvements although in a smaller number of instances (see Table
6.11).

Table 6.11: Comparison of improvements using perturbators

M-J-q Type0 Imp. (%) Prob Best Imp. (%)
2-20-1 5.26 5.26
4-30-1 45.45 0.00
4-30-2 16.71 0.11
4-40-2 0.00 0.05
4-40-3 0.00 1.42
4-40-4 0.00 2.66
4-50-2 0.00 9.84
4-60-2 0.00 0.74
6-40-2 97.53 94.35
6-40-3 0.00 1.23
6-40-4 0.00 1.30
6-50-1 44.44 22.22
6-50-2 0.00 52.57
6-50-3 0.00 0.56
6-50-4 0.00 0.34
8-40-2 62.80 74.83
8-40-3 0.00 35.69
8-40-4 0.00 3.25
8-40-5 0.00 23.82
8-60-1 0.00 90.91
8-60-2 0.00 0.29
8-60-3 0.00 0.59
8-60-5 0.00 0.78
10-70-4 0.00 5.36
10-100-1 100.00 0.00
Average 14.89 17.13

6.5 Comparison of the models

In Tables 6.12 and 6.13 the results from the computational tests using perturbator Comb
Type 0 (represented by ‘Dec’) are used to compare against the results of the compact model

83



(represented by ‘Comp’ and available in previous Section 6.3). For instances where a value
is substituted for ‘inf ’, the corresponding model was not able to provide a feasible solution,
thence the infeasible remark.

Table 6.12: Comparison of values between models

q = 1 q = 2 q = 3 q = 4 q = 5
M-J Comp Dec Comp Dec Comp Dec Comp Dec Comp Dec
2-20 0.18 0.18 0.65 0.82 14.83 79.64 88.74 142.52 146.27 219.39
2-30 0.69 0.8 4.08 5.35 170.98 276.61 367.23 491.62 521.3 652.06
2-40 0.59 0.77 4.38 6.36 189.17 324.31 515.83 706.34 764.09 1088.14
2-50 0.56 1.16 1.36 2.89 193.16 449.1 755.22 1059.04 1246.43 1511.43
4-30 0.06 0.06 6.21 23.37 94.27 145.66 166.38 208.03 231.69 269.31
4-40 0.07 0.07 9.23 37.99 90.59 141.25 198.32 267.77 290.24 372.49
4-50 0.08 0.15 1.45 3.05 33.93 69.03 170.17 249.78 319.44 450.45
6-60 0.17 0.31 18.04 35.11 111.58 250.49 416.31 639.34 644.9 838.14
6-40 0 0 0.05 0.07 19.17 77.77 100.35 153.92 163.56 214.2
6-50 0.08 0.1 5.21 18.45 77.63 170.91 232.79 293.36 347.59 406.14
6-70 0.01 0.11 7.09 21.52 68.58 146.52 270.38 403.22 462.42 582.24
8-40 0 0 4.02 6 37.66 83.22 94.06 120.9 116.82 162.44
8-60 0 0 18.87 35.02 107.3 168.3 224.81 305.11 316.96 382.29
8-80 0 0 2.97 7.55 20.15 127.96 248.1 389.52 471.44 555.05
10-70 0 0 11 27.94 88.34 174.24 217.95 350.79 317.82 433.83
10-100 0 0 0.06 7.62 69.66 119.85 inf 558.28 inf 756.97

Average 0.16 0.23 5.92 14.94 86.69 175.30 - 396.22 - 555.91

Comparing solution values, the compact model offers a better performance, especially
for instances of congestion level q = 3. On the other hand, for low congested instances,
the decomposition approach using all implementations, matches for some instances, the
optimal values of the compact model. The computational times have a different behaviour,
as for higher congestion levels the compact model requires longer solving times than the
decomposition approach, and for lower congestion levels the decomposition model spends
a larger amount of time.

Although for most of the instances tested the compact model provides better results, for
some instances, in particular the ones with more machines and jobs, and high congestion,
SearchCol is able to provide a feasible solution while the compact model is not.
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Table 6.13: Comparison of time spent between models (in seconds)

q = 1 q = 2 q = 3 q = 4 q = 5
M-J Comp Dec Comp Dec Comp Dec Comp Dec Comp Dec
2-20 0.71 831.98 1.02 163.08 2.24 133.30 8.39 76.90 8.35 95.24
2-30 3.49 1813.77 6.35 1824.91 1674.40 1336.07 1799.99 305.65 1800.00 231.35
2-40 6.68 1836.25 6.83 1803.51 1800.00 1804.34 1800.00 1036.24 1800.00 617.80
2-50 9.99 1800.27 7.87 1808.10 1800.03 1806.30 1800.02 1808.49 1800.02 1806.72
4-30 1.10 181.71 1.73 581.69 134.03 218.43 82.86 128.74 140.42 127.79
4-40 2.22 70.50 10.88 874.97 1799.99 830.08 1349.75 560.17 1641.20 514.52
4-50 5.39 1809.31 10.82 1817.57 1437.82 1808.41 1800.08 1399.47 1800.06 1146.68
6-60 11.10 1809.31 21.09 1837.14 1800.03 1807.16 1800.01 1811.04 1800.02 1814.78
6-40 2.55 13.01 3.98 761.54 124.92 418.12 471.16 334.39 354.62 301.58
6-50 5.35 910.87 11.68 1146.37 1800.00 1338.28 1800.01 715.56 1800.01 659.86
6-70 15.11 1820.25 29.08 1831.15 1800.01 1823.46 1800.01 1824.11 1800.17 1813.94
8-40 3.12 8.72 4.43 461.91 48.59 367.78 124.17 205.13 29.39 204.23
8-60 9.47 428.37 36.76 1822.36 1639.79 1813.39 1800.06 1279.46 1800.08 990.73
8-80 28.48 73.95 31.54 1872.04 1370.18 1808.63 1800.08 1824.62 1800.25 1836.97
10-70 19.08 162.92 44.40 1816.83 1800.01 1834.90 1800.06 1829.84 1799.99 1650.89
10-100 76.66 569.69 88.75 1844.50 1800.12 1841.35 1800.37 1809.52 1800.83 1803.25

Average 12.53 883.81 19.83 1391.73 1302.01 1311.87 1364.81 1059.33 1373.46 976.02
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Chapter 7

Conclusion

In this dissertation, the UPMSPjs was approached. A MIP model was proposed for
the UPMSPjs, as well as a new approach to the problem based on a machine schedul-
ing decomposition of the compact model using the Dantzig-Wolfe technique [Dantzig and
Wolfe, 1960]. Furthermore, an application of the UPMSPjs to the SearchCol framework
was developed, with problem specific algorithms implemented in SearchCol and validated
through extensive computational tests.

The problem specific algorithms suggested in this work followed the succession of the
global SearchCol algorithm. Several heuristics are presented for the UPMSPjs. First, a
set of initial solutions was developed to provide the CG phase in SearchCol with efficient
and feasible solutions that could accelerate the process and, at the same time, guarantee a
good upper bound and a feasible final solution. The next step was to develop an efficient
algorithm to solve the SPs. Two different approaches were used: one where the SPs were
being solved one by one and another where the SPs were solved as a whole. Furthermore,
the several featured general components of the Search and Perturbation phases were also
tested, in order to improve final solution values for each tested instance. Finally, a three
alternative algorithm was also suggested to be implemented for this last phase.

The performed computational tests showed that the UPMSPjs is a difficult problem,
with its complexity rising exponentially with the number of jobs, machines, defined periods
and also with the congestion level of each instance. The difficulty of the problem was
observed in both models.

From the analysis of the computational tests, lower bounds provided by the LR of the
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decomposition model are better than the ones provided by the compact model, although
this happens at the cost of longer computational times (in average, the compact model’s
LR is solved in 1% of the time the CG needs to solve the LR). Also, in the LR of the
decomposition model, lower bounds provided by the CG are not, in general, affected by
the implementation of the heuristics to solve the SPs.

The implementation of the initial solutions provided feasible solutions for the problem,
shortening the time spent in CG. Moreover, for the CG process, the implementation of
problem specific algorithms improved the global algorithm in quality of solutions (using
the Global Heuristic) and in computational times. The time spent solving the SPs was
shorter using the Independent Heuristic, although its solutions were of poorer quality.

The testing of other SearchCol features indicate that for the type of decomposition
developed in this work, the MIP searcher is the most efficient tool for the search phase
and the featured perturbators, although improving a reasonable subset of instances, have
margin for improvement. This improvement could potentially be obtained by implementing
a specific perturbation algorithm. In this work, three alternatives were suggested regarding
a perturbator for the UPMSPjs in SearchCol based in the characteristics of the problem
and the developed model.

Comparing overall results, from both models for the set of chosen instances, the ones
obtained from the compact model are satisfactory in efficiency and quality. For larger
instances, both models find difficulties to solve the problem. The decomposition model
requires a larger amount of time to solve the problems, when compared with the compact
model. This happens mainly due to the time spent solving the CG, despite the improve-
ment achieved using heuristics to solve the SPs. The solutions’ values, when comparing
both approaches, are better with the compact model, although specific implementations
to the decomposition overall algorithm brought significant improvements, which can still
go through further developments.

Within the scope of this work, it would be advisable to test the global and specific
algorithms using a different set and type of instances. As the literature for the UPMSPjs
using sequence independent setup times and job splitting is scarce, an instance generator
would be needed, thence a first version of this generator is currently being developed to
test new instances and suggested perturbation implementations.

Reckoning the needs in real-world situations of scheduling, the consideration and imple-
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mentation of sequence dependent setup times in this model, would be the next reasonable
task. By doing this, the model would not lose its generality, and the adaptation of the
heuristics developed in this work would not be arduous, although its model implementa-
tion would require further analysis due to the time indexed formulation being used in this
work. Equally important, the implementation of sequence dependent setup times would
predictably raise the problem’s complexity, requiring even larger computational times.

Finally, several components of SearchCol can still be tested. An important feature to
be tested is the possibility of running the CG with a stopping criterion different from the
one used in this work which would allow to diminish the time spent in CG. This could be
achieved by defining an absolute or relative improvement of the primal solution as the CG
stopping criterion. Testing these alternatives would enrich the continuity of this work and
research for the UPMSPjs.
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Appendix A

Overview of Literature Review

Table A.1: Literature on PMS

Paper α γ β Approach
Akker et al. [1999] Pm f(Cj) - CG
Akker et al. [2006] Pm MinX - CG
Anghinolfi and
Paolucci [2007]

Pm

∑
Tj Sequence Dependent

Setup; Ready Times
Hybrid Approach usin
TS, SA and VNS

Armentano and
de Franca Filho
[2007]

Qm

∑
Tj Sequence Dependent

Setup
GRASP

Azizoglu and Web-
ster [2003]

Pm

∑
Fj Family Setup Times B&B Algorithms

Chen and Powell
[1999a]

Pm

∑
wjEj +

∑
wjTj Due Dates CG

Chen and Powell
[1999b]

PMAC X Due Dates CG

Chen and Wu
[2006]

Rm

∑
Tj Auxiliary Equipment

(Setup and Processing
Sequence Dependent)

Combines TA, TS and
designed improvement
procedures

Chen [2009] Rm

∑
Tj Sequence and ma-

chine dependent setup
times and due-date
constraints.

CombineSA, ATCS and
designed improvement
procedures

Crauwels et al.
[2006]

Pm X Family Sequence Inde-
pendent Setup;

Heuristic with job se-
quence construction as
knapsack problem

Dunstall and Wirth
[2005a]

Pm

∑
wjCj Family Sequence Inde-

pendent Setup;
Three different branch-
ing rules embedded on
a B&B algorithm

Dunstall and Wirth
[2005b]

Pm

∑
wjCj Family Sequence Inde-

pendent Setup;
Heuristics

Fanjul-Peyro and
Ruiz [2012]

Rm Cmax NAM; NAJ 2 MIP and 3 algo-
rithms to combine with
CPLEX
Continues to next page

99



Table A.1 – from previous page
Paper α γ β Approach
Joo and Kim [2012] Pm X Sequence Dependent

Setup; Due Dates;
Ready Times

Two Genetic Algo-
rithms and a Self-
Evolution Algorithm

Kaplan and Rabadi
[2011]

Pm

∑
wjTj Ready Times; Deadline

and Due Dates
MIP and Modified ATC

Kedad-Sidhoum
et al. [2008]

Pm

∑
Ej +

∑
Tj Due dates Lower and upper

bounds
Kim et al. [2002] Rm

∑
Tmax i Sequence-dependent

setup times
Simulated Annealing

Kim et al. [2004] Pm

∑
Tj Job Splitting; Setup Two-phase heuristic al-

gorithm
Lee et al. [2013] Rm

∑
Tj Sequence Dependent

Setup
TS algorithm

Liaw et al. [2003] Rm

∑
wjTj Due Dates B&B

Lin et al. [2011] Rm Cmax +
∑

wjCj +
∑

wjTj - Heuristics and GA
Logendran and
Subur [2004]

Rm

∑
wjTj Job Splitting TS based heuristic

Logendran et al.
[2007]

Rm

∑
wjTj Sequence-dependent se-

tups; dynamic release
of jobs; dynamic avail-
ability of machines

Creation of 4 differ-
ent initial solutions and
TSS algorithms to im-
prove

Nait et al. [2006] Pm Cmax Job splitting;
Sequence-dependent
Setup

LP and Improved
Heuristic

Park et al. [2012] Pm

∑
Tj Job splitting;

Sequence-dependent
Setup (major/minor)

Heuristic considering
job splitting and setup
sequences

Lopes and Car-
valho [2007]

Rm

∑
wjTj Sequence-dependent

Setup; Release date for
jobs and machine

New B&P optimization
algorithm

Rocha et al. [2008] Rm Cmax +
∑

wjTj Sequence and Ma-
chine Dependent Setup
Times, Due Dates,
Weighted Jobs

Two MIP comparing to
B&B algorithm with
upper bound derived
from GRASP

Rodriguez et al.
[2013]

Rm

∑
wjCj - Iterated greedy algo-

rithm
Sarıçiçek and Çelik
[2011]

Pm

∑
Tj Job Splitting; Sequence

Independent Setup;
Due Date

TS and Simulated An-
nealing

Shim and Kim
[2006]

Rm

∑
Tj Equal Due Dates B&B

Shim and Kim
[2008]

Pm

∑
Tj Job Splitting; Equal

Due Dates; Indepen-
dent setup times

B&B

Sourd [2005] 1
∑

Ej +
∑

Tj Time-Indexed; Se-
quence Dependent
Setup

B&B

Vallada and Ruiz
[2011]

Rm Cmax Job and Machine
Sequence Dependent
Setup

GA

Continues to next page
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Table A.1 – from previous page
Paper α γ β Approach
Wang et al. [2013] Rm; Pm Cmax Job Splitting Hybrid Differential

Evolution
Xing and Zhang
[2000]

Pm Cmax Job Splitting; Sequence
Independent Setup

Heuristic ML

Yalaoui and Chu
[2003]

Pm Cmax Job Splitting; Sequence
Dependent Setup

Two-phase heuristic al-
gorithm

Zhu and Heady
[2000]

Rm

∑
Ej +

∑
Tj Sequence Dependent

Setup; Due Dates
MIP

End of Table A.1
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Appendix B

Developed Algorithms

Algorithm B.1: Type 1 of Initial Solutions
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) increasing dj′ b) non-increasing wj′ c) increasing rj′ d) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′ of scheduling plans hi of type 1 for each machine i
for I do

markeri = qi
end
for J ′ do

for I do
calculate endperiodi if setup and processing of j′ in i starts at markeri

end
earliest = Tmax
chosenmachine = 1; for I do

if endperiodi < Tmax then
chosenmachine = i
earliest = endperiodi

end
end
schedule j′ in chosenmachine
markerchosenmachine = earliest

end
return H ′
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Algorithm B.2: Type 2 of Initial Solutions
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) non-increasing p̄ij′ in i b) increasing dj′ c) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′ of scheduling plans hi of type 1 for each machine i
for J ′ do

for I do
calculate ratioi = available_periodsi

pij′

end
create subset I ′ of i with highest ratioi
if size(I ′) 6= 1 then

chosenmachine = i ∈ I ′ with lowest indexi
else if size(I ′) == 1 then

chosenmachine = i ∈ I ′
end
for T do

calculate attractivenessj′t

end
create set T ′ sorted by increasingly attractivenessj′t

schedule j′ in chosenmachine in first and available t from T ′;
end
return H ′
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Algorithm B.3: Type 3 of Initial Solutions
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) non-increasing p̄ij′ in i b) increasing dj′ c) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′ of scheduling plans hi of type 1 for each machine i
for J ′ do

for I do
calculate ratioi = weight_in_OF_available_periodsi

number_available_periodsi
× pij′

end
create subset I ′ of i with lowest ratioi
if size(I ′) 6= 1 then

chosenmachine = i ∈ I ′ with lowest indexi
else if size(I ′) == 1 then

chosenmachine = i ∈ I ′
end
for T do

calculate attractivenessj′t

end
create set T ′ sorted by increasingly attractivenessj′t

schedule j′ in chosenmachine in first and available t from T ′;
end
return H ′
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Algorithm B.4: Type 4 of Initial Solutions
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) non-increasing p̄ij′ in i b) increasing dj′ c) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′ of scheduling plans hi of type 1 for each machine i
for J ′ do

for I do
calculate ratioi = weight_in_OF_available_periodsi

number_available_periodsi
× pij′

end
create subset I ′ of i with lowest ratioi
if size(I ′) 6= 1 then

chosenmachine = i ∈ I ′ with lowest indexi
else if size(I ′) == 1 then

chosenmachine = i ∈ I ′
end
for T do

calculate attractivenessj′t

end
create set T ′ sorted by increasingly attractivenessj′t

while ∑m
i=1

∑Tmax
t=1

xij′t

pij′
< 1 do

if first and available t from T ′ <= d′j then
schedule frac1pij′ of j′ in chosenmachine in first and available t from T ′;

else if first and available t from T ′ > d′j then
for I do

calculate finishing_period_if_processingij′

end
chosenmachine = imin(finishing_period_if_processingij′ )

schedule 1
pij′

of j′ in chosenmachine in first and available t from T ;
end

end
end
return H ′
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Algorithm B.5: Type 5 of Initial Solutions
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) increasing dj′ b) non-increasing w′

j

∑
i
pij′

m
c) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′ of scheduling plans hi of type 1 for each machine i
for J ′ do

for I do
calculate ratioi = weight_in_OF_available_periodsi

number_available_periodsi
× pij′

end
create subset I ′ of i with lowest ratioi
if size(I ′) 6= 1 then

chosenmachine = i ∈ I ′ with lowest indexi
else if size(I ′) == 1 then

chosenmachine = i ∈ I ′
end
for T do

calculate attractivenessj′t

end
create set T ′ sorted by increasingly attractivenessj′t

schedule j′ in chosenmachine in first and available t from T ′;
end
return H ′

Algorithm B.6: Independent SP Heuristic
Input: Machine i corresponding to current SP
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) increasing of most negative ‘cost’: costxijt

b) increasing d′
j

w′
j(sj+pij) c) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A scheduling plan hi for machine i corresponding to SP being solved
while available periods do

for J ′ do
while ∑Tmax

t=1
xij′t

pij′
< 1 & available periods & no splitting needed for j′ do

if possible then
schedule a unit of pij′ on available t with the most negative costxijt

end
end

end
return H ′

107



Algorithm B.7: Global SP Heuristic
Input: A set I of machines i
Input: A set J ′ = {j′1, j′2, . . . , j′n} of jobs j′ with index number j ordered by
a) increasing of most negative ‘cost’: costxijt

b) increasing d′j c) non-increasing w′j
d) increasing jj′

Input: A set T of periods t = {0, ..., Tmax}
Output: A set H ′i of scheduling plans hi of type 1 for each machine i
for J ′ do

sort i ∈ I by increasing ‘cost’ of processing j′ in available t→ I ′

for I ′ do
sort t ∈ T : ∑n

j′=1 xij′t = 0 ∧∑n
j′=1 yij′t = 0 ∧ t > rj′ ∧ t > qi by increasing

‘cost’ → T ′

t′ → 0
while ∑m

i=1
∑Tmax
t=1

xij′t

pij′
< 1 & t′ ≤ T ′max do

if ‘cost’ of t′ ≤ 0 then
schedule a unit of pij′ on available t with the most negative costxijt

t′ + +
else if ‘cost’ of t′ > 0 then

t′ + +
end

end
end
// processing will be allowed on periods with positive ‘cost’
for I ′ do

sort t ∈ T : ∑n
j′=1 xij′t = 0 ∧∑n

j′=1 yij′t = 0 ∧ t > rj′ ∧ t > qi by increasing
‘cost’ → T ′

t′ → 0
while ∑m

i=1
∑Tmax
t=1

xij′t

pij′
< 1 & t′ ≤ T ′max do

schedule a unit of pij′ on available t with the most negative costxijt

t′ + +
end

end
end
return H ′
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Appendix C

Extended Computational Results

The notation used in the following tables of results follow the same principle of Chap-
ter 6:

ZLR - Value of the optimal LR solution;

ZINC_feas - Feasible value of the incumbent solution;

ZINC_infeas - Infeasible value of the incumbent solution;

ZINC - Value of the incumbent solution;

Load - Time spent loading the decomposition model;

In Table C.3:

MIP - Resolution of SP using exact method;

I - Resolution of SP using Independent Heuristic;

G - Resolution of SP using Global Heuristic;

Iteration in Tables C.9 and C.10 refer to SearchCol algorithm iterations.
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Table C.1: Decomposition Results

Value Time (sec.)
M-J ZLR ZINC_feas ZINC_infeas Load CG Searcher Total

2-20-1 0.13 0.14 3002.2 0.000 54.8 0.3 55.1
2-30-1 0.59 0.84 5004.5 0.015 379.3 1.0 380.3
2-40-1 0.49 0.57 9005.0 0.021 1653.6 4.6 1658.2
2-50-1 0.83 1.20 22018.7 0.031 1806.2 0.0 1806.2
4-30-1 0.05 0.07 5001.5 0.004 72.3 5.1 77.4
4-40-1 0.07 0.24 4002.2 0.009 219.8 17.7 237.5
4-50-1 0.05 0.12 7003.5 0.015 567.2 134.1 701.3
4-60-1 0.10 0.15 10005.0 0.029 1318.4 476.2 1794.6
6-40-1 0.00 1.67 1000.3 0.009 127.5 694.4 821.9
6-50-1 0.07 2.94 3002.2 0.031 359.2 924.4 1283.6
6-70-1 0.01 0.06 32024.0 * 0.048 -1.0 -1.0 -1.0
8-40-1 0.00 0.00 20016.7 * 0.015 -1.0 -1.0 -1.0
8-60-1 0.00 0.01 19011.3 * 0.037 -1.0 -1.0 -1.0
8-80-1 0.10 0.27 19009.5 0.091 1802.0 0.0 1802.0
10-70-1 0.00 0.99 56051.5 * 0.237 -1.0 -1.0 -1.0
10-100-1 61.17 0.00 100100.0 0.234 1807.6 0.0 1807.6
2-20-2 0.40 0.34 5005.0 0.000 21.1 0.2 21.3
2-30-2 3.01 0.86 9007.2 0.000 117.3 0.5 117.8
2-40-2 2.04 0.84 11009.5 0.016 451.2 1.1 452.3
2-50-2 0.85 0.96 15012.2 0.013 1093.9 8.9 1102.7
4-30-2 1.78 1.29 7005.7 0.000 57.4 0.7 58.1
4-40-2 0.55 0.21 6004.3 0.015 207.5 1.9 209.4
4-50-2 0.34 0.29 12008.3 0.020 544.6 24.0 568.5
4-60-2 12.76 13.02 11007.5 0.034 1246.3 127.4 1373.7
6-40-2 0.04 0.05 4002.2 0.000 161.8 99.4 261.2
6-50-2 3.27 2.12 7005.7 0.024 408.4 225.9 634.2
6-70-2 2.61 3.25 10007.8 0.063 1735.1 65.4 1800.5
8-40-2 3.18 3.04 2002.0 0.016 168.8 5.4 174.3

* Out of memory in search in the root
Continues to next page
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Table C.1 – from previous page
Value Time (sec.)

M-J-q ZLR ZINC_feas ZINC_infeas Load CG Searcher Total

8-60-2 10.53 4.09 9006.2 0.048 795.2 873.3 1668.5
8-80-2 3.27 5.49 24017.7 0.092 1803.5 0.0 1803.6
10-70-2 3.12 3.18 28023.5 * 0.088 -1.0 -1.0 -1.0
10-100-2 906.22 0.00 100100.0 0.170 1802.5 0.0 1802.5
2-20-3 0.65 0.43 9008.3 0.000 18.5 0.0 18.6
2-30-3 32.72 16.88 14013.3 0.003 89.0 0.1 89.1
2-40-3 3.62 1.46 17016.5 0.008 328.6 0.4 328.9
2-50-3 2.63 1.55 22020.8 0.032 920.6 2.3 922.9
4-30-3 36.70 18.35 12012.0 0.015 50.8 0.1 51.0
4-40-3 27.38 23.01 12011.5 0.008 182.8 0.3 183.1
4-50-3 1.69 0.54 15013.7 0.016 523.3 2.9 526.2
4-60-3 29.16 16.33 19017.3 0.031 1087.9 18.4 1106.3
6-40-3 0.88 0.30 10008.5 0.012 170.7 3.6 174.3
6-50-3 13.71 12.24 16015.5 0.023 399.4 1.1 400.5
6-70-3 10.78 6.18 16015.5 0.062 1782.3 18.0 1800.3
8-40-3 11.53 7.99 10009.5 0.015 151.9 0.2 152.1
8-60-3 29.88 17.26 20018.2 0.053 775.3 6.7 782.0
8-80-3 4.74 4.78 43042.3 0.094 1805.9 0.0 1805.9
10-70-3 33.04 26.29 22021.5 0.094 1421.5 97.3 1518.8
10-100-3 1799.54 0.00 100100.0 0.171 1805.7 0.0 1805.7
2-20-4 19.90 108.68 12011.7 0.000 13.4 0.1 13.5
2-30-4 151.56 69.76 19019.0 0.000 63.8 0.0 63.8
2-40-4 129.37 64.01 28028.0 0.008 251.4 0.1 251.5
2-50-4 78.01 42.84 37036.0 0.013 758.5 0.1 758.6
4-30-4 86.78 122.90 17017.0 0.000 44.3 0.1 44.4
4-40-4 70.23 29.30 23022.0 0.007 158.6 0.1 158.7
4-50-4 6.59 2.78 28027.5 0.021 396.5 0.2 396.8
4-60-4 75.94 56.32 32032.0 0.034 932.9 0.4 933.3
6-40-4 30.57 7.63 20020.0 0.011 127.2 0.2 127.4

* Out of memory in search in the root
Continues to next page
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Table C.1 – from previous page
Value Time (sec.)

M-J-q ZLR ZINC_feas ZINC_infeas Load CG Searcher Total

6-50-4 79.06 33.40 29028.5 0.018 324.7 0.2 324.9
6-70-4 52.02 38.13 33033.0 0.063 1516.6 2.3 1518.9
8-40-4 46.61 23.01 18018.0 0.000 128.5 0.2 128.6
8-60-4 89.15 42.29 32032.0 0.051 722.0 0.3 722.3
8-80-4 29.61 38.23 51051.0 0.093 1810.8 0.0 1810.8
10-70-4 82.01 390.52 33032.5 0.085 1185.5 0.2 1185.7
10-100-4 2225.60 0.00 100100.0 0.175 1810.2 0.0 1810.2
2-20-5 67.60 48.99 12012.0 0.000 14.6 0.0 14.6
2-30-5 272.44 98.10 22021.5 0.000 50.2 0.1 50.3
2-40-5 326.35 178.00 30029.5 0.000 229.3 0.0 229.4
2-50-5 355.09 221.18 39039.0 0.012 613.9 0.0 613.9
4-30-5 129.04 99.20 17017.0 0.003 38.2 0.0 38.2
4-40-5 136.17 64.07 25025.0 0.007 132.6 0.1 132.7
4-50-5 70.92 29.54 34034.0 0.016 367.5 0.1 367.7
4-60-5 198.38 111.78 43041.8 0.016 754.8 0.1 754.9
6-40-5 73.31 39.03 22022.0 0.016 125.0 0.1 125.1
6-50-5 158.73 87.81 32032.0 0.015 291.9 0.1 292.0
6-70-5 144.61 100.04 45045.0 0.060 1235.0 0.1 1235.2
8-40-5 72.02 67.54 19019.0 0.013 137.6 0.1 137.7
8-60-5 165.99 98.43 35035.0 0.031 629.4 0.1 629.6
8-80-5 145.23 174.18 65065.0 0.088 1816.2 0.0 1816.2
10-70-5 157.87 91.44 38038.0 0.063 1171.1 0.2 1171.3
10-100-5 2585.94 621.92 98098.0 0.178 1803.1 0.0 1803.1

* Out of memory in search in the root
End of Table C.1

Table C.2: Initial Solutions’ Complete Values

M-J-q ZType1 ZType2 ZType3 ZType4 ZType5 Time (sec.)

2-20-1 17.51 0.28 0.58 0.49 0.61 0.011
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Table C.2 – from previous page
M-J-q ZType1 ZType2 ZType3 ZType4 ZType5 Time (sec.)

2-20-2 4.04 0.98 0.82 1.08 2.11 0.016
2-20-3 104.17 96.13 79.64 127.76 96.55 0.015
2-20-4 322.77 142.52 155.21 210.7 203.25 0.016
2-20-5 357.44 228.31 219.39 352.99 285.36 0.007
2-30-1 32.45 10.99 3.89 1.04 6.75 0.035
2-30-2 16.41 23.59 36.52 95.93 12.72 0.016
2-30-3 469.32 313.00 276.61 352.61 337.63 0.019
2-30-4 924.66 491.76 491.62 755.41 623.70 0.016
2-30-5 1336.50 652.06 685.47 805.96 884.07 0.024
2-40-1 56.42 5.05 1.25 123.92 1.35 0.078
2-40-2 13.21 49.74 16.98 64.31 15.14 0.031
2-40-3 807.87 324.31 405.43 825.4 531.32 0.045
2-40-4 1431.54 706.34 710.30 1030.3 1230.60 0.054
2-40-5 2062.17 1088.14 1088.14 1641.67 1574.11 0.047
2-50-1 107.7 1.16 1.59 1.26 1.6 0.181
2-50-2 17.46 4.64 6.94 2.89 8.87 0.068
2-50-3 980.39 449.10 458.28 1412.53 604.54 0.094
2-50-4 3070.00 1063.00 1059.04 1503.39 1617.70 0.117
2-50-5 2912.61 1511.46 1511.43 2204.16 2287.92 0.132
4-30-1 11.25 0.36 1.41 0.29 0.32 0.028
4-30-2 30.68 53.88 69.80 120.2 28.06 0.015
4-30-3 283.17 145.66 154.57 312.06 169.31 0.034
4-30-4 483.15 208.03 244.55 519.82 287.10 0.047
4-30-5 491.05 269.31 274.26 521.8 358.38 0.038
4-40-1 21.65 2.38 0.78 23.51 0.56 0.067
4-40-2 46.84 85.75 46.39 265.92 37.99 0.063
4-40-3 339.57 159.95 141.25 257.16 235.62 0.088
4-40-4 578.16 267.77 331.54 472.83 414.82 0.096
4-40-5 785.08 372.49 402.30 698.22 573.22 0.100
4-50-1 47.56 4.71 3.8 0.47 0.63 0.130
4-50-2 14.71 52.42 3.05 75.29 10.63 0.133
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Table C.2 – from previous page
M-J-q ZType1 ZType2 ZType3 ZType4 ZType5 Time (sec.)

4-50-3 185.63 104.02 69.03 271.43 81.09 0.182
4-50-4 738.62 279.52 249.78 463.72 372.43 0.207
4-50-5 1058.33 450.45 469.48 862.03 635.58 0.218
4-60-1 60.41 27.5 4.49 659.87 16.66 0.240
4-60-2 37.00 145.75 35.11 402.39 42.99 0.382
4-60-3 519.78 354.67 313.95 937.14 250.49 0.367
4-60-4 1023.68 640.49 639.34 1086.38 755.39 0.405
4-60-5 1556.33 838.14 909.45 1630.09 1077.14 0.439
6-40-1 16.25 0.41 0.22 0.26 0.38 0.078
6-40-2 6.69 14.86 18.63 67.1 2.83 0.101
6-40-3 195.13 95.82 77.77 222.4 81.36 0.121
6-40-4 265.47 168.62 153.92 310.16 229.74 0.140
6-40-5 477.25 235.87 214.20 386.29 304.95 0.140
6-50-1 25.05 8.52 4.4 0.48 0.41 0.154
6-50-2 24.29 57.59 41.25 197.75 18.45 0.218
6-50-3 333.68 170.91 172.91 441.14 174.39 0.274
6-50-4 695.04 293.36 300.24 687.6 392.04 0.296
6-50-5 793.98 407.13 406.14 865.5 511.83 0.330
6-70-1 39.52 10.51 3.33 0.47 0.56 0.502
6-70-2 33.09 40.42 33.32 441.12 21.52 0.771
6-70-3 162.41 197.54 217.40 781.74 146.52 0.964
6-70-4 701.94 407.30 403.22 1165.73 428.67 1.029
6-70-5 894.96 582.24 626.83 1290.16 680.13 1.125
8-40-1 9.35 7.02 3.11 26.91 0.14 0.104
8-40-2 16.13 51.86 39.89 110.96 18.19 0.136
8-40-3 99.99 95.28 98.24 134.65 83.22 0.158
8-40-4 201.96 128.80 120.90 211.96 165.33 0.171
8-40-5 282.15 162.44 164.42 250.47 198.00 0.172
8-60-1 22.91 21.05 17.08 206.04 5.2 0.468
8-60-2 50.75 65.74 53.77 212.35 35.02 0.637
8-60-3 276.21 203.21 220.16 446.78 168.30 0.718
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Table C.2 – from previous page
M-J-q ZType1 ZType2 ZType3 ZType4 ZType5 Time (sec.)

8-60-4 587.07 305.11 308.08 644.51 360.36 0.767
8-60-5 705.87 382.29 403.00 647.46 483.12 0.796
8-80-1 55.51 25.62 11.39 173.57 0.21 1.029
8-80-2 30.98 62.47 35.22 238.78 7.55 1.560
8-80-3 207.21 185.83 164.90 652.09 127.96 2.230
8-80-4 775.19 453.04 389.52 871.76 485.10 2.124
8-80-5 951.39 557.05 555.05 1066.69 805.86 2.137
10-70-1 28.7 9.52 11.19 45.2 0.28 0.979
10-70-2 44.58 83.87 81.10 285.67 27.94 1.343
10-70-3 244.59 252.23 206.62 521.93 174.24 1.564
10-70-4 560.36 350.79 358.64 814.95 396.00 1.627
10-70-5 722.70 433.83 448.56 742.54 512.82 1.687
10-100-1 55.01 0.82 0.39 0.77 0.41 3.420
10-100-2 17.31 18.98 21.73 402.5 7.62 5.010
10-100-3 159.60 258.86 248.34 956.27 119.85 5.849
10-100-4 967.23 611.53 558.28 1276.65 572.22 6.146
10-100-5 1228.61 778.86 756.97 1488.16 924.66 6.617

End of Table C.2

Table C.3: Results of the Heuristics to solve SP without Initial Solutions

Time (sec.) Value
CG Searcher Total Zfeas Zinfeas

M-J-q MIP I G MIP I G MIP I G I G I G
2-20-1 54.8 43.9 43.4 0.3 0.0 0.0 55.1 44.0 43.5 0.18 0.18 0.00 0.00
2-20-2 21.1 19.6 19.1 0.2 0.0 0.0 21.3 19.6 19.1 1.04 1.04 0.00 0.00
2-20-3 18.5 22.9 22.3 0.0 0.0 0.0 18.6 22.9 22.3 68.50 68.50 0.00 0.00
2-20-4 13.4 16.2 16.8 0.1 0.0 0.0 13.5 16.3 16.8 156.88 156.88 0.00 0.00
2-20-5 14.6 14.9 14.7 0.0 0.0 0.0 14.6 15.0 14.7 222.38 222.38 0.00 0.00
2-30-1 379.3 280.8 282.6 1.0 0.1 0.1 380.3 280.9 282.7 0.74 0.74 0.00 0.00
2-30-2 117.3 100.1 99.6 0.5 0.2 0.2 117.8 100.3 99.8 63.05 63.05 0.00 0.00
2-30-3 89.0 92.1 92.3 0.1 0.1 0.0 89.1 92.2 92.3 639.93 639.93 0.00 0.00
2-30-4 63.8 67.7 67.3 0.0 0.1 0.1 63.8 67.7 67.4 996.21 996.21 0.00 0.00
2-30-5 50.2 57.1 56.7 0.1 0.0 0.1 50.3 57.1 56.8 787.32 787.32 0.00 0.00
2-40-1 1653.6 1204.4 1207.9 4.6 0.2 0.2 1658.2 1204.5 1208.1 0.72 0.72 0.00 0.00
2-40-2 451.2 384.9 385.4 1.1 0.3 0.2 452.3 385.2 385.6 15.28 15.28 0.00 0.00

Continues to next page

115



Table C.3 – from previous page
Time (sec.) Value

CG Searcher Total Zfeas Zinfeas

M-J-q MIP I G MIP I G MIP I G I G I G
2-40-3 328.6 341.2 341.1 0.4 0.1 0.1 328.9 341.3 341.1 674.05 674.05 0.00 0.00
2-40-4 251.4 238.7 238.9 0.1 0.1 0.1 251.5 238.8 239.0 1107.45 1107.45 0.00 0.00
2-40-5 229.3 219.3 220.2 0.0 0.1 0.1 229.4 219.4 220.3 1483.06 1483.06 0.00 0.00
2-50-1 1806.2 1803.3 1801.4 0.0 0.0 0.0 1806.2 1803.3 1801.4 0.43 0.55 14012.17 10007.67
2-50-2 1093.9 951.6 953.2 8.9 3.4 3.5 1102.7 955.0 956.7 4.41 4.41 0.00 0.00
2-50-3 920.6 885.8 887.8 2.3 0.3 0.3 922.9 886.2 888.1 1600.86 1600.86 1000.67 1000.67
2-50-4 758.5 714.2 716.4 0.1 0.1 0.1 758.6 714.3 716.5 1409.92 1409.92 0.00 0.00
2-50-5 613.9 603.0 604.0 0.0 0.1 0.1 613.9 603.1 604.1 2446.65 2446.65 0.00 0.00
4-30-1 72.3 33.9 34.7 5.1 0.1 0.1 77.4 34.0 34.8 0.09 0.09 0.00 0.00
4-30-2 57.4 55.9 55.7 0.7 0.1 0.1 58.1 56.1 55.9 70.47 70.47 0.00 0.00
4-30-3 50.8 47.4 47.9 0.1 0.2 0.2 51.0 47.5 48.1 209.93 209.93 0.00 0.00
4-30-4 44.3 38.2 38.2 0.1 0.2 0.1 44.4 38.4 38.4 262.37 262.37 0.00 0.00
4-30-5 38.2 39.8 39.3 0.0 0.0 0.0 38.2 39.9 39.3 301.95 301.95 0.00 0.00
4-40-1 219.8 87.4 87.0 17.7 -1.0 -1.0 237.5 87.4 87.0 0.07 0.07 0.00 0.00
4-40-2 207.5 167.9 168.5 1.9 0.4 0.3 209.4 168.3 168.9 49.11 49.11 0.00 0.00
4-40-3 182.8 165.7 164.3 0.3 0.2 0.2 183.1 165.9 164.5 256.82 256.82 0.00 0.00
4-40-4 158.6 142.5 142.8 0.1 0.1 0.1 158.7 142.7 143.0 481.20 481.20 0.00 0.00
4-40-5 132.6 111.9 111.5 0.1 0.1 0.2 132.7 112.0 111.6 586.21 586.21 0.00 0.00
4-50-1 567.2 237.2 238.1 134.1 0.3 0.3 701.3 237.5 238.4 0.17 0.17 0.00 0.00
4-50-2 544.6 408.9 408.4 24.0 1.4 1.4 568.5 410.2 409.7 8.33 8.33 0.00 0.00
4-50-3 523.3 507.7 506.7 2.9 1.1 1.2 526.2 508.8 507.8 189.03 189.03 0.00 0.00
4-50-4 396.5 359.3 359.0 0.2 0.2 0.3 396.8 359.5 359.3 578.19 578.19 0.00 0.00
4-50-5 367.5 325.9 326.1 0.1 0.2 0.2 367.7 326.2 326.4 659.34 659.34 0.00 0.00
4-60-1 1318.4 711.6 712.0 476.2 0.6 0.6 1794.6 712.2 712.5 0.31 0.31 0.00 0.00
4-60-2 1246.3 1148.8 1151.8 127.4 6.5 6.6 1373.7 1155.4 1158.4 31.59 31.59 0.00 0.00
4-60-3 1087.9 1046.2 1045.7 18.4 1.6 1.6 1106.3 1047.9 1047.4 693.57 693.57 0.00 0.00
4-60-4 932.9 881.8 883.5 0.4 0.5 0.5 933.3 882.3 884.0 948.87 948.87 0.00 0.00
4-60-5 754.8 659.6 661.6 0.1 0.2 0.2 754.9 659.8 661.7 1176.12 1176.12 0.00 0.00
6-40-1 127.5 43.9 43.8 694.4 0.1 0.1 821.9 44.0 43.8 0.00 0.00 0.00 0.00
6-40-2 161.8 87.5 86.9 99.4 0.2 0.2 261.2 87.7 87.2 0.10 0.10 0.00 0.00
6-40-3 170.7 140.2 140.5 3.6 0.3 0.3 174.3 140.5 140.8 96.45 96.45 0.00 0.00
6-40-4 127.2 96.4 97.0 0.2 0.3 0.2 127.4 96.7 97.2 192.42 192.42 0.00 0.00
6-40-5 125.0 92.5 93.1 0.1 0.2 0.2 125.1 92.7 93.3 272.27 272.27 0.00 0.00
6-50-1 359.2 144.3 143.9 924.4 0.2 0.2 1283.6 144.5 144.1 0.15 0.15 0.00 0.00
6-50-2 408.4 242.5 242.0 225.9 0.7 0.7 634.2 243.2 242.7 10.88 10.88 0.00 0.00
6-50-3 399.4 348.9 348.4 1.1 0.5 0.5 400.5 349.4 348.9 361.50 361.50 0.00 0.00
6-50-4 324.7 275.3 275.3 0.2 0.5 0.5 324.9 275.7 275.8 485.10 485.10 0.00 0.00
6-50-5 291.9 222.2 223.9 0.1 0.4 0.4 292.0 222.6 224.3 590.04 590.04 0.00 0.00
6-70-1 1399.2 435.3 435.5 289.7 0.3 0.3 -1.0 435.7 435.8 0.05 0.05 0.00 0.00
6-70-2 1735.1 1199.3 1193.7 65.4 2.4 2.4 1800.5 1201.9 1196.1 15.24 15.24 0.00 0.00
6-70-3 1782.3 1387.7 1368.1 18.0 2.6 2.6 1800.3 1390.3 1370.7 258.51 258.51 0.00 0.00
6-70-4 1516.6 1175.9 1167.7 2.3 0.6 0.6 1518.9 1176.5 1168.4 554.40 554.40 0.00 0.00
6-70-5 1235.0 889.4 890.8 0.1 0.5 0.5 1235.2 890.0 891.4 721.71 721.71 0.00 0.00
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Table C.3 – from previous page
Time (sec.) Value

CG Searcher Total Zfeas Zinfeas

M-J-q MIP I G MIP I G MIP I G I G I G
8-40-1 140.7 40.7 39.8 261.4 -1.0 -1.0 -1.0 40.8 39.8 0.00 0.00 0.00 0.00
8-40-2 168.8 87.7 88.5 5.4 0.3 0.3 174.3 88.0 88.8 7.96 7.96 0.00 0.00
8-40-3 151.9 110.3 109.9 0.2 0.4 0.3 152.1 110.7 110.2 77.25 77.25 0.00 0.00
8-40-4 128.5 91.6 92.1 0.2 0.3 0.2 128.6 91.9 92.3 135.67 135.67 0.00 0.00
8-40-5 137.6 85.8 86.1 0.1 0.3 0.2 137.7 86.1 86.3 144.54 144.54 0.00 0.00
8-60-1 700.6 208.5 210.5 320.8 0.3 0.1 -1.0 208.8 210.7 0.04 0.04 0.00 0.00
8-60-2 795.2 479.1 482.4 873.3 1.5 1.5 1668.5 480.7 483.9 33.91 33.91 0.00 0.00
8-60-3 775.3 567.2 565.6 6.7 1.8 2.1 782.0 568.9 567.7 293.06 293.06 0.00 0.00
8-60-4 722.0 456.7 457.9 0.3 0.6 0.6 722.3 457.3 458.5 436.59 436.59 0.00 0.00
8-60-5 629.4 388.0 387.2 0.1 0.8 0.8 629.6 388.8 388.0 490.05 490.05 0.00 0.00
8-80-1 1802.0 294.0 295.2 0.0 0.2 0.2 1802.0 294.2 295.4 0.00 0.00 0.00 0.00
8-80-2 1803.5 755.1 753.0 0.0 2.0 1.9 1803.6 757.1 755.0 4.06 4.06 0.00 0.00
8-80-3 1805.9 1806.6 1804.8 0.0 0.0 0.0 1805.9 1806.7 1804.9 10.27 10.27 34031.83 34031.83
8-80-4 1810.8 1592.9 1552.3 0.0 2.0 1.8 1810.8 1594.9 1554.2 505.89 505.89 0.00 0.00
8-80-5 1816.2 1323.1 1309.4 0.0 1.4 1.3 1816.2 1324.5 1310.7 776.16 776.16 0.00 0.00
10-70-1 1211.0 275.1 268.0 252.3 0.2 0.2 -1.0 275.3 268.3 0.00 0.00 0.00 0.00
10-70-2 1361.0 901.1 898.2 321.4 3.7 3.9 -1.0 904.9 902.1 49.64 49.64 0.00 0.00
10-70-3 1421.5 867.9 825.4 97.3 1.0 0.9 1518.8 869.0 826.3 210.96 210.96 0.00 0.00
10-70-4 1185.5 715.2 674.6 0.2 1.7 1.6 1185.7 716.8 676.2 441.54 441.54 0.00 0.00
10-70-5 1171.1 692.9 653.7 0.2 1.4 1.3 1171.3 694.3 655.0 572.22 572.22 0.00 0.00
10-100-1 1807.6 888.9 838.0 0.0 0.3 0.2 1807.6 889.2 838.2 0.02 0.02 0.00 0.00
10-100-2 1802.5 1337.5 1307.6 0.0 4.3 3.5 1802.5 1341.8 1311.2 3.17 3.17 0.00 0.00
10-100-3 1805.7 1805.1 1814.2 0.0 0.0 0.0 1805.7 1805.2 1814.2 13.01 8.08 55054.00 54053.50
10-100-4 1810.2 1824.2 1808.3 0.0 0.0 0.0 1810.2 1824.2 1808.3 108.16 126.58 76075.00 72071.00
10-100-5 1803.1 1828.1 1816.7 0.0 0.0 0.0 1803.1 1828.2 1816.7 271.16 324.72 75075.00 76076.00

End of Table C.3

Table C.4: Results of the exact method to solve SP with Initial Solutions

Value Status Time (sec.)
M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

2-20 1 0.28 0.28 0.53 1 41 40.68 0.03 40.725
2-20 2 0.82 0.82 0.51 1 41 15.21 0.03 15.257
2-20 3 79.64 79.64 0.99 1 41 18.72 0.00 18.735
2-20 4 142.52 142.52 0.86 1 41 13.11 0.01 13.114
2-20 5 219.39 219.39 0.69 1 41 13.43 0.01 13.445

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.
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Table C.4 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

2-30 1 1.04 1.04 0.43 1 41 364.34 0.05 364.42
2-30 2 12.72 12.72 0.76 1 41 100.89 0.08 100.981
2-30 3 276.61 276.61 0.88 1 41 87.33 0.11 87.471
2-30 4 491.62 491.62 0.69 1 41 57.88 0.03 57.93
2-30 5 652.06 652.06 0.58 1 41 47.57 0.03 47.628
2-40 1 1.25 1.25 0.61 1 41 1270.04 0.15 1270.272
2-40 2 13.21 13.21 0.85 1 41 420.07 0.10 420.212
2-40 3 324.31 324.31 0.99 1 41 349.62 0.11 349.782
2-40 4 706.34 706.34 0.82 1 41 271.54 0.03 271.621
2-40 5 1088.14 1088.14 0.70 1 41 222.55 0.03 222.631
2-50 1 1.16 1.16 0.75 3 41 1803.58 0.00 1803.764
2-50 2 2.89 2.89 0.71 1 41 1002.37 0.11 1002.565
2-50 3 449.1 449.1 0.99 1 41 881.30 0.07 881.47
2-50 4 1059.04 1059.04 0.93 1 41 767.50 0.03 767.648
2-50 5 1511.43 1511.43 0.77 1 41 626.06 0.02 626.222
4-30 1 0.29 0.29 0.82 1 41 38.02 0.11 38.163
4-30 2 28.06 28.06 0.94 1 41 46.01 0.03 46.054
4-30 3 145.66 145.66 0.75 1 41 39.28 0.05 39.357
4-30 4 208.03 208.03 0.58 1 41 30.09 0.03 30.171
4-30 5 269.31 269.31 0.52 1 41 28.06 0.08 28.18
4-40 1 0.56 0.56 0.87 1 41 141.15 0.14 141.368
4-40 2 37.99 37.99 0.99 1 41 165.97 0.10 166.131
4-40 3 141.25 141.25 0.81 1 41 149.02 0.06 149.171
4-40 4 267.77 267.77 0.74 1 41 128.86 0.05 129.011
4-40 5 372.49 372.49 0.63 1 41 117.99 0.05 118.139
4-50 1 0.47 0.47 0.90 1 41 346.77 0.29 347.194
4-50 2 3.05 3.05 0.89 1 41 453.68 0.18 454.002

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.
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Table C.4 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

4-50 3 69.03 69.03 0.98 1 41 440.16 0.08 440.43
4-50 4 249.78 249.78 0.97 1 41 327.47 0.08 327.76
4-50 5 450.45 450.45 0.84 1 41 311.42 0.05 311.696
4-60 1 4.49 4.49 0.98 1 41 1340.81 2.27 1343.318
4-60 2 35.11 35.11 0.64 1 41 1156.78 0.58 1157.746
4-60 3 250.49 250.49 0.88 1 41 1041.32 0.11 1041.793
4-60 4 639.34 639.34 0.88 1 41 969.62 0.05 970.077
4-60 5 838.14 838.14 0.76 1 41 724.16 0.05 724.645
6-40 1 0.22 0.22 1.00 1 41 43.29 0.19 43.555
6-40 2 2.83 2.83 0.99 1 41 93.81 0.35 94.262
6-40 3 77.77 77.77 0.99 1 41 130.87 0.06 131.069
6-40 4 153.92 153.92 0.80 1 41 80.21 0.05 80.417
6-40 5 214.2 214.2 0.66 1 41 85.29 0.07 85.504
6-50 1 0.41 0.41 0.83 1 41 154.62 0.17 154.957
6-50 2 18.45 18.45 0.82 1 41 306.54 0.18 306.941
6-50 3 170.91 170.91 0.92 1 41 355.06 0.16 355.491
6-50 4 293.36 293.36 0.73 1 41 286.95 0.06 287.311
6-50 5 406.14 406.14 0.61 1 41 234.56 0.07 234.961
6-70 1 0.47 0.47 0.98 1 41 700.81 0.86 702.181
6-70 2 21.52 21.52 0.88 1 41 1340.10 0.35 1341.226
6-70 3 146.52 146.52 0.93 1 41 1317.26 0.22 1318.439
6-70 4 403.22 403.22 0.87 1 41 1244.63 0.16 1245.823
6-70 5 582.24 582.24 0.75 1 41 991.85 0.06 993.035
8-40 1 0.14 0.14 1.00 1 41 41.10 0.34 41.55
8-40 2 16.13 16.13 0.80 1 41 94.47 0.18 94.788
8-40 3 83.22 83.22 0.86 1 41 93.20 0.06 93.44
8-40 4 120.9 120.9 0.61 1 41 68.94 0.05 69.178

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.

Continues to next page
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Table C.4 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

8-40 5 162.44 162.44 0.56 1 41 89.20 0.06 89.436
8-60 1 5.2 5.2 1.00 1 41 402.32 23.94 426.737
8-60 2 35.02 35.02 0.70 1 41 537.28 0.09 538.014
8-60 3 168.3 168.3 0.82 1 41 573.48 0.14 574.342
8-60 4 305.11 305.11 0.71 1 41 491.82 0.11 492.699
8-60 5 382.29 382.29 0.57 1 41 387.56 0.06 388.416
8-80 1 0.21 0.21 1.00 1 41 722.69 0.78 724.502
8-80 2 7.55 7.55 0.61 1 41 1611.01 187.70 1800.273
8-80 3 127.96 127.96 0.97 3 41 1800.01 0.00 1802.248
8-80 4 389.52 389.52 0.93 1 41 1577.33 0.13 1579.578
8-80 5 555.05 555.05 0.74 1 41 1451.53 0.12 1453.79
10-70 1 0.28 0.28 1.00 1 41 437.79 0.88 439.661
10-70 2 27.94 27.94 0.89 1 41 930.38 0.17 931.903
10-70 3 174.24 174.24 0.81 1 41 910.90 0.10 912.566
10-70 4 350.79 350.79 0.77 1 41 802.25 0.11 803.989
10-70 5 433.83 433.83 0.64 1 41 746.21 0.13 748.031
10-100 1 0.39 0.39 1.00 1 41 1479.94 1.57 1484.944
10-100 2 7.62 7.62 1.18 3 41 1815.32 0.00 1820.336
10-100 3 119.85 119.85 1.06 3 41 1801.12 0.00 1806.97
10-100 4 558.28 558.28 1.45 3 41 1796.11 0.00 1802.263
10-100 5 756.97 756.97 1.18 3 41 1828.74 0.00 1835.372

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.

End of Table C.4
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Table C.5: Results of the Independent Heuristic to solve SP with Initial Solutions

Value Status Time (sec.)
M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

2-20 1 0.28 0.28 0.53 1 41 11.26 0.20 11.475
2-20 2 0.82 0.82 0.51 1 41 12.84 0.04 12.887
2-20 3 79.64 79.64 0.99 1 41 16.26 0.02 16.292
2-20 4 142.52 142.52 0.86 1 41 15.12 0.02 15.15
2-20 5 219.39 219.39 0.69 1 41 13.65 0.02 13.673
2-30 1 1.04 0.99 0.40 1 41 163.34 1.06 164.444
2-30 2 12.72 12.72 0.76 1 41 60.28 0.69 60.988
2-30 3 276.61 276.61 0.88 1 41 76.45 0.13 76.603
2-30 4 491.62 491.62 0.69 1 41 61.70 0.07 61.796
2-30 5 652.06 652.06 0.58 1 41 51.66 0.13 51.811
2-40 1 1.25 1.25 0.61 1 41 453.36 1.98 455.44
2-40 2 13.21 13.21 0.85 1 41 281.36 4.01 285.401
2-40 3 324.31 324.31 0.99 1 41 318.08 3.12 321.248
2-40 4 706.34 706.34 0.82 1 41 254.06 0.15 254.265
2-40 5 1088.14 1088.14 0.70 1 41 232.28 0.27 232.606
2-50 1 1.16 1.16 0.62 1 41 1160.33 5.24 1165.753
2-50 2 2.89 2.89 0.71 1 41 655.64 10.38 666.096
2-50 3 449.1 449.10 0.99 1 41 806.52 15.32 821.941
2-50 4 1059.04 1059.04 0.93 1 41 770.02 0.67 770.807
2-50 5 1511.43 1511.43 0.77 1 41 710.64 0.55 711.33
4-30 1 0.29 0.22 0.76 1 41 4.87 0.16 5.057
4-30 2 28.06 28.06 0.94 1 41 47.90 0.18 48.115
4-30 3 145.66 145.66 0.75 1 41 47.17 0.10 47.309
4-30 4 208.03 208.03 0.58 1 41 39.20 0.06 39.3
4-30 5 269.31 269.31 0.52 1 41 37.59 0.08 37.71
4-40 1 0.56 0.50 0.86 1 41 13.63 0.24 13.936
4-40 2 37.99 37.99 0.99 1 41 125.72 1.36 127.149

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.

Continues to next page
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Table C.5 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

4-40 3 141.25 141.25 0.81 1 41 153.03 0.17 153.282
4-40 4 267.77 267.77 0.74 1 41 126.48 0.13 126.718
4-40 5 372.49 372.49 0.63 1 41 120.34 0.23 120.68
4-50 1 0.47 0.47 0.90 1 41 90.45 0.83 91.415
4-50 2 3.05 3.05 0.89 1 41 204.93 3.54 208.598
4-50 3 69.03 69.03 0.98 1 41 300.71 3.25 304.138
4-50 4 249.78 249.78 0.97 1 41 309.68 0.76 310.649
4-50 5 450.45 450.45 0.84 1 41 293.36 0.29 293.875
4-60 1 4.49 2.82 0.96 1 41 158.31 3.02 161.576
4-60 2 35.11 35.11 0.64 1 41 855.78 12.31 868.369
4-60 3 250.49 250.49 0.88 1 41 890.48 13.35 904.194
4-60 4 639.34 639.34 0.88 1 41 725.86 1.76 728.031
4-60 5 838.14 838.14 0.76 1 41 612.55 0.83 613.818
6-40 1 0.22 0.22 1.00 1 41 5.49 0.20 5.771
6-40 2 2.83 2.83 0.99 1 41 25.85 1.14 27.084
6-40 3 77.77 77.77 0.99 1 41 88.87 0.80 89.797
6-40 4 153.92 153.92 0.80 1 41 92.22 0.24 92.591
6-40 5 214.2 214.20 0.66 1 41 81.39 0.20 81.722
6-50 1 0.41 0.41 0.83 1 41 14.78 0.58 15.522
6-50 2 18.45 18.45 0.82 1 41 139.52 3.00 142.744
6-50 3 170.91 170.91 0.92 1 41 281.36 1.03 282.668
6-50 4 293.36 293.36 0.73 1 41 226.10 0.22 226.628
6-50 5 406.14 406.14 0.61 1 41 193.84 0.24 194.405
6-70 1 0.47 0.47 0.98 1 41 45.12 1.75 47.367
6-70 2 21.52 21.52 0.88 1 41 340.07 20.28 361.113
6-70 3 146.52 146.52 0.93 1 41 1047.52 3.64 1052.112
6-70 4 403.22 403.22 0.87 1 41 933.15 0.85 935.066

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.

Continues to next page

122



Table C.5 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

6-70 5 582.24 582.24 0.75 1 41 719.77 0.67 721.538
8-40 1 0.14 0.14 1.00 1 41 3.63 0.21 3.938
8-40 2 16.13 7.42 0.57 1 41 37.94 0.46 38.541
8-40 3 83.22 77.34 0.85 1 41 80.01 0.53 80.705
8-40 4 120.9 120.90 0.61 1 41 83.19 0.35 83.708
8-40 5 162.44 162.44 0.56 1 41 75.51 0.38 76.078
8-60 1 5.2 5.20 1.00 1 41 11.47 2.66 14.59
8-60 2 35.02 35.02 0.70 1 41 414.82 7.44 422.893
8-60 3 168.3 168.30 0.82 1 41 433.76 0.41 434.881
8-60 4 305.11 305.11 0.71 1 41 386.10 0.37 387.239
8-60 5 382.29 382.29 0.57 1 41 326.20 0.22 327.195
8-80 1 0.21 0.21 1.00 1 41 19.61 0.39 21.037
8-80 2 7.55 7.55 0.61 1 41 109.39 14.70 125.662
8-80 3 127.96 127.96 0.97 1 41 1356.61 12.81 1371.343
8-80 4 389.52 389.52 0.93 1 41 1223.55 1.45 1227.143
8-80 5 555.05 555.05 0.74 1 41 1194.00 1.25 1197.441
10-70 1 0.28 0.28 1.00 1 41 15.56 1.47 18.02
10-70 2 27.94 27.94 0.89 1 41 442.47 26.71 470.527
10-70 3 174.24 174.24 0.81 1 41 738.44 2.18 742.198
10-70 4 350.79 350.79 0.77 1 41 622.40 1.19 625.229
10-70 5 433.83 433.83 0.64 1 41 571.07 1.85 574.611
10-100 1 0.39 0.39 1.00 1 41 39.24 0.65 43.349
10-100 2 7.62 7.62 0.99 1 41 46.00 129.56 180.58
10-100 3 119.85 119.85 0.93 3 41 1802.11 0.00 1808.044
10-100 4 558.28 558.28 0.90 3 41 1822.47 0.00 1828.846
10-100 5 756.97 756.97 0.74 3 41 1830.78 0.00 1837.392

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached.

End of Table C.5
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Table C.6: Results of the Global Heuristic to solve SP with Initial Solutions

Value Status Time (sec.)
M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

2-20 1 0.28 0.19 0.31 1 41 33.753 0.016 33.796
2-20 2 0.82 0.82 0.51 1 41 15.871 0.019 15.893
2-20 3 79.64 79.64 0.99 1 41 21.069 0.01 21.089
2-20 4 142.52 142.52 0.86 1 41 16.982 0.006 16.998
2-20 5 219.39 219.39 0.69 1 41 14.75 0.006 14.766
2-30 1 1.04 0.8 0.26 1 41 320.251 0.057 320.351
2-30 2 12.72 5.35 0.44 1 41 82.608 0.078 82.708
2-30 3 276.61 276.61 0.88 1 41 93.453 0.104 93.581
2-30 4 491.62 491.62 0.69 1 41 59.882 0.016 59.935
2-30 5 652.06 652.06 0.58 1 41 47.79 0.037 47.862
2-40 1 1.25 0.77 0.37 1 41 957.14 0.343 957.568
2-40 2 13.21 6.36 0.68 1 41 343.206 0.297 343.54
2-40 3 324.31 324.31 0.99 1 41 332.761 0.057 332.866
2-40 4 706.34 706.34 0.82 1 41 272.185 0.047 272.291
2-40 5 1088.14 1088.14 0.70 1 41 226.548 0.039 226.649
2-50 1 1.16 1.16 0.69 3 41 1804.067 0 1804.252
2-50 2 2.89 2.89 0.71 1 41 911.303 0.158 911.534
2-50 3 449.1 449.1 0.99 1 41 905.898 0.078 906.074
2-50 4 1059.04 1059.04 0.93 1 41 750.74 0.035 750.888
2-50 5 1511.43 1511.43 0.77 1 41 663.392 0.032 663.556
4-30 1 0.29 0.11 0.52 1 41 22.502 0.105 22.645
4-30 2 28.06 28.06 0.94 1 41 42.001 0.052 42.085
4-30 3 145.66 145.66 0.75 1 41 44.336 0.031 44.401
4-30 4 208.03 208.03 0.58 1 41 33.609 0.047 33.691
4-30 5 269.31 269.31 0.52 1 41 33.108 0.037 33.186
4-40 1 0.56 0.07 0.00 1 51 59.476 -1 59.56

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached

51 - Optimal solution found by CG.

Continues to next page
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Table C.6 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

4-40 2 37.99 37.99 0.99 1 41 146.619 0.219 146.9
4-40 3 141.25 141.25 0.81 1 41 171.719 0.061 171.862
4-40 4 267.77 267.77 0.74 1 41 134.754 0.047 134.902
4-40 5 372.49 372.49 0.63 1 41 116.531 0.042 116.677
4-50 1 0.47 0.15 0.70 1 41 186.106 0.297 186.533
4-50 2 3.05 3.05 0.89 1 41 356.436 0.739 357.319
4-50 3 69.03 69.03 0.98 1 41 432.136 0.078 432.399
4-50 4 249.78 249.78 0.97 1 41 322.659 0.144 323.015
4-50 5 450.45 450.45 0.84 1 41 325.065 0.048 325.341
4-60 1 4.49 0.31 0.68 1 41 421.938 0.66 422.847
4-60 2 35.11 35.11 0.64 1 41 952.208 1.029 953.519
4-60 3 250.49 250.49 0.88 1 41 1058.633 0.152 1059.148
4-60 4 639.34 639.34 0.88 1 41 862.726 0.062 863.22
4-60 5 838.14 838.14 0.76 1 41 732.034 0.045 732.521
6-40 1 0.22 0 0.00 1 51 7.981 -1 8.057
6-40 2 2.83 2.83 0.99 1 41 41.671 0.379 42.155
6-40 3 77.77 77.77 0.99 1 41 120.284 0.25 120.66
6-40 4 153.92 153.92 0.80 1 41 89.58 0.123 89.839
6-40 5 214.2 214.2 0.66 1 41 91.224 0.109 91.469
6-50 1 0.41 0.18 0.61 1 41 41.443 0.177 41.785
6-50 2 18.45 18.45 0.82 1 41 190.313 0.764 191.322
6-50 3 170.91 170.91 0.92 1 41 342.539 0.111 342.92
6-50 4 293.36 293.36 0.73 1 41 260.44 0.063 260.806
6-50 5 406.14 406.14 0.61 1 41 250.612 0.065 250.994
6-70 1 0.47 0.11 0.91 1 41 100.022 0.432 100.965
6-70 2 21.52 21.52 0.88 1 41 1052.654 2.395 1055.83

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached

51 - Optimal solution found by CG.
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Table C.6 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

6-70 3 146.52 146.52 0.93 1 41 1513.903 0.17 1515.266
6-70 4 403.22 403.22 0.87 1 41 1121.839 0.118 1123.313
6-70 5 582.24 582.24 0.75 1 41 956.397 0.095 957.596
8-40 1 0.14 0 0.00 1 51 8.948 -1 9.267
8-40 2 16.13 16.13 0.80 1 41 64.22 0.238 64.599
8-40 3 83.22 83.22 0.86 1 41 97.379 0.249 97.787
8-40 4 120.9 120.9 0.61 1 41 71.999 0.08 72.256
8-40 5 162.44 162.44 0.56 1 41 68.101 0.172 68.45
8-60 1 5.2 0.11 1.00 1 41 68.861 0.307 69.658
8-60 2 35.02 35.02 0.70 1 41 356.696 0.752 358.079
8-60 3 168.3 168.3 0.82 1 41 576.101 0.102 576.921
8-60 4 305.11 305.11 0.71 1 41 451.061 0.219 452.049
8-60 5 382.29 382.29 0.57 1 41 421.704 0.143 422.669
8-80 1 0.21 0 0.00 1 51 66.032 -1 67.061
8-80 2 7.55 7.55 0.61 1 41 670.158 2.991 674.716
8-80 3 127.96 127.96 0.97 3 41 1804.188 0 1806.405
8-80 4 389.52 389.52 0.93 1 41 1609.171 0.156 1611.504
8-80 5 555.05 555.05 0.74 1 41 1624.479 0.222 1627.63
10-70 1 0.28 0.04 1.00 1 41 79.077 0.198 81.289
10-70 2 27.94 27.94 0.89 1 41 722.707 0.592 724.845
10-70 3 174.24 174.24 0.81 1 41 807.636 0.333 809.566
10-70 4 350.79 350.79 0.77 1 41 740.424 0.717 742.801
10-70 5 433.83 433.83 0.64 1 41 715.813 0.312 717.77
10-100 1 0.39 0.16 1.00 1 41 161.042 0.341 165.319
10-100 2 7.62 7.62 0.99 1 41 393.964 10.389 409.413
10-100 3 119.85 119.85 1.02 3 41 1797.56 0 1803.608

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached

51 - Optimal solution found by CG.
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Table C.6 – from previous page
Value Status Time (sec.)

M-J q ZINITIAL ZINC gap(%) LR SearchCol CG Search Total

10-100 4 558.28 558.28 1.01 3 41 1817.869 0 1827.12
10-100 5 756.97 756.97 1.01 3 41 1798.896 0 1807.153

Status LR: 1 - Optimal LR value (all artificials=0) 3 - Unbounded.
Status SearchCol: 41 - Maximum number of iterations reached

51 - Optimal solution found by CG.

End of Table C.6

Table C.7: Results using VNS1 metaheuristic search

HigherWeightsCG Incumbent
M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
2-20-1 0.23 0 32.183 0.23 0.003 50.939
2-20-2 0.82 0 15.241 0.82 0.002 38.97
2-20-3 79.64 0 19.812 79.64 0.02 55.461
2-20-4 142.52 0 15.896 142.52 0.002 33.892
2-20-5 219.39 0.002 14.014 219.39 0.001 28.877
2-30-1 1.04 0.015 312.006 1.04 0.009 383.139
2-30-2 5.35 0.008 80.664 12.72 0.006 114.397
2-30-3 276.61 0 89.669 276.61 0.004 126.541
2-30-4 491.62 0.004 58.702 491.62 0.003 81.975
2-30-5 652.06 0 46.209 652.06 0.002 64.829
2-40-1 1.25 0.016 936.443 1.25 0.035 1039.832
2-40-2 6.36 0.016 339.63 6.36 0.019 416.644
2-40-3 324.31 0.016 330.109 324.31 0.009 387.338
2-40-4 706.34 0.008 273.89 706.34 0.007 315.031
2-40-5 1088.14 0.006 228.476 1088.14 0.006 262.176
2-50-1 1.16 0 1802.816 1.16 0 1804.181
2-50-2 2.89 0.02 932.004 2.89 0.018 1024.731
2-50-3 449.1 0.017 916.088 449.1 0.014 1001.054
2-50-4 1059.04 0.011 762.119 1059.04 0.01 827.645
2-50-5 1511.43 0.01 669.143 1511.43 0.009 716.648
4-30-1 0.25 0.011 22.46 0.29 0.004 32.828
4-30-2 28.06 0.007 41.791 28.06 0.005 62.294
4-30-3 145.66 0.005 44.473 145.66 0.005 65.068
4-30-4 208.03 0.004 33.722 208.03 0.004 49.421
4-30-5 269.31 0.005 33.957 269.31 0.004 49.481
4-40-1 * 0.07 0 59.554 * 0.07 0 72.3
4-40-2 37.99 0.019 147.252 37.99 0.013 180.191
4-40-3 141.25 0.01 173.21 141.25 0.009 208.7

* Optimal solution found by CG.
Continues to next page
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Table C.7 – from previous page
HigherWeightsCG Incumbent

M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
4-40-4 267.77 0.009 136.355 267.77 0.008 161.769
4-40-5 372.49 0.007 117.265 372.49 0.007 139.788
4-50-1 0.47 0.019 187.408 0.47 0.016 212.208
4-50-2 3.05 0.019 359.236 3.05 0.014 396.605
4-50-3 69.03 0.015 436.346 69.03 0.014 480.728
4-50-4 249.78 0.011 325.747 249.78 0.01 359.451
4-50-5 450.45 0.011 327.799 450.45 0.009 361.269
4-60-1 4.49 0.035 426.389 4.49 0.029 455.516
4-60-2 35.11 0.044 966.264 35.11 0.039 1023.652
4-60-3 250.49 0.027 1073.235 250.49 0.242 1142.633
4-60-4 639.34 0.024 872.007 639.34 0.019 937.653
4-60-5 838.14 0.016 741.938 838.14 0.015 801.415
6-40-1 * 0 0 7.983 * 0 0 11.788
6-40-2 2.83 0.017 41.64 2.83 0.009 57.72
6-40-3 77.77 0.014 120.936 77.77 0.009 153.481
6-40-4 153.92 0.008 89.761 153.92 0.008 111.143
6-40-5 214.2 0.008 92.559 214.2 0.007 113.98
6-50-1 0.18 0.011 41.881 0.41 0.008 49.05
6-50-2 18.45 0.027 191.099 18.45 0.019 217.363
6-50-3 170.91 0.033 344.585 170.91 0.015 388.61
6-50-4 293.36 0.015 263.036 293.36 0.01 294.134
6-50-5 406.14 0.015 255.964 406.14 0.012 283.582
6-70-1 0.11 0.045 101.929 0.47 0.016 113.3
6-70-2 21.52 0.074 1070.914 21.52 0.036 1118.034
6-70-3 146.52 0.031 1460.501 146.52 0.406 1538.874
6-70-4 403.22 0.024 1124.38 403.22 0.586 1206.135
6-70-5 582.24 0.023 936.86 582.24 0.024 996.526
8-40-1 * 0 0 5.305 * 0 0 8.513
8-40-2 16.13 1736.581 1800.004 16.13 1721.206 1800.004
8-40-3 83.22 1705.463 1800.003 83.22 1683.54 1800.035
8-40-4 120.9 1728.208 1800.003 120.9 1708.89 1800.004
8-40-5 162.44 1732.044 1800.004 162.44 1713.368 1800.003
8-60-1 0.11 1730.617 1800.006 0.11 1722.517 1800.007
8-60-2 35.02 1441.085 1800.003 35.02 1405.723 1800.004
8-60-3 168.3 1235.278 1800.005 168.3 1193.931 1800.003
8-60-4 305.11 1345.919 1800.005 305.11 1310.897 1800.004
8-60-5 382.29 1376.747 1800.004 382.29 1344.984 1800.005
8-80-1 * 0 0 68.035 * 0 0 70.768
8-80-2 7.55 1135.625 1800.004 7.55 1108.068 1800.006
8-80-3 127.96 0 1810.226 127.96 0 1812.187
8-80-4 389.52 173.014 1800.003 389.52 122.704 1800.006
8-80-5 555.05 213.985 1800.004 555.05 198.528 1800.005
10-70-1 0.28 0.046 81.956 0.28 0.02 85.166

* Optimal solution found by CG.
Continues to next page
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Table C.7 – from previous page
HigherWeightsCG Incumbent

M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
10-70-2 27.94 0.107 731.165 27.94 0.054 767.305
10-70-3 174.24 0.078 816.151 174.24 0.052 860.373
10-70-4 350.79 0.061 748.891 350.79 0.04 789.176
10-70-5 433.83 0.081 718.651 433.83 0.041 759.167
10-100-1 0.39 0.04 156.408 0.39 0.033 156.903
10-100-2 7.62 0.144 392.344 7.62 0.051 400.706
10-100-3 119.85 0 1836.191 119.85 0 1832.511
10-100-4 558.28 0 1809.232 558.28 0 1800.355
10-100-5 756.97 0 1807.435 756.97 0 1816.690

* Optimal solution found by CG.
End of Table C.7

Table C.8: Results using VNS12 metaheuristic search

HigherWeightsCG Incumbent
M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
2-20-1 0.19 0.15 33.786 0.19 0.152 55.601
2-20-2 0.82 0.101 15.916 0.82 0.093 42.212
2-20-3 79.64 0.144 21.323 79.64 0.132 44.742
2-20-4 142.52 0.086 16.956 142.52 0.089 35.478
2-20-5 219.39 0.062 14.486 219.39 0.103 29.665
2-30-1 0.8 2.215 325.718 0.8 2.298 395.003
2-30-2 5.35 0.932 83.983 5.35 0.913 115.756
2-30-3 276.61 0.483 94.026 276.61 0.444 126.015
2-30-4 491.62 0.205 60.476 491.62 0.172 82.167
2-30-5 652.06 0.14 47.797 652.06 0.119 64.855
2-40-1 0.77 2.537 962.56 0.77 2.526 1044.945
2-40-2 6.36 2.83 349.587 6.36 2.814 408.815
2-40-3 324.31 1.364 339.959 324.31 1.222 386.763
2-40-4 706.34 0.823 279.947 706.34 0.702 315.992
2-40-5 1088.14 0.501 233.249 1088.14 0.453 263.026
2-50-1 1.16 0 1809.198 1.16 0 1800.128
2-50-2 2.89 4.46 936.664 2.89 4.023 1003.064
2-50-3 449.1 2.905 922.753 449.1 2.702 1006.311
2-50-4 1059.04 1.604 764.607 1059.04 1.497 822.128
2-50-5 1511.43 1.188 671.475 1511.43 1.087 712.448
4-30-1 0.11 0.237 22.893 0.14 0.405 33.941
4-30-2 28.06 0.496 42.467 28.06 0.474 62.815
4-30-3 145.66 0.401 45.223 145.66 0.345 65.456
4-30-4 208.03 0.228 34.296 208.03 0.19 49.749
4-30-5 269.31 0.227 34.434 269.31 0.202 49.667
4-40-1 * 0.07 0 59.786 0.07 0 71.907
4-40-2 37.99 1.992 149.57 37.99 1.519 180.606

* Optimal solution found by CG.
Continues to next page
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Table C.8 – from previous page
HigherWeightsCG Incumbent

M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
4-40-3 141.25 1.291 175.009 141.25 1.171 208.257
4-40-4 267.77 0.696 137.034 267.77 0.645 162.354
4-40-5 372.49 0.556 118.399 372.49 0.495 138.94
4-50-1 0.15 1.729 189.967 0.47 0.992 213.509
4-50-2 3.05 2.605 361.431 3.05 2.371 408.198
4-50-3 69.03 2.765 439.575 69.03 2.303 482.444
4-50-4 249.78 1.344 328.931 249.78 1.233 359.084
4-50-5 450.45 1.342 330.125 450.45 1.224 359.163
4-60-1 0.31 3.971 432.161 0.33 4.756 461.768
4-60-2 35.11 8.397 973.747 35.11 6.476 1050.655
4-60-3 250.49 5.952 1080.873 250.49 5.32 1170.42
4-60-4 639.34 3.786 878.575 639.34 3.42 922.536
4-60-5 838.14 2.357 745.271 838.14 2.144 780.222
6-40-1 * 0 0 7.929 0 0 11.399
6-40-2 2.83 0.988 42.977 2.83 0.499 54.976
6-40-3 77.77 1.273 122.658 77.77 1.126 153.318
6-40-4 153.92 0.643 90.793 153.92 0.57 110.921
6-40-5 214.2 0.624 93.189 214.2 0.567 112.93
6-50-1 0.18 0.326 42.036 0.18 0.594 48.975
6-50-2 18.45 3.661 194.835 18.45 1.833 215.776
6-50-3 170.91 3.367 347.889 170.91 2.436 390.122
6-50-4 293.36 1.369 263.863 293.36 1.264 292.421
6-50-5 406.14 1.6 255.337 406.14 1.336 284.015
6-70-1 0.47 1.282 103.259 0.47 1.001 112.427
6-70-2 21.52 12.627 1081.849 21.52 6.439 1113.695
6-70-3 146.52 7.982 1470.448 146.52 7.555 1520.516
6-70-4 403.22 4.636 1156.85 403.22 4.317 1181.672
6-70-5 582.24 3.052 949.802 582.24 2.773 994.988
8-40-1 * 0 0 5.421 0 0 8.078
8-40-2 16.13 1735.693 1800.03 16.13 1720.441 79.56
8-40-3 83.22 1705.519 1800.213 83.22 1680.751 119.261
8-40-4 120.9 1728.207 1800.054 120.9 1710.268 89.828
8-40-5 162.44 1731.846 1800.065 162.44 1713.271 86.788
8-60-1 0.11 1730.303 1800.006 0.11 1718.893 1800.032
8-60-2 35.02 1436.814 1800.031 35.02 1400.09 400.108
8-60-3 168.3 1230.275 1800.306 168.3 1188.289 611.985
8-60-4 305.11 1343.572 1800.078 305.11 1309.972 490.026
8-60-5 382.29 1376.59 1800.209 382.29 1337.516 462.631
8-80-1 * 0 0 67.725 0 0 82.907
8-80-2 7.55 1134.61 1800.239 7.55 1114.572 685.541
8-80-3 127.96 0 1812.713 127.96 0 1826.428
8-80-4 389.52 172.74 1800.37 389.52 95.387 1704.574
8-80-5 555.05 235.959 1800.295 555.05 109.371 1690.53

* Optimal solution found by CG.
Continues to next page
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Table C.8 – from previous page
HigherWeightsCG Incumbent

M-J-q ZINC Search Time (sec.) Total Time (sec.) ZINC Search Time (sec.) Total Time (sec.)
10-70-1 0.28 1.469 81.088 0.28 0.357 113.715
10-70-2 27.94 8.895 740.963 27.94 5.024 763.415
10-70-3 174.24 14.73 834.475 174.24 6.536 850.976
10-70-4 350.79 8.02 758.389 350.79 7.16 789.65
10-70-5 433.83 5.903 728.761 433.83 5.919 760.881
10-100-1 0.16 1.377 160.444 0.16 1.186 204.21
10-100-2 7.62 9.725 405.4 7.62 5.17 421.21
10-100-3 119.85 0 1804.571 119.85 0 1813.039
10-100-4 558.28 0 1814.835 558.28 0 1819.538
10-100-5 756.97 0 1811.977 756.97 0 1821.268

* Optimal solution found by CG.
End of Table C.8

Table C.9: Results using Perturbator Comb Prob

M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
2-20-1 0.19 2 32.901 154.946 42
2-20-1 0.19 2 34.277 40.494 42
2-20-1 0.18 3 1274.719 1426.952 42
2-20-2 0.82 2 16.198 84.745 42
2-20-2 0.82 2 16.965 121.38 42
2-20-2 0.82 2 67.417 593.48 42
2-20-3 79.64 2 21.567 191.279 42
2-20-3 79.64 2 22.411 161.334 42
2-20-3 79.64 2 83.265 743.334 42
2-20-4 142.52 2 18.67 315.508 42
2-20-4 142.52 2 19.311 383.016 42
2-20-4 142.52 2 64.662 826.914 42
2-20-5 219.39 2 17.584 303.092 42
2-20-5 219.39 2 17.928 270.368 42
2-20-5 219.39 2 57.785 1164.61 42
2-30-1 0.8 2 333.515 1803.365 42
2-30-1 0.8 2 333.888 1815.836 42
2-30-1 0.8 2 477.132 1815.113 42
2-30-2 5.35 2 92.257 1811.928 42
2-30-2 5.35 2 91.851 1806.316 42
2-30-2 5.35 2 182.433 1805.571 42
2-30-3 276.61 2 107.189 1802.256 42
2-30-3 276.61 2 107.543 1802.692 42
2-30-3 276.61 2 201.218 1802.781 42
2-30-4 491.62 2 72.354 1802.945 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
2-30-4 491.62 2 72.801 1801.739 42
2-30-4 491.62 2 134.559 1802.367 42
2-30-5 652.06 2 59.674 1802.656 42
2-30-5 652.06 2 59.791 1802.069 42
2-30-5 652.06 2 107.931 1802.276 42
2-40-1 0.77 2 1006.173 1844.496 42
2-40-1 0.77 2 1017.973 1832.97 42
2-40-1 0.77 2 1269.272 1817.784 42
2-40-2 6.36 2 389.995 1804.495 42
2-40-2 6.36 2 397.761 1803.837 42
2-40-2 6.36 2 537.903 1804.951 42
2-40-3 324.31 2 382.934 1803.963 42
2-40-3 324.31 2 382.044 1806.284 42
2-40-3 324.31 2 516.157 1805.803 42
2-40-4 706.34 2 314.575 1804.809 42
2-40-4 706.34 2 328.354 1804.99 42
2-40-4 706.34 2 417.172 1804.988 42
2-40-5 1088.14 2 263.383 1804.941 42
2-40-5 1088.14 2 264.083 1803.724 42
2-40-5 1088.14 2 346.003 1805.454 42
2-50-1 1.16 2 1804.986 1805.061 42
2-50-1 1.16 2 1803.314 1803.448 42
2-50-1 1.16 2 1806.331 1806.562 42
2-50-2 2.89 2 1007.883 1804.522 42
2-50-2 2.89 2 1008.422 1805.244 42
2-50-2 2.89 2 1006.134 1804.132 42
2-50-3 449.1 2 991.431 1805.632 42
2-50-3 449.1 2 989.613 1804.134 42
2-50-3 449.1 2 993.134 1806.134 42
2-50-4 1059.04 2 820.849 1804.801 42
2-50-4 1059.04 2 819.914 1804.132 42
2-50-4 1059.04 2 820.013 1803.53 42
2-50-5 1511.43 2 722.645 1805.443 42
2-50-5 1511.43 2 722.244 1804.511 42
2-50-5 1511.43 2 724.615 1806.051 42
4-30-1 0.11 2 34.838 42.217 42
4-30-1 0.11 2 33.52 46.492 42
4-30-1 0.11 2 60.41 365.669 42
4-30-2 28.03 3 156.649 271.375 42
4-30-2 28.06 2 62.021 109.384 42
4-30-2 26.03 4 550.491 924.576 42
4-30-3 145.66 2 69.519 329.978 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
4-30-3 145.66 2 65.268 143.795 42
4-30-3 145.66 2 120.981 321.007 42
4-30-4 208.03 2 53.167 215.131 42
4-30-4 208.03 2 49.534 180.769 42
4-30-4 208.03 2 91.82 444.899 42
4-30-5 269.31 2 53.787 221.935 42
4-30-5 269.31 2 49.645 272.121 42
4-30-5 269.31 2 91.842 510.361 42
4-40-1 0.07 1 75.836 75.84 51
4-40-1 0.07 1 75.426 75.43 51
4-40-1 0.07 1 106.95 106.954 51
4-40-2 37.97 3 1185.918 1823.695 42
4-40-2 37.97 3 1381.226 1811.099 42
4-40-2 37.99 2 271.259 1811.187 42
4-40-3 139.25 3 1650.011 1803.572 42
4-40-3 141.25 2 213.179 765.551 42
4-40-3 141.25 2 308.177 1152.819 42
4-40-4 260.66 3 1406.868 1805.605 42
4-40-4 267.77 2 165.939 1319.236 42
4-40-4 267.77 2 239.345 1808.047 42
4-40-5 372.49 2 152.104 1301.319 42
4-40-5 372.49 2 144.283 1215.41 42
4-40-5 372.49 2 207.944 1561.745 42
4-50-1 0.15 2 225.681 1807.916 42
4-50-1 0.15 2 213.042 275.712 42
4-50-1 0.15 2 275.255 400.49 42
4-50-2 3.05 2 426.869 1809.113 42
4-50-2 2.75 4 1800.811 1806.18 42
4-50-2 3.02 3 1804.433 1816.051 42
4-50-3 69.03 2 519.45 1806.039 42
4-50-3 69.03 2 493.958 1810.112 42
4-50-3 69.03 2 610.4 1816.967 42
4-50-4 249.78 2 383.963 1807.799 42
4-50-4 249.78 2 371.695 1805.108 42
4-50-4 249.78 2 459.987 1805.985 42
4-50-5 450.45 2 387.28 1810.289 42
4-50-5 450.45 2 377.167 1808.364 42
4-50-5 450.45 2 482.967 1809.5 42
4-60-1 0.31 2 484.48 1814.034 42
4-60-1 0.31 2 491.04 1804.441 42
4-60-1 0.31 2 471.04 1813.543 42
4-60-2 34.85 3 1802.544 1824.363 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
4-60-2 35.11 2 1025.32 1819.431 42
4-60-2 35.11 2 1013.87 1809.413 42
4-60-3 250.49 2 1215.761 1828.098 42
4-60-3 250.49 2 1194.031 1823.012 42
4-60-3 250.49 2 1121.011 1812.726 42
4-60-4 639.34 2 967.283 1808.024 42
4-60-4 639.34 2 945.037 1809.562 42
4-60-4 639.34 2 935.944 1804.701 42
4-60-5 838.14 2 820.903 1814.257 42
4-60-5 838.14 2 812.003 1819.807 42
4-60-5 838.14 2 809.993 1809.631 42
6-40-1 0 1 13.878 13.882 51
6-40-1 0 1 11.927 11.93 51
6-40-1 0 1 21.788 21.791 51
6-40-2 0.16 4 109.338 123.764 42
6-40-2 0.16 3 71.911 446.434 42
6-40-2 0.32 3 361.894 426.513 42
6-40-3 76.81 3 308.595 381.306 42
6-40-3 77.77 2 160.922 282.243 42
6-40-3 77.77 2 239.079 388.83 42
6-40-4 151.92 3 293.242 629.423 42
6-40-4 153.92 2 119.341 330.34 42
6-40-4 153.92 2 174.447 619.535 42
6-40-5 214.2 2 134.256 306.608 42
6-40-5 214.2 2 122.722 276.925 42
6-40-5 214.2 2 180.014 477.072 42
6-50-1 0.18 2 55.127 127.622 42
6-50-1 0.14 4 1779.439 1808.461 42
6-50-1 0.14 4 1217.533 1369.601 42
6-50-2 12.44 3 1370.013 1810.719 42
6-50-2 8.75 5 1315.668 1752.166 42
6-50-2 18.45 2 176.212 870.439 42
6-50-3 170.91 2 427.404 979.289 42
6-50-3 170.91 2 407.793 1159.784 42
6-50-3 169.96 3 1216.473 1807.986 42
6-50-4 292.37 3 950.079 1579.845 42
6-50-4 293.36 2 310.517 1094.26 42
6-50-4 293.36 2 247.368 927.784 42
6-50-5 406.14 2 315.549 1650.063 42
6-50-5 406.14 2 300.971 1054.217 42
6-50-5 406.14 2 239.883 859.946 42
6-70-1 0.11 2 135.437 392.564 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
6-70-1 0.11 2 125.311 384.957 42
6-70-1 0.11 2 117.144 380.389 42
6-70-2 21.52 2 1177.246 1828.129 42
6-70-2 21.52 2 1150.145 1823.547 42
6-70-2 21.52 2 1141.415 1818.311 42
6-70-3 146.52 2 1587.793 1822.837 42
6-70-3 146.52 2 1575.229 1813.052 42
6-70-3 146.52 2 1571.018 1810.589 42
6-70-4 403.22 2 1268.029 1818.445 42
6-70-4 403.22 2 1245.414 1818.894 42
6-70-4 403.22 2 1203.103 1807.971 42
6-70-5 582.24 2 1033.403 1820.148 42
6-70-5 582.24 2 1020.874 1811.376 42
6-70-5 582.24 2 1004.857 1806.246 42
8-40-1 0 1 10.27 10.273 51
8-40-1 0 1 8.548 8.551 51
8-40-1 0 1 4.474 4.477 51
8-40-2 5.1 4 261.611 295.9 42
8-40-2 8.04 5 403.75 449.734 42
8-40-2 4.06 6 664.527 672.297 42
8-40-3 53.52 6 797.785 882.386 42
8-40-3 53.58 7 768.582 888.832 42
8-40-3 53.53 5 323.464 393.008 42
8-40-4 120.9 2 109.643 225.506 42
8-40-4 120.9 2 100.583 218.303 42
8-40-4 116.97 3 177.269 259.224 42
8-40-5 123.75 10 1386.058 1520.535 42
8-40-5 134.64 5 571.772 764.278 42
8-40-5 162.44 2 61.088 131.634 42
8-60-1 0.11 2 90.206 185.858 42
8-60-1 0.11 2 83.429 134.15 42
8-60-1 0.01 3 223.26 230.308 42
8-60-2 35.02 2 427.798 597.19 42
8-60-2 34.92 3 884.539 1834.603 42
8-60-2 35.02 2 347.793 1823.448 42
8-60-3 167.31 3 1803.589 1814.426 42
8-60-3 168.3 2 633.972 1816.618 42
8-60-3 168.3 2 550.118 1543.773 42
8-60-4 305.11 2 534.837 1822.741 42
8-60-4 305.11 2 515.762 1830.438 42
8-60-4 305.11 2 442.751 1762.304 42
8-60-5 379.32 3 1542.8 1816.277 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
8-60-5 382.29 2 486.738 1667.209 42
8-60-5 382.29 2 414.006 1575.414 42
8-80-1 0 1 75.889 75.892 51
8-80-1 0 1 74.244 74.250 51
8-80-1 0 1 75.246 75.254 51
8-80-2 7.55 2 719.437 1509.499 42
8-80-2 7.55 2 708.132 1501.931 42
8-80-2 7.55 2 713.256 1504.875 42
8-80-3 127.96 2 1810.549 1810.809 42
8-80-3 127.96 2 1810.549 1810.549 42
8-80-3 127.96 2 1810.549 1810.549 42
8-80-4 389.52 2 1749.469 1836.931 42
8-80-4 389.52 2 1720.455 1823.039 42
8-80-4 389.52 2 1705.104 1822.242 42
8-80-5 555.05 2 1702.991 1823.737 42
8-80-5 555.05 2 1699.410 1815.126 42
8-80-5 555.05 2 1687.313 1809.143 42
10-70-1 0.04 2 92.44 106.866 42
10-70-1 0.04 2 90.114 104.461 42
10-70-1 0.04 2 77.614 90.266 42
10-70-2 27.94 2 836.715 1818.46 42
10-70-2 27.94 2 794.359 1494.546 42
10-70-2 27.94 2 716.736 1826.394 42
10-70-3 174.24 2 920.666 1834.958 42
10-70-3 174.24 2 897.385 1822.247 42
10-70-3 174.24 2 803.817 1832.976 42
10-70-4 346.83 3 1730.931 1821.775 42
10-70-4 331.98 3 1801.478 1816.762 42
10-70-4 350.79 2 735.514 1815.702 42
10-70-5 433.83 2 837.458 1826.147 42
10-70-5 433.83 2 790.932 1821.153 42
10-70-5 433.83 2 709.562 1594.35 42
10-100-1 0.16 2 230.158 1847.911 42
10-100-1 0.16 2 220.121 1840.144 42
10-100-1 0.16 2 222.431 1838.133 42
10-100-2 7.62 2 376.956 1862.864 42
10-100-2 7.62 2 401.114 1860.131 42
10-100-2 7.62 2 378.345 1844.674 42
10-100-3 119.85 2 1833.886 1833.898 42
10-100-3 119.85 2 1820.091 1820.221 42
10-100-3 119.85 2 1821.01 1821.049 42
10-100-4 558.28 2 1806.076 1806.09 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.9 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status

10-100-4 558.28 2 1805.529 1805.54 42
10-100-4 558.28 2 1810.129 1810.14 42
10-100-5 756.97 2 1834.799 1834.813 42
10-100-5 756.97 2 1834.799 1834.813 42
10-100-5 756.97 2 1834.799 1834.813 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
End of Table C.9

Table C.10: Results using Perturbator Comb Type0

M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
2-20-1 0.18 3 539.595 831.977 42
2-20-2 0.82 2 17.496 163.077 42
2-20-3 79.64 2 23.561 133.3 42
2-20-4 142.52 2 20.135 76.899 42
2-20-5 219.39 2 16.852 95.237 42
2-30-1 0.8 2 330.352 1813.771 42
2-30-2 5.35 2 90.251 1824.911 42
2-30-3 276.61 2 104.865 1336.065 42
2-30-4 491.62 2 69.954 305.648 42
2-30-5 652.06 2 55.753 231.346 42
2-40-1 0.77 2 981.711 1836.246 42
2-40-2 6.36 2 372.182 1803.511 42
2-40-3 324.31 2 365.695 1804.335 42
2-40-4 706.34 2 300.862 1036.238 42
2-40-5 1088.14 2 251.565 617.802 42
2-50-1 1.16 2 1800.214 1800.27 42
2-50-2 2.89 2 975.266 1808.101 42
2-50-3 449.1 2 960.702 1806.297 42
2-50-4 1059.04 2 797.575 1808.49 42
2-50-5 1511.43 2 701.305 1806.716 42
4-30-1 0.06 3 168.479 181.709 42
4-30-2 23.37 3 350.577 581.693 42
4-30-3 145.66 2 61.798 218.427 42
4-30-4 208.03 2 47.015 128.742 42
4-30-5 269.31 2 47.324 127.787 42
4-40-1 0.07 1 70.493 70.497 51
4-40-2 37.99 2 175.824 874.969 42
4-40-3 141.25 2 205.227 830.083 42
4-40-4 267.77 2 160.194 560.174 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.10 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
4-40-5 372.49 2 138.495 514.517 42
4-50-1 0.15 2 207.097 1809.309 42
4-50-2 3.05 2 396.489 1817.567 42
4-50-3 69.03 2 484.318 1808.409 42
4-50-4 249.78 2 364.943 1399.466 42
4-50-5 450.45 2 374.384 1146.679 42
4-60-1 0.31 2 462.954 1809.31 42
4-60-2 35.11 2 1033.522 1837.144 42
4-60-3 250.49 2 1147.223 1807.157 42
4-60-4 639.34 2 936.097 1811.04 42
4-60-5 838.14 2 807.328 1814.779 42
6-40-1 0 1 13.004 13.007 51
6-40-2 0.07 4 529.893 761.536 42
6-40-3 77.77 2 158.931 418.121 42
6-40-4 153.92 2 117.854 334.393 42
6-40-5 214.2 2 121.225 301.581 42
6-50-1 0.1 5 793.816 910.873 42
6-50-2 18.45 2 226.682 1146.366 42
6-50-3 170.91 2 400.76 1338.275 42
6-50-4 293.36 2 308.765 715.558 42
6-50-5 406.14 2 297.096 659.858 42
6-70-1 0.11 2 116.098 1820.248 42
6-70-2 21.52 2 1138.253 1831.154 42
6-70-3 146.52 2 1571.129 1823.46 42
6-70-4 403.22 2 1200.107 1824.112 42
6-70-5 582.24 2 1008.142 1813.942 42
8-40-1 0 1 8.719 8.721 51
8-40-2 6 4 348.702 461.91 42
8-40-3 83.22 2 128.868 367.78 42
8-40-4 120.9 2 100.419 205.125 42
8-40-5 162.44 2 96.97 204.234 42
8-60-1 0 2 428.312 428.374 51
8-60-2 35.02 2 410.255 1822.364 42
8-60-3 168.3 2 647.766 1813.392 42
8-60-4 305.11 2 513.014 1279.462 42
8-60-5 382.29 2 476.405 990.731 42
8-80-1 0 1 73.951 73.952 51
8-80-2 7.55 2 703.88 1872.039 42
8-80-3 127.96 2 1808.333 1808.634 42
8-80-4 389.52 2 1710.197 1824.621 42
8-80-5 555.05 2 1685.337 1836.973 42
10-70-1 0 2 162.905 162.92 51

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
Continues to next page
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Table C.10 – from previous page
M-J-q ZINC Iteration(s) TimeINC (sec.) TimeT OT AL (sec.) Status
10-70-2 27.94 2 795.65 1816.828 42
10-70-3 174.24 2 890.937 1834.9 42
10-70-4 350.79 2 820.885 1829.836 42
10-70-5 433.83 2 790.184 1650.888 42
10-100-1 0 3 530.68 569.693 42
10-100-2 7.62 2 409.84 1844.499 42
10-100-3 119.85 2 1839.429 1841.347 42
10-100-4 558.28 2 1809.489 1809.518 42
10-100-5 756.97 2 1803.233 1803.247 42

Status:
42 - Maximum number of iterations without improvement reached.

51 - Optimal solution found by CG.
End of Table C.10
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