
7.10

MODELLING IS FOR REASONING

Luís Soares Barbosa1 and Maria Helena Martinho2

Minho University, Braga, Portugal

Abstract−In a broad sense, computing is an area of knowledge from which a popular and
effective technology emerged long before a solid, specific, scientific methodology, let alone
formal foundations, had been put forward. This might explain some of the weaknesses in the
software industry, on the one hand, as well as an excessively technology-oriented view which
dominates computer science training at pre-university and even undergraduate teaching, on
the other. Modelling, understood as the ability to choose the right abstractions for a problem
domain, is consensually recognised as essential for the development of true engineering skills
in this area, as it is in all other engineering disciplines. But, how can the basic problem-
solving strategy, one gets used to from school physics: understand the problem, build a
mathematical model, reason within the model, calculate a solution, be taken (and taught) as
the standard way of dealing with software design problems? This paper addresses this
question, illustrating and discussing the interplay between modelling and reasoning.

1. INTRODUCTION

The use of computer-based systems to support mathematical modelling is a
recurring theme in the practice and research of most of our readers. On the one hand,
computers have radically expanded the range of problem-solving and decision-
making situations that can be effectively tackled. On the other, they play a
fundamental role in training modelling skills and promoting associated competences.
In this paper, however, we take the dual viewpoint: we will not be concerned with
computers as modelling aids, but instead with the use of mathematics to model and
reason about computer-based systems. Maybe such a shift of concern deserves some
explanation.

The exponential increase of both the availability of processor power and the
complexity of the problems computers are requested to solve, is unprecedented in
any other engineering domain. Even so, software remains hard to develop, it is often
unreliable ('faulty goods delivered over budget and behind schedule'), difficult to re-
use and excessively costly to modify and maintain. Traditional design methods
emphasising diagrammatic or textual descriptions, with an informal semantics, have
created the illusion that software development was little more than a balanced
compromise of intuition and craft.

As a result, conceptual questions are often relegated to a secondary level of
attention, and the mastering of particular, often ephemeral, technologies appears as a
decisive requirement, for example, on recruitment policies. Often, in industry, the
whole software production is totally biased to a specific technology or programming

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55627179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Barbosa and Martinho 481

system, encircling, as a long term effect, the company's culture in quite strict limits.
In a broad sense computing is an area of knowledge from which a popular and
effective technology emerged long before a solid, specific, scientific methodology,
let alone formal foundations, have been put forward.

This situation has to be contrasted, however, with the increasing demand for
quality certified software, namely in safety-critical systems, which requires
development approaches in which a system would be unacceptable unless
accompanied by a guarantee that it respects a rigorously specified behaviour. This
is the point where, from our perspective, mathematics comes into the picture. Or,
more precisely, where software development is framed as a mathematical modelling
activity.

In fact we are beginning to collect the fruits of more than four decades of
intensive, even if sometimes neglected, basic research on the foundations of
computation and programming semantics, upon which a true engineering discipline
for software design can be based. Such research helped, in particular, to shed light
on the underlying mathematical structures and reasoning principles, and to establish
the connection between mathematics and computing at a foundation, rather than
application (as, for example, in numerical analysis), level.

In such a context, the starting point of this paper is that to become a mature
engineering discipline, software design has to adopt the basic problem-solving
strategy one gets used to from school physics:

• understand the problem,
• build a mathematical model of it,
• reason in such a model,
• upgrade the model whenever necessary,
• calculate a solution, which, in this domain, means a program.

Moreover we would like to underline two concepts in this strategy:
• Modelling, understood as the ability to choose the right abstractions for a

problem domain;
• Calculation, in the sense that such abstractions should be expressed in a

mathematically rich framework to enable rigorous reasoning both to
establish models’ properties and to transform models towards effective
implementations.

The context for this research was the assessment of two concrete educational
experiments specifically designed to introduce modelling as a central issue in the
computer science curriculum. They were conducted at both undergraduate and
professional, post-graduation, training levels.

Some lessons learnt from these experiments are reported in §4, which concludes
and raises some topics for further research. Before that, §2 and §3 discuss,
respectively, the role of modelling and calculation in software design.

2. SOFTWARE DESIGN AS A MODELLING ACTIVITY

Software design is concerned with the engineering of computer-based solutions
to real-world problems in which information, its acquisition, flow and
transformation, plays a key role. The starting point is often a collection of more or
less structured requirements, usually stated in plain English. Consider for example

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Modelling is for Reasoning 482

the following fragment of a statement of requirements placed by a mobile phone
manufacturer:

For each row of calls stored in the mobile phone (for
example, numbers dialled, SMS messages, lost calls, etc.)
the store operation should work in a way such that (a) the
more recently a call is made the more accessible it is; (b)
no number appears twice in a list; (c) only the last 10
entries in each list are stored.

 In the analysis of an information system a fundamental distinction is drawn
between entities, which represent information sources, and transformations upon
them. A similar distinction appears in the definition of algebras (as collections of
sets and functions) which makes them interesting models for this sort of systems. An
elementary grammatical analysis of the requirements above provides the basic
ingredients:

• Nouns (such as “call” or “raw of calls”) lead to the identification of the
fundamental information structures, or data domains, which, at a latter
stage, will originate what is known as the program data types.

• Verbs (such as store) identify the services to be made available from the
system. They denote processes which transform information, and therefore
can be modelled by functions or, more generally, by relations.

• Integrated sentences (such as requirements (a) to (c)) identify properties or
constraints, corresponding to predicates which tune the model to its
specific purpose.

 Software designs can be naturally expressed in the centenary notation of set
theory. Notions such as set, sequence, Cartesian product, function or relation have
the potential to provide expressive, but rigorous, descriptions of a design. For
several years in their past education students (and professionals) have become
familiar with this sort of notation as a tool to think with. Our courses in software
design intend to build on such a background.
 In the example considered here, a “row of calls” can be modelled as a sequence
of whatever a “call” is. Registering a new call in the row amounts then to place the
former in front of the latter, a well-known operation in the algebra of sequences that
we denote by the: (read append) combinator. This leads to elementary model shown
in Figure 1.

CallRow = Call*

store :Call × CallRow ⎯ → ⎯ CallRow
store (c, l) = c : l

Figure 1. An elementary model.

 Note that data domain Call is left unspecified: the initial requirements do not
place any restriction on this structure, so, at the level of abstraction of this model, it
is considered a primitive notion, that is, an unstructured element in the universe of
discourse. Are we done? Is this model acceptable? Let us address these questions
going through the problem constraints already identified:

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Barbosa and Martinho 483

• Constraint (a) is guaranteed by construction, that is, it is a direct
consequence of the definition of service store.

• Constraint (b), on the other hand, can be stated as equation

lengthelems# =• (1)

that is, the number of calls in a row (as measured by function length) is
equal to the cardinal () of the set of its elements (as computed by# elems).
Note that regarding a sequence as a set eliminates all duplicated
occurrences of its elements.

• Finally, constraint (c) imposes a limit on the length of the sequence used to
model a row of calls. It can be documented by the inequality

10length≤ (2)

Therefore, to meet constraints (b) and (c), operation store has to be modified: when
storing element x in sequence l , l must be first depurated of any occurrence of x,
and, after appending, the whole sequence reduced to its first 10 elements. Formally,

l)xfilter:(x take l)(x, store 10 ≠= (3)

where and are combinators in the algebra of sequences. The former
returns the first elements of a sequence, the latter filters out elements which
violate predicate

taken filterφ
n
φ .

 This small example illustrates the iterative character of the modelling process:
one starts with a very bare, but precise, model which evolves as the understanding of
the problem increases. It also shows the fundamental role of the simple notion of a
function in modelling software engineering problems. To be precise, not only the
notion of a function, but that of the whole algebra of functions. As any other
algebra, this defines the ways in which functions can be combined. And there are a
number of different ones. Function composition provides a pipeline connection
between functions with the right types:

A f⎯ → ⎯ B g⎯ → ⎯ C

 Often in design classes one explores an analogy between composition of
functions and multiplication of numbers. In this way, students soon realise that non
commutativity of composition leads to two, rather then one, division problems for
functions3. What is interesting, from our point of view, is that each of them has a
particular modelling potential. Consider, for illustration purposes, diagrams in
Figure 2, in the context of the mobile phones example. In each case, a function x ,
acting as an unknown, has to be found to close the triangle. In the first case x
computes the amount to be paid for a call in a particular price plan. This means that
through x function , which assigns a price plan to each call, determines the cost
of a call (given by cos

type
t). In the other example, x associates a call to a particular

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Modelling is for Reasoning 484

network. Closing the diagram means that for each call a network is to be found such
that the origin of the call and the location of the used network coincide.

Call ⎯ ⎯
 x •

n

type

k

 ana

Combinator •
particular, fun

where f ,g x
put together by

which applies
 stand(A + B

 The releva
ways of compo
of them entail
pipelining lead
dependencies.
spatial aggreg
A + B , whic

 In this sect
course, other
may resort to
number of si
deterministic (
and output). O
a computation
continuous m
classical mode

Mathematical
ISBN 978-1-90
Editors: Christ
PricePla
 cost → ⎯ ⎯ ⎯ ⎯ ⎯ Amount Call ⎯ ⎯
type = cost location •

x

x

logy: x × 7 = 21) (an

Figure 2. Composition vs Multiplica

 provides a gluing scheme for functions, but
ctions with a common domain can be glued by

C f ,g⎯ → ⎯ ⎯ A× B

 = (fx,gx) Similarly, functions sharing a co
 an alternative construction

A + B f ,g[]⎯ → ⎯ ⎯ C

 f or g depending on the argument c
s for the disjoint union of sets A and). B

nce of these composition patterns is that they
sing services in a (model of a) computational

s a different way of modelling information ag
s to the notion of function space A → B , w

 On its turn, pairing leads to Cartesian pro
ation of information. Finally, alternative

h models choice or aggregation in the tempor

ion, we have highlighted the use of functions
problems may require different conceptual
partial functions, to model problems which

tuations, or relations, whenever the outcom
and therefore a functional dependency does no
r one may resort to some form of automata to
. In contrast to other, more classical

athematics is not the primary problem-solv
ls are manipulated either analytically or num

Modelling (ICTMA12) Education, Engineerin
4275-20-6 Chichester: Horwood (2007) 510p
opher Haines, Peter Galbraith, Werner Blum a
Networ
 origin → ⎯ ⎯ ⎯ ⎯ ⎯ Country
 x = origin

location

alogy: 3 × x = 21)

tion.

 it is not the only one. In
 a pairing construction

mmon codomain can be

oming from A or B

 correspond to different
 system. Moreover, each
gregation. For example,
hich models functional

duct A × B modelling
leads to disjoint union
al dimension.

 as a modelling tool. Of
tools. For example, one
remain undefined for a
e of a service is non
t exist between its input

 express the dynamics of
engineering disciplines,
ing tool here. Actually,
erically, often resorting

g and Economics
p.
nd Sanowar Khan.

Barbosa and Martinho 485

to some sort of testing on a physical model of the problem. Software design, by
contrast, resort to discrete mathematics, which is easy to understand and animate in
a computer, but usually no physical models are available: computer science deals
essentially with non tangible mathematical models (what Henderson (2003) calls
mental models).
 Similarly, however, to what happens in other engineering disciplines, the
purpose of a model in software design is double: to provide insight into the
problem/system structure, and to form a basis upon which one can reason about
such structure. The latter is a fundamental step: it is the ability of calculating within
design models that paves the way to the possibility of transforming them into
effective programs and computational systems. This leads directly to the second
topic of this paper.

3. MODELLING IS FOR REASONING

 There are two ways in which the title of this section can be understood in the
context of computer science education. In one sense it means that a model should be
amenable to experimentation. In the other that it must provide a basis for effective
calculation, for example to verify the equivalence between two designs or to
transform one into the other by controlled introduction of detail. Let us discuss each
of them separately.
 Although mathematical notation is a very good way of expressing requirements
and of communicating among the design team, it requires more and more precision
from people. Furthermore, writing mathematics does not mean to write everything
perfect at the first time. So, there is a need for tools for validating mathematical
descriptions. Moreover, educational practice has shown that to be effective the
whole modelling process must be supported by some sort of animation tool. That is,
a computer-based tool which understands an elementary language of sets and
functions and executes designs.
 There is a variety of available animation tools used either in educational or
professional contexts (see for example, Fitzgerald & Larsen, 1998; Abrial, 1996;
Almeida et al., 1997). Such tools build a prototype out of a (formal) model, which
can be executed, tested and modified on-the-fly. This is also an old idea in
Engineering. Think, for example, in a wind tunnel test of an aircraft, where
performance in checked against theory, or a mock-up for a building, in which design
features are checked for usability. From our experience the use of prototypes
provides:

• Early feedback on the model.
• Increased confidence in the models developed achieved by a check on its

self-consistency and general sensibleness.
• More effective communication among the design team.

 Furthermore it emphasises the incremental and iterative character of the software
design process. Prototypes develop side by side with formal models, from the very
beginning until a stable and detailed design is found. Each iteration is formally
documented, and, what is more, such a document is executable.
 But when is a software design equivalent to another? Or to a sub-model thereof?
How can a real program be extracted from a design model? How can a particular

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Modelling is for Reasoning 486

property be shown to hold of a given model? How is a model built to satisfy a set of
properties? To answer these sort of questions is the purpose of a design calculus. But
what calculus?
 The definition of a calculation style to reason about software models is an
essential ingredient to the success of the modelling approach. Actually, there is a
well-established reasoning style in mathematics, the theorem-followed-by-proof,
which is quite inadequate for the construction of computer systems. The reason is
that it reflects a guess-and-verify approach which supposes the system is first built
(out of the blue?) and then formally verified. If one has a model, however, the
reasonable attitude is to use it to calculate the system, making progress through a
whole chain of progressively more concrete models. A number of authors have
discussed the dichotomy verification-oriented and calculational-driven styles of
reasoning (see for example, Gries & Schneider, 1993; Zeitz, 1999; Backhouse,
2001) and concluding on the ineffectiveness of the former to Computer Science.
There is also an extensive body of research on calculi for transforming software
design models (see for example, Bird & Moor, 1997; Backhouse, 2003), which we
actually use in the modelling classes.

Although this is not the proper place to introduce such calculi, we would like to
briefly comment on a related issue which is often neglected: notation. Actually
expressiveness in modelling and suitability for calculation may seem potentially
conflicting aims. Mathematical modelling requires descriptive notations, often
domain-specific, and hopefully intuitive. Calculation, on the other hand, requires
notations that are generic, concise and precise (Backhouse, 2003) or, to put it in
another way, elegant, in the sense the word has in the writings of Dijsktra: simple
and remarkably effective (Dijsktra & Scholten, 1990), that is, easy to manipulate.

The extensive use of nested quantifiers in a logic formula, for example, may
provide what one may think of as an intuitive description of a problem, but makes
manipulation of such descriptions an uneasy, even overwhelming task.

Such a trend for notational economy is well-known throughout the history of
Mathematics, as a sort of “natural language implosion”. The driven force has always
been the same: facilitate formulae manipulations, therefore enriching its suitability
for calculation. Contrast, for example, formula:

.60. ˜ p .2.ce son yguales a .30.co

used by Pedro Nunes, a Portuguese mathematician of the 16th century, in his Libro
de Algebra, published in Coimbra, in 1567, with nowadays 60 + 2x2 = 30x .

Again the history of mathematics is full of examples in which not only different
notations, but also different, although interrelated, conceptual domains are used for
modelling and calculation. The former emphasises expressiveness and closeness to
intuition, the latter manipulation simplicity. A classical example is the Laplace
transform, which allows an expressive but complex model to be converted into a less
intuitive but simpler (that is, linear) one.

Is there a similar transform to reason about software designs? The answer turns
out to be very simple: just avoid the variables. In particular, in the algebra of
functions briefly discussed in the previous section, replace function application by
function composition and look for definitions in terms of generic properties rather

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Barbosa and Martinho 487

than ad hoc representations. The reader may recognise here the whole discipline of
category theory (Mac Lane, 1971), but we will not elaborate further on that.

4. CONCLUDING REMARKS

As reported in the Introduction, the context for this paper was a reflection on two

concrete experiments at Minho University. Both experiments have been conducted
for five years now at two quite different levels: first year undergraduate students in
a computer science degree and professional training at post-graduation courses for
software engineers.

Although students' age, backgrounds and motivations are quite different between
these two groups, we have found extremely relevant the explicit incorporation of
modelling in the computer science curriculum. In particular we have been able to
assess how this contributes

• To emphasise the conceptual rather than the instrumental aspects of an
engineering carrier4.

• To develop design literacy: reasoning flexibility and, as Lesh and
Doerr (2003) put it, a handful of models in your hip pocket.

• To enhance both communication and teamwork skills.
 From a technical point of view modelling and reasoning are intertwined.
Moreover emphasis should be placed on the construction rather than the verification
level, a point that has often been neglected in research. Another lesson learnt was
that, in computer science as in mathematics, notations are not neutral. Well designed
notations do make the difference when one has to reason upon a model. Also, as
already commented, the crucial need for tool support, in particular for prototyping
systems.

Formal concepts of the kind required by computer science, and both modelling
and problem-solving skills develop slowly along long periods of time. Our
experience with professional engineers that return to the University to participate in
this sort of seminars, suggests such training adds up and is probably effective even
when initiated later in life.
 Modelling in software design, as in any other domain of application, enhances
what is known as mathematical fluency (see Lesh, 1996; Kaput & Shaffer, 2002),
which is at the heart of what it means to understand. In more general terms,
however, assessing to what extent mathematics education, at both university and
pre-university levels, is centred on the on going construction and revision of models
rather than on the acquisition of self-contained (?) bodies of knowledge remains an
open question. We believe there is still a long way to go in that direction. Actually,
acquisition of facts, results and procedures are merely surface manifestations of
what goes on when people learn. As Devlin (2000) points out, we know they are
surface phenomena since we generally forget them soon after the last exam is over.
 Finally, a word on the role of the 'teacher'. Our experience, however limited it is,
suggests she/he is more likely to be expected to act as coacher, than as repository of
pre-framed knowledge. The insistence on new educational practices would not be
effective without an assessment of how typical university lecturers feel about that
and how this interacts with their own images of their profession. Also at this level,
further research is certainly needed.

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Modelling is for Reasoning 488

NOTES
1. DI-CCTC, Minho University.
2. IEP, Minho University.
3. See Lawvere & Schanuel (1997) for a detailed discussion.
4. The following opening statement of Paul Halmos autobiography (Halmos,

1985) is particularly elucidative, written as it was by a mathematician, which
in the 1950's, was director of doctoral studies in what was then one of the top
Mathematics Departments of the world, in the University of Chicago: I like
words more than numbers, and I always did (...) This implies, for instance
that in Mathematics I like the conceptual more than the computational. To
me the definition of a group is far clearer and more important and more
beautiful than the Cauchy integral formula.

REFERENCES

Abrial, J. R. (1996) The B Book: Assigning Programs to Meanings. Cambridge:

CUP.
Almeida, J. J., Barbosa, L. S., Neves, F. L., and Oliveira, J. N. (1997) CAMILA:

Prototyping and Refinement of Constructive Specifications. In M. Johnson (ed)
6th International Conference on Algebraic Methods and Software Technology.
Sydney: Springer Lecture Notes in Computer Science (1349), pp554–559.

Backhouse, R. (2001) Mathematics and Programming. a Revolution in the Art of
Effective Reasoning. Inaugural Lecture, School of Computer Science and IT,
University of Nottingham.

Backhouse, R. (2003) Program Construction. Chichester: John Wiley and Sons, Inc.
Bird, R. and Moor, O. (1997) The Algebra of Programming. Series in Computer

Science. Hemel Hempstead: Prentice-Hall International.
Devlin, K. (2000) The Math Gene: How Mathematical Thinking Evolved and Why

Numbers Are Like Gossip. Basic Books.
Dijkstra, E. W. and Scholten, C. S. (1990) Predicate Calculus and Program

Semantics. New York: Springer Verlag.
Fitzgerald, J. and Larsen, P. G. (1998) Modelling Systems: Practical Tools and

Techniques in Software Development. Cambridge: CUP.
Gries, D. and Schneider, F. (1993) A Logical Approach to Discrete Mathematics.

New York: Springer Verlag.
Halmos, P. R. (1985) I Want to Be a Mathematician. New York: Springer Verlag.
Henderson, P. (2003) The Role of Modelling in Software Engineering Education.

33rd ASEE/IEEE Frontiers in Education Conference. Boulder.
Kaput, J. and Shaffer, D. (2002) On the Development of Human Representational

Competence from an Evolutionary Point of View. In K. Gravemeijer, R. Lehrer,
B. v. Oers and L. Verschaffel (eds) Symbolizing, Modeling and Tool Use in
Mathematics Education. Amsterdam: Kluwer Academic Publishers.

Lawvere, F. W. and Schanuel, S. H. (1997) Conceptual Mathematics. Cambridge:
CUP.

Lesh, R. (1996) Mathematizing: The real need for representational fluency. In C.
Janvier (ed) 20th Conference of the International Group for the Psychology of
Mathematics Education. Valencia: Universitat do Valencia, 3–13.

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

Barbosa and Martinho 489

Lesh, R. and Doerr, H. M. (2003) Foundations of a Models and Modeling
Perspective on Mathematics Teaching, Learning, and Problem Solving. In Lesh,
R. and Doerr, H. (eds) Beyond Constructivism. London: Lawrence Erlbaum
Associates Publishers.

Mac Lane, S. (1971) Categories for the Working Mathematician. New York:
Springer Verlag.

Zeitz, P. (1999) The Art and Craft of Problem Solving. Chichester: John Wiley and
Sons, Inc.

Mathematical Modelling (ICTMA12) Education, Engineering and Economics
ISBN 978-1-904275-20-6 Chichester: Horwood (2007) 510pp.
Editors: Christopher Haines, Peter Galbraith, Werner Blum and Sanowar Khan.

	7.10
	Luís Soares Barbosa1 and Maria Helena Martinho2
	Minho University, Braga, Portugal
	Abstract(In a broad sense, computing is an area of knowledge from which a popular and effective technology emerged long before a solid, specific, scientific methodology, let alone
	REFERENCES

