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Abstract−In a broad sense, computing is an area of knowledge from which a popular and 
effective technology emerged long before a solid, specific, scientific methodology, let alone 
formal foundations, had been put forward. This might explain some of the weaknesses in the 
software industry, on the one hand, as well as an excessively technology-oriented view which 
dominates computer science training at pre-university and even undergraduate teaching, on 
the other. Modelling, understood as the ability to choose the right abstractions  for a problem 
domain, is consensually recognised as essential for the development of true engineering skills 
in this area, as it is in all other engineering disciplines. But, how can the basic problem-
solving strategy, one gets used to from school physics: understand the problem, build a 
mathematical model, reason within the model, calculate a solution, be taken (and taught) as 
the standard way of dealing with software design problems? This paper addresses this 
question, illustrating and discussing the interplay between modelling and reasoning. 
 
1. INTRODUCTION 
 

The use of computer-based systems to support mathematical modelling is a 
recurring theme in the practice and research of most of our readers. On the one hand, 
computers have radically expanded the range of problem-solving and decision-
making situations that can be effectively tackled. On the other, they play a 
fundamental role in training modelling skills and promoting associated competences. 
In this paper, however, we take the dual viewpoint: we will not be concerned with 
computers as modelling aids, but instead with the use of mathematics to model and 
reason about computer-based systems. Maybe such a shift of concern deserves some 
explanation. 

The exponential increase of both the availability of processor power and the 
complexity of the problems computers are requested to solve, is unprecedented in 
any other engineering domain. Even so, software remains hard to develop, it is often 
unreliable ('faulty goods delivered over budget and behind schedule'), difficult to re-
use and excessively costly to modify and maintain. Traditional design methods 
emphasising diagrammatic or textual descriptions, with an informal semantics, have 
created the illusion that software development was little more than a balanced 
compromise of intuition and craft. 

As a result, conceptual questions are often relegated to a secondary level of 
attention, and the mastering of particular, often ephemeral, technologies appears as a 
decisive requirement, for example, on recruitment policies. Often, in industry, the 
whole software production is totally biased to a specific technology or programming 
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system, encircling, as a long term effect, the company's culture in quite strict limits. 
In a broad sense computing is an area of knowledge from which a popular and 
effective technology emerged long before a solid, specific, scientific methodology, 
let alone formal foundations, have been put forward. 

This situation has to be contrasted, however, with the increasing demand for 
quality certified software, namely in safety-critical systems, which requires 
development approaches in which a system would be unacceptable unless 
accompanied by a guarantee that it respects a rigorously  specified behaviour. This 
is the point where, from our perspective, mathematics comes into the picture. Or, 
more precisely, where software development is framed as a mathematical modelling 
activity. 

In fact we are beginning to collect the fruits of more than four decades of 
intensive, even if sometimes neglected, basic research on the foundations of 
computation and programming semantics, upon which a true engineering discipline 
for software design can be based. Such research helped, in particular, to shed light 
on the underlying mathematical structures and reasoning principles, and to establish 
the connection between mathematics and computing at a foundation, rather than 
application (as, for example, in numerical analysis), level. 

In such a context, the starting point of this paper is that to become a mature 
engineering discipline, software design has to adopt the basic problem-solving 
strategy one gets used to from school physics: 

• understand the problem, 
• build a mathematical model of it, 
• reason in such a model, 
• upgrade the model whenever necessary, 
• calculate a solution, which, in this domain, means a program. 

Moreover we would like to underline two concepts in this strategy: 
• Modelling, understood as the ability to choose the right abstractions for a 

problem domain; 
• Calculation, in the sense that such abstractions should be expressed in a 

mathematically rich framework to enable rigorous reasoning both to 
establish models’ properties and to transform models towards effective 
implementations. 

The context for this research was the assessment of two concrete educational 
experiments specifically designed to introduce modelling as a central issue in the 
computer science curriculum. They were conducted at both undergraduate and 
professional, post-graduation, training levels. 

Some lessons learnt from these experiments are reported in §4, which concludes 
and raises some topics for further research. Before that, §2 and §3 discuss, 
respectively, the role of modelling and calculation in software design.  
 
2. SOFTWARE DESIGN AS A MODELLING ACTIVITY 
 

Software design is concerned with the engineering of computer-based solutions 
to real-world problems in which information, its acquisition, flow and 
transformation, plays a key role. The starting point is often a collection of more or 
less structured requirements, usually stated in plain English. Consider for example 
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the following fragment of a statement of requirements placed by a mobile phone 
manufacturer: 

For each row of calls stored in the mobile phone (for 
example, numbers dialled, SMS messages, lost calls, etc.) 
the store operation should work in a way such that (a) the 
more recently a call is made the more accessible it is; (b) 
no number appears twice in a list; (c) only the last 10 
entries in each list are stored. 

 In the analysis of an information system a fundamental distinction is drawn 
between entities, which represent information sources, and transformations upon 
them. A similar distinction appears in the definition of algebras (as collections of 
sets and functions) which makes them interesting models for this sort of systems. An 
elementary grammatical analysis of the requirements above provides the basic 
ingredients: 

• Nouns (such as “call” or “raw of calls”) lead to the identification of the 
fundamental information structures, or data domains, which, at a latter 
stage, will originate what is known as the program data types. 

• Verbs (such as store) identify the services to be made available from the 
system. They denote processes which transform information, and therefore 
can be modelled by functions or, more generally, by relations. 

• Integrated sentences (such as requirements (a) to (c)) identify properties or 
constraints, corresponding to predicates which tune the model to its 
specific purpose. 

 Software designs can be naturally expressed in the centenary notation of set 
theory. Notions such as set, sequence, Cartesian product, function or relation have 
the potential to provide expressive, but rigorous, descriptions of a design. For 
several years in their past education students (and professionals) have become 
familiar with this sort of notation as a tool to think with. Our courses in software 
design intend to build on such a background. 
 In the example considered here, a “row of calls” can be modelled as a sequence 
of whatever a “call” is. Registering a new call in the row amounts then to place the 
former in front of the latter, a well-known operation in the algebra of sequences that 
we denote by the: (read append) combinator. This leads to elementary model shown 
in Figure 1. 
 

CallRow = Call*

store :Call × CallRow ⎯ → ⎯ CallRow
store (c, l) = c : l

 

 
Figure 1. An elementary model. 

 Note that data domain Call  is left unspecified: the initial requirements do not 
place any restriction on this structure, so, at the level of abstraction of this model, it 
is considered a primitive notion, that is, an unstructured element in the universe of 
discourse. Are we done? Is this model acceptable? Let us address these questions 
going through the problem constraints already identified: 
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• Constraint (a) is guaranteed by construction, that is, it is a direct 
consequence of the definition of service store. 

• Constraint (b), on the other hand, can be stated as equation 
 

lengthelems# =• (1) 
 

that is, the number of calls in a row (as measured by function length) is 
equal to the cardinal ( ) of the set of its elements (as computed by# elems). 
Note that regarding a sequence as a set eliminates all duplicated 
occurrences of its elements. 

• Finally, constraint (c) imposes a limit on the length of the sequence used to 
model a row of calls. It can be documented by the inequality 

 
10length≤  (2) 

 
Therefore, to meet constraints (b) and (c), operation store has to be modified: when 
storing element x in sequence l , l  must be first depurated of any occurrence of x, 
and, after appending, the whole sequence reduced to its first 10 elements. Formally, 
 

l)xfilter:(x take  l)(x, store 10 ≠=  (3) 

 
where  and  are combinators in the algebra of sequences. The former 
returns the first  elements of a sequence, the latter filters out elements which 
violate predicate 

taken filterφ
n
φ . 

 This small example illustrates the iterative character of the modelling process: 
one starts with a very bare, but precise, model which evolves as the understanding of 
the problem increases. It also shows the fundamental role of the simple notion of a 
function in modelling software engineering problems. To be precise, not only the 
notion of a function, but that of the whole algebra of functions. As any other 
algebra, this defines the ways in which functions can be combined. And there are a 
number of different ones. Function composition provides a pipeline connection 
between functions with the right types: 

 
A f⎯ → ⎯ B g⎯ → ⎯ C  

 
 Often in design classes one explores an analogy between composition of 
functions and multiplication of numbers. In this way, students soon realise that non 
commutativity of composition leads to two, rather then one, division problems for 
functions3. What is interesting, from our point of view, is that each of them has a 
particular modelling potential. Consider, for illustration purposes, diagrams in 
Figure 2, in the context of the mobile phones example. In each case, a function x , 
acting as an unknown, has to be found to close the triangle. In the first case x 
computes the amount to be paid for a call in a particular price plan. This means that 
through x  function , which assigns a price plan to each call, determines the cost 
of a call (given by cos

type
t ). In the other example, x associates a call to a particular 
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network. Closing the diagram means that for each call a network is to be found such 
that the origin of the call and the location of the used network coincide. 
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to some sort of testing on a physical model of the problem. Software design, by 
contrast, resort to discrete mathematics, which is easy to understand and animate in 
a computer, but usually no physical models are available: computer science deals 
essentially with non tangible mathematical models (what Henderson (2003) calls 
mental models). 
 Similarly, however, to what happens in other engineering disciplines, the 
purpose of a model in software design is double: to provide insight into the 
problem/system structure, and to form a basis upon which one can reason about 
such structure. The latter is a fundamental step: it is the ability of calculating within 
design models that paves the way to the possibility of transforming them into 
effective programs and computational systems. This leads directly to the second 
topic of this paper. 

 
3. MODELLING IS FOR REASONING 

 
 There are two ways in which the title of this section can be understood in the 
context of computer science education. In one sense it means that a model should be 
amenable to experimentation. In the other that it must provide a basis for effective 
calculation, for example to verify the equivalence between two designs or to 
transform one into the other by controlled introduction of detail. Let us discuss each 
of them separately. 
 Although mathematical notation is a very good way of expressing requirements 
and of communicating among the design team, it requires more and more precision 
from people. Furthermore, writing mathematics does not mean to write everything 
perfect at the first time. So, there is a need for tools for validating mathematical 
descriptions. Moreover, educational practice has shown that to be effective the 
whole modelling process must be supported by some sort of animation tool. That is, 
a computer-based tool which understands an elementary language of sets and 
functions and executes designs. 
 There is a variety of available animation tools used either in educational or 
professional contexts (see for example, Fitzgerald & Larsen, 1998; Abrial, 1996; 
Almeida et al., 1997).  Such tools build a prototype out of a (formal) model, which 
can be executed, tested and modified on-the-fly. This is also an old idea in 
Engineering. Think, for example, in a wind tunnel test of an aircraft, where 
performance in checked against theory, or a mock-up for a building, in which design 
features are checked for usability. From our experience the use of prototypes 
provides: 

• Early feedback on the model. 
• Increased confidence in the models developed achieved by a check on its 

self-consistency and general sensibleness. 
• More effective communication among the design team. 

 Furthermore it emphasises the incremental and iterative character of the software 
design process. Prototypes develop side by side with formal models, from the very 
beginning until a stable and detailed design is found. Each iteration is formally 
documented, and, what is more, such a document is executable. 
 But when is a software design equivalent to another? Or to a sub-model thereof? 
How can a real program be extracted from a design model? How can a particular 
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property be shown to hold of a given model? How is a model built to satisfy a set of 
properties? To answer these sort of questions is the purpose of a design calculus. But 
what calculus? 
 The definition of a calculation style to reason about software models is an 
essential ingredient to the success of the modelling approach. Actually, there is a 
well-established reasoning style in mathematics, the theorem-followed-by-proof, 
which is quite inadequate for the construction of computer systems. The reason is 
that it reflects a guess-and-verify approach which supposes the system is first built 
(out of the blue?) and then formally verified. If one has a model, however, the 
reasonable attitude is to use it to calculate the system, making progress through a 
whole chain of progressively more concrete models. A number of authors have 
discussed the dichotomy verification-oriented and calculational-driven styles of 
reasoning (see for example, Gries & Schneider, 1993; Zeitz, 1999; Backhouse, 
2001) and concluding on the ineffectiveness of the former to Computer Science. 
There is also an extensive body of research on calculi for transforming software 
design models (see for example, Bird & Moor, 1997; Backhouse, 2003), which we 
actually use in the modelling classes. 

Although this is not the proper place to introduce such calculi, we would like to 
briefly comment on a related issue which is often neglected: notation. Actually 
expressiveness in modelling and suitability for calculation may seem potentially 
conflicting aims. Mathematical modelling requires descriptive notations, often 
domain-specific, and hopefully intuitive. Calculation, on the other hand, requires 
notations that are generic, concise and precise (Backhouse, 2003) or, to put it in 
another way, elegant, in the sense the word has in the writings of Dijsktra: simple 
and remarkably effective (Dijsktra & Scholten, 1990), that is, easy to manipulate. 

The extensive use of nested quantifiers in a logic formula, for example, may 
provide what one may think of as an intuitive description of a problem, but makes 
manipulation of such descriptions an uneasy, even overwhelming task. 

Such a trend for notational economy is well-known throughout the history of 
Mathematics, as a sort of “natural language implosion”. The driven force has always 
been the same: facilitate formulae manipulations, therefore enriching its suitability 
for calculation. Contrast, for example, formula: 

 
.60. ˜ p .2.ce  son yguales a  .30.co  

 
used by Pedro Nunes, a Portuguese mathematician of the 16th century, in his Libro 
de Algebra, published in Coimbra, in 1567,  with nowadays 60 + 2x2 =  30x . 

Again the history of mathematics is full of examples in which not only different 
notations, but also different, although interrelated, conceptual domains are used for 
modelling and calculation. The former emphasises expressiveness and closeness to 
intuition, the latter manipulation simplicity. A classical example is the Laplace 
transform, which allows an expressive but complex model to be converted into a less 
intuitive but simpler (that is, linear) one. 

Is there a similar transform to reason about software designs? The answer turns 
out to be very simple: just avoid the variables. In particular, in the algebra of 
functions briefly discussed in the previous section, replace function application by 
function composition and look for definitions in terms of generic properties rather 
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than ad hoc representations. The reader may recognise here the whole discipline of 
category theory (Mac Lane, 1971), but we will not elaborate further on that. 

 
4. CONCLUDING REMARKS  

 
As reported in the Introduction, the context for this paper was a reflection on two 

concrete experiments at Minho University. Both experiments have been conducted 
for five years now at two quite different levels: first year undergraduate students in 
a computer science degree and professional training at post-graduation courses for 
software engineers. 

Although students' age, backgrounds and motivations are quite different between 
these two groups, we have found extremely relevant the explicit incorporation of 
modelling in the computer science curriculum. In particular we have been able to 
assess how this contributes 

• To emphasise the conceptual rather than the instrumental aspects of an 
engineering carrier4. 

• To develop design literacy: reasoning flexibility and, as Lesh and 
Doerr (2003) put it, a handful of models in your hip pocket. 

• To enhance both communication and teamwork skills. 
 From a technical point of view modelling and reasoning are intertwined. 
Moreover emphasis should be placed on the construction rather than the verification 
level, a point that has often been neglected in research. Another lesson learnt was 
that, in computer science as in mathematics, notations are not neutral. Well designed 
notations do make the difference when one has to reason upon a model. Also, as 
already commented, the crucial need for tool support, in particular for prototyping 
systems. 

Formal concepts of the kind required by computer science, and both modelling 
and problem-solving skills develop slowly along long periods of time. Our 
experience with professional engineers that return to the University to participate in 
this sort of seminars, suggests such training adds up and is probably effective even 
when initiated later in life. 
 Modelling in software design, as in any other domain of application, enhances 
what is known as mathematical fluency (see Lesh, 1996; Kaput & Shaffer, 2002), 
which is at the heart of what it means to understand. In more general terms, 
however, assessing to what extent mathematics education, at both university and 
pre-university levels, is centred on the on going construction and revision of models 
rather than on the acquisition of self-contained (?) bodies of knowledge remains an 
open question. We believe there is still a long way to go in that direction. Actually, 
acquisition of facts, results and procedures are merely surface manifestations of 
what goes on when people learn. As Devlin (2000) points out, we know they are 
surface phenomena since we generally forget them soon after the last exam is over. 
 Finally, a word on the role of the 'teacher'. Our experience, however limited it is, 
suggests she/he is more likely to be expected to act as coacher, than as repository of 
pre-framed knowledge. The insistence on new educational practices would not be 
effective without an assessment of how typical university lecturers feel about that 
and how this interacts with their own images of their profession. Also at this level, 
further research is certainly needed. 
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NOTES 
1. DI-CCTC, Minho University. 
2. IEP, Minho University. 
3.  See Lawvere & Schanuel (1997) for a detailed discussion. 
4. The following opening statement of Paul Halmos autobiography (Halmos, 

1985) is particularly elucidative, written as it was by a mathematician, which 
in the 1950's, was director of doctoral studies in what was then one of the top 
Mathematics Departments of the world, in the University of Chicago: I like 
words more than numbers, and I always did (...) This implies, for instance 
that in Mathematics I like the conceptual more than the computational. To 
me the definition of a group is far clearer and more important and more 
beautiful than the Cauchy integral formula. 
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