
A Case Study on the Construction of Application
Ontologies

Luis Eduardo Santos and Rosario Girardi Paulo Novais
 Computer Science Departament
Federal University of Maranhão

São Luiz, Brazil
luis.php89@hotmail.com, rosariogirardi@gmail.com

Computer Science Departament
University of Minho

Braga, Portugal
pjon@di.uminho.pt

Abstract— Appropriate techniques for the development of
application ontologies are needed and GAODT (“Goal-Oriented
Application Ontology Development Technique”) technique
described in this article contributes to this purpose. GAODT
translates the goals and facts in natural language expressing the
requirements of a knowledge-based system into rules and facts in
first-order logic. Next, this knowledge base is mapped to an
application ontology. GAODT was evaluated through the
development of a case study on the construction of the
application ontology of a knowledge-based System for the domain
of Intestate Succession. A software tool to support the application
of GAODT was also developed.

Keywords-Application Ontologies; Intestate Succession;
Knowledge-Based Systems; Knowledge Bases

I. INTRODUCTION
Ontologies are knowledge representation structures

capable of expressing a set of entities in a given domain, their
relationships and axioms, being used by modern knowledge-
based systems (KBS) as knowledge bases to represent and
share knowledge of a particular application domain. They
allow semantic processing of information and a more precise
interpretation of data, providing greater effectiveness and
usability than traditional information systems [18]. The
Semantic Web, a next generation Web in which the semantics
of the documents, in most cases expressed only in natural
language, would be expressed with ontologies is one of the
largest applications of this type of knowledge representation
[9][13].

An ontology is classified according to its generality, as
high-level, domain, task or application ontology [14]. High-
level ontologies describe generic concepts like time and space,
independently of a particular domain. Domain ontologies
make explicit concepts of a domain and their relationships, for
example, the concepts “client”, “legal-case” are the
relationship “has(client, legal_case)” in the legal field. Task
ontologies describe the activities of a domain, for instance,
similarity analysis in the information retrieval related
activities. Finally, application ontologies are specializations of
domain and task ontologies, being used in a particular
application, for example, the task relationship “similarity
analysis” between the concepts “old legal case” and “new
legal case” in a legal information retrieval system.

According to Guarino [14], this hierarchy promotes the
reuse of ontologies, i.e., to build application ontologies it is
necessary to extend both domain and task ontologies, and
these in turn, extend high-level ontologies. However, in
practice, building reusable ontologies is a costly process.
Therefore, building application ontologies first and then
generalizing them to domain and task ontologies is a suitable
alternative [18].

Several techniques have been developed to support the
process of ontology construction. However, most of them
focus just on the development of domain and task ontologies.
Appropriate techniques for the development of application
ontologies are needed and the GAODT (“Goal-Oriented
Application Ontology Development Technique”) technique
described in this paper contributes to this goal.

GAODT translates the goals in language natural
expressing the requirement of a KBS to rules and facts in
First-order logic (FOL) [19] and then extracts the elements
that constitute the application ontology.

GAODT was evaluated through the development of an
application ontology to be used in a KBS to support decision
making in Intestate Succession domain, the branch of law that
comprises the set of rules that governs the transfer of assets of
someone after his death [5].

The paper is organized as follows. Section II presents the
case study, emphasizing the advantages of the goal-oriented
development cycle adopted by the GAODT technique and how
GAODTool support its activities. Section III discusses a
comparative evaluation between GAODT and some
representative state of the art techniques. Section IV concludes
the paper and points out some future work.

II. DEVELOPING APPLICATION ONTOLOGIES
In this section a case study that uses GAODT in the

development of an application ontology in the domain of
Intestate Succession is presented.

To facilitate the development of ontologies with GAODT,
a semi-automated software tool (GAODTool) was developed.
GAODTool has an intuitive interface, provides support to all
GAODT activities and automates the creation of rules in
RuleML [4] and the OWL file containing the application
ontology developed.

2013 10th International Conference on Information Technology: New Generations

978-0-7695-4967-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ITNG.2013.95

619

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55627147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. An Overview of the GAODT Technique
Fig. 1 illustrates the GAODT technique along with its four

activities: “Selection of Goals and Facts”, “Representation of
Predicates in FOL”, “Specification of Axioms in FOL” and
“Specification/Extension of the Application Ontology”.

The developer of the application ontology and the domain
expert participate in the execution of the activities. The
developer is the knowledge engineer responsible for building
the application ontology. The domain expert is someone who
has expertise in an area of knowledge.

The technique takes as input a list of all the goals and facts
of the system provided by the domain expert. The goals are the
requirements that the KBS has to achieve, for instance,
“Calculate the inheritance of a person” and the facts are
general statements like “A person has descendants”. In the
activity “Selection of Goals and Facts”, the developer, in
consensus with the domain expert, selects the most
representative goals and facts to be used as input of next
activity. In the activity “Representation of Predicates in FOL”,
the developer translates the goals and facts in natural language
to predicates in FOL.

The activity “Specification of Axioms in FOL” takes as
input the predicates specified in the previous activity and
specifies in FOL the rules needed to achieve the goals of the
system. This activity is iterative, that is, a goal predicate may
require the achievement of other subgoals. For example, to
satisfy the goal “Determine the ascendants of a person”, other
subgoals should be achieved, such as “Determine the genitor
of a person”. All the process is iteratively executed until all the
goals have been decomposed and expressed as simple facts.
Finally, the activity “Specification/Extension of the
Application Ontology” uses axioms generated on the previous
activity and extracts from them the necessary elements to
compose the application ontology. The created application
ontology can be extended by performing a semantic search in
a repository of application ontologies. In the next sections
GAODT activities are explained in further detail.

Figure 1. An overview of the GAODT.

B. Selection of Goals and Facts
This activity takes as input a list of all the goals and facts

of the system, provided by the domain expert. From this list,
the developer and the specialist sets which of them will be
given as input to the next activity. Fig. 2 shows a partial view
of the goals and facts informed to GAODTool tool for the
build of an application ontology for the domain Intestate
Succession.

Initially it must be defined the general goal and the main
specific goals of the system. For instance, for the general goal
1: “Calculate the inheritance of a person”, the main specific
goals are 2: “Identify the heirs of a person” and 3: “Determine

the inheritance of the heirs”. To satisfy these subgoals, other
goals could be defined in subsequent iterations, in a process
performed recursively for all the goals in the list.

Figure 2. List of goals and facts of the ontology

C. Representation of Predicates in FOL
This activity consists in translating the items selected in the
previous activity, expressed in natural language to predicates
in FOL. It consists of seven sub-activities: “Identification of
entities”, “Redefinition of entities”, “Identification of
relationships”, “Redefinition of relationships”, “Definition of
the arity”, “Definition of predicates” and “Redefinition of the
entities of the predicates”.

In the sub-activity “Identification of entities”, all explicit
or implicit subjects and objects in a sentence are identified
from the items selected in the previous activity and
exemplified in Fig. 2. The result of this sub-activity is shown
in Fig. 3.

Figure 3. Inputs and outputs of the sub activity “Identification of entities’’.

The sub-activity “Redefinition of entities” takes into
account the entities identified in Fig. 3, and for each one
verifies if that is an entity or a relationship. The entity “Heirs”
is actually a relationship between two “People”, i.e., “A
person is heir of another person”. So, “Heirs” is redefined as a
“Person”, considering the entities that integrate the
relationship. However, the word “Heirs” is not discarded, it
will be useful in the sub-activity “Redefinition of
relationships”. Fig. 4 shows the result of this sub-activity.

Figure 4. Inputs and outputs of the sub-activity “Redefinition of entities”.

620

The sub-activity “Identification of relationships” uses the
items selected in the activity “Selection of Goals and Facts” to
identify verbs in the phrases, which represent the relationships
to be extracted. For instance, in the selected item “Calculate
the inheritance of a person”, the verb “Calculate” is identified
as a relationship. Fig. 5 shows the relationships identified.

Figure 5. Inputs and outputs of the sub-activity “Identification of

relationships”

The sub-activity “Redefinition of relationships” takes into
account the relationships identified in the previous sub-activity
(exemplified in Fig. 5) and verifies if these relationships are
transitive verbs, as they need a supplement to make sense. For
example, the relationship “identify” needs a supplement to
give it sense, using their respective entities identified in Fig. 4
or the words that were considered entities in the first sub-
activity, for example, the word “Heirs”. Fig. 6 shows the result
of this sub-activity applied to the examples in Fig. 4 and Fig 5.

Figure 6. Inputs and outputs of the sub-activity “Redefinition of

relationships”

The sub-activity “Definition of the arity” defines the
number of entities involved in the relationships previously
identified. This quantity is determined according to by the
number of entities identified on each selected item. Fig. 7
shows the arity identified for the entities in Fig. 4

Figure 7. Inputs and outputs of the sub-activity “Definition of the arity”.

In the sub-activity “Definition of predicates” the entities
and relationships identified and illustrated in Fig. 7 and Fig. 6
are represented in FOL. Fig. 8 presents the predicates resulting
from the realization of this sub-activity.

Figure 8. Translation of the selected items into predicates in FOL.

The sub-activity “Redefinition of the entities of the
predicate” aims at renaming the arguments of the predicates,
defined in the sub-activity “Definition of predicates”, when
the arguments have the same name. For example, for the
predicate “identifyHeirs(Person, Person)”, the entities are
considered variables since they represent distinct persons. So
it is redefined to “identifyHeirs(PersonX, PersonY)” and this
change is also propagated to all other predicates in Fig. 8. Fig.
9 presents the result of this sub-activity and the final product
of this activity.

Figure 9. Inputs and outputs of the sub-activity “Redefinition of the entities

of the predicate”

D. Specification of Axioms in FOL
The purpose of this activity is to specify the rules that lead

to the achievement of the goals of the system which are
represented as predicates in FOL. The process is iterative,
because there is an iteration with the activity “Selection of
Goals and Facts”. For each goal contained in a rule a search is
performed in the list of goals and facts to retrieve the subgoals
that satisfy it.

This activity consists of four sub-activities: “Definition of
the condition and conclusion”, “Definition of boolean
operators”, “Definition of quantifiers” and “Definition of
implication or equivalence”.

The sub-activity “Definition of the condition and
conclusion” determines the condition and the conclusion of
each rule. The conclusion is the main goal that has to be
achieved and the condition can be considered as a set of
assumptions or subgoals that lead to the achievement of the
main goal. This sub-activity receives as input the predicates
identified in Fig. 9. Fig. 10 shows the result of this sub-
activity.

Figure 10. Output of the sub-activity “Definition of the condition and

conclusion of the axiom”

The sub-activity “Definition of boolean operators”
specifies the boolean operators which integrate the predicates
of the axiom condition. The operators used are the conjunction
represented by the symbol (^) and the disjunction represented
by the symbol (∨).

621

Predicates in the condition are joined by an “and” operator
when all of them are needed to achieve the conclusion; by an
“or” operator when they are alternative predicates to achieve
the conclusion. For example, to achieve the goal “Calculate
the inheritance of a person” (calculateInheritance(PersonX,
Inheritance)), it is necessary to satisfy all the goals “Identify
the heirs of a person” (identifyHeirs(PersonX, PersonY)) and
“Determine the inheritance of each heir”
(determineInheritance(PersonY,Inheritance)). Fig. 11 shows
the boolean operators used to join these two predicates.

Figure 11. The union of predicates with boolean operators

The sub-activity “Definition of quantifiers” defines the
appropriate quantifiers associated to entities present in the
axiom. Quantifiers can be universal (∀) or existential (∃). The
first one is used to indicate that a predicate is true for all the
elements of a given set while the last one is used to indicate
that a predicate is true for at least one element in a given set.
For instance, the variable “PersonX” refers to “at least one
person who died” so the existential quantifier is associated to
this entity. The variables “PersonY” and “Inheritance” follow
the same principle, being set to the existential quantifier (Fig.
12).

Figure 12. Definition of the quantifiers for the variables of the predicates.

The sub-activity “Definition of implication or equivalence”
takes as input a set of predicates like those in the example of
Fig. 9 and determines whether the axiom to be created is an
implication or an equivalence. The implication is used when
the satisfaction of the condition leads to the conclusion. The
equivalence occurs when there is a symmetry between the
condition and conclusion. Fig. 13 illustrates an implication
used to form an axiom.

Figure 13. Definition of the implication of the axiom.

After the execution of the sub-activities "Definition of the
condition and conclusion", "Definition of boolean operators",
"Definition of quantifiers" and "Definition of implication or
equivalence" the axiom “∃ PersonX, PersonY, Inheritance |
identifyHeirs(PersonX, PersonY) ^ determineInheritance
(PersonY, Inheritance) � calculateInheritance(PersonX,
Inheritance)” is created and stored in the compartment
"Axioms Developed", as shown in Fig. 14.

Figure 14. Example of an axiom developed

As illustrated in Fig. 1, the GAODT activities are executed
iteratively. Therefore, in order to construct new axioms, each
one of the predicates in the condition of the current axiom is
submitted to the “Selection of Goals and Facts” activity where
items in the list of the goals and facts (Fig. 2) that satisfy this
condition will be selected.

For instance, the predicate “identifyHeirs(PersonX,
PersonY)” which is part of the condition of the axiom in Fig.
14 is submitted to the “Selection of Goals and Facts” and the
domain specialist informs that the four goals "Identify the
descendants of a person", "Identify the spouse of a person",
"Identify the ascendants of a person" and "Identify the
collaterals of a person" (Fig. 2) satisfy it. These four goals in
natural language are then given as input to the activity
“Representation of Predicates in FOL” to be represented in
FOL. Finally, the goals are given as input to the activity
“Specification of Axioms in FOL” which generate the new
axiom: identifyDescendants(PersonX, PersonY) ∨ identify
Ascendants(PersonX, PersonY) ∨ identifySpouse(PersonX,
PersonY) ∨ identifyCollaterals � identifyHeirs(PersonX,
PersonY).

The process is then recursively executed for each one of
the subgoals, until all the goals given as input to the technique
(as the ones illustrated in Fig. 2) have been satisfied. The
product of this activity is a set of axioms specified in
predicates in FOL. A sub-set of the axioms generated from the
activity “Specification of Axioms in FOL” is shown in Fig. 15.

Figure 15. A sub-set of axioms generated from the activity “Specification of

Axioms in FOL”

E. Specification/Extension of the Application Ontology
The constituent elements of the axioms specified in the

previous activity are extracted for the construction of the
application ontology. This activity consists of six sub-
activities: “Translation of axioms”, “Definition of classes”,
“Definition of non-taxonomic relationships”, “Definition of
taxonomic relationships”, “Definition of properties” and
“Retrieval of application ontologies”.

622

The sub-activity “Translation of axioms” converts the
axioms defined in the previous activity expressed in FOL into
rules expressed in an ontology rule based language, like
RuleML [4]. The experiences conducted to evaluate GAODT
use RuleML because of its expressiveness.

To perform this translation, the following heuristics are
applied. First, regular expressions [7] are used to extract the
premises and the conclusions of the axioms. For example, for
the rule “∃ PersonX, PersonY, Inheritance |
identifyHeirs(PersonX, PersonY) ^ determineInheritance
(PersonY, Inheritance) � calculateInheritance(PersonX,
Inheritance)”, the following regular expression was used
“^(\w+\(.*\)) ^ (\w+\(.*\)) � (\w+\(.*\))”. Then, the premises
and conclusion are specified in POSL [8] and finally
automatically translated to RuleML axioms (Fig. 16).

Figure 16. Example of an axiom represented in RuleML.

The sub-activity “Definition of classes” extracts the
variables of the axioms of the “Specification of Axioms in
FOL” activity illustrated in Fig. 15. For example, the predicate
“identifyHeirs(PersonX, PersonY)” has the variables
“PersonX” and “PersonY” both referring to the class
“Person”. Fig. 17 shows the extracted classes.

Figure 17. Classes of the application ontology

The sub-activity “Definition of non-taxonomic
relationships” extracts non-taxonomic relationships of the
ontology from the predicates in the list of axioms outputted
from the activity “Specification of Axioms in FOL” (Fig. 15).
For example, in relation to the predicate
“calculateInheritance(PersonX, Inheritance)” the non-
taxonomic relationship identified is the predicate
“calculateInheritance” which defines the relationship between
the classes “Person” and “Inheritance”. Fig. 18 shows a partial
view of the non-taxonomic relationships identified.

Figure 18. Partial view of the non-taxonomic relationships identified

The sub-activity “Definition of taxonomic relationships”
extracts a set of taxonomic relationships based on the
hierarquical relation between the classes outputted from the
sub-activity “Definition of classes” (Fig. 17). For example,
there is a hierarchy between the classes, “Properties”,
“MaritalProperties” and “Pre-MaritalProperties”. Fig. 19
shows the taxonomic relationships identified.

Figure 19. Taxonomic relationships of the ontology

The sub-activity “Definition of properties” extracts from
the axioms the predicates describing attributes of the classes.
For example, “hasValue(MaritalProperties, Value)” and
“hasValue(Pre-MaritalProperties, Value)” describe that the
classes “MaritalProperties” and “Pre-MaritalProperties” has
the property “hasValue”. Fig. 20 shows a partial view of the
properties identified.

Figure 20. Properties identified

If there is a need to extend the application ontology
developed, the sub-activity “Retrieval of application
ontologies” performs a semantic search for reusable ontologies
in a repository. Several similarity measures [20] [1] can be
used to rank the ontologies retrieved.

Finally, a file containing the developed OWL application
ontology is generated. Fig. 21 presents the ontology taxonomy
and a partial view of the non-taxonomic relations and
properties of the ontology in the graphic environment of
Protègè.

623

Figure 21. Application ontology developed in the Intestate Succession

domain.

III. CONCLUSION AND FURTHER WORK
This article described GAODT, a technique for building

application ontologies through a goal-oriented development
cycle. The technique also provides the developer, a well-
defined way to translate the knowledge expressed in natural
language to a computational representation. This feature is not
covered by any other technique of the state of the art presented
in this paper.

To evaluate GAODT a case study was developed, which
consisted in the construction of an application ontology to be
used in a KBS to support decision making in the Intestate
Succession domain. GAODTool, a software tool which
provides support to all GAODT activities and automates the
creation of rules in RuleML and the OWL file containing the
application ontology was also presented.

Building reusable ontologies is a costly process. Among
the four types of ontologies defined by Guarino [14],
application ontologies are the less reusable once they are
developed for specific software applications. However, they
are generally easier and faster to develop. Building application
ontologies and then generalizing its elements to domain and
task ontologies is a good alternative approach for developing
these reusable artifacts. In this context, GAODT consists of a
first step in this direction by defining a systematized way for
building application ontologies.

Further improvements of GAODT include a technique to
perform the semantic search for ontologies to be reused.
GAODT will also be integrated into a knowledge based
process for the development of multi-agent systems [2] [17].
The main objective of GAODT in this context is to construct
the knowledge bases of deliberative agents of KBS developed
with this process.

ACKNOWLEDGMENT
This work is supported by CNPq, CAPES and FAPEMA.

REFERENCES
[1] A. Claudia, N. Fanizzi and F. Esposito. A semantic similarity measure

for expressive description logics. In Proceedings of Italian Conference
on Computational Logic, Roma, 2005.

[2] A. Costa. MADAE-Pro A knowledge-based process for Domain and
Application Engineering. Master thesis - Federal University of
Maranhão, 2009. (In Portuguese).

[3] A. Pérez, M. F. Lopez and O. Corcho. Ontological Engineering: with
examples from the areas of knowledge management, e-commerce and
the semantic web. London. Springer-Verlag, 2004.

[4] B. Harold. The Rule Markup Language: RDF-XML Data Model, XML
Schema Hierarchy, and XSL Transformations. In Proc. 14th
International Conference on Applications of Prolog, 2001.

[5] C. Gonçalves. Brazilian Civil Law: Inheritance law. São Paulo, Saraiva,
2009. (In Portuguese).

[6] F. Caliari. DERONTO: Method for Building Ontologies from Entity-
Relationship Diagrams. Master thesis - Federal Technological University
of Paraná, 2007. (In Portuguese)

[7] F. Jeffrey. Mastering Regular Expressions. O'Reilly Media, 3rd Edition,
2006.

[8] H. Boley. POSL: An Integrated Positional-Slotted Language for
Semantic Web Knowledge. W3C, 2004.

[9] K. Bontcheva and H. Cunningham. The Semantic Web: A New
Opportunity and Challenge for Human Language Technology, In
Proceedings of Workshop on Human Language Technology for the
Semantic Web and Web Services, 2nd International Semantic Web
Conference, Sanibel Island, 2003.

[10] M. Fernández, A. Pérez and N. Juristo. Methontology: From Ontological
Art Towards Ontological Engineering. Spring Symposium Series.
Stanford, 1997.

[11] M. Gruninger and M. Fox. Methodology for the design and evaluation of
ontologies. In: IJCAI95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, Canada, 1995.

[12] M. Uschold and M. King. Towards a Methodology for Building
Ontologies. In IJCAI’95 Workshop on Basic Ontological Issues in
Knowledge Sharing. Montreal, Canada, 1995.

[13] N. Guarino, C. Masolo and C. Vetere. Ontoseek: Content-based Access
to the web. IEEE Intelligent Systems, vol. 14 (3), 1999, pp. 70-80.

[14] N. Guarino. Formal Ontology in Information Systems. Proceedings of
the 1st International Conference, Trento, Italy, IOS Press, 1998.

[15] N. Noy and D. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology, 2001.

[16] R. Dale, H. Moisl and H. Somers. Handbook of natural language
processing, CRC, 2000.

[17] R. Girardi and A. Leite. Knowledge Engineering for Software
Development Life Cycles: Support Technologies and Applications,
Hershey: IGI Global, 2011 (in press).

[18] R. Girardi. Guiding Ontology Learning and Population by Knowledge
System Goals. In: Proceedings of the International Conference on
Knowledge Engineering and Ontology Development, Ed. INSTIIC,
Valence, 2010, pp. 480 – 484.

[19] S. Russel and P. Norvig. Artificial Intelligence. Rio de Janeiro: Ed.
Campus, 2004. (In Portuguese).

[20] W. Lee, N. Shah, K. Sundlass and M. Musen. Comparison of ontology-
based semantic-similarity measures. AMIA Symposium, 2008, pp. 384–
388.

624

