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In this work it is presented the development of the conceptual design, implementation and
validation of a Smart walker with an inexpensive integrated interface. This interface is
based on a joystick and it intends to extract the user’s command intentions. Preliminary
sets of experiments were performed which showed the sensibility of the joystick to extract
navigation commands from the user. These signals presented a higher frequency compo-
nent that was attenuated by a Benedict–Bordner g–h filter. The resulting interaction signals
are then classified and converted into motor commands through a fuzzy logic controller.
Additionally, the detection of possible falls and instability of the user was also one of the
aims integrated onto the overall system architecture. Results have shown that the resultant
movement of the walker was constant and safe without bumps. Short enquiries to the
users have provided positive feedback about the device maneuverability in terms of easi-
ness to use.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mobility is a fundamental requirement for our daily life.
The number of people with reduced mobility capabilities
increases from year to year [1]. Thus, it becomes relevant
to find tools to extend independent living and promote im-
proved health. Recent advances in robotics have been
developed for the elderly and lower limb disabled people.
Examples include orthoses, canes, and Smart walkers.

Smart walkers [2–12] are intended to provide increased
support and assistance during gait. Generally, Smart walk-
ers have an integrated assistive navigation system and sen-
sors to obstacles detection [2,3]. There is a concern to allow
a stable gait through different handlebar designs [3,5], and
by locating the electronics and other heavy components in
the lower base of the walkers, thus improving the global
passive stability and balance of the group walker-user.

In the field of Smart Walkers, researchers have been
studying human–machine interaction, through the inter-
pretation of user’s movement intentions and transform
this knowledge into motor commands (direction and
velocity). This research area has recently witnessed a huge
interest in searching for interfaces that can be intuitive [6]
such that users do not need to realize the intelligent agent
behind the driving wheel.

In [5] an intuitive force sensor interface was proposed
to infer the navigation intents of the user. Despite the good
results, users may present asymmetries during their gait
that lead to different patterns of forces to the same
intentions.

Despite these advances, recent studies on walker inter-
faces [4, 7–12] have not focused on the characterization of
the signals gathered by the interface sensors, and it is cur-
rently lacking an exhaustive analysis of the main parame-
ters involved in the interaction between the user and the
device. It is still required to identify these parameters
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and their connection to the subsequent algorithms used for
recognition and estimation. In [5] algorithms were devel-
oped to significantly attenuate or eliminate the compo-
nents of the force signals related to the oscillations of the
trunk, achieving, thus, the intentions of the subject on
the guidance of the walker.

We propose to extend this work [5] and acquire the
interaction signals through a novel and low cost human–
machine interface. Therefore, instead of the force sensors
normally used, these were replaced by a joystick sensor
mounted on the walker upper structure and the corre-
sponding electronics. The proposed device is different from
the one presented by Hashimoto [7] because the guiding of
the walker is performed with the two hands, and addition-
ally there is a support for the forearms, thus making the
proposed system safer, more stable and intuitive.

In our work, the human–machine interaction is charac-
terized according to experiments performed without any
motorization of the device in order to capture the natural
signals that represent the real movement intentions of
the user. In case any undesired component is detected, real
time signal processing algorithms eliminate those compo-
nents. This provides for a tuning of the developed algo-
rithms such that these are also able to characterize the
interaction between the walker and the user in real time
experiments in which the walker has the motors on. Final-
ly, a motion control algorithm based on Fuzzy logic, con-
trols the direction and velocity of the walker accordingly.

Smart walkers usually do not address safety issues con-
sidering risks of falls or other mishaps that can arise while
the user is guiding the walker. These issues are also tackled
in this work, and integrated onto the overall system
architecture.

The feasibility of the proposed device is verified by per-
forming a series of experiments with healthy users. Results
show that despite the small variations of the acquired joy-
stick signals, the resultant movement of the walker was
constant and safe without bumps. The proposed control
strategy is able to provide for a smooth driving, with fast
response and no sense of delay. Short enquiries to the users
have provided positive feedback about the device manoeu-
vrability in terms of movement resistance and easiness to
use.

This paper is organized as follows. Section 2 describes
the design and overall system architecture of the proposed
Smart walker. Section 3 presents the sensor device in de-
tail. The applied signal processing strategy to extract the
undesired signal components from the acquired signals is
presented in Section 4. Section 5 presents and discusses
the developed control strategy based on a fuzzy logic sys-
tem. Section 6 presents the safety considerations. The
achieved results are presented in Section 7. Finally, conclu-
sions are discussed in Section 8.
2. ASBGo walker

The work herein described is part of a Smart walker
project which ultimate goal is to improve the safety and
stability of walkers, thus contributing and reinforcing to
the maintenance or to the improvement of the physical
and cognitive capabilities of the user, through functional
compensation. This paper presents the development of
the conceptual design, implementation and validation of
a Smart walker with an inexpensive integrated device in-
tended to extract the users’ command intentions. It was
designed to be user-friendly and efficient, meeting usabil-
ity aspects, but not being demanding at the user cognitive
level.

The proposed Smart Walker for mobility Assistance and
monitoring System Aid (ASBGo) is presented in Fig. 1. This
robotic walker was built during this work, as well as its
electronics, through the mechanical modification of a con-
ventional four-wheeled walker. Among the different types
of walkers it was selected a traditional four-wheeled that
allows the installation of the electronics and heavy compo-
nents in the lower zone of the walker to improve the gen-
eral stability of the set user-walker. An additional structure
was implemented to integrate the motors of the smart
walker and an additional support base for the upper limbs
was also included, in order to find the best way to frame
the proposed device.

Fig. 1 depicts the overall architecture of the proposed
system. In the long run, this project targets a commercial
focus. Therefore, it is important to rely on more inexpen-
sive Human–Machine interfaces. The proposed device
was implemented with simple and low cost sensors. It is
based on a joystick, block Interaction Device in Fig. 1, for
the acquisition of the user’s gestures during assisted gait.
A subsequent real time signal processing strategy, block
Signal Processing, interprets and characterizes these signals.
Such interaction signals are then classified and converted
into motor commands through a fuzzy logic controller,
block Control Strategy. The possibility to detect possible
falls and instability of the user was also one of the aims
integrated in this project, block Safety.

The joystick and the other integrated sensors were
implemented into a real time architecture based on an
Arduino Platform, as it is an economic approach. In Fig. 1
the laptop is only used for data store issues for off-line
analysis, i.e. it is not part of the system architecture.
3. Interaction device

In order to provide for safe guidance of the walker, in
which the user controls the device in accordance with
his gestures, the proposed ASBGo device has to capture
the user’s directional intent correctly. In order to do so,
this intent will be identified from physical manipulation
of the walker handles; since user’s directional intent
and his physical manipulation usually are mutually
consistent.

The proposed device consists on placing, at the center of
the upper base support, a joystick (hall-effect, HFX-33S12-
034) associated with two springs (Fig. 2a). The joystick is a
robust and low cost device that does not require excessive
use of electronics, and reduces the risk of failure. As this
system is embedded, it facilitates a simple and compact
upper structure design.

The development of this device took into account that
walking is a complex combination of omni-directional



Fig. 1. System Architecture. LV: Left Velocity; RV: Right Velocity. Safety box includes the sensors and algorithms developed for safety considerations.

Fig. 2. (a) Schematic of the ASBGo interface with the joystick and other safety complement sensors and (b) schematic of the joysticks’ displacement.
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motions, including forward and rotations’ movements. The
device should have the capability to ‘‘read’’ and interpret all
these kind of intended motions, to follow the user’s move-
ment, and to provide for a good walking support. Moreover,
the user subconsciously manipulates the device in order to
set directional instructions.

Functionally, the interaction device works as follows.
When the user begins to walk, he applies grip forces/tor-
ques to the handles. At this moment, the upper base struc-
ture slightly moves according to the direction of these
forces. As this structure is mechanically coupled to the joy-
stick, the joystick suffers a slight displacement that charac-
terizes the user directional intent. Hence, the user’s efforts
are successfully converted into small displacements of the
joystick. In addition, as the horizontal stiffness of the
springs is lower than the vertical one, the joystick can de-
tect the forward force and torque components with high
accuracy even if a large vertical force is applied. Another
reason for having the springs is that the joystick must re-
turn to the rest position when the user leaves the handles.

The joystick outputs three different signals (X,Y,Z), mea-
sured in Volts, that describe the imposed movement in the
XYZ-axis attached to the joystick (Fig. 2b). In this work,
only the Y and Z-signals are used, i.e. it will be only evalu-
ated the forces applied in the Y and Z direction.

Signal Y describes the angular rotation around the X-
axis and represents the straight or forward movement
intention of the user in the Y-direction. Signal Z is the
angular rotation around the Z-axis and represents the cur-
vilinear movement intention of the user (intent to turn
left/right).

4. Signal processing strategy

The Joystick signal can be affected by the vibrations of
the structure (irregularities of the ground), electromagnetic
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noise and wheel eccentricities. Thus, the noise components
must be eliminated in real-time, not causing a considerable
delay on the signal.

The higher frequency components can be eliminated
with forth and back recursive digital filters, such as Butter-
worth filters, without causing phase distortion. However,
this approach is not real-time implementable.

A low computational cost is needed to avoid use of
expensive hardware to process the signal and considering
power consumption and the possibility of introducing
temporal delay on the filtered signal. When the filtered sig-
nal is used to control the walker, the user should not per-
ceive the delay between his commands and the movement
of the walker. The human perception threshold in applica-
tions like this is known to be around the 200 ms [16], and
this will be the employed reference.

In the literature [13], two types of filters were identified
to be frequently used as potential candidate algorithms to
eliminate components of higher-frequency in real-time.
These filters are the g–h filter and the Kalman filter, and
they are usually called of tracking filters.

4.1. g–h Filter

The g–h filter is a simple recursive filter given by the
following formulae [13]:

_̂xk;k ¼ _̂xk;k�1 þ
hk

Ts
ðyk � x̂k;k�1Þ ð1Þ

x̂k;k ¼ x̂k;k�1 þ gkðyk � x̂k;k�1Þ ð2Þ

_̂xkþ1;k ¼ _̂xk;k ð3Þ

x̂kþ1;k ¼ x̂k;k þ _̂xk;kTs ð4Þ

where Ts is the time between time steps.
The filtering Eqs. (1) and (2), estimate the current posi-

tion, x̂k;k, and velocity, _̂xk;k, based on previous predicted po-
sition, x̂k;k�1, and velocity, _̂xk;k�1, taking the current
measurement, yk , to account. In our case, this measure-
ment corresponds to the Y and Z-signals. Assurance on
measures is weighted by gains, gk and hk.

The prediction Eqs. (3) and (4) predict the future esti-
mated position, x̂kþ1;k, and velocity, _̂xkþ1;k, based on a first
order dynamic model of the process. As g–h trackers con-
sider a constant velocity model, predicted velocity is equal
to the current one. This assumption is reasonable since hu-
man movements are slow.

Parameters gk and hk have to be tuned prior to operation
of filter. If these parameters are constant, for each yk only
two storage variables are required, one for the latest pre-
dicted first derivative _̂xk;k and one for the latest predicted
state.

To select the filter gains (g, h), we consider the Bene-
dict–Bordner Filter (BBF) [13] and the Critically Dampened
Filter (CDF) [13].

BBF minimizes the total transient error, defined as the
weighted sum of the total transient error and the variance
of prediction error due to measurement noise errors [13].
The BBF is the constant g–h filter that satisfies:
h ¼ g2

2� g
ð5Þ

This equation relates g and h, such that the BBF has only
one degree of freedom. In g–h filters increasing the value of
g diminishes the transient error, tracking higher
frequencies.

CDF minimizes the least squares fitting line of previous
measurements [13], giving old data lesser significance
when forming the total error sum. This is achieved with a
weight factor h. Parameters in the g–h filter are related by:

g ¼ 1� h2; h ¼ ð1� hÞ2 ð6Þ
4.2. Kalman filter

The user’s intentions first order dynamic model is given
by

xkþ1 ¼ xk þ _̂xkT ð7Þ

_̂xkþ1 ¼ _̂xk þ uk ð8Þ

The equation that links the actual state xk and the mea-
sured yk is called the observation equation:

yk ¼ xk þ vk; ð9Þ

where vk is the measurement noise and uk the random pro-
cess noise.

It was assumed that the errors could be modeled using
Gaussian Distributions. The Kalman filter parameters are
the measurement noise covariance R, and the process noise
covariance Q.

The measurement noise covariance R is measured prior
to operation of the filter [14]. This is practical since gener-
ally it is simple to take some off-line sample measure-
ments in order to determine the average variance of the
measurement noise, r2

u:R ¼ ½r2
u�. The determined value

was of 8.82 � 10�5 rad2 s�2 and 1.3 � 10�5 rad2 s�2 for
the Y and Z-signal noise, respectively.

The selection of the process noise covariance Q is gener-
ally more difficult [14]. In this application the process
noise covariance Q is formulated based on the first deriva-
tive noise, which affects the estimation of the user’s com-
mand intentions. Q is calculated using off-line measures
of the signal. For each measure the covariance of the signal
is calculated. Finally, the process noise covariance is the
average of all the calculated covariances. A piecewise small
constant first derivative model is considered [13]:

Q ¼
r2

v 0
0 r2

v

" #
; ð10Þ

where r2
v is the variance of the random first derivative

component of the process noise.
The Kinematic Estimation Error (KTE) was chosen to

tune the filter constants. KTE evaluates the smoothness, re-
sponse time, and execution time of a tracking algorithm
[15] and is expressed by:

KTE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ej2 þ r2

q
ð11Þ
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where j�ej2 and r2 are the mean and variance of the abso-
lute estimation error between the desired and the mea-
sured signal. The desired signal is obtained by filtering
offline the signals’ measurements with a Butterworth filter.

5. Control strategy

In this section, it is described the Control Strategy block
of Fig. 1. The two inputs are the Ŷ and Ẑ filtered signals, and
they are combined to generate motor commands. It ad-
dresses a control strategy based on fuzzy logic to classify
the signals sent by the joystick and transform them into
motor outputs (direction and velocity), in such way that
the motors are driven according to the user’s intent.

The block entitled signal conditioning is better presented
in Fig. 3. The Ŷ and Ẑ filtered signals are firstly amplified
with a gain and normalized to [�1,+1], according to the ac-
quired signals during the first seconds of movement. This
enables to a simple signal calibration of each patient. Final-
ly, a dead-zone is included to prevent the motors to move
when input signals are close to zero.

The premise behind fuzzy logic is that precise outputs
can be obtained from imprecise or vague inputs [17]. For
each joystick signal, a set of membership functions (MF)
constituted by Gaussian and S-shaped functions were de-
fined. After the fuzzy logic, the signal is also conditioned
(block output conditioning, Fig. 3) through a small integra-
tion to avoid abrupt changes in the control signals and
their range of values is also adjusted and sent to the mo-
tors’ board.

6. Safety

A very important aspect of smart walkers is to provide
for security/safety such that the user feels safe while con-
trolling the walker. Otherwise, the user will not use this
device and resort to others such as the wheelchairs.

The detection of users’ falls while walking with the
walker was one of the aims integrated on this work (mod-
ule Safety in Fig. 1). The outputs of this Safety module have
the highest priority and enable or not the walker
movement.
Fig. 3. Control str
In order to detect possible forward falls of the user, the
approximation of the user to the walker is monitored
through infrared sensing (GP2Y0A21YK0F) placed on the
walker at the chest’s height (Fig. 2a). If the user is falling
forwards, the distance between the user’s chest and the
walker is decreased, and the infrared sensor output in-
creases. In Fig. 4a it is depicted the IR signal of a walking
user with the walker. At t � 18 s, the user falls. The IR sig-
nal decreases accordingly to the user approximation to the
walker.

An algorithm was developed to detect abrupt changes
on the signal, to then detect if the user was falling forward.
When such situation is detected, the walker stops
immediately.

In order to detect if the user is falling backwards three
different procedures were considered. First, the walker
cannot move backwards. So, if the user pushes the upper
structure in his direction, the walker stops. Second, two
force sensors were integrated on the handlebars (Fig. 2a)
to detect if the user was grasping or not the handles. If
the two handlebars are not being grasped, the walker
immediately stops. Finally, two Flexiforce sensors� force
sensors, one on each forearm support, are used to verify
if the user is with his arms properly supported on the fore-
arms supports (Fig. 2a). If the user relies on both supports/
grasps the handles, the measured force signal increases,
and the walker is enabled to move. If the user is not loading
the sensor the output signal decreases until it reaches zero
(Fig. 4b) and the walker immediately stops. The same algo-
rithm developed for the IR signal, was used in these
situations.

Finally, the maximum speed that the walker can
achieve was limited to 0.7 m/s, accordingly to the defined
speed in the literature for elder [18].
7. Results and discussion

7.1. Human computer interaction

To extract the signals from the joystick, and to evaluate
and verify its sensibility to detect the user intents, it was
performed a study with eleven healthy volunteers, with
ategy block.



Fig. 4. (a) Typical IR output signal from an user that is walking normally and then falls forward, (b) typical signal of the Flexiforce sensor when first, the user
is not loading the sensor, and then loads.
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no history of dysfunctions on either upper or lower limbs.
These volunteers had to perform three simple experiments
like moving forward or/and then turn left or right (Fig. 5)
and repeat them five times each. These experiments were
performed without motorization of the walker for better
transparency.

On each experiment, forward (Y) and rotation (Z) sig-
nals were acquired. The Y-signal gives the intention to
move forward and according to the applied force, the sig-
nal will have more or less amplitude. The Z-signal, gives
the intention to perform a curve and the signal will present
high or low amplitude depending if the performed curve is
more or less accentuated. The intention to turn right or left
is detected by the sign of the signal, i.e. turn left causes
negative signal and turn right causes positive signal.

Fig. 6 shows an example of typical Y and Z joystick data,
corresponding to one trajectory performed with the device
by one of the volunteers. The main steps of the trajectory
consisted in: Stop (S1); Walk forward (S2); Turn left (S3);
Walk forward (S4) and stop (S5).
Fig. 5. (a) Walking forward, (b) turn
Initially the user is stopped (S1) and both Y and Z-sig-
nals are zero. When the user begins to walk forward (S2),
he pulls the handles and the Y-signal becomes negative.
The Z-signal remains approximately zero, since the joystick
is not rotated around the Z-axis when the user walks for-
ward. In this time range, it can be observed that Y-signal
drifts slightly as it approaches to step S3. This happens be-
cause the user is subconsciously breaking slowly the walk-
er to change his direction intent. Further, the user usually
does not apply the same force on both handles, and it
can be noticed that the Z-signal changes a little bit when
the user starts to walk forward.

When the user turns left (S3), the Y-signal increases to
zero, and the Z-signal becomes negative, since the joystick
also rotates around the Z-axis to the left side (in case the
user turns right, the only difference is that the Z-signal be-
comes positive instead of negative).

Next, the user moves forward (S4). The Z-signal returns
to zero and the Y-signal becomes negative. At the end of
ing left and (c) turning right.



Fig. 6. Typical raw Y and Z joystick data in the ASBGo walker when the
user is performing the following trajectory: S1 – The user is stopped, S2 –
User starts walking forward, S3 – User turns left, S4 – User walks forward
and S5 – User stops walking.
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the trajectory, the user stops (S5), and the Y-signal returns
to zero.

The analysis of the acquired data with the volunteers,
allows concluding that the joystick is sensitive enough to
detect the user’s intent to change his direction and
velocity.
7.2. Signal processing

By observing the eleven acquired Z and Y-signals, two
main components of the signals were identified. The col-
lected data yields that the user’s intent occurs in a fre-
quency range between 0 and 2 Hz in both Y and Z-
signals, and the higher-frequency components are related
to noise.

Table 1 shows the signal-to-noise ratio (SNR) of these
signals. The SNR of the Z-signal is much lower than the
one of the Y-signal. This means that Z-signal has to be fur-
ther filtered compared to the Y-signal.

Before testing the presented filters, it is first needed to
select the BBF parameter, g, CDF parameter, h and Kalman
filter parameter, Q, from joystick data (Y and Z-signals). For
tuning, it was used the joystick data from eleven healthy
volunteers, performing three experiments each with five
repetitions, as presented in Section 7.1.

These joystick data was introduced in each one of the
filters algorithm (Kalman filter, BBF and CDF). In order to
determine the best parameter value for each filter, a broad
range of values was tested offline. Each filtered signal
resulting from all parameter values inside the range, was
processed according to KTE. The best solutions for each sig-
Table 1
SNR (signal-to-noise ratio) of the Y and Z signals.

Signal Y Z

SNR 48.98 2.37
nal, i.e. the ones with the lowest KTE, were chosen, yielding
a total of 165 KTE best solutions for each filter parameter.
Finally, the 165 solutions for each parameter were aver-
aged, as well as the average delay between the raw and
the filtered signal for each parameter.

Table 2 presents the average values for g, h and Q
parameters; the average KTE for each Y and Z-signals,
and the average delay between the original Y and Z-signals
and the filtered one. Note that g parameter of the Z-signal
compared to the one of Y-signal shows a lower value. But
the average h and Q parameters of the Z-signal compared
to the ones of the Y-signal show a higher value. These re-
sults were as expected, since the SNR of the Z-signal is
much larger than the one of the Y-signal, requiring to be
further filtered [13].

The maximum value of delay was 36.2 ms. Since human
perception (200 ms) is larger than this delay, all the filters
provided for largely inferior values and thus all filters are
of high quality for a human–machine interaction.

The achieved KTE is very low for all filters, but the BBF
detains the lower values for both the KTE, its dispersion
and also the signal delay. Thus, it is the best option to
choose for this application.

Figs. 7 and 8 illustrate a real example of Y and Z joystick
signals, when applying BBF and CDF and BBF and kalman
filters, respectively. In both pictures it is also shown the
reference signal, i.e., the signal filtered with the Butter-
worth filter.

The BBF shows a higher attenuation on the oscillations
than the CDF and Kalman filters. Thus, a Benedict–Bordner
g–h filter was applied to the joystick data. The g parameter
was chosen to be 44.29 � 10�3 and 16.87 � 10�3 for the Y
and Z-signal filters.

Table 3 depicts the average SNR of both signals. Note
that there was an increase in the average SNR, meaning
that the signals were filtered, i.e. the noise was attenuated.
Although the SNR of the Ẑ-signal is 1/6 of the one of the Ŷ-
signal, Ẑ-signal seems to be filtered enough to this applica-
tion. However, a correct conclusion can only be achieved
during the validation process (Section 7.3).

In summary, the BBF filter has a low computational cost
implementation, and thus ideally applies to our applica-
tion, since it can run in a low cost hardware while provid-
ing enough robustness for a commercial device.

The Y and Z-signals are filtered individually with BBF
filters, and are used to drive the walker through a classifier
based on fuzzy logic, as described in the following section.

7.3. Control strategy

In order to validate the proposed architecture, experi-
ments were performed with the same eleven healthy users.
The walker was motorized and the proposed fuzzy control
system was functioning. The proposed system is expected
to be user friendly, meaning it will help the user in per-
forming the desired trajectories. Therefore, the users will
have to qualify the walker according to the resistance it of-
fers to the desired movement (forward and turning move-
ment) and also according to the desired velocity.

Fig. 9 shows an example of the signals acquired of one
user when he performed the same trajectories as during



Table 2
Filter parameters based on the KTE and delay for the Y and Z-signal. Table provides for mean ± standard deviation.

Signal Parameter Value KTE (�10�3 rad/s) Delay (ms)

Y g 44.20 ± 4.97 (�10�3) 6.46 ± 0.91 0.5 ± 0.25
h 0.974 ± 3.85 � 10�3 6.81 ± 0.75 1.7 ± 0.96
Q 3.21 ± 0.55 (�10�7) 9.66 ± 0.86 17.2 ± 1.86

Z g 16.87 ± 2.51 (�10�3) 2.93 ± 1.99 23.8 ± 1.70
h 0.990 ± 1.1 � 10�3 2.99 ± 0.11 25.2 ± 1.59
Q 3.26 � 10�9 ± 8.78 (�10�9) 3.12 ± 0.26 36.2 ± 4.00

Fig. 7. Superposition of the raw joystick, (a) the superposition of the raw Z with the results of BBF, CDF and Butterworth and (b) the superposition of the
raw Y with the results of BBF, CDF and Butterworth.

Fig. 8. Superposition of the raw joystick signal with the results of BBF, Kalman and Butterworth. (a) Raw Z-signal and (b) Raw Y-signal.

Table 3
SNR of the Y and Z signals filtered with the Benedict–Bordner filter.

Signal Ŷ Ẑ

SNR 50.05 7.77
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the development of the control and signal processing strat-
egies: Stopped, walk forward (from t � 1 s until), turn right
(from t � 9 s until t � 13 s), walk forward (from t � 13 s)
and stop (t � 16 s).
Fig. 9(a) depicts the raw joystick and BBF filtered signals
acquired while the user was walking with the motorized
walker. Note that despite the addition of the motors and
the control strategy in generating the movement of the
walker, these signals present the same features as the ones
acquired with no motorization and control (Fig. 6). The
only difference is that the Y and Z-signals, with the motors
on, present a more accentuated noise. This is caused by the
vibrations and electromagnetic noise due to the motors.
However, as it is shown in these same figures, the results



Fig. 9. Results from the system architecture of the ASBGo walker acquired while the user was walking with the device, (a) raw acquired joystick signals and
signal filtered with the BBF filter, (b) signals before the amplification, (c) output of the fuzzy system and conversion and integration of these results to be
sent to the control board hardware.
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from the filter BBF (signal Z filt and Y filt) are very satisfac-
tory, proving the good performance of the filter in attenu-
ating the noise components.

In Fig. 9(b), is represented the Ŷ-signal and Ẑ-signal
after an adjustment of both signals. The Y-signal was in-
verted, amplified and is in the range of [�1,1]. The Z-signal
was also amplified and converted to the range of [�1,1].
Fig. 9(c) shows the two outputs of the fuzzy control system
as well as the outcome of the smoothing process. Both sig-
nals were converted to the range of [2.5,5] in order to be
sent to the low-level control hardware of the DC motors
(left and right).

The user starts its movement at t = 1 s and this inten-
tion is transmitted to the walker. The Ŷ-signal increases
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its amplitude (Fig. 9(b)), and this is interpreted as the user
intention to go forward. Consequently, both fuzzy output
signals increase their amplitude, as it can be seen in
Fig. 9(c) at t � 1 s, and the motors start to accelerate. The
user keeps its movement until around t � 9 s.

At t � 9 s, the user wants to turn right until t � 13 s,
Fig. 9(b), and consequently the Ẑ-signal increases its ampli-
tude. This intention is captured by the proposed system
and reflected in the fuzzy output signals: the right motor
signal decreases its amplitude, and the left one maintains
its. Therefore, the walker starts to turn right, as the user
intends.

At t � 16 s, the user’s intention is to stop, so he pushes
the handles to himself. In Fig. 9(b) we can verify the ampli-
tude of the Ŷ-signal (Ẑ-signal) decreases (increases)
accordingly. This happened because the user pushed the
handles asymmetrically. However, this does not influence
the movement of the walker, since we have implemented
a safety rule which assures that the walker cannot move
backwards. This is shown in Fig. 9(c) where at t � 16 s
the fuzzy output signals decrease to zero.

Despite the little variations of the Y and Z-signals, the
motors present a constant and safe movement that corre-
spond to the desired trajectories of the user, without
bumps. Therefore, the system has been perfectly adjusted
to read and infer the user’s command intentions.

The device has been tested for different trajectories and
the results were very encouraging. Further, the users were
enquired about the driving of the device and the answer
was that the vehicle was very manoeuvrable, easy to drive,
and that it provided for a sense of security and was in syn-
chrony with the desired movement.
8. Conclusions

This paper presented the first steps towards a method-
ology to extract the users’ intent to guide the walker. The
proposed interface sensor has been mounted onto the ASB-
Go walker and it is based on a joystick. A series of experi-
ments with healthy users were performed which showed
the sensibility of the joystick to acquire the navigation
commands of the user.

Additionally, a control strategy that allows the walker
to be driven according to the users intents was presented
in this article. The proposed control system showed very
good results, generating a control strategy with low com-
putational cost, allowing a smooth and enjoyable driving,
fast response of the walker and no sense of delay.

These results are very encouraging and have provided
for a step further in the team aims of contributing for the
design and improvement of new system architectures with
low computational cost, and little and inexpensive embed-
ded electronics.

However, these were the first steps and the next step is
to validate the proposed system with elderly and disable
people. Currently, the team is also including the encoders
onto a closed loop control system which will provide for
feedback about the walker actual state.
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