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Abstract—This paper extends the authors’ previous work on
a formal approach to the specification of reconfigurable systems,
introduced in [7], in which configurations are taken as local
states in a suitable transition structure. The novelty is the explicit
consideration that not only the realisation of a service may change
from a configuration to another, but also the set of services
provided and even their functionality, may themselves vary. In
other words, interfaces may evolve, as well.

I. INTRODUCTION

Context: configurations-as-local-states

The qualifier reconfigurable is used for systems whose ex-
ecution modes, and not only the values stored in their internal
memory, may change in response to the continuous interaction
with the environment. In [7] the authors’ introduced a formal,
two level approach to their specification. The rationale sought
to combine two basic dimensions in systems specification: one
which emphasizes behaviour and its evolution, another focused
on data and their transformations.

Behaviour is typically specified through (some variant of)
state-machines. Such models capture evolution in terms of
event occurrences and their impact in the system’s internal
state configuration (see e.g. [6]). Data types and services
upon them, on the other hand, are often presented as theories
in suitable logics, over a signature which offers a syntactic
interface to the system. Semantics is, then, given by a class
of concrete algebras acting as models for the specified theory
(see e.g. [9]). The starting point for our approach, is that these
dimensions are interconnected: the functionality offered by a
reconfigurable system, at each moment, may depend on the
stage of its evolution. In [7] the reconfiguration dynamics is
modelled as a transition system, whose nodes are interpreted as
the different configurations it may assume. Therefore, each of
such nodes is endowed with an algebra, or even a first-order
structure, to formally characterise the semantics of the ser-
vices offered in the corresponding configuration. Technically,
models of reconfigurable systems are given as structured state-
machines whose states denote algebras, rather than sets.

The approach assumed, however, that the signature, i.e., the
interface provided at any local state is fixed. Or, to put this in
an equivalent way, that the system’s interface is invariant with
respect to the reconfiguration process. This paper, as explained
below, aims at relaxing this condition.

Before that, however, a word is due on the specification
logic adopted. Modal languages are, quite obviously, the
natural choice to talk about transition systems. We resort,
however, to their hybrid extension [1] because a crucial point

in the whole approach is to be able to express and verify
properties which may only hold in a specific state, or a group
thereof. Hybrid logic introduces a special set of symbols
to name states and a suitable family of reference operators.
Additionally, at each state, a whole algebra has to be specified.
This entails the combination of hybrid and modal features with
equational logic, leading to adoption of a variant of hybrid
equational logic. This combination, in a highly general setting,
is discussed in a complementary line of research, documented
in [8], [4], but is not essential for what follows. The overall
approach, summed up in the slogan configurations-as-local-
states, is sketched in Fig I.

It should be stressed this approach differs from the one
proposed by Y. Gurevich in the early nineties under the
designation of evolving algebras and, later, as abstract state
machines [5], [2]. A state there encapsulates a specific config-
uration of variables in an algebra: as configurations change, so
the algebra evolves. In our own approach, however, each node
corresponds to a different, independent algebra.

Contribution: reconfigurable interfaces

As mentioned above, we intend to go a step further and
allow not only a possibly different algebra in each state, but
also different algebras over a different signature. Actually, in
a number of cases the services a system may offer, and their
functionalities, may depend on the particular configuration or
mode of operation the system is currently assuming. Therefore,
in the place of a unique (static) interface (S, F ), we consider
in the sequel a family of signatures

(
Si, F i)i∈Nom, indexed

by the set Nom of state identifiers, i.e., the nominals of our
hybrid specification language. The approach introduced in [7]
is extended accordingly. Technically, this is achieved through
the introduction of (hybrid) partial algebra-specifications to
“simulate” the intended, independent (hybrid) equational ones.
Note, however, that, even resorting to partial specifications,
models will always be (total) algebras with respect to the
corresponding local interface. The following example will be
used to illustrate the method.

Example. Suppose that, in the context of a client server archi-
tecture, a buffering component is required to store and manage
incoming messages from different clients. Depending on the
server’s execution mode, i.e., on its current configuration,
issues like the order in which calls have arrived or the number
of repeated messages may, or may not, be relevant. Therefore,
the shape of the buffering component may vary, typically being
determined by an external manager.

A model for this component comprises four endowed,
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Fig. 1. The specification approach

respectively with i) an algebra of sequences (for configurations
where both order and multiplicities are relevant issues), ii) an
algebra of multi sets (when the order may be left out), iii)
an algebra of sets (when the application may abstract over
order and repetitions), and finally iv) an algebra of repetition
free sequences (to cater only the messages’ order). Going from
one configuration to another involves not only a change in the
way a service is realised (e.g., insertion clearly differs from
one state to the other), but also a change at the interface level.
For example, an operation to count the number of replicated
messages does not make sense if sets are used as a local model.

Outline. The remaining of the paper is organized as follows:
Section II recalls the definitions of equational and partial
algebra logics as well as the notions of hybridization and pre-
sentation of logics. The main contribution appears in Section
III. Finally, Section IV briefly discusses tool support for the
extended specification method.

II. BACKGROUND

The Equational Logic EQ

Services and system operations are specified in equational
logic. A signature is a pair (S, F ) where S is a set of sort
symbols and F = {Far→s | ar ∈ S∗, s ∈ S} is a family of sets
of operation symbols indexed by arities ar (for the arguments)
and sorts s (for the results). A model M for (S, F ) is an (S, F )-
algebra which interprets each sort symbol s as a set Ms, its
carrier, and each operation symbol σ ∈ Far → s as a function
Mσ : Mar →Ms, where Mar is the product of the carriers of
sorts in ar. The sentences are the universal quantified (S, F )-
equations (∀X)t = t′. The satisfaction relation is defined
recursively on the structure of the sentences:

• M |=EQ
(S,F ) t = t′ iff Mt = Mt′ , where Mt denotes

the interpretation of term t in M defined recursively by
Mσ(t1,...,tn) = Mσ(Mt1 , . . . ,Mtn).

• M |=EQ
(S,F ) (∀X)ρ iff M ′ |=EQ

(S,F+X) ρ, for any (S, F+X)-
expansion M ′ of M .

The Partial Algebras Logic PA

In this case, signatures are tuples (S, TF, PF ), where TF
and PF are families of sets of, respectively, total and partial

function symbols such that TFar→s ∩ PFar→s = ∅ for each
arity ar and each sort s. Models of PA are partial algebras,
i.e. function symbols are interpreted as partial, rather than total,
functions. The sentences are defined by the following grammar

ρ, ρ′ 3 t s
= t′ | t e

= t′ | df(t) | ¬ρ | ρ� ρ′

where � ∈ {∧,∨,⇒}. Finally, the satisfaction relation is

• A |=PA
(S,TF,PT ) df(t) iff At is defined;

• A |=PA
(S,TF,PT ) t

s
= t′ iff At = At′ when both are defined;

• A |=PA
(S,TF,PT ) t

e
= t′ iff At and At′ are defined and At =

At′

with the usual interpretation of the boolean connectives.

Hybridization

The combination of both equational and partial algebras
logics with a hybrid language plays a crucial role in the
specification method discussed in this paper. Both are briefly
presented below. Following this description it is not hard to
notice the emergence of a common pattern in the way a hybrid
logic is built on top of another logic. Such a construction was
made systematic as part of this research effort, in [8], [4]. The
so-called hybridization process is formulated in the general
setting of the theory of institutions [3].

Hybrid equational logic HEQ is presented as follows:
signatures are triples ∆ = (Σ,Nom,Λ), where Σ is an
equational signature (S, F ), Nom and Λ are sets of symbols
for nominals and modalities, respectively. The sentences are
defined by the following grammar

ρ, ρ′ 3 i | ρ0 | @iρ | ρ� ρ′ | ¬ρ | [λ]ρ

where ρ0 is an equational sentence over Σ, i ∈ Nom and
� ∈ {∧,∨,⇒}. As usual 〈λ〉ρ denotes ¬[λ]¬ρ. Models are
(Nom,Λ)-transition structures with a Σ-algebra associated to
each state. Formally, models of ∆ are pairs (M,W ) where

• |W | is a set, for each λ ∈ Λ, Wλ ⊆ |W | × |W | is a
binary relation and for each i ∈ Nom, Wi is a constant
in |W |;



• M : W → ModEQ(S,F ) is a function associating
algebras to states. M(w) is denoted by Mw.

Finally, the satisfaction relation is defined as follows:

• (M,W ) |=w
∆ i iff Wi = w

• (M,W ) |=w
∆ ρ0 iff Mw |=EQ

Σ ρ0

• (M,W ) |=w
∆ @iρ iff (M,W ) |=Wi

∆ ρ

• (M,W ) |=w
∆ ρ∧ρ′ iff (M,W ) |=w

∆ ρ and (M,W ) |=w
∆ ρ′;

and analogously for the remaining boolean connectives.

The Hybrid Partial Algebra logic HPA is defined as HEQ
but taking, a partial algebra signature (S, TF, PF ) in place of
Σ; a (S, TF, PF )-sentence of PA in place of ρ0; a function
M : |W | → ModPA(S, TP, PF ) in place of M : |W | →
ModEQ(S, F ); and (M,W ) |=w

∆ ρ0 iff Mw |=PA
Σ ρ0 in place

of Mw |=EQ
Σ ρ0.

Presentations

A common way to define a new logic is to take another
logic, plus some additional data suitably expressed through
new axioms. One way to proceed is through presentations.
Formally, given a logic I, a presentation of I, say Ipres, takes
as signatures pairs (Σ,Γ) where Σ is a I-signature and Γ a
set of I-sentences. The (Σ,Γ)-models of Ipres, are I-models
such that M |=IΣ Γ. The satisfaction relation of Ipres is the
restriction of I to Ipres-models.

III. RECONFIGURATION OF INTERFACES

The hybridization process mentioned above assumes that
all configurations have models over the same signature. Sup-
pose, however, that this is not the case and one has instead
a family of different equational signatures (Si, F i)i∈Nom, one
for each (named by nominal i) state. A global signature can
be obtained in HPA as follows. The first step is to define a
signature (S, TF, PF ) in PA able to capture the all possible
possible interfaces in (Si, F i)i∈Nom. Thus, operations are split
into the ones which are globally defined (i.e., present in any
(Si, F i), for i ∈ Nom) and on those which concern only
a specific state named, say, by i ∈ Nom. These two sets
of operations defines a (global) PA-signature (S, TF, PF )
containing all of these operations as follows

S =
⋃
i∈Nom Si

TFar→w =
{
σ|σ ∈

⋂
i∈Nom F i

}
PFar→w =

{
σ|σ ∈ (F i)ar→w \ TFar→w, i ∈ Nom

}
Now, considering the set reconfiguration events Λ which
trigger reconfigurations and give rise to the relevant modalities
we achieve ar the HPA signature ((S, TF, PF ),Nom,Λ).
However, the information about which of those operations are
defined in each configuration has to be considered. This is
done by the following axioms:

Γ =
{

@i(∀X)df(σ(X))|σ ∈ (F i)ar→w ∩ PFar→w, i ∈ Nom
}
∪{

¬@i(∃X)df(σ(X))|σ ∈ PFar→w \ (F i)ar→w, i ∈ Nom
}

Hence, the presentation
(
((S, TF, PF ),Nom,Λ),Γ

)
in

HEQpres contains the intended information. With this signa-
ture the method in [7] can be safely applied from this point on.

In broad terms, we are going to simulate local, total functions
with global, partial ones. This entails the need for adopting
strong equality to specify “global properties” of operations
defined in a specific configuration. For instance, any existencial
equation t

e
= t′ involving operations in PF is inconsistent

because it fails on the configurations where these operations
are not defined. Of course, this is not the case of existencial
equations prefixed by satisfaction operators, i.e., of sentences
of form @i(t

e
= t′). But, in general, this is not enough: all

operations must be “locally”-total or “completely”-undefined.

In this context, specifications are built according to the
following steps:

1) Enumerate the set of relevant configurations and define the
set of their names Nom accordingly;

2) Enumerate the set of reconfiguration-events and define for
each of them a modality in Λ;

3) Collect the family of local, Nom-indexed interfaces and
define (Si, Fi)i∈Nom;

4) Take the global signature
(
((S, TF, PF ),Nom,Λ),Γ

)
in

HEQpres through the suggested construction;
5) Develop the specification along the lines proposed in [7]:

a) Specify the global properties, i.e., properties hold-
ing in all the system configurations (using strong
equations);

b) Specify the local properties using the satisfaction
operators @i tagged (Si, Fi)-equations;

c) Specify the reconfiguration structure, i.e., the
underlying transition system using the available
modalities.

The method can be illustrated with the example in-
troduced in Section I. First of all define a set Nom =
{OM,Om, oM, om} of nominals, where the capitalized let-
ters correspond to the relevance of order and multiplicity
issues (for instance, Om refers to a configuration where
order, but not multiplicity, is the relevant issue). Then,
for the reconfigurations events, take a set of modal sym-
bols Λ = {goto OM, goto Om, goto oM, goto om}. Con-
sider now the local interfaces. For (Som, F om) choose
the usual signature for Sets comprising the set of sorts
Som = {Elem, Store,Bool} and operation symbols
F omStore = {empty}, F omElem×Store→Bool = {is in};
F omElem×Store→Store = {insert}; and F omar→s = ∅ for
the other arities. Clearly, (SOm, FOm) = (Som, F om). The
remaining cases need to deal with multiplicities; therefore
signatures have to be enriched with new operations. Hence,
(SoM , F oM ) can be defined as SoM = Som ] {Nat} and
F oMElem×Store→Nat = {mult} and F oM ar→s = F omar→s
for the other arities. Again, (SOM , FOM ) = (SoM , F oM ).
Therefore, the following “global” partial signature gets de-
fined:

(
((S, TF, PF ),Nom,Λ),Γ

)
taking S =

⋃
i∈Nom Si =

SOM , TF = F om and PFElem×Store→Nat = {mult} and
PFar→s = ∅ for the other arities. On its turn, Γ is defined by
the sentences
@i(∀s)(∀e) df(mult(e, s)), for i ∈ {oM,OM}

¬@i(∀s)(∀e) df(mult(e, s)), for i ∈ {om,Om}.

In this setting, we may now proceed with the specification
of the global properties, as for example,

(∀e : elem) is in(e, empty)
s
= False



For the local properties one resorts to the hybrid satisfaction
operator. This allows, for example, to record the fact that
ordering and the multiple insertion are irrelevant for the
configuration om:

@om(∀e, e′)(∀s)insert(e′, insert(e, s)) s
= insert(e, insert(e′, s))

@om(∀e)(∀s) insert(e, insert(e, s)) s
= insert(e, s)

On the other hand, the specification of mult in configuration
oM is introduced as

@oM (∀e, e′)(∀s)¬e s
= e′ ⇒ mult(e, insert(e′, s))

s
= mult(e, s)

@oM (∀e)mult(e, empty)
s
= 0.

Finally, we have to specify the possible reconfigurations. For
this, one may use sentences as direct as

@om〈goto OM〉OM

stating that a reconfiguration from om to OM is possible, or
assuming more elaborated forms as e.g.,

(∀e, e′)(∀s) insert(e′, insert(e, s)) s
= insert(e, insert(e′, s))

⇒ 〈goto Om〉Om.

The latter states the system can evolve to configuration Om
(through the event goto Om), from any other configuration
where the order of insertion is irrelevant.

We conclude here the illustration of the specification
method with this (small) small fragment of a buffering compo-
nent. Notice, however, that several details were not considered
here; for example, a definition of the natural numbers and
the booleans should be included (and all signatures extended
accordingly).

IV. TOOL SUPPORT

In order to have effective practical application, a formal
method should have some form of tool support. The specifica-
tion method discussed in the previous section is no exception.
First of all a first-order encoding for HEQ into FOL was
developed. Moreover, through an instantiation of the general
method of [8], [4], a first-order encoding for HPA (or more
rigorously, for a version of HPA with additional contraints
regarding the rigidification of operations and sorts [4]) is also
available. Both results are instrumental to provide access to
effective tool support because FOL enjoys of a very stable set
of proof tools.

In particular, integration with the HETS [10] platform
seems promising. Using a metaphor of [10], HETS may be
seen as a “motherboard” where different “expansion cards”
can be plugged in. These pieces are individual logics (with
their particular analyzers and proof tools) as well as logic
translations, suitably encoded at an institutional level. Details
are given in [7], [8].

Notice that HETS already integrates parsers, static analyz-
ers and provers for a wide set of individual logics. Moreover it
offers a powerful manager for heterogeneous proofs resorting
to the so-called graphs of logics, i.e., graphs whose nodes are
logics and, whose edges, are comorphisms between them.

Recently an hybrid version of CASL, called HCASL, as
well as the suitable encoding into CASL, were integrated
directly in HETS [11]. This provides effective tool support
to specifications in the logics discussed in this paper since
both are subsumed in HCASL and HETS offers a very stable
and mature tool support for the specification in CASL. Other
features of HETS can also be explore in this context. For ex-
ample, the model finder of Darwin, which is already integrated
in HETS, may be used as an effective consistency check for
our specifications. Moreover, available encodings of FOL into
HasCASL, a specification language for functional programs,
opens further perspectives for prototyping specifications (see
[10]).

V. CONCLUSIONS

The paper extends a specification method for reconfig-
urable systems in order to accommodate the presence of
different interfaces (i.e., algebraic signatures) in different con-
figuration states. The extension proposed was smooth and
compatible with HETS-based tool support.

Whether similar results can be obtained if other hybrid
languages are used, e.g., replacing hybrid equational logic by
hybrid first-order logic, remains object of current research.
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