
Giving ALLOY a family

Renato Neves, Luı́s Soares Barbosa
HASLab - INESC TEC

Univ. Minho
nevrenato@gmail.com

lsb@di.uminho.pt

Alexandre Madeira
HASLab - INESC TEC

Dep. Mathematics, Univ. Aveiro
Critical Software S.A.

madeira@ua.pt

Manuel A. Martins
CIDMA

Dep. Mathematics
Univ. Aveiro

martins@ua.pt

Abstract

Lightweight formal methods ought to provide to the end
user the rigorousness of mathematics, without compromis-
ing simplicity and intuitiveness. ALLOY is a powerful tool,
particularly successful on this mission. Limitations on the
verification side, however, are known to prevent its wider
use in the development of safety or mission critical appli-
cations. A number of researchers proposed ways to connect
Alloy to other tools in order to meet such challenges. This
paper’s proposal, however, is not establishing a link from
ALLOY to another single tool, but rather to “plunge” it into
the HETS network of logics, logic translators and provers.
This makes possible for Alloy specifications to “borrow”
the power of several, non dedicated proof systems. Seman-
tical foundations for this integration are discussed in detail.

1. Introduction

Lightweight formal methods combine mathematical
rigour with simple notations and ease-of-use support plat-
forms. ALLOY [6], based on a single sorted relational logic
whose models can be automatically tested with respect to
bounded domains, is one of the most successful examples.
Its simple but powerful language combined with an analyser
which can promptly give counter-examples depicted graph-
ically, makes ALLOY increasingly popular both in academia
and industry. Successful stories report on the discovery of
faults in software designs previously thought to be faultless.
The tool, however, may also bring a false sense of security,
as absence of counter-examples does not imply model’s cor-
rectness. Therefore, in the project of critical systems the use
of ALLOY should be framed into wider toolchains involving
more general, even if often less friendly theorem provers.

Actually, ALLOY impairments on the verification side
may be overcome by “connecting” it to reasoners able to
guarantee correctness. In such a toolchain properties can

be first tested within the ALLOY analyser; if no counter-
examples are found, a theorem prover is then asked to gen-
erate a proof, at least in what concerns some critical design
fragments. The rationale is that typically, finding counter-
examples is easier than generating a proof – how often has
one tried to prove a property, only to find out a simple ex-
ample invalidating it?

A number of attempts have been made in this direction
(cf. [14], [7] and [1]). The usual approach is to translate
ALLOY models into the input language of a given theorem
prover and (re-)formulate the proof targets accordingly. For
instance, [14], one of the most recent proposals in this trend,
translates models into a first-order dialect supported by the
KEY theorem prover.

The perspective taken in this paper goes a step further
“plugging” ALLOY into the HETS network, as depicted in
Fig. 1.

HETS [12] has been described as a “motherboard” for
logics where different “expansion cards” can be plugged.
The latter are individual logics (with associated analysers
and proof tools) as well as logic translations to “transport”
properties and proofs between them. To make them com-
patible, logics are formalised as institutions [3] and logic
translations as comorphisms1.

Plugging ALLOY to HETS brings for free the power
of several provers and model checkers connected into
the network, including, for instance, VAMPIRE, SPASS,
EPROVER, DARWIN, ISABELLE, among many others. Ex-
periments can then be carried out in different tools, typi-
cally tuned to specific application areas. Moreover, ALLOY
models can also be translated into a number of languages
available in HETS, including CASL, HASCASL, or even
HASKELL itself.

There is, however, a price to be paid. To interconnect
ALLOY with the HETS network, one needs first

• to formalise ALLOY underlying logic system as an in-

1The background section below provides a brief introduction to institu-
tions as canonical representatives of logical systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55627002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heterogeneous tool subset

HasCASL

HCASLMCASL
Prop

Haskell

SoftFOL

Isabelle

OWL

VSE

Alloy

CASL

Provers

Vampire

SPASS

Eprover

Darwin

...

Figure 1. “Plugging” ALLOY into the HETS network

stitution,

• and to provide an effective translation to CASL, the
lingua franca in the HETS platform, formalised as a
comorphism.

Meeting these two challenges, and therefore laying sound
foundations for the envisaged integration, is the main tech-
nical contribution of this paper.

Paper structure. The formalisation of ALLOY as an insti-
tution and the definition of a suitable comorphism to CASL
is presented in sections 3 and 4. Before that, in section 2, a
brief overview of the theory of institutions, CASL and AL-
LOY is provided as a background for the paper. Section 5 re-
ports on a (fragment of a) case study in the medical domain
on the combined use of ALLOY and HETS, to illustrate the
potential and limits of the approach proposed here. Finally,
section 6 concludes.

2. Background

2.1. Institutions and comorphisms

An institution [4] is a formalisation of the concept of
a logical system, introduced by Joseph Goguen and Rod
Burstall in the late 70’s, as a response to the increasing
number of logics emerging for software specification. Its
original aim was to develop as much as computing science
as possible in a general, uniform way independently of par-
ticular logical systems. This has now been achieved to an
extent even greater than originally thought, as institution
theory became the most fundamental mathematical theory
underlying algebraic specification theory.

Formally, an institution is a tuple

(SignI , SenI , ModI , (|=IΣ)Σ∈|SignI |)

where

• SignI is a category of signatures and signature mor-
phisms

• SenI : SignI → Set, is a functor relating signatures
to the corresponding sentences

• ModI : (SignI)op → C, is a functor, giving for each
signature Σ, the category of its models

• |=IΣ ⊆ |ModI(Σ)| × SenI(Σ), is the satisfaction re-
lation between models and sentences such that, for
each morphism ϕ : Σ → Σ′ in SignI , and for any
M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ),

M ′ |=IΣ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=IΣ ρ

A comorphism is a map through which theorems in the
source institutions can be translated to the target one. For-
mally, given two institutions I, I ′, a comorphism, I → I ′
is a triple (Φ, α, β) consisting of :

• a functor, Φ : SignI → SignI
′

• a natural transformation, α : SenI ⇒ SenI
′
.Φ

• a natural transformation, β : ModI
′
.Φop ⇒ModI

such that, for any Σ ∈ |SignI |,M ′ ∈ |ModI
′
(Φ(Σ))| and

ρ ∈ SenI(Σ),

βΣ(M ′) |=IΣ ρ iff M ′ |=I′Φ(Σ) αΣ(ρ)

A comorphism is conservative whenever, for any Σ ∈
|SignI |, βΣ is surjective. This extra condition makes trans-
lations between logical systems well-behaved and is essen-
tial to correctly “borrow” proof support from one system to
another.

Given an institution I one defines the institution of its
presentations over I by extending signatures Σ ∈ |SignI |,
to pairs (Σ,Γ), where Γ ⊆ SenI(Σ), signature mor-
phisms to presentation morphisms and restricting models
M ∈ |ModI(Σ)| to the ones in which Γ is satisfied, i.e.,
such that M |=IΣ Γ (see [3]).

This definition is very useful to deal with comorphisms
where the source institution is too complex to be trans-
formed into the target one in a straightforward way. Ac-
tually, this is the case here due to its “hidden” rules in the
ALLOY semantics that one need to take into account.

2.2. CASL

CASL, the Common Algebraic Specification Language
[11], was developed within the COFI initiative with the
purpose of creating a suitable language for specifying re-
quirements and to design conventional software packages.
CASL specifications extend multi-sorted first order logic
with partial functions, subsorting and free types, i.e., types
whose elements are restricted to be generated by the corre-
sponding constructors and whose distinct constructor terms
must denote different elements. Currently, CASL is re-
garded as the de facto standard language for algebraic spec-
ification. It is integrated into HETS along with many of its
expansions, acting, as suggested in Fig. 1, as the glue lan-
guage inside the HETS network of logics.

2.3. Alloy

ALLOY [6] is based on a single sorted relational lan-
guage extended with a transitive closure operator.

Roughly speaking, an ALLOY specification is divided
into declarations, of both relations and signatures, and sen-
tences. Signatures will be called kinds from now on to dis-
tinguish them from signatures in an institution. Actually,
kinds are nothing more than unary relations whose purpose
is to restrict other relations. This is in line with ALLOY’s
motto which regards everything as a relation. Additionally,
kinds may be given parents by an annotation with the key-
word extends, establishing the obvious inclusion relation.
When two kinds are in different subtrees (i.e. one is not a
descendant of the other) they are supposed to be mutually
disjoint. Finally, kinds may be of type

1. Abstract, i.e., included in the union of its descendants

2. Some, i.e., required to have at least one element

3. One, i.e., exactly with one element

The ALLOY analyser checks an assertion against a spec-
ification by seeking for counter-examples within bounded
domains.

One of non standard features in ALLOY is the support for
transitive closure over arbitrary expressions. This cannot be
directly encoded into CASL, since it is not an higher or-
der logic construction. Consequently, in the sequel only the
transitive closure of atomic relations will be considered2.
This is done, however, without loss of generality: for an ar-
bitrary expression we just declare an extra binary relation
and state that the latter is equal to the former.

3. Alloy as an institution

The purpose of this section is to define an institution
A = (SignA, SenA,ModA, |=A) corresponding to the
logical system underlying ALLOY. We proceed as follows:

Signatures. Objects (S,m,R,X) are tuples composed by:

• A family of sets containing kinds and indexed by a
type, S = {St}t∈{All,Abs,Som,One}. SAll represents
all kinds, SAbs the abstract ones, SSom the non-empty
ones, and SOne the kinds containing exactly one ele-
ment.

• m : SAll → SAll is a function that returns the ascen-
dent of a given kind, i.e., m(s) = s′ means that s′

is the parent of s. Top level kinds are considered the
ascendents of themselves, and therefore, m takes the
form of a forest structure.

• A family of relational symbols R = {Rw}w∈(SAll)+ .

• A set of singleton relational symbols X , representing
the variables declared on quantified expressions. De-
spite being the same as the elements in SOne, once
encoded they must be treated differently.

Morphisms (S,m,R,X)
ϕ→ (S′,m′, R′, X ′) are triples

ϕ = (ϕs, ϕr, ϕv) where:

• ϕs : S → S′ is a function such that, for any St ∈ S,
if s ∈ St then ϕs(s) ∈ S′t, and the following diagram
commutes:

S

S

m

S′

S′
m′

ϕs

ϕs

• ϕr is a family of functions such that,
ϕr = {ϕw : Rw → R′ϕs(w)}w∈(SAll)+

• ϕv : X → X ′ is a function.
2To the corresponding encoding an extra relation is added for each bi-

nary one as the transitive closure of the latter.

Sentences. Given a signature Σ = (SΣ,mΣ, RΣ, XΣ) ∈
|SignA|, the set of expressions Exp(Σ) is the smallest set
containing

p, p ∈ (SΣ)All ∪ (RΣ)w ∪XΣ

ˆr, r ∈ (RΣ)w and |w| = 2
∼ e, e ∈ Exp(Σ)
e −> e′, e, e′ ∈ Exp(Σ)
e� e′, such that e, e′ ∈ Exp(Σ),

|e| = |e′|, and � ∈ {+,−,&}
e . e′, such that e, e′ ∈ Exp(Σ),

and |e|+ |e′| > 2

with |e| standing for the length of expression e.

Finally, the set of sentences, SenA(Σ), is the smallest one
containing:

e in e′ e, e′ ∈ Exp(Σ), and |e| = |e′|
not ρ ρ ∈ SenA(Σ)
ρ implies ρ′ ρ, ρ′ ∈ SenA(Σ)
(all x : e) ρ e ∈ Exp(Σ), ρ ∈ SenA(Σ′), |e| = 1

where Σ′ = (SΣ,mΣ, RΣ, XΣ + {x}).

Models. For each (S,m,R,X) ∈ |SignA|, a model M ∈
|ModA((S,m,R,X))| has

• A carrier set |M |

• An unary relation Ms ⊆ |M |, for each s ∈ SAll

• A relation Mr ⊆ Ms1 × · · · × Msn , for each r ∈
Rs1···sn

• A singleton relation, Mx ⊆ |M |, for each x ∈ X

and satisfies the following axioms, for all s, s′ ∈ SAll,

1. Ms ⊆Mm(s)

2. if s ∈ SSom, then Ms 6= ∅

3. if s ∈ SOne, then #Ms = 1

4. if s ∈ SAbs, then Ms ⊆
⋃

q∈m◦(s)Mq

5. if s, s′ are not related by the transitive closure of m,
then Ms ∩Ms′ ⊆ ∅

Evaluation of expressions is as follows:
M∼ e = (Me)

◦

Me + e′ = Me +Me′

Me− e′ = Me −Me′

Me & e′ = Me ∩Me′

Me . e′ = Me . Me′

Me −> e′ = Me ×Me′

Mˆr =
⋃

n∈N Mrn , such that Mr0 = Mr

and Mrn+1 = (Mr . Mrn)

Each signature morphism, Σ
ϕ→ Σ′ ∈ |SignA|, is mapped

to ModA(ϕ) : ModA(Σ′) → ModA(Σ), giving, for each
M ′ ∈ |ModA(Σ′)|, its ϕ-reduct, M ′ �ϕ ∈ |ModA(Σ)|
defined by:

|(M ′�ϕ)| = |M ′|
(M ′�ϕ)s = M ′ϕs(s), for any s ∈ (SΣ)All

(M ′�ϕ)r = M ′ϕr(r), for any r ∈ (RΣ)w
(M ′�ϕ)x = M ′ϕv(x), for any x ∈ XΣ

Satisfaction. Given a Σ-model M , for Σ ∈ |SignA|,
the satisfaction relation is defined for each Σ-sentence as
follows:

M |=AΣ e in e′ iff Me ⊆Me′

M |=AΣ not ρ iff M 6|=AΣ ρ
M |=AΣ ρ implies ρ′ iff M |=AΣ ρ′

whenever M |=AΣ ρ
M |=AΣ (all x : e)ρ iff M ′ |=AΣ′ (x in e) implies ρ

for all model expansions M ′ of M , by the corresponding
inclusion morphism.

Lemma 1. A = (SignA, SenA,ModA, |=A), as defined
above, is an institution.

Proof. See the accompanying technical report [9].

�

4. From Alloy to CASL

This section characterises a conservative comorphism
from ALLOY to the institution of presentations over CASL.
The latter needs to be an institution of presentations to deal
appropriately with ALLOY implicit rules over kinds and the
transitive closure. Both features will be encoded into Γ,
thereby restricting the class of available models. An object
in the category SignCASL of CASL signatures is a tuple
(S, TF, PF, P) where S is the set of sorts, TF a family
of function symbols indexed by their arity, PF a family of
partial function symbols indexed by their arity, and finally
P is a family of relational symbols also indexed by their
arity. Then, we define

Signature functor. For any signature (S,m,R,X) ∈
|SignA|, Φ gives a tuple ((S′, TF, PF, P),Γ) where

S′ = {U,Nat}
TF = ({0}Nat, {suc}Nat→Nat, {x|x ∈ X}→U)
PF = ∅
P = ({s|s ∈ SAll}U , {r|r ∈ Rs1,...,sn}U1,...,Un

,
{tr|r ∈ Rs1,s2}Nat,U,U)

and Γ is the smallest set containing the following axioms:

1. {(∀u : U) s(u)⇒ s′(u)|s ∈ S, s′ = m(s)}

2. {(∃u : U) s(u)|s ∈ (SOne ∪ SSom)}

3. {(∀u, u′ : U) (s(u) ∧ s(u′))⇒ u = u′|s ∈ SOne}

4. {(∀u : U) s(u)⇒ (
∨

s′∈m◦(s) s
′(u))|s ∈ SAbs}

5. {(¬(∃u : U) s(u)∧ s′(u))|s, s′ ∈ SAll ∧¬m+(s, s′)}
where m+ is the transitive closure of m

6. {(∀u1, · · · , un : U) r(u1, · · · , un)
⇒

∧n
i=1 si(ui)|r ∈ Rs1,...,sn}

7. { free type Nat ::= (0 | suc(Nat)) }

8. {(∀u, v : U) tr(0, u, v)⇔ r(u, v) ∧
(∀n : Nat) tr(suc(n), u, v)⇔ (∃x : U) tr(0, u, x) ∧
tr(n, x, v)|r ∈ Rs1,s2}

Sentence transformation. Given any signature
Σ ∈ |SignA|, where Σ = (SΣ,mΣ, RΣ, XΣ), func-
tion αΣ : SenA(Σ)→ SenCASL(Φ(Σ)) is defined by

αΣ(e in e′) = (∀V : U) ηV (e)⇒ ηV (e′),
such that V = (v1, . . . , vn),
and n = |e|

αΣ(not ρ) = ¬αΣ(ρ)
αΣ(ρ implies ρ′) = αΣ(ρ) implies αΣ(ρ′)
αΣ((all x : e) ρ) = (∀x : U)

αΣ′ ((x in e) implies ρ)

Where η is defined as follows :

ηV (p) = p(V), p ∈ ((SΣ)All ∪ (RΣ)w)
ηV (x) = x = V, x ∈ XΣ

ηV (ˆr) = (∃n : Nat) tr(n, V)
ηV (∼ e) = ηV ′(e), such that V ′ = (vn, . . . , v1)

for V = (v1, . . . , vn)
ηV (e+ e′) = ηV (e) ∨ ηV (e′)
ηV (e - e′) = ηV (e) ∧ ¬ηV (e′)
ηV (e& e′) = ηV (e) ∧ ηV (e′)
ηV (e −> e′) = ηV ′(e) ∧ ηV ′′(e′), such that

V ′ = (v1, . . . , vn) is a prefix of V
where n = |e|, and
V ′′ = (vn+1, . . . , vm) is a suffix of V
where (m− n) = |e′|

ηV (e . e′) = (∃y : U)η(V ′,y)(e) ∧ η(y,V ′′)(e
′),

such that V ′ = (v1, . . . , vn) is a prefix
of V where n+ 1 = |e|, and
V ′′ = (vn+1, . . . , vm) is a suffix of V ,
where (m− n+ 1) = |e′|

Model transformation. Given a signature
Σ ∈ |SignA|, where Σ = (SΣ,mΣ, RΣ, XΣ), func-
tion βΣ : ModCASL(Φ(Σ))→ModA(Σ) is defined as

|βΣ(M)| = |MU |, where |MU | is the carrier of U in M
βΣ(M)p = Mp, for p ∈ ((SΣ)All ∪ (RΣ)w ∪XΣ)

Lemma 2. The construction (Φ, α, β) detailed in this sec-
tion defines a conservative comorphism from the institution
A, corresponding to ALLOY underlying logical system, to
a presentation CASL of CASL.

Proof. See the accompanying technical report [9].

�

5. Alloy and Hets at work

5.1. An introduction to DCR graphs

DCR graphs, short for Distributed Condition Response
Graphs, were introduced in [5] to specify workflow mod-
els in an implicit way through a number of conditions. A
functional style and precise semantics make DCR graphs
excellent candidates for modelling critical workflows.

Formally, a DCR graph consists of a set E of events and
two relations condition, response ⊆ E × E which re-
strict control flow, regarded as a sequence of event execu-
tions. In detail,

• (e, e′) ∈ condition iff e′ can only be executed after
e;

• (e, e′) ∈ response iff whenever e is executed the con-
trol flow may only come to terminal configuration after
the execution of e′.

A mark, or execution state, in a DCR G, is a tuple
(Ex,Res) ∈ P(E) × P(E), where Ex is the set of the
events that already occurred and Res the set of events
scheduled for execution. A valid execution step in G is a
triple (M,M ′, e) where M,M ′ ∈ P(E)×P(E) and e ∈ E
such that, for M = (Ex,Res),M ′ = (Ex′, Res′),

1. {e′|condition(e′, e)} ⊆ Ex

2. Ex′ = Ex ∪ {e}

3. Res′ = (Res\{e}) ∪ {e′|response(e, e′)}

Mukkamala [13] suggests a translation of DCR graphs
to PROMELA so that the specification of workflows can be
checked with the SPIN model checker. The encoding, how-
ever, is not easy. For example, the language has only arrays
as a basic data structure, thus events and relations have to
be encoded as arrays, relations becoming two-dimensional
bit arrays. Moreover, SPIN based verification is limited by
possible state explosion.

An encoding into ALLOY, on the other hand, seems an
attractive alternative. Not only it comes out rather straight-
forwardly, due to the original relational definition of DCR

graphs, but also the ALLOY analyser is eager to avoid po-
tential state space explosion by restricting itself to bounded
domains. This restricts, of course, the scope of what can
be verified in a specification. However, as illustrated below,
ALLOY plugged into the HETS family offers a really inter-
esting alternative to the verification of DCR based work-
flows.

5.2. DCR graphs in Alloy

DCR graphs are encoded in ALLOY as follows,

abstract sig Event {
condition : set Event,
response : set Event

}

sig Mark {
executed : set Event,
toBeExecuted : set Event,
action : set Mark −> set Event

}

fact {
all m,m’ : Mark, e : Event |

(m −> m’ −> e) in action <=>

(condition.e in m.executed and

m’.executed = m.executed + e and
m’.toBeExecuted = (m.toBeExecuted - e) + e.response)

}

This includes the declaration of two kinds (sig), one
of events and another to define markings. Relations are
declared in an object oriented style as fields of kinds
(objects). For example, what the declaration of action

entails is, as expected, a subset of the product Mark×Mark
× Event. Finally note how the invariant for valid execution
steps is directly captured in the fact above. Other DCR
properties can be directly checked in ALLOY. For example,

all m,m’ : Mark, e : Event |
(m −> m’ −> e) in action and e in m’.toBeExecuted

implies e in e.response

formalises the claim that ‘after executing an event e, if in the
next mark e is still to be executed, then response contains
a reflexive pair at e”.

Of course, this property cannot be proved in ALLOY
for an arbitrary domain. To do it another member of
the ’family has to be called, provided ALLOY is already
plugged into the wider HETS network. Applying the
comorphism defined in the previous section we get the
following encoding of the property in CASL:

forall m : U . Mark(m) =>

forall m’ : U . Mark(m’) =>

forall e : U . Event(e) =>

(forall v1,v2,v3 : U . v1 = m /\ v2 = m’ /\ v3 = e =>

action(v1,v2,v3)) /\
(forall v : U . v = e => exists y : U . y = m’ /\

toBeExecuted(y,v)) =>

(forall v : U . v = e => exists y : U . y = e /\ response(y,v))

which, after a few reduction steps simplifies to

forall m,m’,e : U .
Mark(m) /\ Mark(m’) /\ Event(e) =>

(action(m,m’,e) /\ toBeExecuted(m’,e) => response(e,e))

which is can then be verified by the SPASS theorem prover.

5.3. A medical workflow

Consider now the following example of a DCR graph
representing a medical workflow as introduced in [13]. It
concerns the administration of a medicine to a patient. The
workflow diagram obtained from the ALLOY analyser is de-
picted in Fig. 2.

As mentioned in the introduction, ALLOY may give a
false sense of security as the scope set for a simulation
session may not be wide enough to produce a counter
example. To illustrate this situation consider the following
property in which we assume transRun = ˆ(action.Event).
In English it reads: “starting with an empty mark (∅, ∅),
if by continuously executing events a mark is reached
where SecEffect was executed and no further events are to
be executed, then this mark has no executed events”. In
ALLOY,

all m,m’ : Mark |
(no m.(executed+toBeExecuted) and
m’ in m.transRun and

SecEffect in m’.executed and

no m’.toBeExecuted)
implies no m’.executed

An analysis of the workflow diagram shows the property
is false. Actually, if the left side of the implication is true,
it may happen that the right hand side is false: the former
says there are executed events while the latter contradicts it.
The ALLOY analyser, however, is unable to find a counter-
example within a scope below 15 (recall the default scope is
3). The problem of this, is that with a scope smaller than 15
(10 marks + 5 events) the ALLOY analyser can never reach
a mark where the left side of the implication is true, and
therefore no counter examples are found.

On the other hand, after encoding into CASL and call-
ing another prover in the HETS network, such as VAMPIRE,
the result pops out in a few seconds. A HETS session for

Figure 2. A medical workflow diagram

this example is reproduced in Fig. 3. In general the ALLOY
analyser has difficulties when dealing with similar proper-
ties and diagrams with just two more events. In some cases
the search, if successful, may exceed 30 minutes.

We have checked several other properties3 using both
ALLOY, with scope 15, and an automatic theorem prover
available in HETS, namely SPASS and EPROVER, through
the encoding proposed in this paper. The experimental re-
sults seem to confirm the advantages of the hybrid approach
proposed here, with automatic theorem provers taking the
job whenever ALLOY is unable to proceed or requires an ex-
cessive processing time. In some cases, namely when deal-
ing with encodings of ALLOY models that make heavy use
of transitive closure, another member of the HETS network
— an interactive theorem prover — has to be called.

6. Discussion and conclusions

As suggested by its title, this paper is an attempt to give
ALLOY a family. I.e., a first step towards a methodology for
modelling and validating software designs in which ALLOY
is integrated into a network of logical tools rather than con-
nected, once and for all, to a single one.

Going generic has, as one could expect, a price to be
paid. In our case, this was the development of a proper
formalisation of the ALLOY logical system as an insti-
tution, together with a conservative comorphism from it
into an institution of presentations over CASL as an en-
try point in the HETS network. These two results are the
main technical contributions of this paper. They are stated
in lemmas 1 and 2, whose proofs were omitted due to
strict page limits but can be found in [9], available from
github.com/nevrenato/IRI FMI Annex.

3Full models at github.com/nevrenato/IRI FMI Annex.

Adopting an institutional framework brings to scene a
notational burden the working software engineer may find
hard to bear. It should be noted, however, this is done
once and for all: our results, once proved, provide a sim-
ple method to translate ALLOY models into CASL specifi-
cations. In applications there is no need to recall how the
underlying construction was formulated.

On the other hand, following this path has a number of
advantages. First of all this is a sound way to integrate sys-
tems based on a formal relationship between their underly-
ing logical systems. This contrasts with ad hoc combina-
tions, often attractive at first sight but not always consistent,
which abound in less careful approaches to Software En-
gineering. A second advantage concerns the possibility of,
once an institutional representation for ALLOY is obtained,
combining it with other logical systems through a number
of techniques available in the institutional framework. For
example, in [10] we have developed a systematic way to
build a hybrid logic layer on top of an arbitrary institution.
Hybrid logic [2] adds to the modal description of transition
structures the ability to refer to specific states, which makes
it a suitable language to describe properties of individual
states in any sort of structured transition system. A typical
application of this method discussed in [8] is the design of
reconfigurable systems, where each state corresponds to an
execution configuration and transitions are labelled by trig-
gers. The institutional rendering of ALLOY makes possible,
the hybridisation of its models and their integration in the
development cycle of reconfigurable software.

A second motivation was defining a tool chain for the
validation of workflows represented by DCR graphs. Re-
sults obtained so far suggest that ALLOY, suitably inte-
grated into a wider network of theorem provers, provides
an intuitive alternative to the PROMELA formalisation pre-
sented in [13]. More experimental work, however, is neces-

Figure 3. A HETS session.

sary to substantiate this claim on general grounds.

Acknowledgements: This work is funded by ERDF - Euro-
pean Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness)
and by National Funds through FCT, the Portuguese Foun-
dation for Science and Technology, project FCOMP-01-
0124-FEDER-028923, and by CIDMA - Universidade de
Aveiro, project FCOMP-01-0124-FEDER-022690.

References

[1] K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Inte-
grating model checking and theorem proving for relational
reasoning. In 7th Inter. Seminar on Relational Methods in
Computer Science (RelMiCS 2003), volume 3015 of Lecture
Notes in Computer Science, pages 21–33, 2003.

[2] T. Brauner. Hybrid Logic and its Proof-Theory. Applied
Logic Series. Springer, 2010.

[3] R. Diaconescu. Isntitution-independent Model Theory. Se-
ries in Universal Logic. Birkhauser, 2008.

[4] J. A. Goguen and R. M. Burstall. Institutions: abstract model
theory for specification and programming. J. ACM, 39:95–
146, January 1992.

[5] T. T. Hildebrandt and R. R. Mukkamala. Declarative event-
based workflow as distributed dynamic condition response
graphs. In Proc. 3rd PLACES Workshop, volume 69 of
EPTCS, pages 59–73, 2010.

[6] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[7] N. Macedo and A. Cunha. Automatic unbounded ver-
ification of Alloy specifications with Prover9. CoRR,
abs/1209.5773, 2012.

[8] A. Madeira, J. M. Faria, M. A. Martins, and L. S. Barbosa.
Hybrid specification of reactive systems: An institutional
approach. In G. Barthe, A. Pardo, and G. Schneider, editors,
Proc. 9th International Conference on Software Engineering
and Formal Methods (SEFM 2011), volume 7041 of Lecture
Notes in Computer Science, pages 269–285. Springer, 2011.

[9] A. Madeira, R. Neves, M. A. Martins, and L. S. Barbosa.
Giving ALLOY a family - the proofs. TR-HASLab:01:2013,
HASLab - INESC TEC and Universidade do Minho, 2013.

[10] M. A. Martins, A. Madeira, R. Diaconescu, and L. S. Bar-
bosa. Hybridization of institutions. In A. Corradini, B. Klin,
and C. Cirstea, editors, 4th Inter. Conf. on Algebra and Coal-
gebra in Computer Science, volume 6859 of Lecture Notes
in Computer Science, pages 283–297. Springer, 2011.

[11] T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tar-
lecki. CASL: The common algebraic specification language:
Semantics and proof theory. Computing and Informatics,
22:285–321, 2003.

[12] T. Mossakowski, C. Maeder, and K. Lüttich. The heteroge-
neous tool set (Hets). In Proc. 4th Intern. Verification Work-
shop (VERIFY), volume 259 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2007.

[13] R. R. Mukkamala. A Formal Model For Declarative Work-
flows : Dynamic Condition Response Graphs. PhD thesis,
IT University of Copenhagen, 2012.

[14] M. Ulbrich, U. Geilmann, A. A. E. Ghazi, and M. Taghdiri.
A proof assistant for alloy specifications. In C. Flanagan
and B. König, editors, Proc. 18th Inter. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), volume 7214 of Lecture Notes in Computer Sci-
ence, pages 422–436. Springer, 2012.

