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Abstract—Constrained optimization is one of the popular
research areas since constraints are usually present in most real
world optimization problems. The purpose of this work is to
develop a gradient free constrained global optimization method-
ology to solve this type of problems. In the methodology proposed,
the single objective constrained optimization problem is solved
using a Multi-Objective Evolutionary Algorithm (MOEA) by
considering two objectives simultaneously, the original objective
function and a measure of constraint violation. The MOEA
incorporates a penalty function where the penalty parameter
is estimated adaptively. The use of penalty function method
will enable to further improve the current best solution by
decreasing the level of constraint violation, which is made using
a gradient free local search method. The performance of the
proposed methodology was assessed on a set of benchmark
test problems. The results obtained allowed to conclude that
the present approach is competitive when compared with other
methods available.

I. Introduction andMotivation

THERE are many optimization problems, manly in the

field of economics, engineering, decision science and

operations research, where the objective function and/or some

constraint functions can be formulated as non-convex and non-

linear functions. Application examples include areas like trans-

portation, signal processing, production planning, robotics,

project management, structural optimization, and VLSI design

etc. [1], [2], [3] to name a few. The main motivation of the

present work is to develop an efficient methodology to obtain

a global solution for these type of optimization problems.

The mathematical formulation of the problem is:

minimize f (x),

subject to g(x) ≥ 0,

x ∈ Ω

(1)

where f : Rn → R and g : Rn → Rm are nonlinear continuous

functions defined on the search space Ω ⊆ Rn. Usually, the

search space Ω is defined as Ω = {x ∈ Rn : −∞ < l ≤ x ≤

u < ∞}. Problems with equality constraints, h(x) = 0, are

reformulated into the above form using a couple of inequality

constraints h(x)+γ ≥ 0 and −h(x)+γ ≥ 0, where γ represents

a positive small tolerance (0 < γ ≪ 1). The set F = {x ∈ Ω :

g(x) ≥ 0} defines the feasible region. Since, it is not assumed

that the objective and constraint functions are convex, many

global and local solutions can exist in the set F.

Initially, evolutionary algorithms (EAs) were designed to

solve global unconstrained optimization problems, after being

extended to handle constraints [4], [5], [6], [7]. One of the

most popular and simple class of methods to solve globally

non-convex constrained optimization problems are based on

penalty functions [4], [8]. In these methods, the penalty

function is defined combining a measure of constraint violation

with the objective function.

A penalty function method works by increasing the fitness

value of the infeasible solutions proportionally to their level

of constraint violation. Some of the penalty function based

evolutionary research works are available in [9], [10], [11].

One of the drawbacks of the penalty function method is that,

it needs a proper estimation of penalty parameter to handle the

constraints efficiently, throughout the iterative process. If the

penalty parameter is too large, an arbitrary feasible solution

can be returned. On the other hand, if the parameter is too

small, more emphasis is given to the objective function and,

thus, the constraints can be neglected, which can result in an

infeasible solution. These drawback of the penalty function

approach motivated researchers to develop alternative methods

to deal with constraints in global optimization problems.

Deb in [7] proposed a penalty-parameter-less EA approach

which efficiently handles constraints using the following cri-

teria: (i) if there are two feasible solutions, the one with

less objective function value is selected, (ii) if there are two

solutions, of which one feasible and the other infeasible, the

feasible solution is selected, (iii) if there are two infeasible so-

lutions, the one with less constraint violation is selected. Some

other penalty parameter less constraint handling approaches
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are available in [5], [12], [13], [14], [15].

In addition to the penalty function approach, another idea,

that received the attention among evolutionary research com-

munity, was to convert the constrained optimization problem

into a bi-objective optimization problem. In the bi-objective

approach two objectives are simultaneously minimized, one is

a measure of the constraint violation and the other is the orig-

inal objective function. Coello in [16] proposed an approach

in which all constraints are treated as objectives. Herein,

instead to solve a bi-objective problem, the method solved

a multi-objective problem. However, this idea is not always

appropriate in real world scenarios, since the complexity of the

problem increases considerably with the number of constraints.

Some other studies in bi-objective based constraint handling

approaches can be found in [6], [17], [18], [19], [20], [21].

Although evolutionary based optimization methods have

proven their efficiency in a large number of problems, they

have the weakness of exact convergence. To overcome this

issue some hybrid evolutionary algorithms have been pro-

posed. Usually, EAs are coupled with other optimization

techniques or heuristic methods. To perform this hybridization

both the techniques are integrated intelligently to retain the

good properties of both techniques. Some hybrid evolutionary

methods are available in [22], [23], [24], [25], [26].

Recently in [27], to solve non-convex and non-linear con-

strained global optimization using an evolutionary technique,

the constrained optimization problem was converted into a bi-

objective problem:

min
x∈Ω

( f (x), θ(x) ) ,

where θ is a non-negative continuous aggregate constraint

violation function defined by

θ(x) =

m
∑

j=0

∣

∣

∣min{g j(x), 0}
∣

∣

∣ .

In this approach, a penalty function method is applied to im-

prove the performance EA. Herein, at pre-defined generations

of EA, a penalty function is solved by a local approach. First,

a cubic polynomial is fitted (using a nonlinear least square

formulation) to a set of non-dominated solutions, that were

obtained between the measure of the constraint violation and

the objective function - the Pareto-optimal front. The slope

of this polynomial is used as an approximation to the penalty

parameter. Thereafter, given as initial point the best current

point (the lesser infeasible point in the Pareto front), the

penalty function is solved by a local gradient based approach.

Finally, the minimizer of the penalty function is used to replace

the worst point in the current Pareto front. This process is

repeated until convergence is achieved.

The structure of the present paper is as follows; in section

II the details of the proposed hybrid evolutionary coupled with

a pattern search method is described, hereafter called EA-PS

method. In section III, we report the results of the numerical

experiments with a set of benchmark problems. Finally, the

paper finishes with conclusions and future work in section IV.

II. Proposed Hybrid Evolutionary and Pattern Search

Method

In this section the hybrid methodology (EA-PS) used to

compute the global solution of problem (1) is described. The

hybridization is made by coupling an evolutionary algorithm

with a gradient free pattern search method to optimize the

penalized function.

A. No Gradient Information

In [27] the local search uses gradient information to op-

timize the penalty function. However, often the gradient in-

formation may not be available. For instance, in black-box

applications the gradient information of constraints and the ob-

jective function are not available and are forbidden to be used.

In such situations the herein proposed derivative free local

search integrated into the EA, target these type of optimization

problems. Therefore in this work, constrained optimization

problems are solved using a derivative free method.

B. Pattern Search for Bound Constrained Problems

Direct search methods for unconstrained optimization prob-

lems generate a sequence of points {xk} in Rn with non-

increasing objective function values. At each iteration, the

objective function is computed at a finite set of trial points

to try to find one that yields a lower objective function than

the current point. Direct search methods works without using

any gradient information and additionally not any derivative

approximation is made. Pattern search are one of the popular

direct methods in which trial points are computed follow an

exact calculations. In the present work we apply a pattern

search method, more specifically the Hooke and Jeeves pattern

search method [28], to minimize the penalty function:

P(x) = f (x) + r θ(x), (2)

where r ≥ 0 is the penalty parameter.

In this section we describe details related to our implemen-

tation of this method, in particular, the scheme used to keep

the iterates in the set Ω and the termination criteria. In the

Hooke-Jeeves method two types of movements are performed

iteratively, namely exploratory moves and heuristic pattern

moves. In the exploratory move a coordinate search with a step

length of ∆k around the current point xk is performed. Herein,

one coordinated at time of the current point xk is modified

along of positive and negative coordinate directions and the

best point (a point with a lower function value) is recorded.

The point is updated to the best position at each variable

modification. The iteration is considered successful if a best

point x̂k+1 is found at the end of all variables modifications.

Otherwise it is an unsuccessful iteration and the step length

∆k is reduced.

When the iteration is successful the current and the best

points are used to make a pattern move. The x̂k+1 − xk entity

defines a promising direction and the pattern search move

jump from the best point x̂k+1 along that direction and it

carries out an exploratory move around the new trial point
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x̂k+1 + (x̂k+1 − xk) instead of the current best x̂k+1. Thereafter,

in case of a successful exploratory move, a new best point

is accepted. Otherwise, in case of an unsuccessful exploratory

move, the pattern search move is not accepted, and the method

reduces to an exploratory move around xk+1 ← x̂k+1.

In order to maintain the iterates in set Ω in the Hooke

Jeeves pattern search method, the iterates are projected into

this set component-wise, (xk)i = max(li,min ((xk)i , ui)) for

i = 1, · · · , n. To deal with variables with different magnitude,

the Hooke Jeeves algorithm implementation uses a step length

vector ∆. Given an initial guess x0 ∈ Ω, the vector ∆0 is

initialized component-wise as follows:

(∆0)i =

{

ρ (x0)i , if (x0)i , 0,

ρ, otherwise
(3)

where ρ is a positive parameter. Let α > 1 be a step reduction

factor. The stopping criterion of the pattern search method is

defined by ‖∆k‖ < ǫ, where ǫ > 0 is the termination parameter.

The Hooke-Jeeves pattern search method is described in

Algorithm 1.

C. Hybrid EA-PS method

Flowchart 1 describes the steps of the proposed approach.

First, a single objective constrained optimization is converted

into a bi-objective problem. Here, Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) [29] is used to solve the

bi-objective problem and for obtaining the Pareto-optimal

front. After every 5 generations, non-dominated solutions are

identified and a cubic polynomial is fitted to those non-

dominated solutions. The slope of this cubic polynomial is

used to estimate the penalty parameter of (2). Taking the

best current point as the initial guess, the penalty function

(2) is minimized using the Hooke and Jeeves pattern search

method. The optimal solution of the penalty function is used

to replace the worst point in the current Pareto-optimal front.

This process is repeated until two consecutive optimal local

searched solutions of the penalty functions are less than small

positive tolerance and the hybrid EA-PS stops.

III. Simulation Results and Discussions

To validate the proposed EA-PS, a set of six problems is

used, out of which five are shown in the Appendix A. One of

these problems is shown below.

The C programming is used for the evolutionary algorithm

and Hooke and Jeeves is implemented in Matlab. The simu-

lations are performed on a PC with 2.1 GHz Intel core i3 and

2 GB of RAM. The parameters have been set as follows after

an empirical study:

Population size = 16n,

SBX probability= 0.9,

SBX index = 10,

Polynomial mutation probability = 1/n, and

Mutation index = 100.

The hybrid algorithm is allowed to runs 50 times with

different initial populations. First, EA-PS is tested in a two

Algorithm 1 Hooke Jeeves Pattern Search Method

Input: Choose a starting point x0 ∈ Ω and initialize ∆0

using (3). Choose the step reduction factor α > 1 and

the termination parameter ǫ. Set k = 0.

1: while ‖∆k‖ ≥ ǫ do

2: [Exploratory move (output: x̂k+1)]

3: set minP = P(xk) and f lag = 0

4: set x̂k+1 = xk

5: for i = 1 to n do

6: set (x̂k+1)i = max(li,min((xk)i + (∆k)i, ui))

7: if P(x̂k+1) < minP then

8: set minP = P(x̂k+1)

9: else

10: set (x̂k+1)i = max(li,min((xk)i − (∆k)i, ui))

11: if P(x̂k+1) < minP then

12: set minP = P(x̂k+1)

13: else

14: set (x̂k+1)i = (xk)i

15: end if

16: end if

17: end for

18: set xk+1 = x̂k+1.

19: if P(xk+1) < P(xk) then

20: set f lag = 1 (Exploratory move was successful.)

21: end if

22: (If it makes some improvements, pursue that direction.)

23: [Pattern search move (output: xk+1)]

24: set x̂k = xk

25: while P(x̂k+1) < P(x̂k) do

26: set xk+1 = x̂k+1 and minP = P(xk+1)

27: (Perform the exploratory move around the point x̂
p

k
.)

28: set x̂
p

k
= max(l,min(x̂k+1 + (x̂k+1 − x̂k), u))

29: set x̂k = x̂k+1

30: for i = 1 to n do

31: set (x̂
p

k+1
)i = max(li,min((x̃

p

k
)i + (∆k)i, ui))

32: if P(x̂
p

k+1
) < minP then

33: set minP = P(x̂
p

k+1
)

34: else

35: (x̂
p

k+1
)i = max(li,min((x̂

p

k
)i − (∆k)i, ui))

36: if P(x̂
p

k+1
) < minP then

37: set minP = P(x̂
p

k+1
)

38: else

39: set (x̂
p

k+1
)i = (x̂

p

k
)i

40: end if

41: end if

42: end for

43: set x̂k+1 = x̂
p

k+1

44: end while

45: if f lag , 1 then

46: set ∆k+1 = ∆k/α

47: else

48: set ∆k+1 = ∆k

49: end if

50: set k = k + 1

51: end while
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Fig. 1. Flowchart of the proposed EA-PS method.

variable problem. Thereafter, the efficiency of the algorithm

is tested with the remaining five problems. When difference

between the absolute values of two consecutive local searched

solutions are less than 10−4 we terminated the algorithm.

A. Problem P1

First, the following two-variable problem is tested. The

problem has two inequality constraints. The constraints are

non-linear and non-convex and the first one is active at the

optimum [27]:

minimize f (x) = (x1 − 3)2 + (x2 − 2)2,

subject to g1(x) ≡ 4.84 − (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0,

g2(x) ≡ x2
1
+ (x2 − 2.5)2 − 4.84 ≥ 0,

0 ≤ x1 ≤ 6,

0 ≤ x2 ≤ 6.

Table I shows the total number of function evaluations (FE),

which is the sum of the number of function evaluations taken

by EA and the Hooke-Jeeves method, and the corresponding

objective function values (f). We compare the results with the

previous hybrid method [27] that uses gradient information.

The Table I clearly shows that our best number of function

evaluation is better than the previous reported one. However,

in terms of median and worst of the number of function

evaluations the previous method outperform the EA-PS, which

is expected since EA-PS does not use gradient information.

But the results are comparable. We can conclude that EA-PS

method performs successfully.

TABLE I
Function evaluations, FE (NSGA-II and local search) and optimal solution,

by the Earlier approach and EA-PS in 50 runs.

Best Median Worst

Single FE 677 (600 + 77) 733 (600 + 133) 999 (900 + 99)

Penalty [27] f 0.627380 0.627379 0.627379

EA-PS FE 672 (600 + 72) 1,342 (1,200 + 142) 3,332 (3,000 + 332)

f 0.627485 0.627424 0.628774

Table II shows similar results for other five problems. In

Table II we compare our results with the results obtained

by three previously developed evolutionary algorithms based

constraint handling techniques. This comparison is again made

in terms of total number of function evaluations and the

corresponding objective values.

Table III reports similar results obtained by seven pro-

posed approaches namely HM: Homomorphous Mapping,

SR: Stochastic Ranking, ASCHEA: Adaptive Segregational

Constraint Handling Evolutionary, SMES: Simple Multi-

membered Evolution Strategy, FSA: Filter Simulated Anneal-

ing, ATMES: Adaptive Trade-off Model Evolution Strategy,

and NM-PSO: Nelder-Mead Particle Swarm Optimization

[30], [31], [32], [33], [34], [35], [36]. Based on the results

we may conclude that EA-PS has a good performance. EA-

PS is able to reach the global optimal solution with the desired

accuracy, beside using any gradient information, except with

problems TP4 and TP8.
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TABLE II
Comparison of function evaluations (FE) needed by the EA-PS and three existing earlier approaches [7], [27], [37]. Function evaluations by NSGA-II and

local search have been shown separately.

Problem Penalty Parameter Less Approach [7] Single Penalty Approach [27]

Best Median Worst Best Median Worst

TP3 (FE) 65,000 65,000 65,000 2,427 4,676 13,762

NSGA-II+Local 2,000+427 3,000+1,676 11,000+2,762

( f ∗) −15 −15 −13 −15 −15 −12

TP4 (FE) 320,080 320,080 320,080 31,367 54,946 100,420

NSGA-II+Local 14,400+16,967 24,600+30,346 45,600+54,820

( f ∗) 7,060.221 7,220.026 10,230.834 7,078.625 7,049.943 7,940.678

TP5 (FE) 350,070 350,070 350,070 6,332 15,538 38,942

NSGA-II+Local 3,920+2,412 9,520+6,018 25,200+13,742

( f ∗) 680.634 680.642 680.651 680.630 680.634 680.876

TP6 (FE) 250,000 250,000 250,000 1,120 2,016 6,880

NSGA-II+Local 800+320 1,200+816 3,600 + 3,280

( f ∗) −30, 665.537 −30, 665.535 −29, 846.654 −30, 665.539 −30, 665.539 −30, 649, 552

TP8 (FE) 350,000 350,000 350,000 4,880 23,071 83,059

NSGA-II+Local 3,200+1,680 8,000+5,071 44,800+38,259

( f ∗) 24.372 24.409 25.075 24.308 25.651 31.254

Problem Adaptive Normalization Approach [37] EA-PS

Best Median Worst Best Median Worst

TP3 (FE) 2,333 2, 856 11, 843 2,959 5,752 32,292

NSGA-II+Local 2,000+ 333 2,000 + 856 8,000 + 3,843 2,000 + 959 3,000 + 1,702 25,000 + 7,292

( f ∗) -12 −15 −15 -14.968 −14.993 −14.992

TP4 (FE) 2, 705 27, 235 1, 07, 886 10,064 37,724 1,24,128

NSGA-II+Local 1,200 + 1,505 7,200 + 20,035 45,600 + 62286 9,600 + 464 36,000 + 1,724 87,600 + 36,528

( f ∗) 7,049.588 7,059.576 7,065.348 8, 200.0697 7078.2195 7117.6887

TP5 (FE) 1,961 11,729 42,617 3,222 6,682 13,379

NSGA-II+Local 1,120 + 841 7,280 + 4,449 27,440 + 15,177 2,800 + 422 5,040 + 1,582 8,960 + 4,419

( f ∗) 680.635 680.631 680.646 680.6387 681.6397 681.0874

TP6 (FE) 1,123 4,183 13,631 8,396 12,679 18,327

NSGA-II+Local 800 + 323 2,400 +1,783 8,400 + 5,231 8,000 + 396 12,000 + 679 16,000 + 2,327

( f ∗) −30, 665.539 −30, 665.539 −30, 665.539 -30665.530 −30665.540 −30665.540

TP8 (FE) 7,780 68,977 3,54,934 8,712 85,324 1,85,273

NSGA-II+Local 5,600 + 2,180 41,600 + 27,377 1,600+1673 7,200+1,512 64,000+21,324 1,28,000 + 57,273

( f ∗) 24.565 24.306 24.306 25.889 27.309 31.146
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IV. Conclusions

A hybrid evolutionary approach coupled with a pattern

search method for global nonlinear constrained optimization is

proposed. The advantage of the this method lies on the fact that

the local search does not need any gradient information, which

may not be available in many instances. In the proposed hybrid

method, an evolutionary algorithm is used to generate the

Pareto-optimal front. At every five generations, a penalty func-

tion is minimized, in which its penalty parameter is estimated

by the slope of a cubic polynomial that is fitted to the points

defined by the Pareto-front. To minimize the penalty function,

Hooke and Jeeves pattern search method is used, taking as

initial point the best current point in the Pareto-optimal set (the

point which has the lesser constraint violation measure). The

minimizer of the penalty function is used to replace the worst

point in the Pareto-front. The proposed method is tested with a

set of six constrained optimization problems very well known

in literature. In the test, the robustness of the hybrid algorithm

is tested using different initial populations. The total number

of function evaluations is compared with three evolutionary

based constraint handling methods. In addition to that the

best, average and the worst objective function value is also

compared with seven previously developed methods. Results

show that the proposed hybrid method is efficient. Since most

practical problems are expected to be non-differentiable or

discrete, evolutionary algorithms are better off in hybridizing

with gradient-free methods, such as Hooke-Jeeves method.

The results here are promising and the combined method needs

further testing and analysis. In future we plan to apply it to

solve problems having equality constraints and some real life

constrained optimization problems.

Appendix

A. Problem TP3

min. f (x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i
+ 5
∑13

i=5 xi,

s.t. g1(x) ≡ 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,

g2(x) ≡ 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,

g3(x) ≡ 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,

g4(x) ≡ −8x1 + x10 ≤ 0,

g5(x) ≡ −8x2 + x11 ≤ 0,

g6(x) ≡ −8x3 + x12 ≤ 0,

g7(x) ≡ −2x4 − x5 + x10 ≤ 0,

g8(x) ≡ −2x6 − x7 + x11 ≤ 0,

g9(x) ≡ −2x8 − x9 + x12 ≤ 0,

where 0 ≤ xi ≤ 1 for i = 1, . . . , 9, 0 ≤ xi ≤ 100 for

i = 10, 11, 12, and 0 ≤ x13 ≤ 1. The minimum point is

x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)T, where six constraints

(g1, g2, g3, g7, g8 and g9) are active and f (x∗) = −15.

B. Problem TP4

The problem is given as follows:

min. f (x) = x1 + x2 + x3,

s.t. g1(x) ≡ −1 + 0.0025(x4 + x6) ≤ 0,

g2(x) ≡ −1 + 0.0025(x5 + x7 − x4) ≤ 0,

g3(x) ≡ −1 + 0.01(x8 − x5) ≤ 0,

g4(x) ≡ −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,

g5(x) ≡ −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,

g6(x) ≡ −x3x8 + 1250000+ x3x5 − 2500x5 ≤ 0,

100 ≤ x1 ≤ 10000, 1000 ≤ (x2, x3) ≤ 10000,

10 ≤ (x4, . . . , x8) ≤ 1000.

The minimum point lies at x∗ = (579.307, 1359.971,

5109.971, 182.018, 295.601, 217.982, 286.417, 395.601)T with

a function value f ∗ = 7049.280. All constraints are active at

this point.

C. Problem TP5

The problem is given as follows:

min. f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3
+ 3(x4 − 11)2

+10x6
5
+ 7x2

6
+ x4

7
− 4x6x7 − 10x6 − 8x7,

s.t. g1(x) ≡ −127 + 2x2
1
+ 3x4

2
+ x3 + 4x2

4
+ 5x5 ≤ 0,

g2(x) ≡ −282 + 7x1 + 3x2 + 10x3
2
+ x4 − x5 ≤ 0,

g3(x) ≡ −196 + 23x1 + x2
2
+ 6x2

6
− 8x7 ≤ 0,

g4(x) ≡ 4x2
1
+ x2

2
− 3x1x2 + 2x2

3
+ 5x6 − 11x7 ≤ 0,

−10 ≤ xi ≤ 10, i = 1, . . . , 7.

The minimum is at x∗ = (2.330, 1.951,−0.478,−4.366,

− 0.624, 1.038, 1.594)T with f = 680.630. Constraints g1 and

g4 are active at the minimum point.

D. Problem TP6

The problem is given as follows:

min. f (x) = 5.3578547x2
3
+ 0.8356891x1x5 + 37.293239x1

−40792.141,

s.t. g1(x) ≡ 85.334407+ 0.0056858x2x5 + 0.0006262x1x4

−0.0022053x3x5 − 92 ≤ 0,

g2(x) ≡ −85.334407− 0.0056858x2x5 − 0.0006262x1x4

+0.0022053x3x5 ≤ 0,

g3(x) ≡ 80.51249+ 0.0071317x2x5 + 0.0029955x1x2

+0.0021813x2
3
− 110 ≤ 0,

g4(x) ≡ −80.51249− 0.0071317x2x5 − 0.0029955x1x2

−0.0021813x2
3
+ 90 ≤ 0,

g5(x) ≡ 9.300961+ 0.0047026x3x5 + 0.0012547x1x3

+0.0019085x3x4 − 25 ≤ 0,

g6(x) ≡ −9.300961− 0.0047026x3x5 − 0.0012547x1x3

−0.0019085x3x4 + 20 ≤ 0,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ (x3, x4, x5) ≤ 45.

The minimum is at x∗ = (78, 33, 29.995, 45, 36.776)T with a

function value f ∗ = −30665.539. Constraints g1 and g6 are

active at the minimum point.
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E. Problem TP8

The problem is given as follows:

min. f (x) = x2
1
+ x2

2
+ x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7
+ 7(x8 − 11)2

+2(x9 − 10)2 + (x10 − 7)2 + 45,

s.t.

g1(x) ≡ −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,

g2(x) ≡ 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(x) ≡ −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,

g4(x) ≡ 3(x1 − 2)2 + 4(x2 − 3)2 + 2x3
2
− 7x4 − 120 ≤ 0,

g5(x) ≡ 5x2
1
+ 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,

g6(x) ≡ x2
1
+ 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,

g7(x) ≡ 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5
− x6 − 30 ≤ 0,

g8(x) ≡ −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

−10 ≤ xi ≤ 10, i = 1, . . . , 10.

The minimum is at x∗ = (2.172, 2.364, 8.774, 5.096, 0.991,

1.431, 1.322, 9.829, 8.280, 8.376)T and function value 24.306.
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