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Abstract 

Heritage masonry buildings are particularly vulnerable to earthquakes because they are 

deteriorated and damaged, they were built with materials with low resistance, they are heavy 

and the connections between the various structural components are often insufficient. The 

present work details a simplified method of seismic assessment of large span masonry structures 

that was applied to a database of forty-four monuments in Italy, Portugal and Spain, providing 

lower bound formulas for different simplified geometrical indexes. Subsequently, the proposed 

thresholds are validated with data from the 2010-2011 Canterbury earthquakes, which includes 

forty-eight stone and clay brick masonry churches. Finally, fragility curves that can be used to 

estimate the damage as a function of the peak ground acceleration (PGA) are also provided.  
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1 Introduction 

A disaster is an event caused by nature or man that causes great physical damage, 

destruction or loss of life, or a drastic change in the natural environment. Danger is the level of 

threat to life, property or environment, but it is important to understand that danger is not 

correlated to damage, and that disasters are the result of poor risk management. 

Risk management involves, first, the perception and communication of risk to society. It 

is then essential to have proper tools for assessment and diagnosis, but also to define a set of 

possible solutions, and their costs, to implement a risk mitigation strategy. Over the past 30 

years, economic losses due to disasters have increased tenfold, while earthquakes caused 80,000 

deaths / year in the last decade, see Figure 1. Studies indicate that investment in mitigation 

provides society an average of four times the amount invested [FEMA, 2011]. In addition to 

savings to society, the US Federal Treasury can redirect an average of 3.65 times the money 

spent on mitigation resulting from disaster relief costs and tax losses avoided. This result was 

published  in December 2005 in a report prepared by the Multi-hazard Mitigation Council of the 

National Institute of Building Sciences, called “Natural Hazard Mitigation Saves” [MMC, 

2005]. The report was the culmination of a 3-year, Congressionally-mandated independent 

study. Another interesting example is given by the World Bank [2010] and United Nations 

where a study about retrofitting of buildings to increase earthquake resiliency provides a cost-

benefit ratio of up to eight, for a discount rate of 5%. Sanghi [2010], on the presentation of the 

same study, provides a benefit-cost ratio of 4.6 for earthquakes, based in Istanbul, and stressed 

the obvious fact that the world population exposed to earthquakes will rise dramatically from 

2000 to 2050. As mitigation of the seismic risk in the existing built heritage implies a large 



investment, it is necessary to set priorities and consider an extended period of time to get 

communities physically, socially and economically resilient. 

Recognizing that it is not possible to accept a full loss but it is also impossible to ensure 

the absence of any damage when an extreme event occurs, it is important to be prepared for 

disasters and for subsequent retrieval. Many existing buildings are highly vulnerable because 

they are deteriorated and damaged, they were built with materials with low resistance, they are 

heavy and the connections between the various structural components are often insufficient. The 

required approach is known, being necessary to: (i) characterize the existing built heritage; 

(ii) perform simplified analysis at the territorial level to estimate the vulnerability and risk of 

this heritage; (iii) in cases identified with higher risk in the previous step, perform detailed 

analyzes to confirm the vulnerability and risk, (iv) define a plan with long-term intervention 

measures and their costs, taking into account the observed risk, iv) implement the plan, with 

periodic reviews of time and costs, considering the economic constraints and the costs incurred 

in actual interventions. It is also true that a strategy like this requires political and societal 

commitment to become reality.  

As masonry is one of the most used materials of the built heritage, this paper aims at 

providing a simple and fast screening tool at territorial level for a first safety assessment of 

masonry structures. In case of urban areas, and in spite of their diversity, a common matrix can 

usually be established for the seismic areas, more structural than technological. This built 

heritage consists typically of low height buildings (up to three stories), moderate spans 

(maximum of four or five meters) and large thickness of the walls (less than 1/7 of the height) 

[Giuffrè, 1995]. This paper is however focused in churches, given: (a) their intrinsic greater 

structural vulnerability due to open plan, greater height to width ratio and, often, the presence of 

thrusting horizontal structures from vaulted ceilings and timber roofs; (b) the ample geometry 

survey drawings and documentation available. Moreover, in earthquake prone countries, 

churches and monuments have already been subjected to earthquakes, and sometimes survived 

them, meaning that these structures are historical testimonies and they represent full-scale 

testing data. This fact permits to discuss and, generally, to accept that these ancient structures 



have been adjusted to local seismicity. The simplified method of analysis for large span heritage 

buildings introduced in [Lourenco and Roque, 2006] is applied here to a database of forty-four 

monuments in Italy, Portugal and Spain, providing lower bound formulas for six different 

simplified geometrical indexes. The first three indices are associated with in-plane effects and 

they mainly refer to the ideal case of ordinary masonry structures, whose seismic response is 

related to the model of equivalent frame behavior. In particular, the accuracy of a given index 

depends on the conditions of structural regularity (typical approach for reinforced concrete 

structures and steel structures): regularity in plan and height, rigid decks, small number of 

floors, good quality of the links (connections, curbs or chains, lintels). The result of these 

indices, however, highly depends on the box-like behavior of the building and hence on the 

possibility to actually achieve a global response. This condition is very difficult to achieve in 

masonry structures such as monumental churches, for which the non-linearity and geometrical 

out-of-plane effects (local out-of-plane mechanisms) frequently prevail. These effects are partly 

addressed here through the out-of-plane indices. 

In addition, the 2010-2011 Canterbury (New Zealand) earthquakes allow validation of 

the proposed formulations with a real seismic input and observed damage, and also to define 

fragility curves that can be used to estimate the damage as a function of the peak ground 

acceleration (PGA).  

2 Database of results for masonry large span structures 

Structural analysis of masonry structures encompasses several different approaches and 

a comprehensive review is given in [Lourenço, 2002], with a recent update for seismic analysis 

in [Marques and Lourenço, 2011] for masonry with box behavior and in [Lourenço et al., 2011] 

for masonry without box behavior. Depending on the level of accuracy and the simplicity 

desired, usually the following representations are possible: (a) micro-modeling, where  the 

geometry of units and joints is directly considered and the constitutive laws are obtained 

experimentally; (b) macro-modeling, where units and joints are smeared out in the continuum 



and the constitutive laws are obtained experimentally; (c) homogenization, where the micro-

structure is handled mathematically in terms of geometry and material data to obtain a smeared 

continuum model; (d) structural component models, where constitutive laws of  structural 

elements are directly provided in terms of internal forces such as shear force or bending moment 

(and related generalized displacements), instead of stresses and strains, see Figure 2.   

The approach proposed in [Lourenco and Roque, 2006] aims at a much simpler, faster 

and lower cost procedure, being based on a simplified geometric approach for immediate 

screening of the large number of buildings at risk. The objectives are to compare simple 

geometrical data taking into account local seismic hazard (PGA), and to evaluate the possibility 

to adopt simple indexes (a numerical indicator deduced from observations and used as an 

indicator of a process or condition) related to geometrical data as a first (very fast) screening 

technique to define priority for further studies with respect to seismic vulnerability. These fast 

techniques are to be used without actually visiting the buildings, encompassing therefore a low 

accuracy. It is expected that the geometrical indexes could detect cases of serious risk and can 

define priority of studies in countries/locations without recent earthquakes.  

The usage of simplified methods of analysis usually requires that the structure is regular and 

symmetric, that floors act as rigid diaphragms and that the dominant collapse mode is in-plane 

shear failure of the walls [Meli, 1998], as also discussed above. In general, these last two 

conditions are not met by ancient masonry structures, meaning that simplified methods should 

not be understood as a quantitative safety assessment but merely as a simple indicator of 

possible seismic performance of a building. The following simplified methods of analysis and 

corresponding indexes are considered as in-plane indexes (Index 1, Plan area ratio; Index 2, 

Area to weight ratio, Index 3, Base shear ratio) and out-of-plane indexes (Index 4, Slenderness 

ratio of columns; Index 5, Thickness to height ratio of columns; Index 6: Thickness to height 

ratio of perimeter walls). All indexes refer only to geometrical parameters. Factors that are not 

taken into account (albeit qualitatively) are the type of construction, the quality of the walls and 

the connections, and the presence of pushing structures. To address these factors would require 

in situ investigations, which are needed for the study of an individual building but can hardly be 



used for a first screening technique at territorial level, or for post-earthquake disasters, given the 

quantity of damage and the fact that access to the inside of many buildings is impossible due to 

safety reasons. 

These methods can be considered as an operator that manipulates the geometric values 

of the structural walls and columns and produces a scalar value. As the methods measure 

different quantities, their application to a large sample of buildings contributes to further 

enlightenment of their application. As stated above, a more rigorous assessment of the actual 

safety conditions of a building is necessary to have quantitative values and to define remedial 

measures, if necessary.  

 

2.1 In-plane indexes 

The simplest index to assess the safety of ancient constructions is the ratio between the 

area of the earthquake resistant walls in each main direction (transversal x and longitudinal y, 

with respect to the church nave) and the total plan area of the buildings. According to Eurocode 

8 [Eurocode 8, 2004], walls should only be considered as earthquake resistant if the thickness is 

larger than 0.35 m, and the ratio between height and thickness is smaller than nine. The first 

index 𝛾1,𝑖 reads: 

 

𝛾1,𝑖 = 𝐴𝑤𝑖
𝑆�    [−] Equation 1 

 

where 𝐴𝑤𝑖 is the area of the earthquake resistant walls in direction “i” and 𝑆 is the total area of 

the building. 

The non-dimensional index 𝛾1,𝑖 is the simplest one, being associated with the base shear 

strength. Special attention is required when using this index as it ignores the slenderness ratio of 

the walls and the mass of the construction. Eurocode 8 [Eurocode 8, 2004] recommends values 

up to 5-6% for regular structures with rigid floor diaphragms. In cases of high seismicity, a 

minimum value of 10% seems to be recommended for historical masonry buildings [Meli, 



1998]. For simplicity sake, high seismicity cases can be assumed as those where the design 

ground acceleration for rock-like soils is larger than 0.20g. 

Index 2 provides the ratio between the area of the earthquake resistant walls in each 

main direction (again, transversal x and longitudinal y) and the total weight of the construction, 

reading: 

 

𝛾2,𝑖 = 𝐴𝑤𝑖
𝐺�    [𝐿2𝐹−1] Equation 2 

 

where 𝐴𝑤𝑖 is the plan area of earthquake resistant walls in the direction “i” and 𝐺 is the quasi-

permanent vertical action. This index is associated with the horizontal cross-section of the 

building, per unit of weight. Therefore, the height (i.e. the mass) of the building is taken into 

account, but a major disadvantage is that the index is not non-dimensional, meaning that it must 

be analyzed for fixed units. In cases of high seismicity, a minimum value of 1.2 m2/MN seems 

to be recommended for historical masonry buildings [Meli, 1998], but on the basis of a more 

recent work [Lourenco and Roque, 2006], a minimum value of 2.5 m2/MN is adopted for high 

seismicity zones. 

Finally, the base shear ratio provides a safety value with respect to the shear safety of 

the construction. The total base shear for seismic loading (𝑉𝑆𝑑,𝑏𝑎𝑠𝑒 = 𝐹𝐸) can be estimated from 

an analysis with horizontal static loading equivalent to the seismic action (𝐹𝐸 = 𝛽𝐺), where 𝛽 is 

an equivalent seismic static coefficient related to the design ground acceleration. It is 

recommended to use the value of PGA for 𝛽 in historical masonry structures. The true value of 

β in a finer analysis depends on the failure mechanism. For local mechanisms a correction that 

takes into account the participation mass and the height of the center of gravity of the macro-

block, together with a behavior coefficient, should be applied. The shear strength of the 

structure (𝑉𝑅𝑑,𝑏𝑎𝑠𝑒 = 𝐹𝑅𝑑) can be estimated from the contribution of all earthquake resistant 

walls 𝐹𝑅𝑑,𝑖 = ∑𝐴𝑤𝑖𝑓𝑣𝑘, where, according to Eurocode 6 [Eurocode 6, 2006], 𝑓𝑣𝑘 = 𝑓𝑣𝑘0 +

0.4𝜎𝑑. Here, 𝑓𝑣𝑘0 is the cohesion, which can be assumed equal to a low value or zero in the 



absence of more information, 𝜎𝑑 is the design value of the normal stress and 0.4 represents the 

tangent of a constant friction angle, 𝜙, equal to 22º. The new index 𝛾3 reads: 

 

𝛾3,𝑖 = 𝐹𝑅𝑑,𝑖
𝐹𝐸�    [−] 

Equation 3 

 

If zero cohesion is assumed (𝑓𝑣𝑘0 = 0), 𝛾3,𝑖 is independent from the building height, 

reading: 

 

𝛾3,𝑖 = 𝑉𝑅𝑑,𝑖
𝑉𝑠𝑑� = 𝐴𝑤𝑖

𝐴𝑤� × tan𝜙
𝛽�  

Equation 4 

 

But for a non-zero cohesion, which is most relevant for low height buildings, 𝛾3,𝑖 reads: 

 

𝛾3,𝑖 = 𝑉𝑅𝑑,𝑖
𝑉𝑠𝑑� = 𝐴𝑤𝑖

𝐴𝑤� × [tan𝜙 + 𝑓𝑣𝑘0/(𝛾 × ℎ)]/𝛽 Equation 5 
 

where 𝐴𝑤𝑖 is the area of earthquake resistant walls in direction “i”, 𝐴𝑤 is the total area of 

earthquake resistant walls, ℎ is the (average) height of the building, 𝛾 is the volumetric masonry 

weight, 𝜙 is the friction angle of masonry walls and 𝛽 is an equivalent static seismic coefficient. 

Here, it is assumed that the normal stress in the walls is only due to their self-weight, i.e. 

𝜎𝑑 = 𝛾 × ℎ, which is on the safe side and is a very reasonable approximation for historical 

masonry building, usually made of thick walls. 

Equation 5 must be used rather carefully, since the contribution of the cohesion can be 

very large. Here, a cohesion value of 0.05 N/mm2 will be assumed. This non-dimensional index 

considers the seismicity of the zone, which is taken into account in the factor 𝛽. The building 

will be safer with increasing ratio (earthquake resistant walls/weight), i.e. larger relation 

(𝐴𝑤/𝐴𝑤𝑖) and lower heights. For this type of buildings and action, a minimum value of 𝛾3,𝑖 

equal to one seems acceptable. 



The adopted indexes measure rather different quantities and cannot be directly 

compared. Index 2 is dimensional, which means that it should be used with particular care. 

Index 1 and index 2 are independent of the design ground acceleration. Therefore, assuming that 

the buildings must have identical safety, these indexes should be larger with increasing 

seismicity. For indexes 1 and 2, the seismicity is taken into account by considering that the 

threshold value given above is valid for a PGA/g value of 0.25 and a linear variation with 

PGA/g is assumed, as illustrated in Figure 3, see also Eurocode 8 [Eurocode 8, 2004]. In 

contrast, index 3 should be constant in different seismic zones, as it considers the effect of 

seismicity. This index format is close to the traditional safety approach adopted for structural 

design, being the threshold value equal to 1, see Figure 3. 

2.2 Out-of-plane indexes 

Besides the three indexes given above, other key indexes related with structural 

performance were computed for the database under analysis. It is well known that traditional 

masonry structures usually fail out-of-plane as observed in earthquakes, e.g. [Doglioni et al., 

1994], and shaking table tests, e.g. [Mendes and Lourenço, 2010]. Limit analysis using macro-

blocks can be carried out to assess the seismic performance of partial collapses that occur due to 

seismic action, generally, with the loss of equilibrium of rigid bodies., see e.g. [Lourenço et al., 

2011], but this detailed analysis is outside the scope of the present article. 

Instead, three simple geometric ratios concerning the structural out-of-plane behavior of 

columns and walls were adopted, when applicable. Slenderness ratio 𝛾4, and thickness to height 

ratio of the columns 𝛾5, as well as thickness to height ratio of the perimeter walls 𝛾6, were 

analyzed, reading: 

𝛾4 = ℎ𝑐𝑜𝑙
�𝐼 𝐴� ��   

Equation 6 

 

𝛾5 = 𝑑𝑐𝑜𝑙
ℎ𝑐𝑜𝑙�  

Equation 7 

 



 𝛾6 = 𝑡𝑤𝑎𝑙𝑙
ℎ𝑤𝑎𝑙𝑙�  

Equation 8 

 

where ℎ𝑐𝑜𝑙 is the free height of the columns, 𝐼 and 𝐴 are the inertia and the cross section area of 

the columns, respectively, 𝑑𝑐𝑜𝑙 is the (equivalent) diameter of the columns and 𝑡𝑤𝑎𝑙𝑙 and ℎ𝑤𝑎𝑙𝑙 

are the thickness and the (average) height of the perimeter walls, respectively. All of the out-of-

plane indexes are dimensionless and do not consider the local seismicity. If identical safety 

factors for the monuments are assumed, these indexes should vary with increasing seismicity, 

namely index 4 should decrease and index 5 and index 6 should increase. 

2.3 Investigation for European churches (in-plane indexes) 

The above mentioned simplified methods were applied to a sample of forty-four 

Portuguese, Spanish and Italian monuments, selected according to the seismic zonation and to 

the availability of information, with the following objectives: (a) Validate the hypothesis of an 

empirical relation of the ancient builders, able to define an expeditious preliminary assessment 

of the seismic vulnerability of historical masonry buildings; (b) Validate the hypothesis of an 

empirical relation between architectural-structural characteristics of historical masonry 

buildings and seismicity; (c) Prioritize further investigations and possible remedial measures for 

the selected sample; (d) Extrapolate, from the results of the sample, the seismic vulnerability of 

ancient masonry buildings in those countries. 

For application of the simplified analysis methods, it was assumed that all the masonry 

materials were similar, the volumetric weight of masonry was 20 KN/m3 and the weight of the 

roofs was equal to 2.0 KN/m3. The results are graphically represented as a function of the local 

parameter PGA/g in Figure 4, along with the threshold above mentioned for each of the indexes, 

namely 𝛾1,𝑖 ≤ 10%, 𝛾2,𝑖 ≤ 2.5 𝑚2/𝑀𝑁 and 𝛾3,𝑖 ≤ 1.0 for a PGA/g of 0.25.  

In terms of average values, index 1 presents lower values in the transversal direction (x) 

of the church nave, which is expected due to churches’ geometry, although Italian indexes are 

quite similar in both directions. Index 1 does not show a clear variation with seismicity, even if 

it tends to grow roughly with increasing seismicity. When a comparison is made using the 



proposed threshold, 25% of the churches violate it in the x direction and 9% violate it in the y 

direction, as expected, since the same criterion is used in both directions. This outcome means 

that the cases that might require further investigation are due to a deficient earthquake resistance 

mainly along the transversal direction of the church nave. 

Index 2, although being inversely proportional to the height of the buildings, presents a 

situation similar to index 1. Again, the calculated values do not show a visible trend with 

respect to seismicity, however a slightly tendency associates the increase of index 2 with PGA 

increase. On average, index 2 also presents lower values in the x direction, justified again by 

churches’ geometry. As a result, this index is violated by 39% and 30% of the monuments in x 

and y directions, respectively. This index is mainly violated by Spanish churches. 

Index 3 shows an alarming decreasing variation with the PGA parameter. For moderate 

and high seismicity areas (PGA greater than 0.15g), index 3 is violated by all churches, in both 

directions. In spite of that, also for low seismicity areas, index 3 is not entirely fulfilled. As 

happened with both previous indexes, index 3 presents lower values in the x direction. 

Individually, 41% and 32% of the churches in the x and y directions violate index 3, 

respectively, which denotes a deficient earthquake resistance along both the transversal and 

longitudinal directions. Unexpectedly, this index assumes minimum values slightly lower than 

0.15, in both directions, which is most likely associated with high vulnerable structures, 

probably unable to properly face an earthquake. This index is mainly violated by Italian 

churches. 

In order to perform a preliminary screening and to prioritize deeper studies in historical 

masonry structures in earthquake prone countries, a possible approach is to identify the 

monuments for which all in-plane indexes are violated, at least in one direction. An alternative 

approach would be to  consider the simultaneous violation of index 3 and another one of the two 

remaining indexes (1 or 2). Both criteria show that deficient resistance to earthquake loading is 

not only associated with high seismicity, as for most of the Italian churches identified above, but 

it can also happen in moderate seismicity areas, e.g. two Portuguese churches, or even in low 

seismicity areas, such as for the majority of the Spanish churches. Considering the first 



criterion, 18% of the sample requires remedial measures or, at least, deeper investigations. 

However, if the second criterion is used, almost half of the sample (43%) exhibits deficient 

earthquake resistance. 

2.4 Investigation for European monuments (out-of-plane indexes) 

 

The values obtained for the three out-of-plane indexes, are graphically represented in 

Figure 5, for the entire sample, as a function of the local seismicity. Similarly to the in-plane 

indexes, the out-of-plane indexes do not show any clear relationship with seismicity. However, 

for a PGA greater than 0.15g, a possible trend may be established. It can be observed that index 

4 (column’s slenderness) tends to decrease with increasing seismicity and that both index 5 and 

index 6 seem to increase continuously with seismicity. These trends are depicted in Figure 5 by 

dashed lines and can be seen as possible first threshold proposals. 

 

3 The Christchurch (New Zealand) earthquake and the performance 

of local churches  

The recent Christchurch earthquake (CHC) in New Zealand (NZ) has provided valuable 

data to evaluate the proposed empirical thresholds just presented. In order to study the behavior 

of the masonry and heritage buildings in the region affected by the Canterbury sequence of 

earthquakes, an international team of post-graduate students was deployed in CHC soon after 

the 22 February 2011 earthquake with coordination provided by the NZ Natural Hazards 

Research platform. Statistical analysis of the damage data gathered for 48 churches in the region 

is presented here, followed by safety evaluation data on the damage classification registered for 

each church by the NZ authorities. Only the in-plane indexes can be validated as the available 

information is insufficient to validate the out-of-plane indexes. 



3.1 A brief description of the earthquake 

The Canterbury region of New Zealand has been subjected to an intense seismic activity 

that started on 4 September 2010 at 4:35 pm, when a magnitude Mw 7.1 earthquake struck the 

region. The epicenter was located near Greendale, 40 km west of CHC (see Figure 6), at a depth 

of about 10 km. The earthquake produced a ground-surface fault rupture with a length of nearly 

30 km and during the ground motion the measured Peak Ground Acceleration (PGA) reached 

0.82g for the horizontal component and 1.26g for the vertical component [Allen et al., 2010]. 

Almost 1500 aftershocks, with a magnitude of Mw 5.0 or higher, were recorded 

[GeoNet, 2011a] from that day until 22 February 2011, when another major seismic event 

struck the region. At 12:51 pm an aftershock with a magnitude Mw 6.3 and an epicenter located 

only 10 km south-east of the CHC and at a depth of 5 km, was felt throughout the entire 

Canterbury region (see Figure 7). More than 180 people lost their lives and a similar number 

were severely injured, and the PGA reached 1.7g for the horizontal component and 2.2g for the 

vertical component. High magnitude aftershocks did not stop in the February event and on 13 

June 2011 another two large events occurred with magnitudes Mw of 5.7 and 6.3. 

After the February event, the Central Business District (CBD) of CHC was partially 

destroyed and considered unsafe by the Ministry of Civil Defense and Emergency Management, 

which had it cordoned. A large number of heritage buildings, mostly constructed using 

unreinforced clay brick masonry, partially collapsed or were damaged beyond repair [Dizhur et 

al., 2011]. A building safety evaluation process was activated hours after each of the major 

events, as required by NZ legislation when a state of emergency is declared [New Zealand 

Legislation, 2002]. The process overview and guidelines are reported in [New Zealand Society 

for Earthquake Engineering, 2009] and were based on North American procedures developed by 

the Applied Technology Council [Applied Technology Council (ATC), 1989; Applied 

Technology Council (ATC), 1995]. The outcome of the process is the classification, followed 

by the fixing of a placard at the main entrance, of all the buildings into three color tags; with the 

following meaning: green if there were no restrictions to use of the building; yellow if there 

were safety concerns, restricting use of the building to shorts periods of time for essential 



business; red if the building was clearly unsafe and therefore re-entry of the building was 

prohibited. Heritage buildings were also assessed following the process. 

3.2 Church typologies and earthquake performance 

After becoming a colony of the British Empire in 1840, the demand for residential and 

community buildings increased due to the larger number of immigrant population [Russell and 

Ingham, 2010]. The wide availability of wood, and faster construction times, made timber the 

main construction material during this period. The subsequent prosperity led to the use of stone 

and clay brick in the construction of important public buildings such as churches. Therefore, 

these are the three most common materials used for the construction of NZ churches from the 

first quarter of the 20th century (see Figure 8). Almost all churches of the Canterbury region 

built before 1938 were assessed [Hamilton and Hamilton, 2008], leading to a total number of 

112 church buildings contained within the database (see Figure 9). The exceptions were 

churches that were already demolished and churches that were damaged to such an extent that it 

was unsafe to perform the assessment. 

A comprehensive statistical analysis of the churches including the in situ damage 

observed, the structural assessment classification assigned by the local authorities and a 

comparison with the structural classification used in Italy, where a specific survey form for 

churches is used, is given in [Leite et al., 2013]. More than half of the churches (57%) received 

a green placard from the structural inspectors (see Figure 10 a), but given the different dynamic 

characteristics of the three principal church typologies found in the Canterbury region as 

referred to above, the obtained data had to be analyzed for each individual typology. For the 

stone churches, more than half of the churches (52%) were assigned a red placard and only 16% 

of the churches had a green placard assigned (see Figure 10 b). Identically, Figure 10 c) shows 

that a red placard was assigned to 38% of the clay brick churches, while a yellow placard was 

assigned to 42% of those churches. The percentage of red placards assigned for the typology 

was smaller than the percentage assigned for the stone churches, but the sum of the red and 

yellow placards was similar for both masonry typologies and exceeded 80%. Figure 10 d) shows 



that 94% of the timber churches were assigned a green placard. The single red placard assigned 

to this typology was due to non-structural damage, being mainly cracking of plaster. Therefore, 

a general comment on the overall performance of the churches is misleading, as timber churches 

had an excellent seismic performance, while the stone and clay brick churches clearly 

performed unsatisfactorily.  

The masonry used to build the brick churches is of low quality, given the poor quality of 

the mortar used [Dizhur et al., 2011]. Still, there is a three dimensional bond of the wall leaves 

that provides a reasonable interlocking and partly prevents material disintegration, see Figure 

11. Contrarily to the clay brick churches, which were all built with the same technique and 

similar materials, the stone churches vary considerably in composition. There are stone churches 

built with a stone leaf on the outside, a brick leaf inside and poor quality concrete between the 

leafs, see Figure 12, and there are stone churches built entirely with rubble masonry, see Figure 

13, that are rather prone to material disintegration and out-of-plane expulsion . Now it remains 

to be discussed how the observed damage compares with the proposed in-plane thresholds. 

4 Validation thresholds with NZ data and fragility curves 

The assessment carried out after the CHC earthquake included the recording of the 

placard assigned to each church by the NZ National Authorities, a visual inspection (exterior 

and interior when possible and safe) with photographic documentation of the damage, see 

Figure 14, completion of the Italian survey form for damage in cultural heritage – churches 

[Civil Protection Department, 2006] and the geometrical measurement, in plan and height, using 

a distance meter laser. The thickness of the walls was obtained rather easily in the clay brick 

churches because the same type of brick and construction techniques were used. As for the stone 

churches, the heavily damaged churches with large cracks or local collapses allowed an easy 

measurement, while in the less damaged churches the measurement was done at the openings 

(windows and doors). 



The weight, friction angle and cohesion of masonry are also needed in order to compute 

all three indexes. The same weight and friction angle values were considered for both 

typologies, 18 KN/m2 and 22° respectively, while the cohesion value assumed for 𝑓𝑣𝑘0  was 

0.05 N/mm2. Index 3 was also computed considering zero cohesion, recognizing the particularly 

high level of recorded vertical acceleration. 

4.1 Index computation and PGA for each church 

The indexes related to the above mentioned simplified method of analysis were 

computed for all the stone and clay brick churches. The timber church typology was excluded 

since the performance was excellent and the proposed method is not applicable. The objective 

was to validate the proposed thresholds for each of the three in-plane indexes (in-plane area 

ratio, area to weight ratio, base shear ratio) by means of the PGA imposed to each church during 

the 22 February 2011 seismic event, acquired by the National Strong Ground Motion Network’s 

equipment. Given the high number of instruments installed in structures and buildings 

[Canterbury Regional Strong-Motion Network, 2003], it was possible to associate the PGA 

recorded at a given location to a nearby church building. In most cases the distance between the 

church building and the accelerographs was less than 2 km, which ensures the quality of the 

produced data. Considering the latitude and longitude coordinates of each church and the 

horizontal PGA associated to it, it is possible to plot a contour map, see Figure 15, which shows 

that the measured PGAs almost reach 1.4 g for the churches located near the CBD of CHC, and 

then decrease non-uniformly as the churches are located further away. 

Figure 16 presents the scatter plots of each index and the recorded horizontal PGA of 

the 22 February 2011 event for clay brick churches, as well as the proposed thresholds from 

Figure 3. Direction X and Y correspond, respectively, to the transversal and longitudinal 

directions regarding the main nave. The threshold for the first index is excellent, with all the 

green tagged churches above or near the line and only one yellow and one red church 

incorrectly identified. The yellow tagged church had only minor cracking with the exception of 

a large shear crack on one longitudinal wall of the main nave, see Figure 17. There were also 



unstable non structural elements inside that could collapse during a stronger aftershock, which 

led the structural inspector to classify the church as yellow. The red tagged church was also a 

particular case, as it had pinnacles overhanging from the transversal walls, see Figure 18 (a), 

and therefore was unstable even for a low PGA. These elements were severely damaged or 

partially collapsed, see Figure 18 (b), compromising the connection between the transversal and 

longitudinal walls. The thresholds for index 2 and 3 also have acceptable results. The X (or 

transverse) direction provides better results in all three indexes, and this is the critical direction. 

The indexes are consistent even if they are not directly correlated. Index 3 exhibits the worse 

performance if cohesion is taken into consideration, with better results obtained for a zero 

cohesion, see Figure 16 (e) (f) (g) (h). 

The thresholds for the stone churches are not as good as those for the clay brick 

churches, see Figure 19. For all indexes, and in both directions, there are green tagged churches 

subjected to a PGA equal or higher to 1g under the threshold, and red tagged churches subjected 

to a PGA lower than 0.125g above the threshold. The lack of homogeny of the stone churches 

justifies the lack of agreement with the thresholds, as the seismic behavior of these churches is 

rather different. Monumental good quality stone churches can present a seismic behavior similar 

to clay brick churches, while rubble weak stone masonry lacks interlocking and disaggregates, 

even for low PGA values. Redefining the thresholds is not a solution and the stone church 

typology would possibly have to be divided in sub-categories, according to more specific 

construction details. As it will be shown next with the fragility curves, the response of the stone 

churches is rather peculiar. As for the clay brick churches, there is a better agreement with the 

threshold of index 3 if cohesion is not taken into consideration. 

Finally, it is noted that indexes 4 and 5 are related to the columns and these structural 

components rarely exist in the church typologies in New Zealand. These indexes are therefore 

non-applicable. Index 6 is also hardly applicable for these churches as they have rather small 

spans and many buttresses.  



4.2 Fragility curves 

After the above computations, the assessed buildings were sorted following the damage 

index 𝑖𝑑 assigned to each one [Leite et al., 2013] and the PGA that the buildings were subjected 

to on the 22 February event, Figure 20.  The damage Index 𝑖𝑑, is based on the concept of 

macroelements [Doglioni et al., 1994]. These macroelements are subdivisions of the church 

based on architectural elements (such as facade, lateral walls, chapel, bell tower) which have an 

almost independent seismic behaviour at collapse, therefore simplifying the complex structure 

of most churches into several smaller and simpler elements. The concept is based on experience 

acquired from past earthquakes, and was later revised and applied to the inspection forms 

[Angeletti et al., 1997; Lagomarsino and Podestà, 2004] used by the Italian Civil Protection 

[Civil Protection Department, 2006].   

Each data plot of Figure 20 was divided into three shaded areas obtained using the 

average PGA of the group and one standard deviation, iteratively defined to include 70% of the 

data. This clustering provides two empirical fragility curves, being one referred to as slight-

moderate, obtained considering the percentage of green tagged churches within the respective 

shaded areas, while the second one, referred to as extensive-complete, considered the percentage 

of green and yellow tagged churches in the same groups. Figure 21 shows the empirical fragility 

curves for stone and clay brick churches, individually and merged in a single group. The higher 

vulnerability of stone churches is clear, with almost 50% of the churches having important 

damage and over 75% of the churches having some damage for a PGA value of 0.25g. For brick 

similar values of damage occur for about 0.6g.     

 The fragility curves presented are inadequate to estimate the global losses in the case of 

important damage. For this purpose the lognormal distribution was fitted to the observed data 

[Singhal and Kiremidjian, 1996]. Several attempts were made but it was observed that the fit 

was far from perfect, providing unrealistic values for the extensive-complete damage, with low 

percentages of failure at higher PGAs. In addition, for slight-moderate damage, the curves are 

close to 100%, meaning that the use of the three data points can be unreliable. Finally, the 

following procedure was used, adopting the first two points in the fragility curves: (a) a 



lognormal distribution was fitted to the data points; (b) the lognormal cumulative distribution 

function was set to pass in the average quantile; (c) the standard deviation (measured by β) was 

obtained by the least square method for the slight-moderate sample, being the same β used for 

the extensive-complete damage. The fitted fragility curves are plotted in Figure 22, where a β 

equal to 1.3, 0.8 and 1.1, was found respectively for stone masonry, clay brick masonry and the 

entire sample. The higher vulnerability of stone churches is again demonstrated by the fitted 

fragility curves. 

It is now assumed that the values of 5%, 50% and 95% quantiles are the lowest 

expected, the average, and the highest expected damage. For stone churches, it is expected that 

50% receive a yellow tag for a PGA of 0.1g and a red tag for a PGA of 0.35g. For clay brick 

churches, it is expected that 50% receive a yellow tag for a PGA of 0.25g and a red tag for a 

PGA of 0.55g. For stone churches, it is expected that they all receive a yellow tag for a PGA of 

0.65g and a red tag for a PGA of 3g. For clay brick churches, it is expected that they all receive 

a yellow tag for a PGA of 0.95g and a red tag for a PGA of 2.2g. Finally, for stone churches, it 

is expected that yellow tags appear for any seismic event and red tags appear for PGAs over 

0.05g. For clay brick churches, it is expected that yellow tags appear for PGAs over 0.07g and 

red tags appear for PGAs over 0.15g.  

In general for masonry churches, yellow tags are not expected for PGAs lower than 

0.05g and red tags are not expected for PGAs lower than 0.1g. For PGAs of 0.15g and 0.5g, half 

of the churches are expected to be yellow and red tagged, respectively. For PGAs of 1g and 3g, 

all churches are expected to be yellow and red tagged, respectively. 

5 Conclusions 

The present work details the application of a simplified method for seismic assessment 

of large span masonry structures for a database of churches in Italy, Portugal and Spain, with 

further validation to a database gathered in Christchurch, New Zealand, after the 22 February 

2011 earthquake. The first database includes forty-four churches, with in-plane and out-of-plane 



simplified indexes. The second database includes forty-eight stone and clay brick masonry 

churches in New Zealand, to which only the in-plane indexes could be calculated. 

The first index, being the plan area ratio, seems to provide very good results for clay 

brick churches, while the second index, being the area to weight ratio, and the third index, being 

the base shear ratio, also have acceptable results.  The third index exhibits acceptable results 

only if the cohesion of masonry is not taken into consideration. The results for stone churches 

are inadequate, mainly due to their lack of homogeneity, since the database includes both 

monumental good quality masonry churches and rubble weak stone masonry with poor bond.  

The present work also provides fragility curves for masonry churches based on the 

structural classification obtained during the safety evaluation process and the recorded PGA of 

each church. According to the results obtained, in general, yellow tags are not expected for 

PGAs lower than 0.05g and red tags are not expected for PGAs lower than 0.1g. For PGAs of 

0.15g and 0.5g, half of the churches are expected to be yellow and red tagged, respectively. For 

PGAs of 1g and 3g, all churches are expected to be yellow and red tagged, respectively. 
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Figure 1 - Effects of disasters: (a) Economic losses associated with natural disasters [UNISDR, 2009], 
(b) Number of deaths in the last ten years [U.S.G.S., 2012]. 
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Figure 2 - Modeling approaches for masonry: (a) representation of regular staggered or running bond 
masonry; (b) micro-modeling; (c) macro-modeling; (d) homogenization; (e) illustrative structural component 
models, with beam elements or macro-blocks. 
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Figure 3 – Assumed thresholds for indexes 1, 2 and 3 as a function of PGA/g, (a) index 1, (b) index 2, 
(c) index 3 
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(e) 
Figure 4 – Relationship between in-plane indexes and PGA/g, for the entire sample: direction x, (a) index 1, 
(b) index 2, (c) index 3; direction y, (c) index 1, (d) index 2, (e) index 3.  
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Figure 5 - Relationship between out-of-plane indexes and PGA/g, for the entire sample: (a) index 4; (b) index 
5; (c) index 6. 
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(a)  

 
(b)   

Figure 6 - Details of the 4 September 2010 earthquake [GeoNet, 2011b]: (a) earthquake location map; (b) 
isoseismal map. 
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(b)   

Figure 7 - Details of the 22 February 2011 earthquake [GeoNet, 2011b]: (a) earthquake location map; (b) 

isoseismal map. 
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(c) 

Figure 8 - Church typologies found in the Canterbury region: (a) timber church of St Andrews, Merivale, 

1857; (b) stone church of St Peters, Upper Riccarton, 1876; (c) clay brick church of Our Lady Star of the Sea, 

Sumner, 1912. 
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Figure 9 – Surveyed churches in the Canterbury District of New Zealand, (a) location; (b) typologies. 
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(d) 

Figure 10 – (a) placard classification for all the assessed churches; (b) placard classification for the stone 

churches; (c) placard classification for the clay brick churches; (d) placard classification for the timber 

churches. 
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Figure 11 - Detail of the three dimensional bond of the clay brick walls (Church of the Good Shepherd, 

Phillipstown). 



 
Figure 12 – Different masonry leafs in stone churches (Rose Historic Chapel, Christchurch CBD), with stone 
outside and brick inside. 
  



 

(a)  

 

(b)  

Figure 13 – Stone church with rubble masonry walls: (a) Holy Trinity, Lyttelton; (b) St. Cuthberts, Governors 
Bay. 
  



 

(a) 

 

(b) 

Figure 14 – Visual inspections of churches: (a) interior inspection (St. James, stone, Riccarton); (b) exterior 
inspection only due to safety reasons (St. Josephs, stone, Lyttlelton). 
 

 

  



 
Figure 15 - PGA distribution of the assessed churches. 
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(g) 

 
(h) 

Figure 16 – Clay brick churches: (a) index 1: In-plane area ratio in the x (transversal) direction; (b) index 1: 

In-plane area ratio in the y (longitudinal) direction; (c) index 2: Area to weight ratio in the x (transversal) 

direction; (d) index 2: Area to weight ratio in the y (longitudinal) direction; (e) index 3: Base to shear ratio, 

taking cohesion into consideration, in the x (transversal) direction; (f) index 3: Base to shear ratio, taking 

cohesion into consideration, in the y (longitudinal) direction; (g) index 3: Base to shear ratio, considering zero 

cohesion, in the x (transversal) direction; (h) index 3: Base to shear ratio, considering zero cohesion, in the y 

(longitudinal) direction. 
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Figure 17 – Large shear crack in the lateral wall of St. Luke’s Presbyterian church (clay brick, Sefton). 
  



 

 

(a) 

 

(b) 

Figure 18 – Damage in Woodend Methodist church (clay brick, Woodend): (a) pinnacles in each edge of the 
transversal walls of the main nave; (b) detail of a partially collapsed pinnacle with provisional reinforcement. 
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Figure 19 –Stone: (a) index 1: In-plane area ratio in the x (transversal) direction; (b) index 1: In-plane area 

ratio in the y (longitudinal) direction; (c) index 2: Area to weight ratio in the x (transversal) direction; (d) 

index 2: Area to weight ratio in the y (longitudinal) direction; (e) index 3: Base to shear ratio, taking cohesion 

into consideration, in the x (transversal) direction; (f) index 3: Base to shear ratio, taking cohesion into 

consideration, in the y (longitudinal) direction; (g) index 3: Base to shear ratio, considering zero cohesion, in 

the x (transversal) direction; (h) index 3: Base to shear ratio, considering zero cohesion, in the y (longitudinal) 

direction. 
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(a) Clay brick churches 

 

 

 
(b) Stone churches 
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Figure 20 - Relation between damage index and PGA, with data clustering for the fragility curves. 
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Figure 21 – Empirical fragility curves: (a) stone churches; (b) clay brick churches; (c) all churches. 
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Figure 22 – Fragility curves: (a) stone churches; (b) clay brick churches; (c) stone and brick; (d) all churches. 
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