
Simulation of Precipitation in an Aluminum Scandium Alloy using Kinetic Monte

Carlo and DBSCAN Algorithms

Alfredo de Moura

IPC – Institute of Polymers and Composites

University of Minho

Guimarães, Portugal

alfredo.moura@gmail.com

Antonio Esteves

Computer Science and Technology Center

Informatics Department

University of Minho

Braga, Portugal

esteves@di.uminho.pt

Abstract: The present paper reports the precipitation process

of Al3Sc structures in an aluminum scandium alloy, which has

been simulated with a kinetic Monte Carlo (kMC) method. The

kMC implementation is based on the vacancy diffusion

mechanism. To filter the raw data generated by the kMC

simulation, the density-based clustering with noise (DBSCAN)

method was employed. kMC and DBSCAN algorithms were

implemented in the C language. The undertaken simulations

were conducted in the SeARCH cluster at the University of

Minho. The study covers temperatures, concentrations, and

dimensions, ranging from 578K to 873K, 0.25% to 5%, and

50x50x50 to 100x100x100. The Al3Sc precipitation was

successfully simulated at the atomistic scale. DBSCAN revealed

to be a valorous aid to identify the precipitates. The achieved

results are in good agreement with those reported in the

literature, but we went deeper in the evaluation of the

influence of all the simulation and analysis parameters. A

parallel version of the kMC algorithm using OpenMP was

evaluated, which has not proved advantageous compared to

the optimized sequential implementation.

Keywords: Al3Sc precipitation, kinetic Monte Carlo, cluster

analysis, DBSCAN, OpenMP.

I. INTRODUCTION

Precipitate structures play a fundamental role in the
material science due to the capacity of representing strong
obstacles for dislocations movements within the material
structure.

This paper focuses on the elaboration and application of
mechanical statistics knowledge, namely the kinetic Monte
Carlo method, on the study and prediction of the
phenomenon of precipitation in an aluminum alloy. The
alloy under analysis is the aluminum scandium alloy [1]. The
work that will be documented inhere tackles subjects such as
computational mechanics, mechanical statistics (the kinetic
Monte Carlo method), material science, the precipitation
phenomenon, the diffusion phenomenon, what influences
this phenomenon and how to control it and also predict it, as
well as data mining (namely clustering) the vital information.

The outcome of the work undertaken is a set of software
applications that allows us (i) to perform Monte Carlo
simulations with and without OpenMP, (ii) to analyze the
results using the Density Based Spatial Clustering of

Applications with Noise (DBSCAN) technique [2], and (iii)
to compare the simulation results with the classical
nucleation theory. Practical results obtained with these
applications are (i) reports about the simulation, the analysis
of clusters and precipitates with DBSCAN algorithm, and the
application of the classical nucleation theory; (ii) files for 3D
visualization of the simulation (at various stages over time);
and (iii) files for 3D visualization of the precipitates.

The rest of the paper is organized as it follows. Section

II presents the related work. Section III summarizes the

theory behind the simulation of precipitation with kinetic

Monte Carlo. Section IV describes the implementation of

the simulation and cluster analysis. Section V presents the

results of the simulation and analysis. Finally, section VI,

points out some conclusions and areas for future research.

II. RELATED WORK

As computation extends its capacities increasingly, so
has the scientific field of nucleation and precipitation
modeling. The process of modeling nucleation and
precipitation has been achieved at different scales, each one
having its own advantages and disadvantages. It has
increased the number of publications and studies related with
the subject of modeling the precipitation kinetics at the
atomistic level [3]. The main materials subjected to such
studies are alloy materials such as Fe-Cu, Fe-P-C, Fe-Cu-Ni-
Si, Al-Cu. Aluminum alloys have also their share of studies
by which we would like to outline and focus on the Al-Sc
alloy. Binkele and Schmauder have published studies about
precipitation in binary systems using atomistic Monte Carlo
simulations [4] [5]. Clouet and co-workers also published
studies of atomistic MC simulations, not just based on binary
systems but also on ternary systems [6] [7]. MC simulations
have also been used on the study of other phenomena. Grain
growth, abnormal grain growth, thin film deposition and
growth, sintering for nuclear fuel aging, bubble formation in
nuclear fuels are just some of them [8].

III. THEORETICAL BACKGROUND FOR KMC SIMULATION

This section summarizes the theory, as a set of equations,
behind the simulation of Al3Sc precipitation with kinetic
Monte Carlo.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transition rate for an aluminum atom is calculated by
(1), as following:

 exp
AlV

AlV Al

E
v

kT

 (1)

As for (2), it describes the transition rate for a scandium
atom.

 exp
ScV

ScV Sc

E
v

kT

 (2)

The aluminum activation energy is obtained by (3).

1 1 1 1 2 2

2 2 1 1 1 1

AlV spAl AlAl AlAl AlSc AlSc AlAl AlAl

AlSc AlSc AlV AlV ScV ScV

E E n n n

n n n

 (3)

Equations (4), (5), and (6) describe relations among the
number of aluminum-aluminum bonds, number of
aluminum-scandium bonds, number of aluminum-vacancy
bonds and the number of scandium-vacancy bonds,
regarding the first and second neighborhood. For an FCC
structure, the first neighborhood is composed of 12 atoms
(Z1=12) and the second neighborhood is composed of six
atoms (Z2=6).

 1 1

1
1

AlAl AlSc
n n Z (4)

 2 2

2AlAl AlSc
n n Z (5)

 1 1

1AlV ScV
n n Z (6)

The scandium activation energy is obtained by (7).

1 1 1 1 2 2

2 2 1 1 1 1

ScV spSc AlSc AlSc ScSc ScSc AlSc AlSc

ScSc ScSc AlV AlV ScV ScV

E E n n n

n n n

 (7)

Analogously, (8), (9), and (10) describe the number of
scandium-scandium bonds, number of aluminum-scandium
bonds, number of aluminum-vacancy bonds, number of
scandium-vacancy bonds, regarding the first and second
neighborhood.

 1 1

1
1

ScSc AlSc
n n Z (8)

 2 2

2ScSc AlSc
n n Z (9)

 1 1

1AlV ScV
n n Z (10)

As a vacancy site is surrounded by twelve nearest
neighbors: twelve jump rates are calculated. They are the
jump frequency Γ1, Γ2, until, Γ12. In the next step of a kMC
algorithm, one of these 12 frequencies is selected, based on
their values and on a random number: the vacancy will jump
to the position of atom n that verifies (11) (Figure 1).

Equation (12) describes the computation of the real time
of simulation. It is composed by the averaged residence time,
multiplied by a factor that takes into account the difference
between the simulated vacancy concentration and the real
vacancy concentration. Equation (13), which traduces
analytically the graphical data vacancy concentration versus

temperature obtained in [9], calculates the real vacancy
concentration in this kMC algorithm.

Figure 1. Random selection of the jump frequency.

1

1 1

_

n n

i i

i i

random number

 (11)

1

12

1

sim sim

real simV V

MC i MCreal real

i
V V

C C
t t

C C

 (12)

5

7 2 10 3

13 4 16 5

0.005792301654 5.281432466

1.916781695 3.466630615

3.132467044 1.135950846

Vreal
C e T

e T e T

e T e T

(13)

IV. IMPLEMENTATION OF SIMULATION AND ANALYSIS

A. Simulation with Kinetic Monte Carlo

The pseudocode presented in Figure 2 summarizes the
implemented kinetic Monte Carlo algorithm in C language.
This code enhances the steps that are of upper importance in
a kMC simulation: the activation energy calculation, the
vacancy exchange frequency calculation, the step time
calculation, the swap of positions between the vacancy and
the selected first nearest neighbor. Additionally, the code
enhances the step of the data input as well as the step of
saving the simulated data.

The correspondent C code is portable, in the sense that it
can be compiled and run in any system having gcc installed:

Linux, Windows or other operating system. As so, the
submitted simulations were undertaken in the SeARCH
cluster. The SeARCH cluster has the advantage that it can be
used to accelerate simulations in three ways: (i) running
multiple sequential simulations at same time, with different
parameters, (ii) running a parallel simulation on the same
machine using OpenMP, or (iii) running a parallel simulation
on several machines using MPI. The last option was not
implemented since the second alternative was implemented
and did not succeed on accelerating the sequential version.

B. Clustering Analysis with DBSCAN

The main goal of clustering analysis is dividing data into
groups, or clusters, which share certain characteristics.
Clustering is used in the present work to identify Al3Sc
precipitates in a 3D matrix, containing the position of all Sc
atoms, generated by the kMC simulation. The implemented
clustering algorithm is designated by DBSCAN [2]. Other
clustering algorithms, adequate for dealing with large spatial
datasets, are CLARANS, DBCLASD, and OPTICS.

Figure 2. kMC algorithm.

As a member of the density based clustering approaches,
DBSCAN identifies regions of high density agglomerations
in an immense low density surrounding. Its major advantages
are (i) it identifies objects with arbitrary shape and (ii) it does
not require that the number of clusters to be identified is
provided as input, like k-means method does. DBSCAN
introduces the notion of noise, used to label atoms that are in
low dense regions, which revealed to be an adequate feature
in our case. In DBSCAN, for each cluster identified, a point
of that cluster is a core point if it has in its neighborhood
(with a predefined radius eps) a predefined minimum
number of points (minPts). DBSCAN classifies points as
being: (i) core point - a point in the interior of the density
based cluster, (ii) border point - a point that belongs to the
border of the density based cluster, and (iii) noise point - a
point that is neither a core point nor a border point.

The peseudocode included in Figures 3 and 4 presents the
main functionalities of DBSCAN, which was implemented
in C language. The code follows the main sequence of steps
defined by the authors of the algorithm [2].

To save the atoms belonging to each group was used a
data structure that varies dynamically, because the clusters
are of variable and unknown size. The used data structure
was inspired by the Java ArrayList class. After applying
DBSCAN, the clusters that are split in several parts are
merged in a single spatial region per cluster. This is required
because we use PBC and aims to improve the 3D
visualization of clusters [1].

To permit the visualization of the lattice configurations
generated by the kinetic Monte Carlo simulations and by the
clustering analysis, these configurations are saved to files in
a format that can be read and rendered by available
visualization tools. The developed code allows us to save
data in one of the following formats: PDB, XYZ, and VTK.
All these data formats can be visualized with the ParaView
tool, which is an open-source application adequate to the
visualization and analysis of multidimensional data.

Figure 3. Main function of the DBSCAN algorithm.

Figure 4. ExpandCluster function used by the DBSCAN algorithm.

DBSCAN (atoms[], nAtoms, eps, minPts)
 cid = 0 // current cluster ID

 pid = 0 // atom position on the array of atoms

 while (pid < nAtoms) do // cycle over all atoms

 if (atom ‘pid’ was not yet visited) then

 Mark atom ‘pid’ as visited

 Get the size of neighborhood of atom ‘pid’ sizeN

 if (sizeN<minPts) then

 Classify atom ‘pid’ as NOISE

 else

 resBool = ExpandCluster (atoms, nAtoms, visited, N,

 pid, cid, eps, minPts)

 if (resBool = TRUE) then

 Increment cid

 endIf

 endIf

 endIf

 Increment pid

 endWhile

end DBSCAN

ExpandCluster (atoms[], nAtoms, visited[], N[], pid, cid, eps,

 minPts)
 Get the size of neighborhood of atom ‘pid’ sizeN

 Count unclustered neighbors of atom ‘pid’ sizeUnclustered

 if (sizeUnclustered < minPts) then

 Mark atom 'pid' as NOISE

 return FALSE

 else

 Add atom 'pid' to cluster 'cid'

 for (i in [0:sizeN[) do

 nid = neighbor i-th of atom 'pid'

 if (atom 'nid' was not yet visited) then

 Mark atom 'nid' as visited

 Get size of neighborhood of atom ‘nid’ sizeNN

 if (sizeNN >= minPts) then

 for (j in [0:sizeNN[) do

 nnid = neighbor j-th of atom 'nid'

 Add atom 'nnid' to neighborhood of atom 'pid'

 Increment sizeN

 endFor

 endIf

 endIf

 if (atom ‘nid’ is not yet member of any cluster) then

 Add atom 'nid' to cluster 'cid'

 endIf

 endFor

 endIf

 return TRUE

end ExpandCluster

main:
 Read the configuration file

 Compute the coordinates of all FCC lattice sites

 Compute average step time and rejection step time →

→ avgStepTime, rejectStepTime

 Initialize the simulated time → timeSim=0

 while (mcs < TOTAL_MCS) do

 Calculate the activation energy → Eact

 Calculate the vacancy exchange frequency and the real time of

 this MCS → vEF, ts

 ts = ts*tsCorrection // corrected simulated time for

 // current MCS

 if (ts > rejectStepTime) then // step time exceeds a threshold

 // that is considered a

 // computation error

 Increment errorSteps

 ts = avgStepTime // replace computed step time by

 // average step time

 endIf

 timeSim = timeSim + ts // accumulated simulated time

 Select a 1st nearest neighbor for the new position of vacancy

 Swap the vacancy with the selected neighbor

 if (mcs = snapshots[numSnap]) then // if it is a snapshot point

 Save simulation data to VTK | PDB | XYZ file(s)

 snapshotTime[numSnap-1] =timeSim // save snapshot time

 Increment numSnap

 endIf

 Increment mcs

 endWhile

 Write a simulation report to file

end main

Beyond the visualization files with precipitates, the
analysis carried out by DBSCAN produces other results,
such as, the size and radius of the precipitates, the average
size and radius among all precipitates, the percentage of Sc
atoms in precipitates and in Al solid solution, and the
number of small clusters with the same size.

The main inputs necessary to undergo a simulation and

posterior cluster analysis, which are supplied in a

configuration file, are: the aluminum lattice constant

(Angstrom), the number of unit cells in the x/y/z direction,

scandium percentage, simulation Monte Carlo steps,

simulation temperature (Kelvin), material parameters, the

radius used to define the neighborhood of each atom (eps in

DBSCAN algorithm), and minimum number of neighbors

that makes an atom to be a core atom of a cluster (minPts in

DBSCAN).
The material parameters that supported the previous

equations and therefore, the simulations are, first and second
nearest-neighbor pair effective energies, saddle point

energies and attempt frequencies:
 1

AlAl
 = -0.56 eV;

 1

ScSc
 = -

0.65 eV;
 1

AlSc
 =-0.759+21.0x10-6T eV;

 1

VV
 = -0.084 eV;

 2

AlSc
 = 0.113 -33.4x 10-6T eV;

 1

AlV
 =-0.222 eV;

 1

ScV
 = -0.757

eV;
sp

Al
e =-8.219 eV;

sp

Sc
e = -9.434 eV;

Al
 = 1.36x1014 Hz;

Sc
 = 4x1015 Hz [6].

C. Implementation of kMC with OpenMP

Figure 5 presents the algorithm of the main function used
to implement the kinetic Monte Carlo simulation with
multiple threads of execution, through the OpenMP library.
The lines starting with #pragma omp specify OpenMP

directives, for example to create the parallel threads or to
synchronize threads.

V. RESULTS

Figure 6 illustrates the time evolution of the precipitation
phenomenon. The initial random configuration applied to the
simulation is shown in Figure 6 (a). The sequence of figures
report a simulation that undertook the conditions of 873K,
1%Sc, and over 5x1011

 MCS in a 50x50x50 lattice box (5x105
atoms). The Sc atoms in raw configurations produced by the
simulation are presented in the left part of each figure. The
right configuration of each figure demonstrates the
application of the DBSCAN algorithm, where the scandium
atoms that do not belong to precipitate structures are labeled
NOISE and do not appear.

The sequence of graphics from Figure 7 summarizes the
analysis undertaken over the simulation outputs. Figure 7 (a)
represents the evolution of precipitates dimension in terms of
radius measure. Figure 7 (b) acknowledges the evolution of
the presence of scandium atoms distributed in the aluminum
solid solution. As with Figure 7 (c), it is possible to
acknowledge the evolution of the presentage of scandium
atoms in precipitate structures. Figure 7 (d) is one of the
most important interpretations that is conducted regarding

simulation of the nucleation of precipitates as it allows one to
undertake comparison analyses with the classical nucleation
theory (CNT). Two measures are used to efectively compare
kMC with CNT: the steady-state nucleation rate (Jst), which
represents the number of supercritical nuclei formed per unit
time in a unit volume and the cluster size distribution (CnSc),
which defines the probability to encounter a cluster with a
dimension of n atoms in a solid solution [1].

Figure 5. kMC algorithm with OpenMP.

The simulations were run on the SeARCH cluster,
located at the University of Minho. Table I contains the
technical specifications of the SeARCH cluster nodes where
we run the kinetic Monte Carlo simulations.

The computation time mainly depends on the number of
MC steps. Simulations duration is also influenced by the
technical specifications of the machines where the

main_OMP

[…] // initial steps are the same as in non OMP code

// Specify the number of threads to be created

 omp_set_num_threads(numThreads)

Initialize the MC step (mcs) to zero

while (mcs<numberMCStoSimulate) do

 if (idT = 0) then // This section is run by thread with id=0 only

 Count the number of vacancy's first neighbors of Al and Sc type

 endIf

// Create multiple threads

#pragma omp parallel private
 (idT, i, j, nPos, nType, nnPos, nnType, n_AlAl_1, n_AlSc_1,

 n_ScSc_1, n_AlV_1a, n_ScV_1a, n_AlAl_2, n_AlSc_2,

 n_ScSc_2, expoent)

{

 idT = omp_get_thread_num() // ID of each thread

 nT = omp_get_num_threads() // Number of threads

 i = idT

 while (i < NUMBER_1ST_NEIGHBORS) do

 Compute Eact[i] associated with i-th vacancy neighbor

 i = i + nT

 endWhile

 Compute absolute vacancy exchange freq. with its 12 1-st neighbors

 #pragma omp barrier
 if (idT = 0) then

 Compute the sum of all 1-st neighbors absolute exchange freq.

 endIf

 #pragma omp barrier
 Compute relative vacancy exchange freq. with its 1-st neighbors

} // (end of) multiple threads

 if (idT = 0) then

 Sum of all relative vacancy exchange freq. with 1-st neighbors

 totalT = totalT + 1/sumAbsoluteVef

 Select randomly a 1-st nearest neighbor for new vacancy

 Swap the vacancy with the selected neighbor

 if (mcs = snapshots[numSnap]) then

 Save simulation data to file at snapshop

 Increment the number of the current snapshot

 endIf

 Increment the MC step (mcs)

 endIf
endWhile // (end of) cycle relative to the number of MCS

[…] // final steps are the same as in non OMP code

end main_OMP

simulations were run. On a compute-311-X node of the

SeARCH cluster, a simulation with 5x1011 took around 8
days, and 12 days on a less performing compute-201-X

node. Computation time does not depend significantly on the
scandium percentage, the lattice size or any other parameter
of the simulations.

Table II summarizes the computation time needed by a

kMC simulation with different number of threads. The

number of MC steps simulated was 107, the lattice included

10*10*10*4 atoms and we used C code with OpenMP. As

we can see from Table II, the utilization of an increasing

number of threads is counterproductive. The poor

performance achieved by the presented parallel

implementation results from 3 facts: (i) the problem we are

dealing with is not inherently parallel, since the MC

simulation has only one vacancy, (ii) the work assigned to

each thread is small and does not compensate the

computation overhead introduced by the threads, and (iii)

there are several parts of the code that have to be executed

by one thread only.

(a)

(b)

(c)

(d)

Figure 7. Simulation metrics.

VI. CONCLUSIONS AND FUTURE WORK

kMC simulation of Al3Sc precipitation on a
supersaturated Al solid solution was successfully achieved.

(a)

(b)

(c)

(d)

Figure 6. Evolution of simulation: (a) initial configuration; (b) t=1.55ms;

(c) t=3.03ms; (d) t=4.945ms (left/right before/after applying DBSCAN).

This proves that the equations used to model Al3Sc
precipitation are correct. The results from kMC simulations
were further improved by the application of DBSCAN,
which proved to be a valorous aid to identify the Al3Sc
precipitates, by eliminating the unclustered Sc atoms. The
DBSCAN algorithm reveals adequate in the role of
identifying, visualizing and measuring (size, radius, and
shape) of the precipitates embedded in the Monte Carlo
output data. By simulating with various Sc percentages, as
well as temperatures, the capacity of clustering Al3Sc
precipitates maintains accurate.

TABLE I. TECHNICAL SPECIFICATIONS OF THE SEARCH NODES USED BY

THE KMC SIMULATIONS.

Nodes Processors
CPUs

Number

L2

Cache

Operating

System

311–X

nodes

Intel Xeon

E5420
8

12

MB

Linux

x86_64

201–X

nodes
Intel Xeon 5130 4 4 MB

Linux

x86_64

101–X

nodes
Intel Xeon 4 2 MB

Linux

x86_64

TABLE II. COMPUTATION TIME, NEEDED BY A MC SIMULATION, AS A

FUNCTION OF THE NUMBER OF THREADS.

Number of threads Average computation time (s)

1 25

2 46

4 52

8 62

12 70

The number of stable precipitates strongly increases in
the initial phase. After that, the number of precipitates
reduces, as predicted by the theory of nucleation.
Consequently the surviving precipitates increase in size,
either in number of atoms or in radius. The mean precipitates
radius increases almost linearly over time. The number of
precipitates normalized by the number of lattice sites
increases rapidly in the initial phase of the simulation and
then decreases slightly during the rest of the simulation.
Temperature has a profound influence on the evolution of the
precipitation simulation. As the CNT states, and the
simulation graphics do prove, the steady state nucleation rate
rises with the temperature increase.

The achieved results are very much in good agreement
with those reported by Clouet [6]: the increase of the
precipitates average size and the reduction of the Sc
concentration in the Al solid solution during the simulation
follow the same tendency. The comparison between kMC
and CNT are very much similar [6]. Although we have used
the same model for Al3Sc precipitation as [6], it was possible
to go deeper in the evaluation of the influence of all the
parameters involved in simulation: lattice size, temperature,
Sc concentration, number of MC steps, and the technique
used in cluster identification and measuring. We also tried
strategies to accelerate the simulation, using OpenMP.

Some features of ParaView made it an interesting choice
for visualization and even analysis such as: its support to the
three formats (VTK, PDB, XYZ) we used as output of kMC,

it is open source and based on a popular framework (VTK),
and it supports parallelism as to handle huge files.

A field for future research is the exploration of
parallelization techniques for the kMC simulation. Due to the
sequential nature of the precipitation problem, a hypothesis
is to use multiple vacancies and run multiple simulations in
parallel, each one with a vacancy and a sub-lattice.
Simulating with multiple vacancies alters the vacancy
concentration to a unrealistic value. Thus, the validity of this
alternative, used to speed up the simulations, has to be
demonstrated. Examples of algorithms that follow this
strategy are the optimistic synchronous relaxation (OSR) and
the semi-rigorous synchronous sub-lattice (SL) [10]. These
approaches have to deal with two critical issues: correct the
excessive vacancy concentration and synchronize the parallel
instances of the asynchronous kMC simulation. Another
future research topic would be extending MC method to
simulate ternary alloys, such as Al-Mg-Sc, Al-Sc-Si or Al-
Sc-Zr.

ACKNOWLEDGMENTS

This work was funded by National Funds through the FCT -

Fundação para a Ciência e a Tecnologia (Portuguese

Foundation for Science and Technology) within project

PEst-OE/EEI/UI0752/2011.

REFERENCES

[1] A. de Moura, “Simulation of the Nucleation of the Precipitate
Al3Sc in an Aluminum Scandium Alloy using the Kinetic
Monte Carlo Method”, MSc thesis, University of Minho, Dec
2012.

[2] M. Ester, H.-P. Kriegel, J. Sanders, and X. Xu, “Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Published in Proceedings of 2nd
International Conference on Knowledge Discovery and Data
Mining (KDD-96), 1996.

[3] J. Röyset, “Scandium in aluminum alloys overview: physical
metallurgy, properties and applications”, Metallurgical
Science and Technology, Hydro Aluminium R&D Sunndal,
N-6600 Sunndalsöra, Norway.

[4] P. Binkele and S. Schmauder, “An atomistic Monte Carlo
simulation of precipitation in a binary system”, 2003.

[5] S. Schmauder and P. Binkele, “Atomistic computer
simulation of the formulation of Cu-precipitates in steels”,
Computational Materials Science 24 (2002), 2002, pp. 42-53.

[6] E. Clouet, M. Naster, and C. Sigli, “Nucleation of Al3Zr and
Al3Sc in aluminum alloys: From kinetic Monte Carlo
simulations to classical theory”, Physical Review B 69,
064109, 2004.

[7] E. Clouet and F. Soisson, “Atomic simulations of diffusional
phase transformations”, C. R. Physique 11 (2010), 2010, pp.
266-235.

[8] S. Plimpton, et al., “Crossing the Mesoscale No-Man´s Land
via Paralelel Kinetic Monte Carlo”, Sandia Report,
SAND2009-6226, 2009.

[9] J. E. Hatch, “Properties and Physical Metallurgy”, American
Society for Metals, 1984.

[10] G. Nandipati, et al., “Parallel kinetic Monte Carlo simulations
of Ag(111) island coarsening using a large database”, J. Phys
Condens. Matter., 21(8):084214, 2009.

