
Simulation of Precipitation in an Aluminum Scandium Alloy using Kinetic Monte 

Carlo and DBSCAN Algorithms 

 

Alfredo de Moura 

IPC – Institute of Polymers and Composites 

University of Minho 

Guimarães, Portugal 

alfredo.moura@gmail.com 

Antonio Esteves 

Computer Science and Technology Center 

Informatics Department 

University of Minho 

Braga, Portugal 

esteves@di.uminho.pt

 

 
Abstract: The present paper reports the precipitation process 

of Al3Sc structures in an aluminum scandium alloy, which has 

been simulated with a kinetic Monte Carlo (kMC) method. The 

kMC implementation is based on the vacancy diffusion 

mechanism. To filter the raw data generated by the kMC 

simulation, the density-based clustering with noise (DBSCAN) 

method was employed. kMC and DBSCAN algorithms were 

implemented in the C language. The undertaken simulations 

were conducted in the SeARCH cluster at the University of 

Minho. The study covers temperatures, concentrations, and 

dimensions, ranging from 578K to 873K, 0.25% to 5%, and 

50x50x50 to 100x100x100. The Al3Sc precipitation was 

successfully simulated at the atomistic scale. DBSCAN revealed 

to be a valorous aid to identify the precipitates. The achieved 

results are in good agreement with those reported in the 

literature, but we went deeper in the evaluation of the 

influence of all the simulation and analysis parameters. A 

parallel version of the kMC algorithm using OpenMP was 

evaluated, which has not proved advantageous compared to 

the optimized sequential implementation.   

Keywords: Al3Sc precipitation, kinetic Monte Carlo, cluster 

analysis, DBSCAN, OpenMP. 

I.  INTRODUCTION 

Precipitate structures play a fundamental role in the 
material science due to the capacity of representing strong 
obstacles for dislocations movements within the material 
structure. 

This paper focuses on the elaboration and application of 
mechanical statistics knowledge, namely the kinetic Monte 
Carlo method, on the study and prediction of the 
phenomenon of precipitation in an aluminum alloy. The 
alloy under analysis is the aluminum scandium alloy [1]. The 
work that will be documented inhere tackles subjects such as 
computational mechanics, mechanical statistics (the kinetic 
Monte Carlo method), material science, the precipitation 
phenomenon, the diffusion phenomenon, what influences 
this phenomenon and how to control it and also predict it, as 
well as data mining (namely clustering) the vital information. 

The outcome of the work undertaken is a set of software 
applications that allows us (i) to perform Monte Carlo 
simulations with and without OpenMP, (ii) to analyze the 
results using the Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) technique [2], and (iii) 
to compare the simulation results with the classical 
nucleation theory. Practical results obtained with these 
applications are (i) reports about the simulation, the analysis 
of clusters and precipitates with DBSCAN algorithm, and the 
application of the classical nucleation theory; (ii) files for 3D 
visualization of the simulation (at various stages over time); 
and (iii) files for 3D visualization of the precipitates. 

The rest of the paper is organized as it follows. Section 

II presents the related work. Section III summarizes the 

theory behind the simulation of precipitation with kinetic 

Monte Carlo. Section IV describes the implementation of 

the simulation and cluster analysis. Section V presents the 

results of the simulation and analysis. Finally, section VI, 

points out some conclusions and areas for future research. 

II. RELATED WORK 

As computation extends its capacities increasingly, so 
has the scientific field of nucleation and precipitation 
modeling. The process of modeling nucleation and 
precipitation has been achieved at different scales, each one 
having its own advantages and disadvantages. It has 
increased the number of publications and studies related with 
the subject of modeling the precipitation kinetics at the 
atomistic level [3]. The main materials subjected to such 
studies are alloy materials such as Fe-Cu, Fe-P-C, Fe-Cu-Ni-
Si, Al-Cu. Aluminum alloys have also their share of studies 
by which we would like to outline and focus on the Al-Sc 
alloy. Binkele and Schmauder have published studies about 
precipitation in binary systems using atomistic Monte Carlo 
simulations [4] [5]. Clouet and co-workers also published 
studies of atomistic MC simulations, not just based on binary 
systems but also on ternary systems [6] [7]. MC simulations 
have also been used on the study of other phenomena. Grain 
growth, abnormal grain growth, thin film deposition and 
growth, sintering for nuclear fuel aging, bubble formation in 
nuclear fuels are just some of them [8]. 

III. THEORETICAL BACKGROUND FOR KMC SIMULATION 

This section summarizes the theory, as a set of equations, 
behind the simulation of Al3Sc precipitation with kinetic 
Monte Carlo. 
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Transition rate for an aluminum atom is calculated by 
(1), as following: 
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As for (2), it describes the transition rate for a scandium 
atom. 
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The aluminum activation energy is obtained by (3). 
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Equations (4), (5), and (6) describe relations among the 
number of aluminum-aluminum bonds, number of 
aluminum-scandium bonds, number of aluminum-vacancy 
bonds and the number of scandium-vacancy bonds, 
regarding the first and second neighborhood. For an FCC 
structure, the first neighborhood is composed of 12 atoms 
(Z1=12) and the second neighborhood is composed of six 
atoms (Z2=6). 
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The scandium activation energy is obtained by (7). 
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Analogously, (8), (9), and (10) describe the number of 
scandium-scandium bonds, number of aluminum-scandium 
bonds, number of aluminum-vacancy bonds, number of 
scandium-vacancy bonds, regarding the first and second 
neighborhood. 
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As a vacancy site is surrounded by twelve nearest 
neighbors: twelve jump rates are calculated. They are the 
jump frequency Γ1, Γ2, until, Γ12. In the next step of a kMC 
algorithm, one of these 12 frequencies is selected, based on 
their values and on a random number: the vacancy will jump 
to the position of atom n that verifies (11) (Figure 1). 

Equation (12) describes the computation of the real time 
of simulation. It is composed by the averaged residence time, 
multiplied by a factor that takes into account the difference 
between the simulated vacancy concentration and the real 
vacancy concentration. Equation (13), which traduces 
analytically the graphical data vacancy concentration versus 

temperature obtained in [9], calculates the real vacancy 
concentration in this kMC algorithm. 

 
Figure 1. Random selection of the jump frequency. 
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IV. IMPLEMENTATION OF SIMULATION AND ANALYSIS 

A. Simulation with Kinetic Monte Carlo 

The pseudocode presented in Figure 2 summarizes the 
implemented kinetic Monte Carlo algorithm in C language. 
This code enhances the steps that are of upper importance in 
a kMC simulation: the activation energy calculation, the 
vacancy exchange frequency calculation, the step time 
calculation, the swap of positions between the vacancy and 
the selected first nearest neighbor. Additionally, the code 
enhances the step of the data input as well as the step of 
saving the simulated data. 

The correspondent C code is portable, in the sense that it 
can be compiled and run in any system having gcc installed: 

Linux, Windows or other operating system. As so, the 
submitted simulations were undertaken in the SeARCH 
cluster. The SeARCH cluster has the advantage that it can be 
used to accelerate simulations in three ways: (i) running 
multiple sequential simulations at same time, with different 
parameters, (ii) running a parallel simulation on the same 
machine using OpenMP, or (iii) running a parallel simulation 
on several machines using MPI. The last option was not 
implemented since the second alternative was implemented 
and did not succeed on accelerating the sequential version. 

B. Clustering Analysis with DBSCAN 

The main goal of clustering analysis is dividing data into 
groups, or clusters, which share certain characteristics. 
Clustering is used in the present work to identify Al3Sc 
precipitates in a 3D matrix, containing the position of all Sc 
atoms, generated by the kMC simulation. The implemented 
clustering algorithm is designated by DBSCAN [2]. Other 
clustering algorithms, adequate for dealing with large spatial 
datasets, are CLARANS, DBCLASD, and OPTICS. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. kMC algorithm. 

As a member of the density based clustering approaches, 
DBSCAN identifies regions of high density agglomerations 
in an immense low density surrounding. Its major advantages 
are (i) it identifies objects with arbitrary shape and (ii) it does 
not require that the number of clusters to be identified is 
provided as input, like k-means method does. DBSCAN 
introduces the notion of noise, used to label atoms that are in 
low dense regions, which revealed to be an adequate feature 
in our case. In DBSCAN, for each cluster identified, a point 
of that cluster is a core point if it has in its neighborhood 
(with a predefined radius eps) a predefined minimum 
number of points (minPts). DBSCAN classifies points as 
being: (i) core point - a point in the interior of the density 
based cluster, (ii) border point - a point that belongs to the 
border of the density based cluster, and (iii) noise point - a 
point that is neither a core point nor a border point. 

The peseudocode included in Figures 3 and 4 presents the 
main functionalities of DBSCAN, which was implemented 
in C language. The code follows the main sequence of steps 
defined by the authors of the algorithm [2]. 

To save the atoms belonging to each group was used a 
data structure that varies dynamically, because the clusters 
are of variable and unknown size. The used data structure 
was inspired by the Java ArrayList class. After applying 
DBSCAN, the clusters that are split in several parts are 
merged in a single spatial region per cluster. This is required 
because we use PBC and aims to improve the 3D 
visualization of clusters [1]. 

To permit the visualization of the lattice configurations 
generated by the kinetic Monte Carlo simulations and by the 
clustering analysis, these configurations are saved to files in 
a format that can be read and rendered by available 
visualization tools. The developed code allows us to save 
data in one of the following formats: PDB, XYZ, and VTK. 
All these data formats can be visualized with the ParaView 
tool, which is an open-source application adequate to the 
visualization and analysis of multidimensional data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Main function of the DBSCAN algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. ExpandCluster function used by the DBSCAN algorithm. 

DBSCAN (atoms[], nAtoms, eps, minPts) 
    cid = 0             // current cluster ID 

    pid = 0             // atom position on the array of atoms 

 

    while (pid < nAtoms) do   // cycle over all atoms 

          if (atom ‘pid’ was not  yet visited) then 

               Mark atom ‘pid’ as visited 

               Get the size of neighborhood of atom ‘pid’  sizeN 

               if (sizeN<minPts) then 

                     Classify atom ‘pid’ as NOISE 

               else 

                     resBool = ExpandCluster (atoms, nAtoms, visited, N, 

                                                 pid, cid, eps, minPts) 

                     if (resBool = TRUE) then 

                          Increment cid 

                     endIf 

               endIf 

          endIf 

          Increment pid 

    endWhile 

end DBSCAN 

ExpandCluster (atoms[], nAtoms, visited[], N[], pid, cid, eps,  

                             minPts) 
    Get the size of neighborhood of atom ‘pid’  sizeN 

    Count unclustered  neighbors of atom ‘pid’  sizeUnclustered 

    if (sizeUnclustered < minPts) then 

        Mark atom 'pid' as NOISE 

        return FALSE 

    else 

        Add atom 'pid' to cluster 'cid' 

        for (i in [0:sizeN[) do 

            nid = neighbor i-th of atom 'pid' 

            if (atom 'nid' was not yet visited) then 

                Mark atom 'nid' as visited 

                Get size of neighborhood of atom ‘nid’  sizeNN 

                if (sizeNN  >= minPts) then 

                    for (j in [0:sizeNN[) do 

                        nnid = neighbor j-th of atom 'nid' 

                        Add atom 'nnid' to neighborhood of atom 'pid' 

                        Increment sizeN 

                    endFor 

                endIf 

            endIf 

            if (atom ‘nid’ is not yet member of any cluster) then 

                Add atom 'nid' to cluster 'cid' 

            endIf 

        endFor 

    endIf 

    return TRUE 

end ExpandCluster 

main: 
    Read the configuration file 

    Compute the coordinates of all FCC lattice sites 

    Compute average step time and rejection step time →  

→ avgStepTime, rejectStepTime 

    Initialize the simulated time → timeSim=0 

    while (mcs < TOTAL_MCS) do 

        Calculate the activation energy → Eact 

        Calculate the vacancy exchange frequency and the real time of 

        this MCS → vEF, ts  

        ts = ts*tsCorrection                   // corrected simulated time for 

                                                          // current MCS 

        if (ts > rejectStepTime) then     // step time exceeds a threshold 

                                                          // that is considered a  

                                                          // computation error  

                Increment errorSteps 

                ts = avgStepTime           // replace computed step time by 

                                                       // average step time 

        endIf 

        timeSim = timeSim + ts         // accumulated simulated time 

        Select a 1st nearest neighbor for the new position of vacancy 

        Swap the vacancy with the selected neighbor 

 

        if (mcs = snapshots[numSnap]) then  // if it is a snapshot  point 

                Save simulation data to VTK | PDB | XYZ file(s)  

                snapshotTime[numSnap-1] =timeSim // save snapshot time 

                Increment numSnap 

        endIf 

        Increment mcs 

    endWhile 

    Write a simulation report to file 

end main 



Beyond the visualization files with precipitates, the 
analysis carried out by DBSCAN produces other results, 
such as, the size and radius of the precipitates, the average 
size and radius among all precipitates, the percentage of Sc 
atoms in precipitates and in Al solid solution, and the 
number of small clusters with the same size. 

The main inputs necessary to undergo a simulation and 

posterior cluster analysis, which are supplied in a 

configuration file, are: the aluminum lattice constant 

(Angstrom), the number of unit cells in the x/y/z direction, 

scandium percentage, simulation Monte Carlo steps, 

simulation temperature (Kelvin), material parameters, the 

radius used to define the neighborhood of each atom (eps in 

DBSCAN algorithm), and minimum number of neighbors 

that makes an atom to be a core atom of a cluster (minPts in 

DBSCAN). 
The material parameters that supported the previous 

equations and therefore, the simulations are, first and second 
nearest-neighbor pair effective energies, saddle point 

energies and attempt frequencies:
 1

AlAl
 = -0.56 eV; 

 1

ScSc
 = -

0.65 eV; 
 1

AlSc
 =-0.759+21.0x10-6T eV; 

 1

VV
 = -0.084 eV; 

 2

AlSc
 = 0.113 -33.4x 10-6T eV; 

 1

AlV
 =-0.222 eV; 

 1

ScV
 = -0.757 

eV; 
sp

Al
e =-8.219 eV; 

sp

Sc
e = -9.434 eV; 

Al
 = 1.36x1014 Hz; 

Sc
 = 4x1015 Hz [6]. 

C. Implementation of kMC with OpenMP 

Figure 5 presents the algorithm of the main function used 
to implement the kinetic Monte Carlo simulation with 
multiple threads of execution, through the OpenMP library. 
The lines starting with #pragma omp specify OpenMP 

directives, for example to create the parallel threads or to 
synchronize threads. 

V. RESULTS 

Figure 6 illustrates the time evolution of the precipitation 
phenomenon. The initial random configuration applied to the 
simulation is shown in Figure 6 (a). The sequence of figures 
report a simulation that undertook the conditions of 873K, 
1%Sc, and over 5x1011

 MCS in a 50x50x50 lattice box (5x105 
atoms). The Sc atoms in raw configurations produced by the 
simulation are presented in the left part of each figure. The 
right configuration of each figure demonstrates the 
application of the DBSCAN algorithm, where the scandium 
atoms that do not belong to precipitate structures are labeled 
NOISE and do not appear. 

The sequence of graphics from Figure 7 summarizes the 
analysis undertaken over the simulation outputs. Figure 7 (a) 
represents the evolution of precipitates dimension in terms of 
radius measure. Figure 7 (b) acknowledges the evolution of 
the presence of scandium atoms distributed in the aluminum 
solid solution. As with Figure 7 (c), it is possible to 
acknowledge the evolution of the presentage of scandium 
atoms in precipitate structures. Figure 7 (d) is one of the 
most important interpretations that is conducted regarding 

simulation of the nucleation of precipitates as it allows one to 
undertake comparison analyses with the classical nucleation 
theory (CNT). Two measures are used to efectively compare 
kMC with CNT: the steady-state nucleation rate (Jst), which 
represents the number of supercritical nuclei formed per unit 
time in a unit volume and the cluster size distribution (CnSc), 
which defines the probability to encounter a cluster with a 
dimension of n atoms in a solid solution [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. kMC algorithm with OpenMP. 

The simulations were run on the SeARCH cluster, 
located at the University of Minho. Table I contains the 
technical specifications of the SeARCH cluster nodes where 
we run the kinetic Monte Carlo simulations. 

The computation time mainly depends on the number of 
MC steps. Simulations duration is also influenced by the 
technical specifications of the machines where the 

main_OMP 

[…] // initial steps are the same as in non OMP code 

// Specify the number of threads to be created 

 omp_set_num_threads(numThreads) 

Initialize the MC step (mcs) to zero 

while (mcs<numberMCStoSimulate) do  

    if (idT = 0) then // This section is run by thread with id=0 only  

        Count the number of vacancy's first neighbors of Al and Sc type 

    endIf  
     

// Create multiple threads 

#pragma omp parallel private 
    (idT, i, j, nPos, nType, nnPos, nnType, n_AlAl_1, n_AlSc_1,  

    n_ScSc_1, n_AlV_1a, n_ScV_1a, n_AlAl_2, n_AlSc_2, 

    n_ScSc_2, expoent) 

{ 

    idT = omp_get_thread_num() // ID of each thread  

    nT = omp_get_num_threads() // Number of threads  

    i = idT 

    while (i < NUMBER_1ST_NEIGHBORS) do 

        Compute Eact[i] associated with i-th vacancy neighbor  

        i = i + nT 

    endWhile 

    Compute absolute vacancy exchange freq. with its 12  1-st neighbors 

    #pragma omp barrier  
    if (idT = 0) then  

        Compute the sum of all 1-st neighbors absolute exchange freq. 

    endIf  

    #pragma omp barrier  
    Compute relative vacancy exchange freq. with its 1-st neighbors  

} // (end of) multiple threads 

 

    if (idT = 0) then  

        Sum of all relative vacancy exchange freq. with 1-st neighbors 

        totalT = totalT + 1/sumAbsoluteVef 

        Select randomly a 1-st nearest neighbor for new vacancy 

        Swap the vacancy with the selected neighbor 

        if (mcs = snapshots[numSnap]) then 

            Save simulation data to file at snapshop 

            Increment the number of the current snapshot  

        endIf 

        Increment the MC step (mcs) 

    endIf  
endWhile // (end of) cycle relative to the number of MCS  

[…] // final steps are the same as in non OMP code 

end main_OMP 



simulations were run. On a compute-311-X node of the 

SeARCH cluster, a simulation with 5x1011 took around 8 
days, and 12 days on a less performing compute-201-X 

node. Computation time does not depend significantly on the 
scandium percentage, the lattice size or any other parameter 
of the simulations. 

Table II summarizes the computation time needed by a 

kMC simulation with different number of threads. The 

number of MC steps simulated was 107, the lattice included 

10*10*10*4 atoms and we used C code with OpenMP. As 

we can see from Table II, the utilization of an increasing 

number of threads is counterproductive. The poor 

performance achieved by the presented parallel 

implementation results from 3 facts: (i) the problem we are 

dealing with is not inherently parallel, since the MC 

simulation has only one vacancy, (ii) the work assigned to 

each thread is small and does not compensate the 

computation overhead introduced by the threads, and (iii) 

there are several parts of the code that have to be executed 

by one thread only. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Simulation metrics. 

VI. CONCLUSIONS AND FUTURE WORK 

kMC simulation of Al3Sc precipitation on a 
supersaturated Al solid solution was successfully achieved. 

 
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 6. Evolution of simulation: (a) initial configuration; (b) t=1.55ms; 

(c) t=3.03ms; (d) t=4.945ms (left/right  before/after applying DBSCAN). 



This proves that the equations used to model Al3Sc 
precipitation are correct. The results from kMC simulations 
were further improved by the application of DBSCAN, 
which proved to be a valorous aid to identify the Al3Sc 
precipitates, by eliminating the unclustered Sc atoms. The 
DBSCAN algorithm reveals adequate in the role of 
identifying, visualizing and measuring (size, radius, and 
shape) of the precipitates embedded in the Monte Carlo 
output data. By simulating with various Sc percentages, as 
well as temperatures, the capacity of clustering Al3Sc 
precipitates maintains accurate. 

TABLE I.  TECHNICAL SPECIFICATIONS OF THE SEARCH NODES USED BY 

THE KMC SIMULATIONS. 

Nodes Processors 
CPUs 

Number 

L2 

Cache 

Operating 

System 

311–X 

nodes 

Intel Xeon 

E5420 
8 

12 

MB 

Linux 

x86_64 

201–X 

nodes 
Intel Xeon 5130 4 4 MB 

Linux 

x86_64 

101–X 

nodes 
Intel Xeon 4 2 MB 

Linux 

x86_64 

TABLE II.  COMPUTATION TIME, NEEDED BY A MC SIMULATION, AS A 

FUNCTION OF THE NUMBER OF THREADS. 

Number of threads Average computation time (s) 

1 25 

2 46 

4 52 

8 62 

12 70 

The number of stable precipitates strongly increases in 
the initial phase. After that, the number of precipitates 
reduces, as predicted by the theory of nucleation. 
Consequently the surviving precipitates increase in size, 
either in number of atoms or in radius. The mean precipitates 
radius increases almost linearly over time. The number of 
precipitates normalized by the number of lattice sites 
increases rapidly in the initial phase of the simulation and 
then decreases slightly during the rest of the simulation. 
Temperature has a profound influence on the evolution of the 
precipitation simulation. As the CNT states, and the 
simulation graphics do prove, the steady state nucleation rate 
rises with the temperature increase. 

The achieved results are very much in good agreement 
with those reported by Clouet [6]: the increase of the 
precipitates average size and the reduction of the Sc 
concentration in the Al solid solution during the simulation 
follow the same tendency. The comparison between kMC 
and CNT are very much similar [6]. Although we have used 
the same model for Al3Sc precipitation as [6], it was possible 
to go deeper in the evaluation of the influence of all the 
parameters involved in simulation: lattice size, temperature, 
Sc concentration, number of MC steps, and the technique 
used in cluster identification and measuring. We also tried 
strategies to accelerate the simulation, using OpenMP. 

Some features of ParaView made it an interesting choice 
for visualization and even analysis such as: its support to the 
three formats (VTK, PDB, XYZ) we used as output of kMC, 

it is open source and based on a popular framework (VTK), 
and it supports parallelism as to handle huge files. 

A field for future research is the exploration of 
parallelization techniques for the kMC simulation. Due to the 
sequential nature of the precipitation problem, a hypothesis 
is to use multiple vacancies and run multiple simulations in 
parallel, each one with a vacancy and a sub-lattice. 
Simulating with multiple vacancies alters the vacancy 
concentration to a unrealistic value. Thus, the validity of this 
alternative, used to speed up the simulations, has to be 
demonstrated. Examples of algorithms that follow this 
strategy are the optimistic synchronous relaxation (OSR) and 
the semi-rigorous synchronous sub-lattice (SL) [10]. These 
approaches have to deal with two critical issues: correct the 
excessive vacancy concentration and synchronize the parallel 
instances of the asynchronous kMC simulation. Another 
future research topic would be extending MC method to 
simulate ternary alloys, such as Al-Mg-Sc, Al-Sc-Si or Al-
Sc-Zr. 
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