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ANALYTICAL BOND MODEL FOR GFRP BARSTO STEEL FIBER

REINFORCED SELF-COMPACTING CONCRETE

By H. Mazaheripout,J. A. O. Barrog,J. Sena-Cruz F. Soltanzadeh,

ABSTRACT: The objective of this study is to present a comfional algorithm to analytically evaluate the Hon
behavior between GFRP bar and steel fiber reinébesdf-compacting concrete (SFRSCC). The type fofrmation to
be derived is appropriate to study the flexuraladwsdr of SFRSCC beams reinforced with GFRP barteims of
serviceability limit states requirements; in faoé tbond between bars and surrounding concreteemfkes significantly
the crack width and crack spacing. The proposed model was established by calibrating the parametiea multi-
linear bond-slip constitutive law using the expaital results of pullout bending tests carriedlyuthe authors, taking
into account the experimental pullout fonesus slip at loaded and free ends. According to the gamison between
theoretical and experimental pullout force-slip, ateptable accuracy of the model was observeditiddally, by
considering the proposed bond-slip relationshipasametric study was carried out to evaluate tfieeénce of the
involved bond-slip law’'s parameters on the maximforce transferred to the surrounding concrete. IFinghe
development length of two GFRP bars utilized ingkperiments (deformed and smooth bars) was detethily means

of the proposed model, and it was compared withvéthees recommended by codes.
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Introduction

The use of GFRP bars in the construction indusrgraalternative reinforcement for concrete stmestinas increased
continuously in the last two decades. Non-condiugfitigh strength-to-weight ratio and the supemperformance in
corrosive environments (e.g. coastline structuaes)the most advantages of GFRP bars. Howeveretagvely low
Young's modulus and the lack of yielding phasetiiass-strain respond introduce extra challengdsifiexural behavior
of concrete members reinforced with GFRP bars, ip@nterms of accomplishing the requirements fervieability
limit states (Gravina and Smith, 2008; Barris et 2009). On the other hand, the bond performamc@FRP bars is
inferior to steel bars (Choi et al., 2012; Harajtid Abouniaji, 2010). Hence, the serviceabilityifistates, such as
controlling crack width and crack spacing, play @aanrole in designing GFRP RC structures.

Many attempts have been made to evaluate the bemavior between GFRP bars and concrete, considdiffegent
parameters, e.g. the concrete compressive strdvagtidjameter, surface treatment of bar, bar positi cross section of
structural element, bond length, temperature chamngeetc. (Pecce et al., 2001, Tastani et al., 2086g et al., 2008;
Baena et al., 2009 and Masoudi et al., 2011). Antbege, surface treatment of GFRP bar has beemtedpas one
mostly affects the global bond behavior (He andhT2811; Harajli and Abouniaji 2010). Therefore,igas surface
treatment techniques (e.g. sand-coated, indentdutd, helical or wrapping) would provide differenterfacial bond
behavior. On the other hand, the bond between G¥RRBNd concrete is a result of different threedbactions over the
interface: chemical cohesion, friction and mechalnitterlocking. The chemical bond between GFRP coritrete may
be negligible when compared with the other two Gbations. In fact, mechanical interlocking (spésfly for deformed
bar) and friction are dominant bond mechanismdh ait influence level on the bond performance thateipendent on
the characteristic of the bar’s surface. Theorbictne bond behavior of GFRP bars is usually enésd by a relationship
between shear bond stregsand the relative displacement between bar andretan(i.e. slip). This bond-slip constitutive
law is empirically presented by ascending and defiog branches, which simulate the bond behavidh@bar before
and after peak pullout load, respectively.

The first bond-slip relationship for GFRP bars wassented by Malvar in 1995. Later on, Cosenzh €1897) adopted
for FRP bars the bond-slip constitutive law propbbg Eligehausen et al. (1983) for steel bars. Toslel is known as
“double branch” and named mBEP (modified Berteriggiausen-Popov). Furthermore, Cosenza et al. {¥98posed
a model with the designation of CMR (Cosenza-MatifRealfonzo) that included a new ascending braAdlhthese
bond-slip constitutive laws, and also other subsatimodels (e.g. Zhang et al., 2000; Li et al.,0&ere based on
equations that consider the peak bond stress ambitesponding slip derived from pullout forcgzgielationships in
pullout tests with specific type of bar and surfd@ae to the variety of surface characterizatianmfl in available FRP
bars, higher difficulties are faced to propose édéad constitutive law for the FRP-concrete bondavédr. He and Tian

(2011) made an attempt, from the probabilistic dpeint (a database was collected for this purpdsajetermine bond
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strength of GFRP bars based on reliability analy3éspite of their efforts to suggest a factorefire the development
length of GFRP bars, the analysis does not give amut the distribution of bond stress and slipubhout the bond
length, which is fundamental data for theoretidaldg on cracking behavior of GFRP RC structurese thtabase
developed by these authors, however, only considizally wrapped and spirally winded straight GHBA?s, which is
very limited since other types of surface such asdscoated or ribbed GFRP bars are nowadays quitent.
Focacci et al. (2000) also defined a rigorous nicaemethod to calibrate the parameters of a ghamd-slip law (they
used CMR and mEBP models as example). Firstlyr theithod still depends on experimental resultscdibration;
secondly, according to their observations, in tlestncases the contact surface between the FRMbaoacrete was
highly irregular in consequent of the shape oftihes surface.

In the light of the above explanation, the correealuation of the bond behavior of GFRP bars (FRBeneral) still
requires experimental verification in order to detime the bond-slip law’s parameters for specificsand surface. This
has an extra motivation since GFRP bars are botal&teel Fiber Reinforced Self-Compacting Conc(&teRSCC),
forming an innovative composite system.

The present study is part of a research projett thié purpose of developing High Performance Stawdr Reinforced
Self-Compacting Concrete (HPSFRSCC) beams flexuraihforced by hybrid pre-stressed GFRP and st@el. GFRP
bars are mounted at the bottom tensile surfadeedi¢am while the pre-stressed steel bars aredplétiehigher concrete
cover thickness in order to be protected againsbsive aspects. In this paper, a bond analytarah@lation is presented
by adopting a multi-linear bond-slip relationshipdj for two types of GFRP bar’s surface (ribbed aaddscoated)
embedded in SFRSCC. To calibratetieand to appraise the analytical formulation, amesive experimental program
composed of pullout bending test was carried outhleyauthors. This experimental program was coeckin order to
assess the influence of following parameters orbthed behavior: GFRP bar diameter, bar’s surfaeatinent, bond
length and SFRSCC cover thickness (Mazaheripoal.,€2012a). Additionally, a parametric study wasried out with
the analytical formulation in order to evaluate thuence of involved bond-slip law’s parameterstbe maximum
theoretical force that can be transferred to theosmding SFRSCC through the bond length. Finatg, minimum
theoretical bond length required to achieve thsitestrength of the GFRP bars was determinedttandbtained values

are compared with those recommended by some petlistdes.

Analytical Bond M odel

Governing Equation

Neglecting the deformability of surrounding conereind assuming a linear and elastic behaviornf@mabedded bar to
concrete, the second-order differential equati@t governs the bond behavior along the bond leogthbe stated as

follow (Russo et al., 1990):
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d%8(x)

X2

J;1(d(x)) =0
1)

wherelJ; is the ratio between the perimetedd) and axial stiffnessHp A,) of the bar, beingh, Ei, andA, the diameter,
the longitudinal modulus of elasticity and the srsgctional area of the bar, respectively. In BE}.3(X) represents the
slip between GFRP and surrounding concrete attéoeecfrom the free end. Based on the equilibrium caoditilong

the bar, the following equations can also be dedtuce

0, (x) =Ey dot) (2)
dx
=200
. ®3)

wherecy, andt are the axial tensile stress of the bar and timgl Isbear stress of GFRP-SFRSCC interface resplsctive

Local Bond Stress-Slip Relationship
A multi-linear diagram presented in Fig. 1, is ppepd as local bond shear stress-alip) (relationship for embedded

GFRP bar to SFRSCC in this study. Tti& relationship is stated by the following equation:

1o+ m 05 0<5<3, (dastic phase)
1
1 (5) = Tm 0, <0<, (plastic phase) @)
T, _% 5-3,) &,<3<d; (softening phase)
3702
TR 0> 0,4 (frictiona phase)

The rigid branch (o) represents the overall initial shear strength sl attributable to the micro-mechanical and
chemical properties of the involved materials aridrfaces. The ascending branch represents thelimradvior between
the initial bond shear stresg)(and the bond strength.j ends at a sli:. Betweens; and§,, constant bond strength,
Tm, Simulates the initiation of the damage in the-dzacrete interface. With the advance of this daaméige bond stress
starts decreasing with the increase of slip, and #lip-softening phase, which is governed by ifvict and
micromechanical interlocking along the bond lengtlsimulated by the third branch that ends aipass] when a residual
bond shear stress;, is attained. Fos > 63, due to friction mechanism between bar and sudimgnconcrete, this residual
bond stress is assumed constant, in agreemenpvétiious research (Hao et al., 2008; Baena e2@D9) and results

obtained in the experimental tests.

Theoretical Pullout Force in case of Infinite Bondength
Debonding process for infinite bond length of GFB& is described hereafter by introducing the psepa-6

relationship in Eqg. (4) into Eqg. (1). For each phadip distribution along the bai(x), required bond transfer length,
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L«(8L), and corresponding pullout force at each sedaifthe barF(x), are determined for whatever value of loaded end

slip (imposed slipd.). These concepts, as well as the definition ofidlcal reference systems in elasti€),(plastic &°),

softening &) and frictional §) bond phases, are illustrated in Fig. 2. The stisdyased on the works carried out by

Bianco et al. (2009) and Sena-Cruz and Barros (Rib0dhe case of NSM-CFRP laminate.

Elastic phase

When the imposed slip & < 81, Eq. (1) is solved in the local reference systémf,cand the solution becomes (Bianco

et al., 2009):
& (x®) =Ce™ +Cse™ -C¢

with

i _L
A (T —To) Ly
and the particular solution is
ce= T0‘2]1
A

By imposing the following boundary conditions iriq. (5)

5 =0 at x*=0
5 =5, at x°=LS(3,)

()

(6)

(7)

(8)

whereLg (8, ) is the bond transfer length corresponding toitisé fhased_ < &), the integration constants are obtained

as follows:

1

ce=|5 +ceté1—e‘mﬁ‘5“) 3
1 L 3 e)\mﬁ (5|_) _e_)\m'(ler(aL)

Cs =C5 -C$

By imposing the equilibrium equation along the bdedgth (i.e. F(x =L, (5, )) =, EJ’

becomes:

e
+CS \
e J

L; (8, )= % [arcosh-
3

The pullout force at the value of imposed slip bardetermined by using Eq. (2)
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(10)

Ltr (6L

O, L (3y)
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‘) ds Ly (3L)
Fx =L, (8.) =F°(x =L (3,)) :TldeOL“ VT(x®)x® = E A, (—dxe) (12)
0

and the maximum pullout force and maximum bond si@n length undergoing the elastic phadg® (and L1

respectively) are obtained by imposing a loadedstipcequals::

Ly =Ly (8 =8 (13)

FP =F°(x® =Lyy) (14)

Plastic Phase
The plastic phase corresponds to the loaded gméhshe interval 06; <8, < 8, and the corresponding bond shear stress

remains constant(g) =tm). The solution for Eq. (1) is a polynomial functim the local reference systemxdfas follow

& (xP)=CP(xP)*+CoxP +C? (15)
with
Clp — TmJl
2 (16)

The boundary conditions are

5 =35 at xP =0
17)

& =5 at xP =LP(5,)

where L{r’ (8, ) is the bond transfer length in the plastic phds&d. < d,) and the integration constants become

(6. -8)-CP (L8 3))
L2 (5.)

C} = (18)

C3 =% (19)

P
By imposing the equilibrium equation along the bdedgth (i.e. F(x =L, (5, )) =M, qL" (BL)T(xp)dxp +F°),

0

LP (3, ) is obtained as the following closed-form equation:

—F2 +[Ff +4CP (3, -58)1°°

Lt$(5L): oC.P
1

(20)

and the overall bond transfer length is

Ly B) =Ly + Lt? () (21)

32



The pullout force for whatever value of the imposég in this phase is

L (3L)
FP(xP =L@ ) =md, O, tyax P =1m, ILY (3 ) Gy (22)
and the total pullout force becomes
F(x =Ly (B ))=F +FP(xP =L§(8.)) (23)

The maximum bond transfer length and maximum pulfouce undergoing this phase can be also calallaie

substitutingd, by 62 in Egs. (20) and (22) respectively:

Lz =L (8 =8) (24)
FP =FP(xP =Ly,) (25)
The total force at the end of this phase becomes

F,=F(x =L, (8 =8y))=Ff +F (26)

Softening Phase
For &, < 8. < 83, the corresponding bond shear stre€s,), decreases up to attain the residual bond shessar, at
3L = 33 (Fig. 1). Introducing into Eqg. (1) the correspargifunction of Eq. (4) yields a function in the édcoordinate

system of¢ as follow (Bianco et al., 2009):

& (x°) =C; in(BX*®) +C3 [tofpx°) +C} (27)
with
1 _ (85-9y)
B (tm—TWR) (28)

and particular solution becomes

C3S :Tm_;]l+62

(29)
By considering the relevant boundary conditionthefsoftening phase
5° =9, at x* =0
(30)
& =9 at x®=L;(5)

where Lfr (8, ) is the bond transfer length in the softening pl{@se d. <ds), the integration constants are obtained from
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s _ 1 _ Tm |:]]1 s _
“ (s 6 ))E{EL O+ hoodPLs 6.) 1]} &)

s _ _ S
C;=0,-C3 (32)

The equilibrium condition along the bond lengtte (iF (x =L, (3, )) =™, qL" (BL)T(xs)dxs +F +F°) is used to

0

derive the bond transfer length as functiod0fSo, L, (5, ) can be expressed by (Bianco et al., 2009)

Ly (8, )= l[ﬁ(ﬁ arcsin% (33)
g V(A ) +(B,)
with
As=F +F) =F, (34)
B, =, GTBﬂ (35)
_ T, B s
Co=7 fo. -c3) (36)
and

@=asin T
AT+ Bg (37)

and the overall bond transfer length at the enth@&oftening phase is

Ltr (6L) = Ltrl + Ltr 2 + Ltsr (6L ) (38)

The pullout force for whatever value of imposeg &t this phase is calculated by means of Eq. (39)

S S S Ltsr (6L ) S S d 63 Ltsr (6L )
Fo(x® =15 (8)) =y [ T(x*)ix® = Ejp Ay ( =) (39)
0
and the total pullout force becomes
F(X =L, (3 ) =F°+F +F°(x® =L; (8,)) (40)

The maximum bond transfer length and the correspgrlillout force in this phase are calculatedsfealue of imposed

slip equals t@s:

Lys =Ly (3. =33) (41)
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F& =F(x® =Lys) (42)
The total force at the end of the softening phasmines

Fs=F(x =L, (8, =03) =F/ +F +F3 (43)

Frictional Phase
Whend, > 33, 1(8) equals to a constant value of bond shear stressg) due to a stable amount of interfacial friction is
established between GFRP and surrounding SFRSGXefbine, the solution for Eq. (1) is a polynomiahdtion similar

to the plastic phase:

d (x"y=cf x")2+cix" +cf (44)
with
cl = TrI1
2 (45)

and relevant boundary conditions are

& =5; at x' =0
(46)

& =5, at x' =L{ (5))

where L{r (3, ) is the bond transfer length far>8s. By imposing these boundary conditions into E4)(#he integration

constants become

(5L - 53) _C{ (L{r (5|_ ))2
Ly (5)

Cj = (47)

cl =3, (48)

f
and using equilibrium equation (i.E.(x =L, (3, )) =, Ej'*’ (BL)T(xf )ax" +FS +FL +F2), L (3, )is calculated by:

0

Fs—[F3+4C] (8, -891°°

L (B) = x (49)
The pullout force for whatever value &f > 33 is obtained by using
foot g f L (30) f f
Fr(x" =L (d)) =, J.o Trdx" =, [y (6 ) O (50)
and the total pullout force is calculated by
F(x =L, (3))=FF+FP +F§ +F' (x" =L{ (3.)) (51)
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Theoretical Pullout Force for Finite Bond Length

In case of finite bond length, the debonding predes embedded GFRP bars (or other types of bais)concrete can
also be analyzed by solving Eq. (1) imposing appabd@ boundary conditions for slip at the extrenaityhe bond transfer
length L), which cannot be exceed of an available finitadbtength ). While slip at free end§) is null, i.e.Ls > Ly,
the pullout force for whatever value &f is directly obtained by using Egs. (12), (23),)(40d (51). However, when
de > 0, i.e.Ls < Ly, and two or more bond-slip phases are acting byeleriving closed-form equations for pullout force
(F(8L)) is not straightforward due to the complexitytiogé equations. To overcome this complexity, Biaatal. (2009)
presented a bond model for NSM-CFRP strips takirthrae-linear bond-slip relationship (one ascending two
descending branches) by assuming that the slipkdisibn ©(x)) for infinite bond length condition could also applied
to finite bond length condition. That is, the cldderm equations developed for case of infinitedtmgth were directly
used for finite length by considering the possilgenfigurations betweerl; and Ly, (Bianco et al., 2009).
Mazaheripour et al. (2012b) used this bond modéaking a four-linear bond-slip relationship for B bars similar to
that which is shown in Fig. 1. Although this models capable of predicting with good accuracy tHeptforceversus
loaded end slip curves recorded in the experimeesas, the model was not capable to estimateaslifee loaded end,
specifically forL: > 10dy.

In the present study, an analytical-numerical metisopresented to determine the pullout foreg s well asSe for
whatever value oj. in case of a finite bond lengthy) by taking the relevant boundary conditions at faed loaded ends
(i.e.d = 3. atx = Lf ands = or atx = 0) and not assuming the sadf®) of infinite bond length condition. Therefore, for
each bond phases, new values are derived for thigggation constants in Eq. (5), (15), (27) at) @nd, consequently,
new d(X) is determined over thie. The calculation of pullout force, as well as dipfree end for whatever value of
imposed slip in case of finite bond length conditis described hereafter by considering differemtfigurations of the

proposed bond phases over the

When One Bond Phase is Acting Over L

Fully Elastic

Whend. < 81 andds > 6 > 0, that isLt is thoroughly covered by the linear elastic ph@se Fig. 3a); Egs. (9) and (10)
become

1
-e

cf =[@ -ae)resfr-e ) B 52)

e
C3 =(0 +C3)-Cy (53)

and using equilibrium condition, leads to expr&sas function ob:
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_ BT e

Lt =37 54
F coshlL; ) 3 4)

The pullout force is calculated by adopting Eq®) @nd (53)
Fe(x® =Ly ) = A0, (x° =Ly ) =Ep A, [OCF (3 ) e —C5 (3. ) e ) (55)

Fully Plastic
If 8r > 81 andd. < &2, L undergoes only the plastic phase (see Fig. 3t .iftegration of constants in Egs. (18) and (19)

become

cy= ¥ (56)
CJ =5 (57)
Sk is also determined by considering equilibrium dgtod
8 =8, —-CP(L;)? (58)
andF is simply obtained by using
FP(xP =L ) =Ly d, 1, (59)

Fully Softening

For the case shown in Fig. 3¢ fully undergoes softening. Thus, the integratiboamstants in Egs. (31) and (32) become

1
Cr=—— R -5 +
' Sin(BDLf)E{L ]

C; =8 -C3 (61)

T"‘B? L ficos(BL; ) - 1} (60)

and & can be expressed as functiondf by using the equilibrium condition

TJd
O =0 — Ezlcosﬁ L )+ €3 -9,) (62)

ThereforeF is obtained by Eq. (62) adopting Egs. (60) and (61

L.

ds* |

dXs) (63)
0

Fo(x® =Ly ) =T, [ T(x ) = EppAy (

Fully Frictional
If 5= > 83 andd. > 683, the frictional bond phase is acting over(see Fig. 3d). Similar to the fully plastic conaiit, the

integration of the constants in Egs. (47) and gE)ome
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C; = C (64)
Cl =8 (65)
andde is derived as follow
8 =8 —C{ (L;)° (66)
F is simply obtained by using
Froc' =L ) =L g (67)

When Two or More Bond Phases are Acting Over L
When two or more bond phases are acting ovelgteenumerical strategy was adopted in the presedy $o obtain the

slip and force (or bond stress) distributions. Tisaby taking a small increment for the imposegd at it step of the
calculations (i.e6iL :6iL'1+A6L) and initially using the value of the pullout ferat the last converged step of the
calculation, -1)"", for each bond phase (i.6¢)' 2, (FP)' 1, (F%)'* and (F")' ), a new value of the pullout force

(F' =F'r+AF ) is calculated.

Elastic-Plastic (Fig. 4a)
By imposing 3, , (LP)' is calculated by Eq. (20) whete® is replaced by(F®)' . Being obtainedL?)' , (L%)' is
simply derived byL; —(L{ﬁ)i. Therefore,(éF)i and (F®)' are calculated by Egs. (54) and (55) respectiatly
x®=(L2)". (FP)" is also calculated from Eq. (59) &f =(LP)' . The total force becomes

F' =(F®) +(FP) (68)
Plastic-Softening (Fig. 4b)
For 8, , (LS)' is calculated by means of Eq. (33) whéi@ is null andF,” is substituted by(F P)' ™. Being obtained
(Lf',)i , (Lt’ﬁ)i is simply obtained byL; —(L; )". Therefore,(FP)" and (0 )" are calculated by Egs. (58) and (59)
respectively ax P = (LP)" . (F®)' is also calculated from Eq. (63)&f = (L)' . The total force becomes

F' =(FP) +(FS) (69)
Softening-Frictional (Fig. 4c)
Here by imposing an increment for the imposed i{li.{{},)i is calculated by Eq. (49) whefg® and F,” are null andF;
is substituted by(F®)' . Being obtainedL’ )" , (LS )" is simply calculated by, — (L} )" . Hence,(F®)' and (5 )’
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are determined by Egs. (62) and (63) respectiviely’a= (Lfr)i . (Ff )i is also determined by Eq. (67) at = (L{r)i .
The total force becomes
F'=(F%) +(F") (70)

Elastic-Plastic-Softening (Fig. 5a)
For small increment of imposed in(J,fr)i is calculated by Eq. (33) wheif§® and F,° are substituted b{(Fe)i < and
(FP)' ™ respectively. Additionally(LP)' is determined by Eq. (20) whefg® is also replaced byF®)' ™.
Therefore, (L)' is given by

(L) =L —(L0) - ()’ (71)
Since free loaded end undergoes elastic bond plﬁéﬁéf, is calculated by Eq. (54) at® = (L ). Then, (F®)' is
calculated by Eq. (55) at® =(L2)', (FP)" by Eq. (59) atx” =(LP)' , and (F®)' by Eq. (63) atx® =(LS)' . The
total pullout force becomes

F'=(F%) +(FP) +(F°) (72)
Plastic-Softening-Frictional (Fig. 5b)
Similar to the previous configuratior@l_fr )i is calculated by Eq. (49) whe§® is null andF,’ and F3 are substituted
by (FP)' ™ and (F®)' * respectively. Beside§.,S )' is determined by Eq. (33) wheFg is null andF,” is also replaced
by (FP) . Finally, (LP)' is given by

(L) =L ~() ~ (L)' (73)
Since free end undergoes plastic phdse) is derived by Eq. (58) at? =(LP)" . Then, (FP)', (F%)' and (F")'
are obtained by Eqgs. (59) af = (L)', (63) atx® =(LJ)' and (67) ax' =(L|)' respectively. The total pullout force
becomes

Fl=(FP) +(F%) +(F") (74)
Elastic-Plastic-Softening-Frictional (Fig. 6)

When ¢, >0, and L, (8, ) <L; , Lt undergoes simultaneously the four proposed borggsh By imposing a small
increment ford, , the same strategy can be also applied in this tr:r;usletermine(Lt'?)i , (L )i and (Lfr)i by initially
taking F°, F.” and F5 equal to(F®)' ™, (FP)' ™ and (F°)' ™ respectively. Then(LS )’ is given by

(L) =L~ — () ~ (L) (75)
and the following equation gives the total pulléarce:
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F'=(F®) +(FP) +(F*) +(F") (76)

The flowchart of the proposed analytical-numeraiglorithm is presented in Fig. 7. In all above sr;maemce(Lt,)i is
obtained for the all active bond phase (&lgstic, Plastic andSoftening are the active bond phase in case of Fig. 5a), the
values of (F&)' L, (FP)'%, (F%)' ™ and (F" )" are substituted respectively by the new calculatédes of(F¢)'
(FP)', (F%)" and(F")". Then, (Ly )" is recalculated until achieving a value of eress than a tolerance adopted for

AL, . This calculation loop is also illustrated in ft@vchart.

Outline of the experimental work

An experimental program comprising 36 pullout begdspecimens was carried out by Mazaheripour €2@ll2a) in
order to assess the bond behavior of GFRP barsdelatiénto SFRSCC. A test setup similar to that meoended by
RILEM for case of steel bars was adopted. Thesktsip and the measuring devices are schematitailyrsin Figure 8.
Two types of GFRP bars of ribbed (8 and 12 mm dtamieand smooth surface (only 12 mm diameter) Hrat
commercially produced by European companies wadligad in the experimental tests. According to thea sheet
provided by the suppliers, Young's modulus of tibbed and smooth GFRP bars are, respectively, 88arGPa, while
the ultimate tensile strengths are 1350 MPa and MPa. Additionally, a series of five notched behemding tests
(named as NBL1 to 5) was carried out according ¢omenendations by CEB-FIP MC2010 in order to chardmd the
post-cracking behavior of the developed SFRSCC @fttkg/n? of hooked ends steel fibers (length and diamet@8o
mm and 0.55 mm, respectively, and ultimate terstilength of 1100 MPa). Figure 9 shows the confitjomeof notched
beam bending test and the results in terms of FGME®D (crack mouth opening displacement) at notatreds section.

Based on the force values, the derived residualifid tensile stress parametdes,were determined by

3PL
for=—— 77
R Z)hsp 2 ( )

whereP is the applied loady andhg, are the width and the height of the notched sectiespectively. The values &f
are also shown in the secondary vertical axisgn &iMoreover, the main mechanical propertiesfRSCC are included
in Table 1.

In the bond tests, three bond lengthg § of 5, 10 and 20 times of bar diametdy, { and two concrete cover thicknesses
(C=15 and 30 mm) were the parameters whose influent¢ke bond behavior of GFRP/SFRSCC was investigaltéth

an exception of one pullout bending specimen reggrto GFRP bar of 8 mm diameter andd®ond length, the

remaining ones failed by debonding in which a neslgullout force was recorded for all of themchse of ribbed GFRP
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bars with concrete cover of 15 mm, a single crageared along the embedment length. However,iagliilure mode
never occurred due to the contribution of fiberglding this crack that had maintained the crackthviak very small

value. The reader is directed to the paper by Maxgabur et al. (2012a) for more details about tkgeeimental results.

Predictive Perfor mance of the Bond M odel
To assess the predictive performance of the prablosed model, the obtain€dd from the model is compared with the
results registered in the previously described tests. The values of the parameters to define-theelationship in the

model were calibrated using inverse analysis byimiing the absolute value of erroe)(which is defined as

the _ pexp
AF—6 AF—6

/Asig x100, where AZ% is the area under the averagé of the experimental curves, akf®s is the

area of the B obtained theoretically. Table 1 presents the tesufl the inverse analysis as well as the ereprig
percentage. In this table, the following experiraémesults are also reported: the maximum pulloutd Eme); its
corresponding loaded end slign) and the residual pullout force at the end oftésts Fre) which was calculated for a
pullout force corresponding to the relatively higilue of slip (8 mm), when for all the specimeres debonding process

was in the post-peak pullout force.

Loaded End Slip

TheF-4, relationship registered experimentally and deteeaiby the proposed bond model are compared irlBignd

11 for deformed and smooth GFRP bars, respectiVdlg.results for the 8 mm bar diameter were nosiclamed in the
present study. This comparison evidences that thposed method is capable of simulating with goocueacy the
pullout forceversus loaded end slip for the two types of GFRP barsrédwer, the abrupt decay registered in the
specimens reinforced with smooth GFRP bar’s surdack2@l, bond length (see Fig. 11) was properly captureddiyg

the proposed bond model, whereas the previouslgldped model by Mazaheripour et. al. 2012b wastjzalty unable

to simulate this behavior.

Free End Slip
Figs. 12 and 13 compare the experimental and ttiealr&-5r relationships. As shown, the proposed bond model a
predicts with acceptable accuracy the slip at loeeled end. To understand better this accuracy,lBigepresents the

relationship betweed and & obtained experimentally and theoretically for $pecimens with=20d,. As shown,
the , -9, curve obtained by the proposed bond model is ireagent with the experimentd| —&; curve for both

GFRP bars. This confirms the accurate predictiohefobtained(x) by the proposed bond model.
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Observations

“Material” versus “structural” bond-slip property

Like in the present paper, the slip between barsamunding concrete is currently measured afréeeand loaded ends
by using displacement transducers. The slip isetbee, the relative deformation between the caeczenes where the
transducer is supported, and the section of the RRRvhere the other extremity of the sensor iseoted. This means
that the measure recorded by this sensor is alafigsted by the deformation of the concrete zongpstting the
transducer, which is a quantity difficult to obtaiith accuracy. By bonding strain gauges to the ERPalong the
embedment length is also another common alternttiveeasure indirectly the slip. Neverthelesssthevariation along
the embedment length can only be representatavesisonable number of strain gauges are applfadh\as, however,
a detrimental effect on the bond conditions betwienbar and the surrounding concrete. Furtherntbeestrategy of
converting strain values from these strain gaugés a slip concept between bar and surrounding natgds quite
arguable, and only admissible if negligible defotiorais assumed for the surrounding concrete. Clenisig all these
aspects, a local bond-slip relationship only existel therefore considered as a material propettgn the deformation
and damage in the surrounding concrete is muchlenthbn the deformation in the FRP bar. This mahata local
bond-slip relationship is a material property diflgssessed from experimental data correspondifgri&-concrete bond
length short enough to avoid significant deformatamd damage in the surrounding concrete. For tiher @ases the
bond-slip relationship is a structural propertyicsi the sensors are affected by the relevant datmmand damage
formed in the surrounding concrete.

Due to these reasons, the bond length possibititiepted in the present research are relativelyl smarder to maintain
the deformability and the damages relatively sroathpared to the deformability of the FRP bars. lamhore, due to
the crack arrestment provided by the fibers briggihe micro-cracks, the damage due to crack foomaith the
surrounding concrete became limited. Therefore,nfimdeling the bond behavior between the GFRP badstlae
SFRSCC considered in the present work, the bopdrslationship derived from the tests with the lstvembedment

length is recommended.

Theoretical bond strength and its correspondingpsli
Taking the results from Table 2, which were obtdifrem inverse analysis, the influence of the blemdyth (L; ) on the
value of the bond strengtin is represented in Fig. 15a. Theshows tendency to decrease with the increadg ofor

a fixed concrete cover and type of GFRP bar. Addiilly, the value ofy, in case of 30 mm concrete cover was higher
than that for 15 mm. The, was also higher in deformed bar than in smoottstsarface. However, in case of 15 mm

concrete cover thickness, was similar for both types of GFRP bars, becahsadlatively low confinement provided
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by this concrete cover thickness is not enoughdbilize the advantages of deformed bar surfaceachearistics. Hence,
concrete cover higher than 15 mm (>R recommended for deformed GFRP bars in ordatt&in higher magnitude
of bond strengthrf,).

The influence of increasinig on the slip at the end of the plastic phasgis also shown in Fig. 15b. By increasing
82 increased for both types of GFRP bar. This mebhaidt is another parameter of the bond-slip constituliwe has

increased with.s for the same type of bar, concrete and concreterdtickness.

Parametric study

Hereafter, a parametric study was carried out &uate the influence of the involved parameterthermaximum pullout
force Fmax), Namely: the bond shear strength) (and its corresponding slip8:@ndd.), bond length L), longitudinal
Young’s modulus of the baEg), and the slip corresponds to the end of softepimase ds) of bond-slip constitutive
law. The study comprised six stages and for eaabestthe influence of one parameter Fopx was appraised by
considering three different values far (5, 10 and 2@, bond length) while a constant value was giverheéorest of the
parameters. Table 2 presents the range of giveresab the parameter at each stage. The initiad bess1p) and bar
diameter @) considered as 1.0 MPa and 12 mm in all casepgectisely. Fig. 16(a) to (f) show the results oisth
parametric study. As showRmax is significantly influenced biandtm (see Fig. 16a and b). The influencesofindss
depends on the value givendo When the values @& andé (or 82 andds) are close to each others, their influence on
Fmax is more visible (see Fig. 16(c) and (e)). On thbe, the impact of all these slip values and #igomagnitude of

Ejp on theFmax are not significant when the < 20d.

Theoretical Development L ength

The minimum transferred bond length required tahethe ultimate tensile stress,( in the bar can be predicted by
means of the proposed bond model. Based on thésresuhe pullout tests carried out by Mazaheripeual. (2012a),
the minimum development length of the GFRP barsladvbe higher than 26} since no tensile rupture reported for the
GFRP bars in that study (with an exception of opecsnen). On the other hand, according to the padérstudy
presented in this paper, among the set of locadl{stip law’s parameters, only andtwm showed significant influence on
the maximum pullout force. Thereforg, was defined as function of the bond lendt}) in the proposed bond model.

Accepting exponential fit for the-Ls, Tm can be estimated with the following expression:

To(Le ) =by(Ly ) (78)
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whereb; andhb, are the constant values fit the equation withtése results of different bond length (see Fig.)1By
imposing Eq. (78) into the model insteadigfthe maximum pullout force is obtained for whatewadue ofL:. The other
parameters adopted in the bond model are summarnizeable 4.

Fig. 17 shows the achievable theoretical tensitesstéy) for whatever value ofLg/d,) obtained from the bond model.
These results were also compared with those valaleslated from the formulation of several codesimans of the
Egs. (79), (80), (81) and (82) for giverid, andC/dy:

0083/
0, =~V (13651 Lf + £ ;f +340) ACI 2006 (79)
b

o, :1.2s\/ﬁ(o.31€:—f]+ 0.79 ;: ]('&f }+ 13]3 JBCE 199 (80)
b b

b

,\0.25 0.55 0.33 0.1
5, :54[f_j [25} [L_] [2] [Caxj (fib2010) 1)
o, =1.13/f. [—»— %)H) CSA 2000 (82)
kik, dy

wherea is modification factor which considered as 1.0tst specimen’s conditio indicates the value of concrete

cover thickness in mm. The compressive strenfifh) 6f SFRSCC reported in Table Gy is the maximum horizontal

distance from the bar to concrete surface whiclalsge 69 mm for position of the GFRP bars in thess-section of the
experimental pullout (Mazaheripour et al. 2012a).and ks in Eq. (83) are bar location and bar surface facto
respectively. The former equals to 1.0 for thedhation of the GFRP bars in the test specimenstadater defines as
a ration between the bond strength of FRP barsabsteel bars with the same diameter, but notegrélaan 1.0. Here,
ks is also considered as 1.0. The Eq. (82) giverhbyib is recommended for steel bars, however, this émué also
recommended for FRP bars as internal reinforceffioeisoncretef{b Bulletin 40, 2007). Note that the confinement effe
provided by the transverse reinforcement was neglein the above equations since no stirrup wadieapfo the test
specimens.

In general the recommendations included in ACI,HB3i® and CSA do not predict the experiments, partitylar the
case of the lower concrete cove¥,=1.25). It can be concluded that these formulatimight not be straightforwardly
used for the types of GFRP bar and SFRSCC thatestuwl this paper.

Based on the obtained results, for deformed GFRPtha minimum bond lengths required to reachdheg1350 MPa
reported by supplier) are around 38.and 3@, for C/d, equals to 1.25 and 2.5, respectively. These vdlresmooth
GFRP bar (withow, of around 1000 MPa specified by the supplier) 28exd, and 2@, It is worth noticing that the

maximum tensile stress obtained in the test foratmbar were close to 1000 MPa in case ah2®nd length and 30 mm
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concrete cover; however, no rupture was reportékdrbar. That means, would be greater than the value reported by

the manufacturer.

Conclusion

A theoretical bond model was developed to calibtéeparameters which define a multi-linear bonelasistress—slip
relationship {-6) able to estimate the bond behavior between SFR&@OGFRP. The model involved data from the
experimental tests, and using an analytical-nurakaigorithm to solve the governing equation ondophenomenon of
the longitudinal bars. The proposed algorithm shibg®od accuracy comparing with the experimentalltes bending
pullout tests obtaining the distribution of the Hahear stress and slip over the bond transfetheng

Due to the complexity of taking concrete deformaiio the second-order differential equations, #lative slip §) was
assumed to be equal to bar’s elongation resultiagthe locat-6 is dependent on the bond length. When the borgthen
is increased, the pullout force and consequentyfoince transferred to the surrounding concretecases and lead to
increase the amount of concrete damages over tidace which is normally formed as some inclineacks over the
embedded bar to concrete. A “material” versus &tmal” bond-slip property was introduced. A lobaind-slip law is a
material property only when it is derived from puit tests where the deformation and damage ofttherete surrounding
the embedment FRP bar is marginal compared to éf@ration of the FRP bar. This law can be usethasslip
component of the constitutive law of an interfaicété element, and a robust and reliable model lshbe adopted for
modeling the behavior of the surrounding concregtéoLits collapse. In the remaining cases the slipdrelationship is
a structural property.

The bond strength, which was theoretically obtaifnech the proposed model, was utilized to deterntigedevelopment
length of the GFRP bars at the ultimate limit sfatked by tensile rupture in the bar. The valubtamed by the model
for the types of GFRP bars and concrete considerthis study showed a large discrepancy with @idaes recommended
by the guideline of ACI committee 440 (American Caate Institute ACI 2006), Japan Society of Civilgiheers (JSCE,
1997), CEB-FIB Model Code 2010 and Canadian Statsdassociation (CSA, 2000). That means, the recomiiattons

by these guidelines may not be straightforwarddu®r the reinforcing system adopted in this study
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Ff
max

FP

NOTATION

area of the GFRP bar cross-section
constant in the expression of the softening phassfer length

constant in the expression of the softening phasesfer length
SFRSCC cover thickness from the bottom surface
maximum concrete cover thickness from the corcsatface
constant in the expression of the softeningifittransfer length
first integration constant for the elastic phase

second integration constant for the elastic phase

constant value for the elastic phase

constant value for the friction phase

first integration constant for the friction phase

second integration constant for the friction ghas

constant value for the plastic phase

first integration constant for the plastic phase

second integration constant for the plastic phase

first integration constant for the softening phas

second integration constant for the softeningspha

constant value for the softening phase

young’s modulus of GFRP bar
value of pullout force transferred by bond length
maximum value of force transferred in the elagtiase in case of infinite bond length

value of force transferred in the elastic phaseaise of infinite bond length
value of force transferred in the friction phasease of infinite bond length

value of the maximum experimental pullout foransferred by ¢

maximum value of force transferred in the plaptiase in case of infinite bond length
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EP

value of force transferred in the plastic phasease of infinite bond length

maximum value of force transferred in the softerphgse in case of infinite bond

length

value of force transferred in the softening phaszase of infinite bond length

value of the residual pullout force obtained expentally
constant in the governing differential equationhwihknownd(x)
span of the notched beams

available finite bond length

maximum invariant value of transfer length tham cindergo elastic phase
maximum invariant value of transfer length tham cindergo plastic phase
maximum invariant value of transfer length tham eindergo softening phase

transferred bond length corresponding to whateakre of the imposed slip

transferred bond length undergoing elastic phase

transferred bond length undergoing friction phase

transferred bond length undergoing softening @has

transferred bond length undergoing plastic phase

the vertical applied load in the notched beartstes

width of the notched beams

first constant value of fitting equation expresse-L; relationship
second constant value of fitting equation exmésg-L: relationship
diameter of GFRP bars

error between experimental and theoretical ptifflorce-slip curves
height of the notched section of the beams

number of the calculation step

the compressive strength of SFRSCC

the residual flexural tensile stress of SFRSCC

bar location factor in equation in Eq. (67)

bar surface factor in equation in Eq. (67)
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local references system in elastic phase

local references system in frictional phase

local references system in softening phase

local references system in plastic phase

slip increment in the calculation

modification factor for recommended equation fra

constant entering the governing differential egumefor the softening phase
angle necessary to determine the softening-suéieount of transfer length
relative displacement between bar and surrounctimgrete along the bond length
first value of slip corresponding to peak of Ibleand stress-slip relationship
second value of slip corresponding to peak ddllbond stress-slip relationship
slip corresponding to the start of frictional phan bond stress-slip relationship
free end slip

slip experimentally recorded at the loaded erdesponding td-max

imposed slip at the loaded extremity of the bar

slip along the amount of transfer length in étaghase

slip along the amount of transfer length in faokl phase

slip along the amount of transfer length in suftg phase

slip along the amount of transfer length in ptaphase

constant entering the governing differential emumefor elastic phase

bond shear stress-slip relationship
bond shear stress

chemical initial bond stress of GFRP-SFRSCC
peak stress of the local bond stress-slip relatigp
residual bond shear stress

the achievable theoretical tensile stress of GB&B

the ultimate tensile stress of GFRP bars
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Tables

Table 1. Mechanical properties of SFRSCC

Compressive Elexural Young's modulus
strength tensile strength
(MPa) (MPa) (MPa)
SFRSCC 63.68° 6.48 30360°
(CoV) (5.51%) (17.49%) (15.48%)

1 Equal to Limit of Proportionality according to CEB-IB MC201(
(CMOD=0.05 mm)

2 Mean value of 15 specimens

3 Mean value of 3 specimens

Table 2. Relevant experimental results and valfiéseoparameters of the bond model obtained fraariritierse
analysis
Experimental results The results from the bond model

Frex Om Fes!i To Tm TR 01 02 03 TrR/Tmi €
(kN)  (mm) (kN) (MPa) (mm) | (%) (%)
Deformed GFRP bar, 12 mm diameter
5d, C15; 44.76 0.33 17.641.0 18.1 76 0.090.152.30 41.5 0.87
€30 57.49 029 10.751.0 232 14.80.07 0.19150 64.4, 0.57
10d, C15; 70.62 0.84 31.591.0 14.3 6.8 0.090.50 5.0; 46.6; 0.63
C30: 89.54 1.34 40.991.0 183 8.7 0.150.70 5.2; 47.4: 0.01
20d, C15{121.81 2.56 50.22 1.0 125 5.1 0.121.80 7.0; 39.0 | 0.48
C30: 146.23 3.00 61.63 1.0 149 5.9 0.111.20 8.6; 33.9; 2.63
Smooth GFRP bar, 12 mm diameter
5dy C15; 42.06 0.47 18.631.0 18.0 8.3 0.100.16 1.1: 47.2} 0.80
C30:50.815 0.44 38.73 1.0 21.9 13.10.09 0.15 1.1} 60.5} 0.97
10d, C15 62.92 0.81 28.081.0 14.0 6.0 0.100.35 1.9; 42.7 | 1.09
C30: 76.64 150 42.051.0 16.5 9.0 0.100.55 2.0: 50.5} 2.60
20d, C15; 98.74 2.04 544710 122 58 0.1005 2.0 44.7; 1.23
C30:106.24 2.36 70.06 1.0 13.2 7.6 0.100.7 2.0 50.7 1.20

Lt

Table 3. Values of parameters adopted for paraonstindy”

Stage dy 0 Tm w01 32 33 Eip Ly
mmMPe MPa MPa mm mm mmGPa mm
Study1 12 1 525 0.5m 0.1 0.2 3 605, 10, 20, 25, 30d,
Study 2 12 1 14,16,18 0.5t 0.1 0.2 3 60  5db-30dy
Study 3 12 1 18  0.5m001-05 1,235z 3 60 5,10, 20dy
Study 4 12 1 18  0.5m 0.1 0.1-2 3 60 5,10, 20ds
Study 5 12 1 18  0.5m 0.1 0.1,03,05831-5 60 5,10, 20ds
Study 6 12 1 18  0.5m 0.1 0.2 33065 5,10, 20ds
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Table 4. The parameters adopted in the model @mibie maximum tensile stress for whatever vafua o

Tm
d E S S S T T

GFRP (mm) (GPa)  (mm)  (MPa (MPa)
b1 b2

Deformed bar C15:: 13.0856.0 :0.100.50 3.0 1.0 : 55.41:-0.276:; 0.5tm
(Re=0.96"

C30: : 13.08 56.0 :0.100.50 3.00 1.0 86.70%-0.323 0.5tm
(R=0.99)

Smooth bar C15:; 12.3649.0 i 0.100.50 2.0 1.0 58.61;-0.291 0.5tm
(R=0.95)

C30:  12.36 49.0 :0.100.50 2.0i 1.0 100.0$—0.373 0.5tm
(R=0.99)

" Obtained from Eq. (63); Coefficient of determination;
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Fig. 2. Debonding process in case of infinite bamdyth: pullout forcel(x), slip distribution §(x), the required transfer
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(c) Fully Softening, (d) Fully Frictional
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Fig. 4. The configurations fa(x) andF(x) overL: when two bond phases are acting (a) Elastic-la§t) Plastic-

Softening, (¢) Softening-Frictional

Fig. 5. The configurations fa(x) andF(x) overL: when three bond phases are acting: (a) Elast&ti®i&oftening (b)

Plastic-Softening-Frictional
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Fig. 6. The configurations fa(x) andF(x) overL: when four bond phases are acting: Elastic-Pl&uitening-

Frictional
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Fig. 11. The comparison between theoretical anémxgntal pullout forceersus loaded end slip for smooth GFRP
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Fig. 12. The comparison between theoretical anémx@ntal pullout forceersus free end slip for deformed GFRP

bar: (a) 15 mm and (b) 30 mm concrete cover
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