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DESIGN FORMULA TO EVALUATE THE NSM FRP STRIPS SHEAR STRENGTH CONTRIBUTION 

TO A RC BEAM 

Vincenzo Bianco 1, Giorgio Monti 2 and J.A.O. Barros 3  

 

Abstract: 

This paper presents the closing step of a synthesis process aiming at deriving, from a previously developed more 

complex model, a simple design formula to evaluate the shear strength contribution provided by a system of Near 

Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) strips to a Reinforced Concrete (RC) beam. The 

self-contained and ready-to-implement set of analytical equations and logical operations is presented along with 

the main underlying physical-mechanical principles and assumptions. The formulation proposed is appraised 

against some of the most recent experimental results and its predictions are also compared with those obtained by 

the two previous and more sophisticated versions of the same modeling strategy. Monte Carlo simulations are 

carried out in order to appraise the sensitivity of the NSM shear strength contribution prediction to the value 

assumed by the input parameters. 
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Introduction 

Shear strengthening of RC beams by NSM technique consists of gluing FRP strips by a structural adhesive into 

thin shallow slits cut onto the concrete cover of the beam web lateral faces. A comprehensive three-dimensional 

mechanical model to predict the NSM FRP strips shear strength contribution to a RC beam was recently proposed 

(Bianco 2008, Bianco et al. 2009a-b and 2010). That model was developed fulfilling equilibrium, kinematic 

compatibility and constitutive laws of both the materials involved (FRP and concrete), as well as the local bond 

between themselves. Despite its consistency with experimental recordings, that model turned out to be somehow 

cumbersome to be easily implemented and accepted by professional structural engineers. More recently, a simpler 

version of that model was derived from the more complex one by introducing the following simplifications 

(Bianco 2008, Bianco et al. 2011): 1) a bi-linear rigid-softening local bond stress-slip diagram was adopted instead 
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of a multilinear diagram, 2) concrete fracture surface was assumed as semi-pyramidal instead of semi-conical, 3) 

attention was focused on the average-available-bond-length NSM FRP strip glued on the relevant prism of 

surrounding concrete, 4) determining the constitutive law of the average-available-bond-length NSM strip, along 

the approach followed for Externally Bonded Reinforcement (EBR) by Monti et al. (2003), and 5) determining the 

maximum effective capacity attainable by the average-available-bond-length NSM strip bridging the shear failure 

crack, imposing a coherent kinematic mechanism (e.g. Monti et al. 2004, Monti and Liotta 2007). Nevertheless, 

even the second version of that model resulted not easy enough to be accepted by structural engineers since, in 

order to obtain the constitutive law of the average-available-bond-length NSM strip, it is necessary to implement 

an iterative procedure simulating the increasing value of the imposed end slip. 

In the present paper, the main physical features of a more simplified version of that mechanical model are presented 

along with the further simplifications introduced with respect to the former version. 

During the loading process of a RC beam subject to shear, when concrete average tensile strength ctmf  is attained 

at the web intrados (Fig. 1), some shear cracks originate therein and successively progress towards the web 

extrados. The governing shear failure crack, herein designated as Critical Diagonal Crack (CDC), is inclined of an 

angle θ  with respect to the beam longitudinal axis (Fig. 1a). The CDC can be schematized as an inclined plane 

dividing the web into two portions sewn together by the crossing strips (Fig. 1a). At load step 1t , the two web parts, 

separated by the CDC, start moving apart by pivoting around the crack tip whose trace, on the web face, is point 

E in Fig. 1a. From that step on, by increasing the applied load, the CDC opening angle ( )ntγ  progressively widens 

(Fig. 1a). The strips crossing the CDC oppose its widening by anchoring to the surrounding concrete to which they 

transfer, by bond, the force originating at their intersection with the CDC, liO , as a result of the imposed end slip 

( )[ ]Li ntδ γ , Fig. 1d. The capacity of each strip is provided by its available bond length fiL  that is the shorter 

between the two parts into which the crack divides its actual length fL  (Fig. 1a). Bond is the mechanism through 

which stresses are transferred to the surrounding concrete (Yuan et al. 2004, Mohammed Ali et al. 2006 and 2007, 

Bianco et al. 2009b). The local bond stress-slip relationship ( )τ δ , comprehensively simulating the mechanical 

phenomena occurring at 1) the strip-adhesive interface, 2) within the adhesive layer and at 3) the adhesive-concrete 

interface, can be represented, in a simplified way, by a bi-linear curve (Fig. 1b). The subsequent phases undergone 

by bond during the loading process, representing the physical phenomena occurring in sequence within the 

adhesive layer by increasing the imposed end slip, are: “rigid”, “softening friction” and “free slipping” (Fig. 1b) 

(Bianco 2008). The first rigid branch (0- 0τ ) represents the overall initial shear strength of the joint, independent 
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of the deformability of the adhesive layer and attributable to the micro-mechanical and mainly chemical properties 

of the involved materials and relative interfaces. In fact, the parameter 0τ  is the average of the following physical 

entities encountered in sequence by stresses flowing from the strip to the surrounding concrete, i.e.: adhesion at 

the strip-adhesive interface, cohesion within the adhesive itself, and adhesion at the adhesive-concrete interface 

(e.g. Sekulic and Curnier 2006, Zhai et al. 2008). 

The ( )τ δ  curve adopted (Fig. 1b) envisages that, by imposing an increasing end slip to the FRP strip, cracks form 

instantaneously within the adhesive layer, both orthogonally to the (inclined) tension isostatics and along the 

strip-adhesive and adhesive-concrete interfaces (e.g. Sena-Cruz and Barros 2004). Stresses are transferred by 

friction and micro-mechanical interlock along those micro-cracks. Nonetheless, by imposing an increasing end 

slip, those cracks progressively become smoother (softening friction phase) up to the point ( 1Liδ δ= ) in which 

friction can no longer be mobilized and the strip is pulled out without having to overcome any restraint left (free 

slipping phase). 

The constitutive law ( );fi Rfi LiV L δ  of an NSM FRP strip, i.e. the force transmissible by a strip with resisting bond 

length RfiL  as function of the imposed end slip Liδ , can be determined by analyzing the behavior of the simple 

structural element composed of the NSM FRP strip within a concrete prism (Fig. 1a,c-d) whose transversal 

dimensions are limited by the spacing fs  between adjacent strips and half of the web cross section width 2wb . 

In this way, the problem of interaction between adjacent strips (Dias and Barros 2008, Rizzo and De Lorenzis 

2009) is taken into account in a simplified way, i.e., by limiting the concrete volume into which subsequent 

fractures can form, to the amount of surrounding concrete pertaining to the single strip in dependence of fs  and 

wb . Moreover, even though the interaction with existing stirrups is herein neglected, it may be also accounted for 

by limiting the transversal dimension of the concrete prism to a certain ratio of 2wb , since the larger the amount 

of stirrups, the shallower concrete fracture is expected to be, even if further research is necessary in this respect. 

Attention can be focused on the system composed of the strip with the average value of available bond length 

glued on the pertaining prism of surrounding concrete (Fig. 1c-d). The failure modes of an NSM FRP strip subject 

to an imposed end slip comprise, depending on the relative mechanical and geometrical properties of the materials 

involved: debonding, tensile rupture of the strip, concrete semi-pyramidal tensile fracture, and a mixed shallow-

semi-pyramid-plus-debonding failure mode (Fig. 1e). The term debonding is adopted to designate loss of bond due 

to damage initiation and propagation within the adhesive layer and at the FRP strip-adhesive and adhesive-concrete 

interfaces, so that the strip pulling out results (Fig. 1e). When principal tensile stresses transferred to the 
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surrounding concrete attain its tensile strength, concrete fractures along a surface, envelope of the compression 

isostatics, whose shape can be conveniently assumed as a semi-pyramid with principal generatrices inclined of an 

angle α  with respect to the strip longitudinal axis (Fig. 1c-d). Increasing the imposed end slip can result in 

subsequent semi-pyramidal and coaxial fracture surfaces in the concrete surrounding the NSM strip. This concrete 

fracture process progressively reduces the resisting bond length RfiL  that is the portion of the initial available bond 

length fiL  still bonded to concrete. Those subsequent fractures can either progress up to the free end, resulting in 

a concrete semi-pyramidal failure, or stop progressing midway between loaded and free end, resulting in a 

mixed-shallow-semi-pyramid-plus-debonding failure (Fig. 1e). Moreover, regardless of an initial concrete fracture, 

the strip can rupture (Fig. 1e). 

This modeling strategy can be further simplified introducing the following assumptions: 1) concrete fracture can 

be accounted for determining the equivalent value of the average resisting bond length eq
RfiL , which is the portion 

of the available average resisting bond length eq
Rfi RfiL Lη= ⋅  ( 0 1η≤ ≤ ) that would still be adhered to surrounding 

concrete, as function of the concrete mechanical properties, after all the successive co-axial semi-pyramidal 

fracture surfaces have formed in the surrounding concrete, and 2) the post peak behavior of the bond-based 

constitutive law ( );bd eq
fi Rfi LiV L δ  of the equivalent value of the average resisting bond length can be neglected. As to 

the first assumption, the value of concrete average tensile strength *
ctmf  for values larger than which concrete does 

not fracture at all ( 1η = ) can be determined by imposing the equality between the maximum value of force that 

RfiL  can transfer through bond stresses, and the corresponding value of concrete semi-pyramidal fracture strength. 

In other words, instead of imposing an increasing value of imposed end slip Liδ  to RfiL  and analyzing how it 

progressively reduces at the occurrence of successive co-axial concrete fractures (Bianco et al. 2011), one can 

assume that, if concrete does not fracture for the value of Liδ  in correspondence of which the force transferred 

through bond by RfiL  has attained its maximum value, even more it will not fracture either for smaller values of 

Liδ , or for larger values of Liδ . This is due to the fact that the maximum value of force that RfiL  can transfer 

through bond is attained for the value of Liδ  in correspondence of which the distribution of bond stresses has 

reached the strip free extremity, if Rfi RfeL L≤ , and when the bond transfer length has matched the effective resisting 

bond length, if Rfi RfeL L> . For a null value of ctmf , the assumption is made that concrete semi-pyramidal 
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successive co-axial fracture surfaces would reach the average available bond length free extremity resulting in 

0eq
RfiL =  ( 0η = ). It is also assumed that, for values of concrete tensile strength *0 ctmctm ff << , the reduction 

factor η  has a linear trend between zero and unit 0 1η≤ ≤  (Fig. 2). 

The maximum value of the effective capacity max
,fi effV , which is the maximum value of the average of the NSM FRP 

strip capacity along the CDC (Bianco et al. 2011), can be approximated, and lightly underestimated, neglecting 

the post peak behavior of the bond-based constitutive law of the equivalent resisting bond length. 

In the following paragraphs the resulting analytical equations are firstly presented and then are applied to simulate 

some of the most recent experimental results. Moreover, Monte Carlo simulation are carried out in order to assess 

the sensitivity of the results provided by the proposed formulation to the value assumed by the input parameters. 

 

Proposed design formula 

The input parameters include (Fig. 1): beam cross-section web’s depth wh  and width wb ; inclination angle of both 

CDC and strips with respect to the beam longitudinal axis, θ  and β , respectively; strips spacing measured along 

the beam axis fs ; angle α  between axis and principal generatrices of the semi-pyramidal fracture surface 

(Fig. 1c-d); concrete average compressive strength cmf ; FRP tensile strength fuf  and Young’s modulus fE ; 

thickness fa  and width fb  of the strip cross-section, and values of bond stress 0τ  and slip 1δ  defining the adopted 

local bond stress-slip relationship (Fig. 1b). 

The implementation of the proposed calculation procedure comprehends the following steps (Fig. 3): 1) evaluation 

of the average value of the available (resisting) bond length RfiL  and of the minimum integer number ,int
l
fN  of 

NSM strips that can effectively cross the CDC; 2) evaluation of various constants, both integration and geometric 

ones; 3) evaluation of the reduction factor η  of the average value of the available (resisting) bond length and of 

the equivalent value of the average resisting bond length eq
RfiL ; 4) evaluation of the value of the imposed end slip 

Luδ  in correspondence of which the peak value of the force transmissible through bond by the equivalent value of 

the resisting bond length  can be attained; 5) evaluation of the maximum effective capacity that a NSM of 

bond length  can attain during the beam loading process ( max
,fi effV ), and 6) evaluation of the strips shear strength 

contribution fV . 

 

eq
RfiL

eq
RfiL
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Average value of the available resisting bond length RfiL  and minimum number of strips ,int
l
fN  effectively 

crossing the CDC 

The average value of the available bond length and the minimum integer number of strips effectively crossing the 

CDC can be evaluated as follows (Fig. 1): 

( )
( )

sin cot cot

4 sin
w

Rfi
h

L
θ θ β

θ β
⋅ ⋅ +=

⋅ +
 (1) 

( )
,int

cot cot
round offl

f w
f

N h
s

θ β +
= ⋅ 

    
(2) 

 

Evaluation of Constants 

It is necessary to calculate some constants, both geometrical and integration ones, characterizing the bond transfer 

mechanism of the adopted NSM system, composed of a certain type of FRP strips, adhesive and concrete (Bianco 

et al. 2011). The geometric constants encompass (Fig. 1): 

2p f fL b a= ⋅ +  (3) 

the effective perimeter of the strip cross section; 

2
w

c f
b

A s= ⋅  (4) 

the cross section area of the relevant prism of surrounding concrete; and 

sin
w

d
h

L
θ

=  (5) 

the CDC length. 

The mechanical constants encompass: 

tr
f f f fuV a b f= ⋅ ⋅  (6) 

the strip tensile strength; 

( )( )
2

31.4 8 10ctm cmf f= ⋅ −  (7) 

concrete mean tensile strength; and 

( )
1

32.15 10000 10c cmE f= ⋅ ⋅  (8) 

concrete’s Young’s modulus, where both cE  and ctmf  are herein evaluated by means of the formulae present in 

the CEB-FIP Model Code 1990, with cmf  in MPa. 

The bond-modeling constants encompass (see the Appendix): 
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1
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J
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 
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; 1
2

0 1

1

J

δ
τλ

=
⋅

; 1
3

tr
f

p

V J
C

L λ
⋅

=
⋅

 (9) 

that are integration constants regarding the bond transfer mechanism; 

2RfeL
π

λ
=

⋅
; 1

1
1

pbd
f

L
V

J

λ δ⋅ ⋅
=  (10) 

the effective resisting bond length RfeL , and the corresponding maximum bond force 1
bd
fV . 

 

Reduction factor η  and equivalent value of the average resisting bond length eq
RfiL  

The reduction factor can be evaluated as follows: 

( )
* *

*
; ; ;

1

ctm ctm ctm ctm
f w cm Rfi

ctm ctm

f f se f f
s b f L

se f f
η

 <= 
≥

 (11) 

where: 

( )
( )

1*

1

sin

min tan ; min sin ;2 tan
2

p Rfi
ctm

w
Rfi f Rfi

L L
f

b
J L s L

λ δ λ

α β α

⋅ ⋅ ⋅ ⋅
=

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

 (12) 

in which RfiL  has to be set equal to: 

Rfi Rfi Rfe
Rfi

Rfe Rfi Rfe

L if L L
L

L if L L

≤= 
>

 (13) 

The value of *
ctmf  is the one corresponding, under the above simplifying assumptions, for a given average NSM 

system, to the limit condition of occurrence of concrete fracture. 

The equivalent value of the average resisting bond length is given by: 

( ); ; ;eq
Rfi Rfi f w cm RfiL L s b f Lη= ⋅  (14) 

 

Value of the imposed end slip Luδ  in correspondence of which the peak value of the comprehensive constitutive 

law ( );eq
fi Rfi LiV L δ  of the equivalent average resisting bond length eq

RfiL  is attained 

In case the maximum invariant value of force that a given NSM system, characterized by a given FRP strip, a given 

adhesive layer and concrete, can transfer through bond stresses 
db
fV 1  is larger or equal to the strip tensile strength 

tr
fV , the value of imposed end slip in correspondence of which the peak value of the constitutive law ( );eq

fi Rfi LiV L δ  

is assumed as the minimum between ( )1
eq

L RfiLδ  and ( )1
tr

L fVδ  (Fig. 2d), where ( )1
eq

L RfiLδ  is the value of imposed 
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end slip in correspondence of which the bond-based constitutive law ( );bd eq
fi Rfi LiV L δ  attains the peak value, and 

( )1
tr

L fVδ  is the value of the imposed end slip in which the bond transferred force equals the strip tensile strength 

( tr
f f f fuV a b f= ⋅ ⋅ ). 

The value of the imposed end slip Luδ  in correspondence of which the peak force transmissible by the equivalent 

average resisting bond length eq
RfiL  is attained, is given by: 

( )
( ) ( )

1 1

1 1min ;

eq bd tr
L Rfi f f

Lu eq tr bd tr
L Rfi Li f f f

L se V V

L V se V V

δ
δ

δ δ

 <= 
  ≥  

 (15) 

where: 

( ) ( )1
1

1

1 cos for

for

eq eq
Rfi Rfi Rfeeq

L Rfi eq
Rfi Rfe

L L L
L

L L

δ λ
δ

δ

  ⋅ − ⋅ ≤  = 
>

 (16) 

and: 

( ) 3
1

1

1 cos arcsintr
Li f

C
Vδ δ

δ
  

= ⋅ − −  
  

 (17) 

 

Maximum effective capacity max
,fi effV  of the NSM strip with equivalent average resisting bond length eq

RfiL  

The maximum effective capacity can be evaluated, neglecting the post peak behavior of the constitutive law, as 

follows (Bianco et al. 2011): 

( )max 21 2
, , max

3 max

arcsin 1
2 2fi eff fi eff

d

A
V V

L A

δ πγ ψ ψ ψ
γ

⋅  = = ⋅ − − ⋅ − ⋅ ⋅ ⋅  
 (18) 

where: 

2
1

pL
A

J

λ⋅
= ; ( )

3
1

sin

2
A

θ β
δ
+

=
⋅

; 
( )max

2

sin
Lu

dL

δγ
θ β

⋅
=

⋅ +
; 3 max1 dA Lψ γ= − ⋅ ⋅  (19) 

 

Shear strength contribution provided by a system of NSM FRP strips 

The actual fV  and design value fdV  of the NSM shear strength contribution, can be obtained as follows: 

( )max
,int ,

1 1
2 sinl

fd f f fi eff
Rd Rd

V V N V β
γ γ

= ⋅ = ⋅ ⋅ ⋅ ⋅  (20) 
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where Rdγ  is the partial safety factor, divisor of a capacity, that can be assumed as 1.1-1.2 according to the level 

of uncertainty affecting the input parameters but, in this respect, a reliability-based calibration is needed. 

 

Formulation Appraisal 

The proposed formulation was applied to the RC beams tested by Dias and Barros (2008), Dias et al. (2007), 

Dias (2008), Rizzo and De Lorenzis (2009), A.K.M. Anwarul Islam (2009), Rahal, K.N. (2010), Rahal and Rumaih 

(2011), Jalali et al. (2012) and Cisneros et al. (2012). 

The beams tested in the first two experimental programs (series I and II) were T cross-section RC beams 

characterized by the same test set-up with the same ratio between the shear span and the beam effective depth (

2.5a d = ), the same amount of longitudinal reinforcement, the same kind of CFRP strips and epoxy adhesive and 

they differed for the concrete mechanical properties. In fact, the first experimental program (series I) was 

characterized by a concrete average compressive strength cmf  of 31.1 MPa, while the second (series II) fcm =18.6 

MPa. Both series presented different configurations of NSM strips, in terms of both inclination β  and spacing fs

. The second program also included beams characterized by a different amount of existing steel stirrups (see 

Table 1). The beams tested in the third experimental program (series III) were characterized by the same test set 

up, but with a different shear aspect ratio ( 3.3a d = ) and a higher concrete average compressive strength (

59.4cmf MPa= ). Some of them were also subjected to pre-cracking (their label includes a letter F). 

Those beams are characterized by the following common geometrical and mechanical parameters: 180wb mm= ; 

300wh mm= ; 2952fuf MPa=  (for the series I and II) and fuf  = 2848 MPa (for the series III); 166.6fE GPa=  

(for the series I and II) and 174.3fE GPa=  (for the series III); 1.4fa mm= ; 10.0fb mm= . The CDC 

inclination angle θ  adopted in the simulations by the proposed formulation, listed in Table 1, is the one 

experimentally observed by inspecting the crack patterns (Dias 2008). Note that the experimental observations 

confirm the expected trend according to which θ  diminishes for increasing values of the ratio a d  (e.g. 

Bousselham and Chaalal 2004, Chao et. al. 2005). In fact, for some beams of the III series ( 3.3a d = ), expθ  

assumes values smaller than 45º and up to 20º (Table 1). In this respect, it has to be stressed that assuming 45ºθ =  

could result excessively conservative since, with respect to smaller values (e.g. 20ºθ = ), and other parameters 

being the same, the predicted NSM shear strength contribution decreases due to the fact that the number of strips 

effectively crossing the CDC diminishes (Bianco 2008). It would be necessary to develop rigorous equations to 
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evaluate the CDC inclination angle θ  as function of 1) shear aspect ratio a d  and amount of both 2) NSM strips 

and 3) existing steel stirrups but, in this respect, further research is necessary. 

The beams tested by Rizzo and De Lorenzis (2009) (series IV) were rectangular cross-section RC beams 

strengthened in shear by either bars (their label starts by NB) or strips (their label starts by NS) and tested under 

four point bending (Table 2). These beams were characterized by cross-section dimensions of 200wb mm=  and 

210wh mm= , and the ratio between the shear span and the beam effective depth was 3.0a d = . Concrete had 

average compressive strength of 29.3 MPa. The round CFRP bars have a 8 mm diameter cross-section and for 

improvement of the bond properties, the surface of this type of bar is spirally wound with a carbon fiber tow and 

sand coated. The tensile strength and modulus of elasticity of the bars were 2.21fuf GPa=  and 145.7fE GPa=

, respectively. The strips, have a cross-section of dimensions 2.0fa mm=  and 16.0fb mm= , and mechanical 

properties of 2.07fuf GPa=  and 121.5fE GPa= . Two kinds of epoxy were employed to glue the NSM 

reinforcement, both two-component 100% solid non-sag tixotropic epoxy adhesive pastes obtained by mixing resin 

and hardener in a 3:1 weight ratio, differ by the values of tensile strength and modulus of elasticity and are 

indicated, in the beam codes, by a letter a or b. The tensile strength and the secant tensile elastic modulus presented 

values of 18.6MPa  and 4.15GPa , respectively, for the type-a adhesive, and values of 22.8MPa  and 12.87GPa  

for the type-b. Since the experimentally observed value of the CDC inclination angle is not reported, in the 

simulation a value of 45° was assumed. 

The beams tested by A.K.M. Anwarul Islam (2009) (series V) were rectangular cross-section RC beams 

strengthened in shear by CFRP round bars and tested under four point bending (Table 3). These beams were 

characterized by cross-section dimensions of 254wb mm=  and 305wh mm= , and the ratio between the shear 

span and the beam effective depth was 2.34a d = . Concrete had average compressive strength of 49.75 MPa. The 

round CFRP bars have a 9 mm diameter cross-section and tensile strength and modulus of elasticity of the bars 

were 2.07fuf GPa=  and 124.0fE GPa= , respectively. CFRP bars are inclined of 90° with respect to the beam 

longitudinal axis and since the experimentally observed value of the CDC inclination angle is not reported, in the 

simulation a value of 45° was assumed. 

The beams tested by Rahal (2010) and by Rahal and Rumaih (2011) (series VI) were T cross-section RC beams 

strengthened in shear by NSM bars either of steel (their label includes a letter R) or CFRP (their label includes a 

letter F) and tested under four point bending (Table 4). All the five tested beams contained two test regions each, 

one strengthened with CFRP bars and the other with conventional steel bars. Hence, a total of ten results are 
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reported. These beams were characterized by T cross-section dimensions of 150wb mm=  and 400wh mm= , 

while the flange was 380mm in width and 100mm  in depth, and the ratio between the shear span and the beam 

effective depth was 3.0a d = . Concrete average compressive strength ranged from 36.2MPa  to 38.6MPa . The 

epoxy resin used to grout the bars in the groves was “non-sag” resin. The NSM steel bars were characterized by 

yield tensile strength of 0.51GPa, while the NSM FRP bars were 8 mm deformed TYFO® carbon FRP bars 

characterized by 1.90fuf GPa=  and 124.0fE GPa= . Since the experimentally observed value of the CDC 

inclination angle is not reported, in the simulation a value of 45° was assumed. 

The beams tested by Jalali et al. (2012) (series VII) were rectangular cross-section RC beams strengthened in shear 

by Manually Made NSM FRP rods (MMFRPs) with (their label includes a letter A) and without an extremity 

anchorage (Table 5) and tested under three point bending. These particular kind of FRP rods were obtained by 

wrapping a dry carbon fiber sheet, which was pre impregnated with resin, around a 6 mm diameter wooden rod. 

These rods were characterized by 3.55fuf GPa=  and 235.0fE GPa= . The beams were rectangular cross-

section with dimensions 200wb mm=  and 250wh mm= , and the ratio between the shear span and the beam 

effective depth was 2.73a d = . Concrete average compressive strength was equal to 36.4cmf MPa= . Since the 

experimentally observed value of the CDC inclination angle is not reported, in the simulation a value of 45° was 

assumed. 

The beams tested by Cisneros et al. (2012) (series VII) were rectangular cross-section RC beams strengthened in 

shear by either bars (their label starts by B) or strips (their label starts by S) and tested under three point bending 

(Table 6). Beams cross-section dimensions were 200wb mm=  and 350wh mm= . Each beam was tested twice, 

once at each end, and the ratio between the shear span and the beam effective depth equal to 2.9a d = . Concrete 

average compressive strength ranged from 22.84cmf MPa=  to 29.11cmf MPa= . The NSM FRP bars were 

characterized by 8 mm diameter, while the strips had cross section dimensions of 2.5fa mm=  and 15.0fb mm=

. FRP mechanical properties were 2.5fuf GPa=  and 165.0fE GPa= . The resin used was MBrace Adhesive 

220 for the bars and Masterflow 920 SF for the strips. Since the experimentally observed value of the CDC 

inclination angle is not reported, in the simulation a value of 45° was assumed. 

The angle α  was assumed equal to 28.5° for all the experimental programs, being the average of values obtained 

in a previous investigation (Bianco  2008) by back-analysis of experimental data. As to the value of α , due to its 

importance to the prediction accuracy of NSM shear strength contributions, further research is desirable. Concrete 
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average tensile strength ctmf  was calculated from the average compressive strength by means of the formulae of 

the CEB Fib Model Code 1990. The parameters characterizing the adopted local bond stress-slip relationship 

(Fig. 1b) are for all the experimental programs: 0 20.1MPaτ =  and 1 7.12 mmδ = . Those values were obtained 

by the values characterizing the more sophisticated local bond stress-slip relationship adopted in previous works 

(Bianco et al. 2009a, 2010), by fixing the value of 0 20.1MPaτ =  and determining 1 7.12 mmδ =  by equating the 

fracture energy. In this respect, it has to be underlined that the necessity is felt to develop rigorous equations that 

would allow the values ( )0 1,τ δ  characterizing the local bond stress slip relationship to be determined on the basis 

of: a) superficial chemical and micro-mechanical properties of FRP, adhesive and concrete, and b) the adhesive 

layer thickness. Nonetheless, further research is, in this respect, required. However, as highlighted by means of 

parametric studies (Bianco 2008), for the values of concrete mechanical properties that can be met in practice, 

debonding rarely occurs due the high capacity of currently available structural adhesives. Thus, slight variations 

of the values of the parameters 0τ  and 1δ  cannot be felt, in terms of NSM shear strength contribution, due to the 

premature occurrence of other failure modes such as either concrete fracture or strip rupture. For this reason, 

adopting values of 0 20.1MPaτ =  and 1 7.12 mmδ =  for cases characterized by different values of both 1) 

superficial chemical-mechanical properties of FRP, adhesive and concrete, and 2) adhesive thickness, is not 

expected to significantly affect the predictive performance of the proposed formulation. 

When NSM round bars are employed instead of strips, the equivalent square cross-section is employed in the 

calculations. In the case of the MMFRPs adopted by Jalali et al. (2012), since the FRP cross-section is an annulus, 

the corresponding area is adopted to evaluate fA  (with 250.27fA mm=  obtaining 7.10f fa b mm= = ). The 

same values of the equivalent square cross section dimensions are adopted to evaluate the effective perimeter 

2p f fL b a= ⋅ + , even though slightly underestimating this latter. 

Note also that, for the works among those adopted as basis of the model appraisal, not reporting directly the NSM 

shear strength contribution exp
fV , this latter has been herein obtained as the difference between the shear strength 

of the strengthened beam and that of the control beam. Note also that in Tables 1-6, the symbol wh  has been 

adopted to indicate also the vertical height of the NSM bars, when they are coincident while, when the NSM bar 

is inserted through the flange thickness, the symbol fh  has been adopted instead. 

The predictions obtained by the formulation proposed in the present work have also been compared with those 

obtained by the previous two more sophisticated versions of the same modeling strategy. The predictions obtained 
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by the first model (Bianco et al. 2009a), which contemplates three geometrical configurations that the occurred 

CDC can assume with respect to the system of NSM FRPs, are labeled by ,1
I
fV , ,2

I
fV  and ,3

I
fV . The predictions 

obtained by the second and simplified model (Bianco et al. 2011) are labeled by IIfV  while those obtained by the 

third, further simplified model herein presented are labeled by III
fV . The experimental results concerning beams 

2S-8LI45-I and 4S-7LV-II have been neglected in the considerations below since they are deemed affected by 

some disturbance. 

The formulation herein proposed provides, in general, satisfactory estimates of the experimental recordings exp
fV  

since the ratio expIII
f fV V  presents altogether mean value and standard deviation equal to 0.69 and 0.29, 

respectively. The second version of the adopted modeling strategy also provides satisfactory estimates of the 

experimental recordings exp
fV  since the ratio expII

f fV V  presents altogether mean value and standard deviation 

equal to 0.67 and 0.29, respectively, even it is not closed form and requires the implementation of an iterative 

procedure to determine the average resisting bond length strip’s constitutive law. The first version of the adopted 

modeling strategy, much more sophisticated than the two more recent versions, provides much more satisfactory 

estimates. In fact, considering, for each analyzed beam, the closest prediction out of the three obtained, the ratio 

exp
f fV V  presents altogether mean value and standard deviation equal to 0.98 and 0.26, respectively, even if it is 

very cumbersome to be implemented and needs a stand-alone software to be developed. 

 

Sensitivity analysis 

A sensitivity analysis was carried out to assess the relative importance of each input parameter on the calculated 

value of the NSM shear strength contribution in order to figure out what are the input parameters that mostly affect 

the result. For this purpose, the proposed formulation, presented in the previous sections, was implemented in a 

spreadsheet that was re-calculated iteratively one hundred thousand times, each time with a set of new possible 

values of the input parameters. At each iteration, the new value of each parameter was sampled, independently 

from each other, from the relevant probability distribution assigned to it, and a new value of the output was 

generated in the corresponding cell. As simulation progressed, new possible outcomes were generated from each 

iteration and a numerical solver kept track of these output values. All of the input parameters (fa , fb , fs , wb , 

wh , cmf , α , fuf , fE , θ , 0τ , 1δ ) were characterized by a uniform probability distribution, which means a range 
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of possible values with the same likelihood of occurrence (Table 7). These intervals cover the possible situations 

occurring in NSM shear strengthening interventions for RC beams. 

In particular: the strip thickness fa  was characterized by a range of variation between 0.1  and mm0.5 ; the strip 

width fb , the strips’ spacing fs , and the concrete average compressive strength cmf  were characterized by ranges 

of variation 5 35 mm− , 50 250mm−  and 10 90MPa− , respectively; beam cross-section web’s depth wh  and 

width wb  were characterized by ranges of variation 300 700mm−  and 150 400mm− . The input parameters 0τ  

and 1δ  were characterized by ranges of variation 10 30MPa−  and 2.0 15.0mm− , respectively. 

At each iteration, the value of each input parameter was sampled from the relevant probability distribution by the 

Monte Carlo Sampling Technique (Law and Kelton 2000, Ang and Tang 1975). Monte Carlo simulations is simply 

a repeated process of generating deterministic solutions to a given problem; each solution corresponds to a set of 

deterministic values of the underlying random input parameters. In other words, a Monte Carlo simulation 

recalculates the worksheet in which the deterministic formulation was implemented, over and over, each time 

assuming a set of input parameters whose values are selected randomly from the probability distribution assigned 

to each of them. 

The outcome of the above simulations, being the result of calculations in which all input parameters are 

characterized by a uniform probability distribution, is itself characterized by a probability distribution and can be 

represented both in terms of probability density and cumulated ascending probability (Fig. 4). From those results 

it arises that, for the range of variations herein assigned to the input parameters (Table 7): 1) the equivalent average 

resisting bond length strip’s maximum effective capacity ( )max
,

eq
fi eff RfiV L  varies between 0.0 and 40.8kN  in 95 % of 

cases, and 2) the NSM FRP strips shear strength contribution varies between 0.0 and 514.0kN  in 95 % of cases. 

The sensitivity analysis between the output and the input variables was herein carried out evaluating, by the 

multivariate stepwise regression method (e.g. Draper and Smith 1966), the regression coefficients of the input 

variables (Fig. 4). The larger the coefficient, the larger the impact that particular input has on the calculated value. 

A positive coefficient, with bar extending to the right, indicates that this input has a positive impact, which means 

that increasing this input will increase the output, while the opposite happens if the coefficient is negative. 

The values of the plotted regression coefficients (Fig. 4) indicate the increment of output for a standard deviation 

of the relevant input. For instance, wh  has a mapped coefficient of 86.50, meaning that an increase of µ  fraction 

of a standard deviation of input parameter wh  yields an increase of 86.50µ⋅  units (kN , not standard deviations) 
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of the output fV . The standard deviation of sampled values of wh  is 115.35kN  (Table 8) and, therefore, every 

unit increase of input wh  impacts the output positively by 86.50 115.35 0.75kN= . 

From the sensitivity analysis it was found that the input parameters that mostly affect the value of max
,fi effV  are, in 

decreasing order of impact, the angle α  between axis and generatrices of the concrete fracture surface, the concrete 

average compressive strength cmf , the beam cross section depth wh , and the strips spacing fs  (Fig. 4). It was 

also observed that the value of fV  is mostly affected by the value of wh , α , cmf , and the CDC inclination angle 

θ  (Fig. 4). 

 

Conclusions 

A design formulation to predict the NSM FRP strips shear strength contribution to a RC beam was derived from a 

previously developed numerical model, introducing some simplifications, such as: 1) assuming the phenomenon 

of concrete fracture just as a reducer of the average available resisting bond length, and evaluating a resulting 

equivalent average resisting bond length, and 2) neglecting the post peak behavior of the equivalent average 

resisting bond length’s bond-based constitutive law in the evaluation of the strip’s maximum effective capacity. 

The predictive performance of the formulation was appraised by considering some of the most recent experimental 

results available in literature. The formulation provided very satisfactory estimates of the experimental recordings, 

resulting the ratio of the prediction versus the experimental value characterized by a mean value and a standard 

deviation of 0.69 and 0.29, respectively. 

The proposed formulation was subsequently employed to carry out Monte Carlo simulations sampling, at each 

iteration, the value of each input parameter from the relevant uniform probability distribution and independently 

from each other. The results of those simulations were adopted in order to figure out which input parameters mostly 

affect the prediction of the NSM FRP strips shear strength contribution to a RC beam. From this sensitivity it arises 

that the input parameters that mostly affect the NSM shear strength contribution prediction are, in decreasing order 

of importance: wh , α , cmf  and the CDC inclination angle θ . 
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Notation 

 
cA  = area of the concrete prism cross section 

fA  = area of the strip’s cross section 

2A  = integration constant entering the expressions to evaluate the max
,fi effV  

3A  = integration constant entering the expressions to evaluate the max
,fi effV  

3C  = integration constant for the softening friction phase 

cE  = concrete Young’s modulus 

fE  = strips’ CFRP Young’s modulus 

1J  = bond modeling constant 

dL  = CDC length 

RfiL  = average available resisting bond length 

pL  = effective perimeter of the strip cross section 

RfiL  = i-th strip resisting bond length 

RfeL  = Effective resisting bond length 

eq
RfiL  = Equivalent average resisting bond length 

,int
l
fN  = minimum integer number of strips that can effectively cross the CDC 

OXYZ = crack plane reference system 

l
i

l
i XO  = reference axis along the i-th strip available bond length fiL  

cf
fiV  = progressive concrete tensile fracture capacity along the i-th strip 

db
fV 1  = Maximum value of force transferable through bond by the given FRP NSM system 

max
,fi effV  = maximum effective capacity 

exp
fV  = experimental value of the NSM shear strengthening contribution 

tr
fV  = Strip tensile rupture capacity 

fV  = actual value of the NSM shear strengthening contribution 
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fdV  = design value of the NSM shear strengthening contribution 

( );fi Rfi LiV L δ  = comprehensive constitutive law of the average available resisting bond length 

( );bd
fi Rfi LiV L δ  = bond-based constitutive law of the average available resisting bond length 

fa  = strip cross section’s thickness 

fb  = strip cross section’s width 

wb  = beam cross section’s width 

cmf  = concrete average cylindrical compressive strength 

ctmf  = concrete average tensile strength 

*
ctmf  = 

Value of concrete average tensile strength for values larger than which concrete 

fracture does not occur 

fuf  = FRP tensile strength 

wh  = beam web height 

fh  = vertical height of the NSM bar 

fs  = spacing between adjacent strips along the beam axis 

α  = angle defining the concrete fracture surface 

β  = FRP strips inclination angle with respect to the beam longitudinal axis 

1δ  = slip corresponding to the end of softening friction 

Liδ  = imposed slip at the loaded extremity of the i-th strip 

Luδ  = 
imposed slip in correspondence of which the comprehensive peak force 

transmissible by eq
RfiL  is attained 

( )1
tr

L fVδ  = 
Value of imposed end slip in correspondence of which the strip tensile strength is 

attained 

( )1L RfiLδ  = value of Liδ  defining the end of the first phase of the bond-based constitutive law 

maxγ  = CDC opening angle for which the maximum effective capacity is attained 

η  = reduction factor of the initial average available resisting bond length 

Rdγ  = partial safety factor divisor of the capacity 

λ  = constant entering the governing differential equation for elastic phase 
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θ  = critical Diagonal Crack (CDC) inclination angle 

expθ  = experimentally observed CDC inclination angle 

( )δτ  = local bond stress-slip relationship 

ψ  = 
Constant necessary to evaluate the maximum effective capacity provided by the 

equivalent average resisting bond length 

0τ  = adhesive-cohesive initial bond strength 
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TABLE CAPTIONS 

Table 1. Values of the parameters characterizing the beams tested by Dias and Barros (2008), Dias et al. (2007) 
and Dias (2008). 

Table 2. Values of the parameters characterizing the beams tested by Rizzo and De Lorenzis (2009). 

Table 3. Values of the parameters characterizing the beams tested by A.K.M. Anwarul Islam (2009). 

Table 4. Values of the parameters characterizing the beams tested by Rahal and Rumaih (2011) and by Rahal 
(2010). 

Table 5. Values of the parameters characterizing the beams tested by Jalali et al. (2012). 

Table 6. Values of the parameters characterizing the beams tested by Cisneros et al. (2012). 

Table 7. Values characterizing the uniform probability distribution of the input parameters. 

Table 8. Detailed statistics of both the sampled values of input parameters and the calculated output. 
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Table 1. Values of the parameters characterizing the beams tested by Dias and Barros (2008), Dias et al. (2007) 
and Dias (2008). 

Beam 

Label 

expθ  

° 

β  

° 

fs  

mm 

Steel 

Stirrups 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

III
fV  

kN 

expIII
f fV V

 

2S-3LV-I 40 90 267 F6/300 18.53 6.46 55.33 10.77 22.20 11.07 0.50 

2S-5LV-I 40 90 160 “ 52.33 26.42 55.34 30.97 25.20 22.15 0.88 

2S-8LV-I 36 90 100 “ 68.58 58.88 64.33 29.59 48.60 44.30 0.91 

2S-3LI45-I 45 45 367 “ 35.10 15.41 45.73 23.44 29.40 16.00 0.54 

2S-5LI45-I 45 45 220 “ 46.11 49.14 45.74 23.19 41.40 32.00 0.77 

2S-8LI45-I 36 45 138 “ 75.89 79.71 78.73 59.55 40.20* 67.87 1.69 

2S-3LI60-I 33 60 325 “ 50.69 18.90 51.68 30.74 35.40 12.88 0.36 

2S-5LI60-I 36 60 195 “ 36.37 36.59 48.55 22.27 46.20 38.65 0.84 

2S-7LI60-I 33 60 139 “ 52.98 63.07 67.58 60.80 54.60 51.53 0.94 

2S-7LV-II 46 90 114 F6/300 26.72 31.84 35.59 15.04 28.32 13.19 0.47 

2S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 19.24 33.90 19.09 0.56 

2S-7LI45-II 30 45 157 “ 49.36 47.13 45.95 37.92 48.00 46.02 0.96 

2S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 13.23 33.06 15.35 0.46 

2S-6LI60-II 27 60 162 “ 42.79 37.54 39.45 34.68 42.72 30.70 0.72 

4S-7LV-II 46 90 114 F6/180 26.72 31.84 35.59 15.04 6.90* 13.19 1.91 

4S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 19.24 26.04 19.09 0.73 

4S-7LI45-II 40 45 157 “ 40.58 37.48 40.63 28.36 31.56 36.82 1.17 

4S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 13.23 25.08 15.35 0.61 

4S-6LI60-II 30 60 162 “ 38.92 35.46 36.71 25.72 35.10 30.70 0.87 

3S-5LI45-III 30 45 275 F6/300 59.74 59.55 70.01 70.33 66.10 54.03 0.82 

3S-5LI45F1-III**  23 45 275 “ 83.05 86.96 81.15 77.93 85.75 81.05 0.95 

3S-5LI45F2-III**  30 45 275 “ 59.74 59.55 70.01 70.33 65.35 54.03 0.83 

5S-5LI45-III 28 45 275 F6/200 78.24 59.55 72.01 57.76 74.90 81.05 1.08 

5S-5LI45F-III**  28 45 275 “ 78.24 59.55 72.01 57.76 74.90 81.05 1.08 

3S-9LI45-III 32 45 157 F6/300 109.88 109.32 98.30 114.30 101.85 104.27 1.02 

5S-9LI45-III 32 45 157 F6/200 109.88 109.32 98.30 114.30 108.90 104.27 0.96 

3S-5LI60-III 26 60 243 F6/300 71.74 76.20 62.81 52.84 69.00 65.61 0.95 

5S-5LI60-III 25 60 243 F6/200 68.48 77.44 63.79 59.82 73.35 65.61 0.89 

5S-5LI60F-III**  25 60 243 “ 68.48 77.44 63.79 59.82 72.55 65.61 0.90 

3S-8LI60-III 22 60 162 F6/300 112.82 119.58 112.25 109.30 112.30 109.35 0.97 

5S-8LI60-III 19 60 162 F6/200 123.34 122.74 132.00 114.69 122.45 131.22 1.07 

3S-6LV-III 45 90 180 F6/300 58.24 26.62 66.53 35.04 39.58 18.83 0.48 

3S-10LV-III 32 90 114 “ 97.50 82.41 85.21 60.23 83.25 75.34 0.90 
 
* beams whose experimental value of NSM shear strength contribution is affected by some disturbance; 
** beams that were subjected to pre-cracking. 
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Table 2. Values of the parameters characterizing the beams tested by Rizzo and De Lorenzis (2009). 

Beam 

Label 

θ  

° 

β  

° 

fs  

mm 

fuf  

GPa 

fE  

GPa 

fa  

mm 

fb  

mm 

fφ  

mm 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

fV  

kN 

exp
f fV V  

 

NB90-73-a-IV 45 90 73 2.21 145.7 - - 8 24.84 27.01 33.73 11.59 54.20 10.08 0.19 

NB90-73b-IV 45 90 73 “ “ - - “ 24.84 27.01 33.73 11.59 26.40 10.08 0.38 

NB90-45-b-IV 45 90 45 “ “ - - “ 35.86 31.77 38.87 16.99 28.60 15.92 0.56 

NB45-146-a-IV 45 45 146 “ “ - - “ 25.50 24.69 24.69 17.68 39.10 14.31 0.37 

NB45-73-a-IV 45 45 73 “ “ - - “ 37.69 34.06 38.86 19.54 28.00 22.91 0.82 

NS90-73-a-IV 45 90 73 2.07 121.5 2.0 16.0 - 21.39 23.98 34.24 12.93 50.50 10.16 0.20 

NS45-146-a-IV 45 45 146 “ “ “ “ - 27.76 27.87 34.33 14.09 32.70 14.53 0.44 

wb  200 mm; wh  210 mm; cmf  29.3 MPa; steel stirrups F6/160;  
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Table 3. Values of the parameters characterizing the beams tested by A.K.M. Anwarul Islam (2009). 

Beam 

Label 

θ  

° 

β  

° 

fs  

mm 

Steel 

Stirrups 

fuf  

GPa 

fE  

GPa 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

fV  

kN 

exp
f fV V  

 

B2-FRP-V 45 90 152 - 2.07 124 77.16 43.65 77.57 28.98 44.50 33.44 0.75 

B-3-FRP-V 45 90 305 F9/305 2.07 124 0.00 0.00 77.11 1.16 31.00 16.72 0.54 

B-4-FRP-V 45 90 191 F9/610 2.07 124 49.76 28.79 77.53 37.26 35.50 16.72 0.47 

wb  254 mm; wh  305 mm; fφ  9.0 mm; cmf  49.75 MPa; 
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Table 4. Values of the parameters characterizing the beams tested by Rahal and Rumaih (2011) and by Rahal 
(2010). 

Beam 

Label 

θ  

° 

β  

° 

fs  

mm 

fuf  

GPa 

cmf  

MPa 

fE  

GPa 

fh  

mm 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

III
fV  

kN 

expIII
f fV V

 

B2-B90-R200-VI 45 90 200 0.51 37.3 210 400 51.42 68.16 51.42 47.10 55.0 45.47 0.83 

B2-B90-F200-VI 45 90 “ 1.90 “ 124 “ 87.39 71.92 87.39 27.36 70.0 45.73 0.65 

B3-B90-R200A-VI 45 90 “ 0.51 37.8 210 500 71.51 85.06 57.82 64.41 83.0 68.63 0.83 

B3-B90-F200A-VI 45 90 “ 1.90 “ 124 “ 135.25 130.47 111.49 73.28 103.0 72.74 0.71 

B4-B45-R200-VI 45 45 “ 0.51 36.2 210 400 88.94 69.08 88.94 53.13 113.0 97.06 0.86 

B4-B45-F200-VI 45 45 “ 1.90 “ 124 “ 120.20 97.67 120.20 107.60 138.0 114.85 0.83 

B5-B45-R200L-VI 45 45 “ 0.51 38.6 210 “ 90.51 69.37 90.51 97.10 85.0 97.06 1.14 

B5-B45-F200L-VI 45 45 “ 1.90 “ 124 “ 123.78 94.42 123.78 89.85 115.0 121.2 1.05 

B6-B45-R300-VI 45 45 300 0.51 37.2 210 “ 53.73 59.38 42.73 48.55 40.0 48.53 1.21 

B6-B45-F300-VI 45 45 “ 1.90 “ 124 “ 76.85 69.27 80.73 67.10 55.0 63.73 1.16 

fφ  equal to 8 mm; wb  equal to 150 mm; steel stirrups equal to F6/200; 
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Table 5. Values of the parameters characterizing the beams tested by Jalali et al. (2012). 

Beam 

Label 

θ  

° 

β  

° 

fs  

mm 

Steel 

Stirrups 

fuf  

GPa 

fE  

GPa 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

fV  

kN 

exp
f fV V  

 

VR-VII 45 90 160 F6/150 3.55 235 28.18 10.65 52.28 12.5 33.41 8.65 0.26 

IR-VII 45 45 240 “ “ “ 43.36 25.69 35.85 19.94 53.94 24.54 0.45 

VRA-VII 45 90 160 “ “ “ 28.18 10.65 52.28 12.5 39.88 8.65 0.22 

IRA-VII 45 45 240 “ “ “ 43.36 25.69 35.85 19.94 63.82 24.54 0.38 

VRA-VII 45 90 160 “ “ “ 28.18 10.65 52.28 12.5 29.4 8.65 0.29 

wb  200 mm; wh  250 mm; cmf  36.4 MPa; fa fb  3.46 mm 
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Table 6. Values of the parameters characterizing the beams tested by Cisneros et al. (2012). 

Beam 

Label 

θ  

° 

β  

° 

fs  

mm 

Steel 

Stirrups 

cmf  

MPa 

fa  

mm 

fb  

mm 

fφ  

mm 

,1
I
fV  

kN 

,2
I
fV  

kN 

,3
I
fV  

kN 

II
fV  

kN 

exp
fV  

kN 

fV  

kN 

exp
f fV V  

 

B90-6a-VIII 45 90 115 F6/150 26.69 - - 8 35.91 36.04 55.17 20.50 58.30 18.91 0.32 

B90-6b-VIII “ “ “ “ 24.09 - - “ 33.03 34.53 50.28 19.88 55.00 17.12 0.31 

B90-3a-VIII “ “ 230 “ 22.84 - - “ 12.07 3.69 45.79 8.66 11.00 8.11 0.74 

B90-3b-VIII “ “ “ “ 26.02 - - “ 12.96 4.55 51.54 9.22 6.30 9.23 1.47 

B45-6a-VIII “ 45 115 “ 22.98 - - “ 44.14 44.90 49.52 37.05 74.20 41.02 0.55 

B45-6b-VIII “ “ “ “ 28.48 - - “ 56.03 57.10 62.56 50.34 98.20 50.52 0.51 

B45-3a-VIII “ “ 230 “ 29.11 - - “ 35.29 36.87 51.88 26.84 40.20 29.19 0.73 

B45-3b-VIII “ “ “ “ 23.91 - - “ 31.22 35.24 53.06 19.04 81.00 24.18 0.30 

S90-6a-VIII “ 90 115 “ 26.69 2.5 15.0 - 34.52 36.51 55.37 16.90 75.80 19.05 0.25 

S90-6b-VIII “ “ “ “ 24.09 “ “ - 34.03 37.66 58.26 21.77 38.90 17.24 0.44 

S90-3a-VIII “ “ 230 “ 22.84 “ “ - 13.96 5.36 57.37 9.24 10.50 8.17 0.78 

S90-3b-VIII “ “ “ “ 26.02 “ “ - 15.66 5.84 55.34 7.80 20.40 9.3 0.46 

S45-6a-VIII “ 45 115 “ 22.98 “ “ - 54.24 52.13 54.22 31.96 77.10 41.63 0.54 

S45-6b-VIII “ “ “ “ 28.48 “ “ - 58.79 56.21 72.10 45.82 106.40 51.27 0.48 

S45-3a-VIII “ “ 230 “ 29.11 “ “ - 37.34 45.79 50.38 35.33 58.10 29.62 0.51 

S45-3b-VIII “ “ “ “ 23.91 “ “ - 45.29 32.39 50.97 31.68 98.00 24.54 0.25 

fuf  2.5 GPa; fE  165 GPa; wb  200 mm; wh  300 mm; 

 
 
  



 30

Table 7. Values characterizing the uniform probability distribution of the input parameters. 

 
θ  
° 

wh  

mm 
wb  

mm 
fa  

mm 

fb  

mm 

fs  

mm 

β  

° 
fE  

GPa 

fuf  

GPa 
cmf  

MPa 

α  
° 

0τ  

MP
a 

1δ  

mm 

Range of variation 
20-
60 

300-
700 

150-
400 

1.0-
5.5 

5-
35 

50-
250 

45-
90 

100-
200 

1.0-
6.0 

10-
90 

10-
35 

10-
30 

2.0-
15.0 
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Table 8. Detailed statistics of both the sampled values of input parameters and the calculated output. 

 
max
,fi effV  

kN 

fV  

kN 

θ  
° 

wh  

mm 
wb  

mm 
fa  

mm 

fb  

mm 

fs  

mm 

β  

° 
fE  

GPa 

fuf  

GPa 
cmf  

MPa 

α  
° 

0τ  

MPa 
1δ  

mm 

Minimum 0.16 0 20.0 300.0 150.0 1.0 5.0 50.0 45.0 100.0 1.0 10.0 10.0 10.0 2.0 
Maximum 123.42 1886.39 59.99 699.99 399.99 5.49 34.99 249.99 89.99 199.99 5.99 89.99 35.0 29.99 14.99 

Mean 14.63 163.66 40.03 499.21 275.19 3.25 20.01 149.93 67.51 149.90 3.50 49.98 22.5 19.99 8.51 
Standard 
Deviation 

12.77 172.13 11.55 115.35 72.21 1.29 8.63 57.79 12.98 28.92 1.44 23.11 7.22 5.78 3.75 
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FIGURE CAPTIONS 

Fig. 1. Main physical-mechanical features of the theoretical model and calculation procedure: 

a) average-available-bond-length NSM strip and concrete prism of influence, b) adopted local bond stress-slip 

relationship, c) NSM strip confined to the corresponding concrete prism of influence and semi-pyramidal fracture 

surface, d) sections of the concrete prism. 

Fig. 2. Further simplifying assumptions introduced: a) reduction of the available average resisting bond length due 

to progressive concrete fracture, b) available length reduction factor as function of the concrete average tensile 

strength, c) bond-based constitutive law for NSM FRP strips with different values of resisting bond length, d) 

assumed comprehensive constitutive law of the equivalent average available resisting bond length strip. 

Fig. 3. Calculation procedure: main algorithm. 

Fig. 4. Results of the Monte Carlo simulations: probability density distribution, cumulated probability distribution 

and mapped regression coefficients for a) the NSM FRP strips shear strength contribution fV , and b) the average 

strip maximum effective capacity max
,fi effV . 

Fig. A1. Evaluation of the average available resisting bond length RfiL . 
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Fig. 1. Main physical-mechanical features of the theoretical model and calculation procedure: 

a) average-available-bond-length NSM strip and concrete prism of influence, b) adopted local bond stress-slip 

relationship, c) NSM strip confined to the corresponding concrete prism of influence and semi-pyramidal fracture 

surface, d) sections of the concrete prism. 
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Fig. 2. Further simplifying assumptions introduced: a) reduction of the available average resisting bond length due 

to progressive concrete fracture, b) available length reduction factor as function of the concrete average tensile 

strength, c) bond-based constitutive law for NSM FRP strips with different values of resisting bond length, d) 

assumed comprehensive constitutive law of the equivalent average available resisting bond length strip. 
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Fig. 3. Calculation procedure: main algorithm. 
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Fig. 4. Results of the Monte Carlo simulations: probability density distribution, cumulated probability distribution 

and mapped regression coefficients for a) the NSM FRP strips shear strength contribution fV , and b) the average 

strip maximum effective capacity max
,fi effV . 

 

  



 37

 
 

Fig. A1. Evaluation of the average available resisting bond length RfiL . 
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APPENDIX 

The average available resisting bond length herein is no longer evaluated as the average of the available resisting 

bond length 
,int

,int
1

l
fN

l
fi fi f

i
L L N

=
∑=  of all the ,int

l
fN  strips effectively bridging the CDC, as done in the previous 

work (Bianco et al. 2011). In an attempt to gain simplicity, without losing accuracy, fiL , herein designated as RfiL

, is evaluated as the actual average value that a strip effectively intersecting the CDC can attain, independently of 

either the actual number of strips and their location along the CDC. According to the approach schematically 

represented in Fig. A1, RfiL  is evaluated by applying the sine theorem to the smallest triangle, i.e.: 

( )
( )[ ]

cot cot

sin 4 sin
Rfi wL h θ β
θ π θ β

⋅ +=
⋅ − +

 from which Eq. (1) can be derived. 

Once the value of the equivalent average resisting bond length eq
RfiL  is evaluated, the relevant bond-based 

constitutive law ( );bd eq
fi Rfi LiV L δ  is considered neglecting the post-peak branch thus reducing, with respect to what 

was done in the previous work (Bianco et al. 2011), to: 

( ) ( )( ) ( )( ){ }3 1 2; cos 1 sinbd eq sf sf sf sf
fi Rfi Li p tr Li tr LiV L L J C L C Lδ λ λ δ λ δ = ⋅ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅   (A1) 

To evaluate the value of imposed end slip in correspondence of which the force transferred through bond equals 

the strip rupture capacity trfV , the ( );bd eq
fi Rfi LiV L δ  in the previous equations is replaced by tr

fV : 

( )( ) ( )( ){ }1 2
3

cos 1 sin
tr
f sf sf sf sf

tr Li tr Li
p

V
C L C L

L J
λ δ λ δ

λ
 =⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ ⋅

 (A2) 

that can be rewritten as: 

( ) ( )1 2 1 3
3

cos sin
tr
fsf sf sf sf sf sf

tr tr
p

V
C L C L C C

L J
λ λ

λ
⋅ ⋅ − ⋅ ⋅ = + =

⋅ ⋅
 (A3) 

in which ( )sf
tr LiL δ  was indicated, for the sake of brevity, as sf

trL . Moreover, since in the present work the superscript 

sf referring to the softening friction bond fase is neglected, the previous equation is reduced to: 

( ) ( )1 2 1 3
3

cos sin
tr
f

tr tr
p

V
C L C L C C

L J
λ λ

λ
⋅ ⋅ − ⋅ ⋅ = + =

⋅ ⋅
 (A4) 



 39

This equation, in which the unknown is ( )1
tr

L fVδ  that is the value of Liδ  such that ( );bd eq tr
fi Rfi Li fV L Vδ = , is solved 

as follows: each term is firstly divided by 2 2
1 2C C+  and then the position in made in which 2 2

1 1 2 sinC C C ϕ+ =  

and 2 2
2 1 2 cosC C C ϕ+ = , yielding: 

( )3
2 2
1 2

sin tr
C

L
C C

ϕ λ= − ⋅
+

 (A5) 

From this latter, one obtains: 

3
2 2
1 2

1
arcsintr

C
L

C C
ϕ

λ
 

= ⋅ − 
+  

 (A6) 

Introducing in this latter the expression the dependence of trL  on Liδ , given by Eq. (6.1) of the previous work 

(Bianco et al. 2011) the following equation is derived: 

2
3

2 2
0 1 1 2

1 1
arccos 1 arcsinLi

C

J C C

λ δ ϕ
λ τ λ

  
⋅ − ⋅ = ⋅ −  ⋅ +    

 (A7) 

Making the cosine of both members, results: 

( ) 0 1 1 3
2 2 2 2 2

1 2 1 2

1 cos arcsin arcsintr
Li f

J C C
V

C C C C

τδ
λ

  ⋅  = − ⋅ −  
+ +    

 (A8) 

where: 

( )

1
1 22

0 1

0 1 0 1
3 1 1 2 3 12 2

3

1 1
; ;

; ; ;

p f f c c

f f c c c c f f

tr
f f c c f

p c c f f p

L A E E A
J J

J A E A E E A E A

E A E A VJ J
J C C C C

L A E A E L J

δ
τλ

τ τδ
λλ λ

  ⋅ ⋅
= = ⋅ + = ⋅ ⋅ ⋅ + ⋅ 

⋅ ⋅ ⋅ ⋅ ⋅= = − = − = +
⋅ ⋅ + ⋅ ⋅ ⋅

 (A9) 

Eq. (A8) gives a finite non null value only if 1
bd tr
f fV V≥  (compare Fig. 2). The above constants can be further 

simplified as follows: 

since 3
1

1
J

J
= , 3J  will be eliminated and substituted, whenever it appears, by 

1

1

J
; 

since 1
2

0 1

1

J

δ
τλ

=
⋅

, 1C vanishes and 2C  can be written as 2 1C δ= −  so that, in the various expressions, only 3C  

will be kept. 

On the basis of the above simplifications, and since ( ) ( )cos cos 1angle angle= − ⋅ , Eq. (A8) simplifies into: 
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( ) 3
1 2 2

1 2

1 cos arcsintr
Li f

C
V

C C
δ δ

   = ⋅ − ⋅  
+    

 (A10) 

As already stated in the paper, there must be a value *
ctmf  of concrete mean tensile strength beyond which concrete 

no longer fractures and the equivalent value of the average available resisting bond length is equal to the average 

available resisting bond length 1.0eq
Rfi RfiL L= ⋅ .The value of *

ctmf  can be determined by imposing the equality 

,max ,max
cf bd
fi fiV V=  between the concrete fracture capacity cf

fiV  and the corresponding maximum value of the bond 

transferred force bd
fiV . This latter will be attained for a transfer length that is equal to RfiL , if it is Rfi RfeL L≤  or 

that is equal to RfeL  if it is Rfi RfeL L> . In general it can be written: 

( ) ( ),max ,max
cf bd
fi Rfi fi RfiV L V L=  (A11) 

with: 

Rfi Rfi Rfe
Rfi

Rfe Rfi Rfe

L if L L
L

L if L L

≤= 
>

 (A12) 

The expression ( ),max
cf
fi RfiV L  can be simplified, with respect to Eq. (16) of Bianco et al. 2011, by considering a 

concrete prism, relevant to the average available resisting bond length, that has its bases orthogonal to RfiL , 

yielding: 

( ) ( ),max min tan ; min sin ;2 tan
2

cf w
fi Rfi Rfi f Rfi ctm

b
V L L s L fα β α = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 
 (A13) 

while the bond transferred force is given by Eq. (7.a) of Bianco et al. 2011, that is: 

( ) ( ) ( ){ },max 1 2
1

1
cos 1 sinbd

fi Rfi p Rfi RfiV L L C L C L
J

λ λ λ= ⋅ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅    (A14) 

Substituting these latter into Eq. (A11), and taking into consideration the simplifications of Eq. (A9), one obtains: 

( )
( )

1*

1

sin

min tan ; min sin ;2 tan
2

p Rfi
ctm

w
Rfi f Rfi

L L
f

b
J L s L

λ δ λ

α β α

⋅ ⋅ ⋅ ⋅
=

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

 
(A15) 

With the simplifications of Eq. (A9), the value of imposed end slip in correspondence of which the bond-based 

constitutive law attains the peak, given by Eq. (13) of Bianco et al. 2011, simplifies into: 

( ) ( )1
1

1

1 cos for

for

eq eq
Rfi Rfi Rfeeq

L Rfi eq
Rfi Rfe

L L L
L

L L

δ λ
δ

δ

  ⋅ − ⋅ ≤  = 
>

 (A16) 
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The expression of the maximum effective capacity ( )max
, , maxfi eff fi effV V γ= , given by Eq. (20) of Bianco et al. 2011, 

can be further simplified, introducing the simplifications of Eqs. (A9) into: 

( )max 21 2
, , max

3 max

arcsin 1
2 2fi eff fi eff

d

A
V V

L A

δ πγ ψ ψ ψ
γ

⋅  = = ⋅ − − ⋅ − ⋅ ⋅ ⋅  
 (A17) 

in which 

3 max1 dA Lψ γ= − ⋅ ⋅  (A18) 

where A3 and Ld were already introduced in the main text. 


